xref: /linux/drivers/edac/edac_mc_sysfs.c (revision 2d9db778ddca079228ef10e60bceea06b34b0eaa)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_mc.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static unsigned int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 unsigned int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55 	unsigned int i;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtouint(val, 0, &i);
62 	if (ret)
63 		return ret;
64 
65 	if (i < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned int *)kp->arg) = i;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(i);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const dev_types[] = {
95 	[DEV_UNKNOWN] = "Unknown",
96 	[DEV_X1] = "x1",
97 	[DEV_X2] = "x2",
98 	[DEV_X4] = "x4",
99 	[DEV_X8] = "x8",
100 	[DEV_X16] = "x16",
101 	[DEV_X32] = "x32",
102 	[DEV_X64] = "x64"
103 };
104 
105 static const char * const edac_caps[] = {
106 	[EDAC_UNKNOWN] = "Unknown",
107 	[EDAC_NONE] = "None",
108 	[EDAC_RESERVED] = "Reserved",
109 	[EDAC_PARITY] = "PARITY",
110 	[EDAC_EC] = "EC",
111 	[EDAC_SECDED] = "SECDED",
112 	[EDAC_S2ECD2ED] = "S2ECD2ED",
113 	[EDAC_S4ECD4ED] = "S4ECD4ED",
114 	[EDAC_S8ECD8ED] = "S8ECD8ED",
115 	[EDAC_S16ECD16ED] = "S16ECD16ED"
116 };
117 
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
119 /*
120  * EDAC sysfs CSROW data structures and methods
121  */
122 
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
124 
125 /*
126  * We need it to avoid namespace conflicts between the legacy API
127  * and the per-dimm/per-rank one
128  */
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131 
132 struct dev_ch_attribute {
133 	struct device_attribute attr;
134 	unsigned int channel;
135 };
136 
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 		{ __ATTR(_name, _mode, _show, _store), (_var) }
140 
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142 
143 /* Set of more default csrow<id> attribute show/store functions */
144 static ssize_t csrow_ue_count_show(struct device *dev,
145 				   struct device_attribute *mattr, char *data)
146 {
147 	struct csrow_info *csrow = to_csrow(dev);
148 
149 	return sysfs_emit(data, "%u\n", csrow->ue_count);
150 }
151 
152 static ssize_t csrow_ce_count_show(struct device *dev,
153 				   struct device_attribute *mattr, char *data)
154 {
155 	struct csrow_info *csrow = to_csrow(dev);
156 
157 	return sysfs_emit(data, "%u\n", csrow->ce_count);
158 }
159 
160 static ssize_t csrow_size_show(struct device *dev,
161 			       struct device_attribute *mattr, char *data)
162 {
163 	struct csrow_info *csrow = to_csrow(dev);
164 	int i;
165 	u32 nr_pages = 0;
166 
167 	for (i = 0; i < csrow->nr_channels; i++)
168 		nr_pages += csrow->channels[i]->dimm->nr_pages;
169 	return sysfs_emit(data, "%u\n", PAGES_TO_MiB(nr_pages));
170 }
171 
172 static ssize_t csrow_mem_type_show(struct device *dev,
173 				   struct device_attribute *mattr, char *data)
174 {
175 	struct csrow_info *csrow = to_csrow(dev);
176 
177 	return sysfs_emit(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178 }
179 
180 static ssize_t csrow_dev_type_show(struct device *dev,
181 				   struct device_attribute *mattr, char *data)
182 {
183 	struct csrow_info *csrow = to_csrow(dev);
184 
185 	return sysfs_emit(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186 }
187 
188 static ssize_t csrow_edac_mode_show(struct device *dev,
189 				    struct device_attribute *mattr,
190 				    char *data)
191 {
192 	struct csrow_info *csrow = to_csrow(dev);
193 
194 	return sysfs_emit(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195 }
196 
197 /* show/store functions for DIMM Label attributes */
198 static ssize_t channel_dimm_label_show(struct device *dev,
199 				       struct device_attribute *mattr,
200 				       char *data)
201 {
202 	struct csrow_info *csrow = to_csrow(dev);
203 	unsigned int chan = to_channel(mattr);
204 	struct rank_info *rank = csrow->channels[chan];
205 
206 	/* if field has not been initialized, there is nothing to send */
207 	if (!rank->dimm->label[0])
208 		return 0;
209 
210 	return sysfs_emit(data, "%s\n", rank->dimm->label);
211 }
212 
213 static ssize_t channel_dimm_label_store(struct device *dev,
214 					struct device_attribute *mattr,
215 					const char *data, size_t count)
216 {
217 	struct csrow_info *csrow = to_csrow(dev);
218 	unsigned int chan = to_channel(mattr);
219 	struct rank_info *rank = csrow->channels[chan];
220 	size_t copy_count = count;
221 
222 	if (count == 0)
223 		return -EINVAL;
224 
225 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
226 		copy_count -= 1;
227 
228 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
229 		return -EINVAL;
230 
231 	memcpy(rank->dimm->label, data, copy_count);
232 	rank->dimm->label[copy_count] = '\0';
233 
234 	return count;
235 }
236 
237 /* show function for dynamic chX_ce_count attribute */
238 static ssize_t channel_ce_count_show(struct device *dev,
239 				     struct device_attribute *mattr, char *data)
240 {
241 	struct csrow_info *csrow = to_csrow(dev);
242 	unsigned int chan = to_channel(mattr);
243 	struct rank_info *rank = csrow->channels[chan];
244 
245 	return sysfs_emit(data, "%u\n", rank->ce_count);
246 }
247 
248 /* cwrow<id>/attribute files */
249 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
250 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
251 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
252 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
253 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
254 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
255 
256 /* default attributes of the CSROW<id> object */
257 static struct attribute *csrow_attrs[] = {
258 	&dev_attr_legacy_dev_type.attr,
259 	&dev_attr_legacy_mem_type.attr,
260 	&dev_attr_legacy_edac_mode.attr,
261 	&dev_attr_legacy_size_mb.attr,
262 	&dev_attr_legacy_ue_count.attr,
263 	&dev_attr_legacy_ce_count.attr,
264 	NULL,
265 };
266 
267 static const struct attribute_group csrow_attr_grp = {
268 	.attrs	= csrow_attrs,
269 };
270 
271 static const struct attribute_group *csrow_attr_groups[] = {
272 	&csrow_attr_grp,
273 	NULL
274 };
275 
276 static const struct device_type csrow_attr_type = {
277 	.groups		= csrow_attr_groups,
278 };
279 
280 /*
281  * possible dynamic channel DIMM Label attribute files
282  *
283  */
284 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
285 	channel_dimm_label_show, channel_dimm_label_store, 0);
286 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
287 	channel_dimm_label_show, channel_dimm_label_store, 1);
288 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
289 	channel_dimm_label_show, channel_dimm_label_store, 2);
290 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
291 	channel_dimm_label_show, channel_dimm_label_store, 3);
292 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
293 	channel_dimm_label_show, channel_dimm_label_store, 4);
294 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
295 	channel_dimm_label_show, channel_dimm_label_store, 5);
296 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
297 	channel_dimm_label_show, channel_dimm_label_store, 6);
298 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
299 	channel_dimm_label_show, channel_dimm_label_store, 7);
300 DEVICE_CHANNEL(ch8_dimm_label, S_IRUGO | S_IWUSR,
301 	channel_dimm_label_show, channel_dimm_label_store, 8);
302 DEVICE_CHANNEL(ch9_dimm_label, S_IRUGO | S_IWUSR,
303 	channel_dimm_label_show, channel_dimm_label_store, 9);
304 DEVICE_CHANNEL(ch10_dimm_label, S_IRUGO | S_IWUSR,
305 	channel_dimm_label_show, channel_dimm_label_store, 10);
306 DEVICE_CHANNEL(ch11_dimm_label, S_IRUGO | S_IWUSR,
307 	channel_dimm_label_show, channel_dimm_label_store, 11);
308 
309 /* Total possible dynamic DIMM Label attribute file table */
310 static struct attribute *dynamic_csrow_dimm_attr[] = {
311 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
312 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
313 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
314 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
315 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
316 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
317 	&dev_attr_legacy_ch6_dimm_label.attr.attr,
318 	&dev_attr_legacy_ch7_dimm_label.attr.attr,
319 	&dev_attr_legacy_ch8_dimm_label.attr.attr,
320 	&dev_attr_legacy_ch9_dimm_label.attr.attr,
321 	&dev_attr_legacy_ch10_dimm_label.attr.attr,
322 	&dev_attr_legacy_ch11_dimm_label.attr.attr,
323 	NULL
324 };
325 
326 /* possible dynamic channel ce_count attribute files */
327 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
328 		   channel_ce_count_show, NULL, 0);
329 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
330 		   channel_ce_count_show, NULL, 1);
331 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
332 		   channel_ce_count_show, NULL, 2);
333 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
334 		   channel_ce_count_show, NULL, 3);
335 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
336 		   channel_ce_count_show, NULL, 4);
337 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
338 		   channel_ce_count_show, NULL, 5);
339 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
340 		   channel_ce_count_show, NULL, 6);
341 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
342 		   channel_ce_count_show, NULL, 7);
343 DEVICE_CHANNEL(ch8_ce_count, S_IRUGO,
344 		   channel_ce_count_show, NULL, 8);
345 DEVICE_CHANNEL(ch9_ce_count, S_IRUGO,
346 		   channel_ce_count_show, NULL, 9);
347 DEVICE_CHANNEL(ch10_ce_count, S_IRUGO,
348 		   channel_ce_count_show, NULL, 10);
349 DEVICE_CHANNEL(ch11_ce_count, S_IRUGO,
350 		   channel_ce_count_show, NULL, 11);
351 
352 /* Total possible dynamic ce_count attribute file table */
353 static struct attribute *dynamic_csrow_ce_count_attr[] = {
354 	&dev_attr_legacy_ch0_ce_count.attr.attr,
355 	&dev_attr_legacy_ch1_ce_count.attr.attr,
356 	&dev_attr_legacy_ch2_ce_count.attr.attr,
357 	&dev_attr_legacy_ch3_ce_count.attr.attr,
358 	&dev_attr_legacy_ch4_ce_count.attr.attr,
359 	&dev_attr_legacy_ch5_ce_count.attr.attr,
360 	&dev_attr_legacy_ch6_ce_count.attr.attr,
361 	&dev_attr_legacy_ch7_ce_count.attr.attr,
362 	&dev_attr_legacy_ch8_ce_count.attr.attr,
363 	&dev_attr_legacy_ch9_ce_count.attr.attr,
364 	&dev_attr_legacy_ch10_ce_count.attr.attr,
365 	&dev_attr_legacy_ch11_ce_count.attr.attr,
366 	NULL
367 };
368 
369 static umode_t csrow_dev_is_visible(struct kobject *kobj,
370 				    struct attribute *attr, int idx)
371 {
372 	struct device *dev = kobj_to_dev(kobj);
373 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
374 
375 	if (idx >= csrow->nr_channels)
376 		return 0;
377 
378 	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
379 		WARN_ONCE(1, "idx: %d\n", idx);
380 		return 0;
381 	}
382 
383 	/* Only expose populated DIMMs */
384 	if (!csrow->channels[idx]->dimm->nr_pages)
385 		return 0;
386 
387 	return attr->mode;
388 }
389 
390 
391 static const struct attribute_group csrow_dev_dimm_group = {
392 	.attrs = dynamic_csrow_dimm_attr,
393 	.is_visible = csrow_dev_is_visible,
394 };
395 
396 static const struct attribute_group csrow_dev_ce_count_group = {
397 	.attrs = dynamic_csrow_ce_count_attr,
398 	.is_visible = csrow_dev_is_visible,
399 };
400 
401 static const struct attribute_group *csrow_dev_groups[] = {
402 	&csrow_dev_dimm_group,
403 	&csrow_dev_ce_count_group,
404 	NULL
405 };
406 
407 static void csrow_release(struct device *dev)
408 {
409 	/*
410 	 * Nothing to do, just unregister sysfs here. The mci
411 	 * device owns the data and will also release it.
412 	 */
413 }
414 
415 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
416 {
417 	int chan, nr_pages = 0;
418 
419 	for (chan = 0; chan < csrow->nr_channels; chan++)
420 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
421 
422 	return nr_pages;
423 }
424 
425 /* Create a CSROW object under specifed edac_mc_device */
426 static int edac_create_csrow_object(struct mem_ctl_info *mci,
427 				    struct csrow_info *csrow, int index)
428 {
429 	int err;
430 
431 	csrow->dev.type = &csrow_attr_type;
432 	csrow->dev.groups = csrow_dev_groups;
433 	csrow->dev.release = csrow_release;
434 	device_initialize(&csrow->dev);
435 	csrow->dev.parent = &mci->dev;
436 	csrow->mci = mci;
437 	dev_set_name(&csrow->dev, "csrow%d", index);
438 	dev_set_drvdata(&csrow->dev, csrow);
439 
440 	err = device_add(&csrow->dev);
441 	if (err) {
442 		edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev));
443 		put_device(&csrow->dev);
444 		return err;
445 	}
446 
447 	edac_dbg(0, "device %s created\n", dev_name(&csrow->dev));
448 
449 	return 0;
450 }
451 
452 /* Create a CSROW object under specifed edac_mc_device */
453 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
454 {
455 	int err, i;
456 	struct csrow_info *csrow;
457 
458 	for (i = 0; i < mci->nr_csrows; i++) {
459 		csrow = mci->csrows[i];
460 		if (!nr_pages_per_csrow(csrow))
461 			continue;
462 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
463 		if (err < 0)
464 			goto error;
465 	}
466 	return 0;
467 
468 error:
469 	for (--i; i >= 0; i--) {
470 		if (device_is_registered(&mci->csrows[i]->dev))
471 			device_unregister(&mci->csrows[i]->dev);
472 	}
473 
474 	return err;
475 }
476 
477 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
478 {
479 	int i;
480 
481 	for (i = 0; i < mci->nr_csrows; i++) {
482 		if (device_is_registered(&mci->csrows[i]->dev))
483 			device_unregister(&mci->csrows[i]->dev);
484 	}
485 }
486 
487 #endif
488 
489 /*
490  * Per-dimm (or per-rank) devices
491  */
492 
493 #define to_dimm(k) container_of(k, struct dimm_info, dev)
494 
495 /* show/store functions for DIMM Label attributes */
496 static ssize_t dimmdev_location_show(struct device *dev,
497 				     struct device_attribute *mattr, char *data)
498 {
499 	struct dimm_info *dimm = to_dimm(dev);
500 	ssize_t count;
501 
502 	count = edac_dimm_info_location(dimm, data, PAGE_SIZE);
503 	count += scnprintf(data + count, PAGE_SIZE - count, "\n");
504 
505 	return count;
506 }
507 
508 static ssize_t dimmdev_label_show(struct device *dev,
509 				  struct device_attribute *mattr, char *data)
510 {
511 	struct dimm_info *dimm = to_dimm(dev);
512 
513 	/* if field has not been initialized, there is nothing to send */
514 	if (!dimm->label[0])
515 		return 0;
516 
517 	return sysfs_emit(data, "%s\n", dimm->label);
518 }
519 
520 static ssize_t dimmdev_label_store(struct device *dev,
521 				   struct device_attribute *mattr,
522 				   const char *data,
523 				   size_t count)
524 {
525 	struct dimm_info *dimm = to_dimm(dev);
526 	size_t copy_count = count;
527 
528 	if (count == 0)
529 		return -EINVAL;
530 
531 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
532 		copy_count -= 1;
533 
534 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
535 		return -EINVAL;
536 
537 	memcpy(dimm->label, data, copy_count);
538 	dimm->label[copy_count] = '\0';
539 
540 	return count;
541 }
542 
543 static ssize_t dimmdev_size_show(struct device *dev,
544 				 struct device_attribute *mattr, char *data)
545 {
546 	struct dimm_info *dimm = to_dimm(dev);
547 
548 	return sysfs_emit(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
549 }
550 
551 static ssize_t dimmdev_mem_type_show(struct device *dev,
552 				     struct device_attribute *mattr, char *data)
553 {
554 	struct dimm_info *dimm = to_dimm(dev);
555 
556 	return sysfs_emit(data, "%s\n", edac_mem_types[dimm->mtype]);
557 }
558 
559 static ssize_t dimmdev_dev_type_show(struct device *dev,
560 				     struct device_attribute *mattr, char *data)
561 {
562 	struct dimm_info *dimm = to_dimm(dev);
563 
564 	return sysfs_emit(data, "%s\n", dev_types[dimm->dtype]);
565 }
566 
567 static ssize_t dimmdev_edac_mode_show(struct device *dev,
568 				      struct device_attribute *mattr,
569 				      char *data)
570 {
571 	struct dimm_info *dimm = to_dimm(dev);
572 
573 	return sysfs_emit(data, "%s\n", edac_caps[dimm->edac_mode]);
574 }
575 
576 static ssize_t dimmdev_ce_count_show(struct device *dev,
577 				      struct device_attribute *mattr,
578 				      char *data)
579 {
580 	struct dimm_info *dimm = to_dimm(dev);
581 
582 	return sysfs_emit(data, "%u\n", dimm->ce_count);
583 }
584 
585 static ssize_t dimmdev_ue_count_show(struct device *dev,
586 				      struct device_attribute *mattr,
587 				      char *data)
588 {
589 	struct dimm_info *dimm = to_dimm(dev);
590 
591 	return sysfs_emit(data, "%u\n", dimm->ue_count);
592 }
593 
594 /* dimm/rank attribute files */
595 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
596 		   dimmdev_label_show, dimmdev_label_store);
597 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
598 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
599 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
600 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
601 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
602 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
603 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
604 
605 /* attributes of the dimm<id>/rank<id> object */
606 static struct attribute *dimm_attrs[] = {
607 	&dev_attr_dimm_label.attr,
608 	&dev_attr_dimm_location.attr,
609 	&dev_attr_size.attr,
610 	&dev_attr_dimm_mem_type.attr,
611 	&dev_attr_dimm_dev_type.attr,
612 	&dev_attr_dimm_edac_mode.attr,
613 	&dev_attr_dimm_ce_count.attr,
614 	&dev_attr_dimm_ue_count.attr,
615 	NULL,
616 };
617 
618 static const struct attribute_group dimm_attr_grp = {
619 	.attrs	= dimm_attrs,
620 };
621 
622 static const struct attribute_group *dimm_attr_groups[] = {
623 	&dimm_attr_grp,
624 	NULL
625 };
626 
627 static const struct device_type dimm_attr_type = {
628 	.groups		= dimm_attr_groups,
629 };
630 
631 static void dimm_release(struct device *dev)
632 {
633 	/*
634 	 * Nothing to do, just unregister sysfs here. The mci
635 	 * device owns the data and will also release it.
636 	 */
637 }
638 
639 /* Create a DIMM object under specifed memory controller device */
640 static int edac_create_dimm_object(struct mem_ctl_info *mci,
641 				   struct dimm_info *dimm)
642 {
643 	int err;
644 	dimm->mci = mci;
645 
646 	dimm->dev.type = &dimm_attr_type;
647 	dimm->dev.release = dimm_release;
648 	device_initialize(&dimm->dev);
649 
650 	dimm->dev.parent = &mci->dev;
651 	if (mci->csbased)
652 		dev_set_name(&dimm->dev, "rank%d", dimm->idx);
653 	else
654 		dev_set_name(&dimm->dev, "dimm%d", dimm->idx);
655 	dev_set_drvdata(&dimm->dev, dimm);
656 	pm_runtime_forbid(&mci->dev);
657 
658 	err = device_add(&dimm->dev);
659 	if (err) {
660 		edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev));
661 		put_device(&dimm->dev);
662 		return err;
663 	}
664 
665 	if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
666 		char location[80];
667 
668 		edac_dimm_info_location(dimm, location, sizeof(location));
669 		edac_dbg(0, "device %s created at location %s\n",
670 			dev_name(&dimm->dev), location);
671 	}
672 
673 	return 0;
674 }
675 
676 /*
677  * Memory controller device
678  */
679 
680 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
681 
682 static ssize_t mci_reset_counters_store(struct device *dev,
683 					struct device_attribute *mattr,
684 					const char *data, size_t count)
685 {
686 	struct mem_ctl_info *mci = to_mci(dev);
687 	struct dimm_info *dimm;
688 	int row, chan;
689 
690 	mci->ue_mc = 0;
691 	mci->ce_mc = 0;
692 	mci->ue_noinfo_count = 0;
693 	mci->ce_noinfo_count = 0;
694 
695 	for (row = 0; row < mci->nr_csrows; row++) {
696 		struct csrow_info *ri = mci->csrows[row];
697 
698 		ri->ue_count = 0;
699 		ri->ce_count = 0;
700 
701 		for (chan = 0; chan < ri->nr_channels; chan++)
702 			ri->channels[chan]->ce_count = 0;
703 	}
704 
705 	mci_for_each_dimm(mci, dimm) {
706 		dimm->ue_count = 0;
707 		dimm->ce_count = 0;
708 	}
709 
710 	mci->start_time = jiffies;
711 	return count;
712 }
713 
714 /* Memory scrubbing interface:
715  *
716  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
717  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
718  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
719  *
720  * Negative value still means that an error has occurred while setting
721  * the scrub rate.
722  */
723 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
724 					  struct device_attribute *mattr,
725 					  const char *data, size_t count)
726 {
727 	struct mem_ctl_info *mci = to_mci(dev);
728 	unsigned long bandwidth = 0;
729 	int new_bw = 0;
730 
731 	if (kstrtoul(data, 10, &bandwidth) < 0)
732 		return -EINVAL;
733 
734 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
735 	if (new_bw < 0) {
736 		edac_printk(KERN_WARNING, EDAC_MC,
737 			    "Error setting scrub rate to: %lu\n", bandwidth);
738 		return -EINVAL;
739 	}
740 
741 	return count;
742 }
743 
744 /*
745  * ->get_sdram_scrub_rate() return value semantics same as above.
746  */
747 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
748 					 struct device_attribute *mattr,
749 					 char *data)
750 {
751 	struct mem_ctl_info *mci = to_mci(dev);
752 	int bandwidth = 0;
753 
754 	bandwidth = mci->get_sdram_scrub_rate(mci);
755 	if (bandwidth < 0) {
756 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
757 		return bandwidth;
758 	}
759 
760 	return sysfs_emit(data, "%d\n", bandwidth);
761 }
762 
763 /* default attribute files for the MCI object */
764 static ssize_t mci_ue_count_show(struct device *dev,
765 				 struct device_attribute *mattr,
766 				 char *data)
767 {
768 	struct mem_ctl_info *mci = to_mci(dev);
769 
770 	return sysfs_emit(data, "%u\n", mci->ue_mc);
771 }
772 
773 static ssize_t mci_ce_count_show(struct device *dev,
774 				 struct device_attribute *mattr,
775 				 char *data)
776 {
777 	struct mem_ctl_info *mci = to_mci(dev);
778 
779 	return sysfs_emit(data, "%u\n", mci->ce_mc);
780 }
781 
782 static ssize_t mci_ce_noinfo_show(struct device *dev,
783 				  struct device_attribute *mattr,
784 				  char *data)
785 {
786 	struct mem_ctl_info *mci = to_mci(dev);
787 
788 	return sysfs_emit(data, "%u\n", mci->ce_noinfo_count);
789 }
790 
791 static ssize_t mci_ue_noinfo_show(struct device *dev,
792 				  struct device_attribute *mattr,
793 				  char *data)
794 {
795 	struct mem_ctl_info *mci = to_mci(dev);
796 
797 	return sysfs_emit(data, "%u\n", mci->ue_noinfo_count);
798 }
799 
800 static ssize_t mci_seconds_show(struct device *dev,
801 				struct device_attribute *mattr,
802 				char *data)
803 {
804 	struct mem_ctl_info *mci = to_mci(dev);
805 
806 	return sysfs_emit(data, "%ld\n", (jiffies - mci->start_time) / HZ);
807 }
808 
809 static ssize_t mci_ctl_name_show(struct device *dev,
810 				 struct device_attribute *mattr,
811 				 char *data)
812 {
813 	struct mem_ctl_info *mci = to_mci(dev);
814 
815 	return sysfs_emit(data, "%s\n", mci->ctl_name);
816 }
817 
818 static ssize_t mci_size_mb_show(struct device *dev,
819 				struct device_attribute *mattr,
820 				char *data)
821 {
822 	struct mem_ctl_info *mci = to_mci(dev);
823 	int total_pages = 0, csrow_idx, j;
824 
825 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
826 		struct csrow_info *csrow = mci->csrows[csrow_idx];
827 
828 		for (j = 0; j < csrow->nr_channels; j++) {
829 			struct dimm_info *dimm = csrow->channels[j]->dimm;
830 
831 			total_pages += dimm->nr_pages;
832 		}
833 	}
834 
835 	return sysfs_emit(data, "%u\n", PAGES_TO_MiB(total_pages));
836 }
837 
838 static ssize_t mci_max_location_show(struct device *dev,
839 				     struct device_attribute *mattr,
840 				     char *data)
841 {
842 	struct mem_ctl_info *mci = to_mci(dev);
843 	int len = PAGE_SIZE;
844 	char *p = data;
845 	int i, n;
846 
847 	for (i = 0; i < mci->n_layers; i++) {
848 		n = scnprintf(p, len, "%s %d ",
849 			      edac_layer_name[mci->layers[i].type],
850 			      mci->layers[i].size - 1);
851 		len -= n;
852 		if (len <= 0)
853 			goto out;
854 
855 		p += n;
856 	}
857 
858 	p += scnprintf(p, len, "\n");
859 out:
860 	return p - data;
861 }
862 
863 /* default Control file */
864 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
865 
866 /* default Attribute files */
867 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
868 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
869 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
870 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
871 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
872 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
873 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
874 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
875 
876 /* memory scrubber attribute file */
877 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
878 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
879 
880 static struct attribute *mci_attrs[] = {
881 	&dev_attr_reset_counters.attr,
882 	&dev_attr_mc_name.attr,
883 	&dev_attr_size_mb.attr,
884 	&dev_attr_seconds_since_reset.attr,
885 	&dev_attr_ue_noinfo_count.attr,
886 	&dev_attr_ce_noinfo_count.attr,
887 	&dev_attr_ue_count.attr,
888 	&dev_attr_ce_count.attr,
889 	&dev_attr_max_location.attr,
890 	&dev_attr_sdram_scrub_rate.attr,
891 	NULL
892 };
893 
894 static umode_t mci_attr_is_visible(struct kobject *kobj,
895 				   struct attribute *attr, int idx)
896 {
897 	struct device *dev = kobj_to_dev(kobj);
898 	struct mem_ctl_info *mci = to_mci(dev);
899 	umode_t mode = 0;
900 
901 	if (attr != &dev_attr_sdram_scrub_rate.attr)
902 		return attr->mode;
903 	if (mci->get_sdram_scrub_rate)
904 		mode |= S_IRUGO;
905 	if (mci->set_sdram_scrub_rate)
906 		mode |= S_IWUSR;
907 	return mode;
908 }
909 
910 static const struct attribute_group mci_attr_grp = {
911 	.attrs	= mci_attrs,
912 	.is_visible = mci_attr_is_visible,
913 };
914 
915 static const struct attribute_group *mci_attr_groups[] = {
916 	&mci_attr_grp,
917 	NULL
918 };
919 
920 static const struct device_type mci_attr_type = {
921 	.groups		= mci_attr_groups,
922 };
923 
924 /*
925  * Create a new Memory Controller kobject instance,
926  *	mc<id> under the 'mc' directory
927  *
928  * Return:
929  *	0	Success
930  *	!0	Failure
931  */
932 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
933 				 const struct attribute_group **groups)
934 {
935 	struct dimm_info *dimm;
936 	int err;
937 
938 	/* get the /sys/devices/system/edac subsys reference */
939 	mci->dev.type = &mci_attr_type;
940 	mci->dev.parent = mci_pdev;
941 	mci->dev.groups = groups;
942 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
943 	dev_set_drvdata(&mci->dev, mci);
944 	pm_runtime_forbid(&mci->dev);
945 
946 	err = device_add(&mci->dev);
947 	if (err < 0) {
948 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
949 		/* no put_device() here, free mci with _edac_mc_free() */
950 		return err;
951 	}
952 
953 	edac_dbg(0, "device %s created\n", dev_name(&mci->dev));
954 
955 	/*
956 	 * Create the dimm/rank devices
957 	 */
958 	mci_for_each_dimm(mci, dimm) {
959 		/* Only expose populated DIMMs */
960 		if (!dimm->nr_pages)
961 			continue;
962 
963 		err = edac_create_dimm_object(mci, dimm);
964 		if (err)
965 			goto fail;
966 	}
967 
968 #ifdef CONFIG_EDAC_LEGACY_SYSFS
969 	err = edac_create_csrow_objects(mci);
970 	if (err < 0)
971 		goto fail;
972 #endif
973 
974 	edac_create_debugfs_nodes(mci);
975 	return 0;
976 
977 fail:
978 	edac_remove_sysfs_mci_device(mci);
979 
980 	return err;
981 }
982 
983 /*
984  * remove a Memory Controller instance
985  */
986 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
987 {
988 	struct dimm_info *dimm;
989 
990 	if (!device_is_registered(&mci->dev))
991 		return;
992 
993 	edac_dbg(0, "\n");
994 
995 #ifdef CONFIG_EDAC_DEBUG
996 	edac_debugfs_remove_recursive(mci->debugfs);
997 #endif
998 #ifdef CONFIG_EDAC_LEGACY_SYSFS
999 	edac_delete_csrow_objects(mci);
1000 #endif
1001 
1002 	mci_for_each_dimm(mci, dimm) {
1003 		if (!device_is_registered(&dimm->dev))
1004 			continue;
1005 		edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev));
1006 		device_unregister(&dimm->dev);
1007 	}
1008 
1009 	/* only remove the device, but keep mci */
1010 	device_del(&mci->dev);
1011 }
1012 
1013 static void mc_attr_release(struct device *dev)
1014 {
1015 	/*
1016 	 * There's no container structure here, as this is just the mci
1017 	 * parent device, used to create the /sys/devices/mc sysfs node.
1018 	 * So, there are no attributes on it.
1019 	 */
1020 	edac_dbg(1, "device %s released\n", dev_name(dev));
1021 	kfree(dev);
1022 }
1023 
1024 /*
1025  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1026  */
1027 int __init edac_mc_sysfs_init(void)
1028 {
1029 	int err;
1030 
1031 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1032 	if (!mci_pdev)
1033 		return -ENOMEM;
1034 
1035 	mci_pdev->bus = edac_get_sysfs_subsys();
1036 	mci_pdev->release = mc_attr_release;
1037 	mci_pdev->init_name = "mc";
1038 
1039 	err = device_register(mci_pdev);
1040 	if (err < 0) {
1041 		edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev));
1042 		put_device(mci_pdev);
1043 		return err;
1044 	}
1045 
1046 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1047 
1048 	return 0;
1049 }
1050 
1051 void edac_mc_sysfs_exit(void)
1052 {
1053 	device_unregister(mci_pdev);
1054 }
1055