xref: /linux/drivers/edac/edac_mc_sysfs.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *	The entire API were re-written, and ported to use struct device
12  *
13  */
14 
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21 
22 #include "edac_core.h"
23 #include "edac_module.h"
24 
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30 
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 	return edac_mc_log_ue;
35 }
36 
37 int edac_mc_get_log_ce(void)
38 {
39 	return edac_mc_log_ce;
40 }
41 
42 int edac_mc_get_panic_on_ue(void)
43 {
44 	return edac_mc_panic_on_ue;
45 }
46 
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 	return edac_mc_poll_msec;
51 }
52 
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 	unsigned long l;
56 	int ret;
57 
58 	if (!val)
59 		return -EINVAL;
60 
61 	ret = kstrtoul(val, 0, &l);
62 	if (ret)
63 		return ret;
64 
65 	if (l < 1000)
66 		return -EINVAL;
67 
68 	*((unsigned long *)kp->arg) = l;
69 
70 	/* notify edac_mc engine to reset the poll period */
71 	edac_mc_reset_delay_period(l);
72 
73 	return 0;
74 }
75 
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 		 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 		 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 		  &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88 
89 static struct device *mci_pdev;
90 
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95 	[MEM_EMPTY] = "Empty",
96 	[MEM_RESERVED] = "Reserved",
97 	[MEM_UNKNOWN] = "Unknown",
98 	[MEM_FPM] = "FPM",
99 	[MEM_EDO] = "EDO",
100 	[MEM_BEDO] = "BEDO",
101 	[MEM_SDR] = "Unbuffered-SDR",
102 	[MEM_RDR] = "Registered-SDR",
103 	[MEM_DDR] = "Unbuffered-DDR",
104 	[MEM_RDDR] = "Registered-DDR",
105 	[MEM_RMBS] = "RMBS",
106 	[MEM_DDR2] = "Unbuffered-DDR2",
107 	[MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 	[MEM_RDDR2] = "Registered-DDR2",
109 	[MEM_XDR] = "XDR",
110 	[MEM_DDR3] = "Unbuffered-DDR3",
111 	[MEM_RDDR3] = "Registered-DDR3",
112 	[MEM_DDR4] = "Unbuffered-DDR4",
113 	[MEM_RDDR4] = "Registered-DDR4"
114 };
115 
116 static const char * const dev_types[] = {
117 	[DEV_UNKNOWN] = "Unknown",
118 	[DEV_X1] = "x1",
119 	[DEV_X2] = "x2",
120 	[DEV_X4] = "x4",
121 	[DEV_X8] = "x8",
122 	[DEV_X16] = "x16",
123 	[DEV_X32] = "x32",
124 	[DEV_X64] = "x64"
125 };
126 
127 static const char * const edac_caps[] = {
128 	[EDAC_UNKNOWN] = "Unknown",
129 	[EDAC_NONE] = "None",
130 	[EDAC_RESERVED] = "Reserved",
131 	[EDAC_PARITY] = "PARITY",
132 	[EDAC_EC] = "EC",
133 	[EDAC_SECDED] = "SECDED",
134 	[EDAC_S2ECD2ED] = "S2ECD2ED",
135 	[EDAC_S4ECD4ED] = "S4ECD4ED",
136 	[EDAC_S8ECD8ED] = "S8ECD8ED",
137 	[EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139 
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142  * EDAC sysfs CSROW data structures and methods
143  */
144 
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146 
147 /*
148  * We need it to avoid namespace conflicts between the legacy API
149  * and the per-dimm/per-rank one
150  */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152 	static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153 
154 struct dev_ch_attribute {
155 	struct device_attribute attr;
156 	int channel;
157 };
158 
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160 	static struct dev_ch_attribute dev_attr_legacy_##_name = \
161 		{ __ATTR(_name, _mode, _show, _store), (_var) }
162 
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164 
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167 				   struct device_attribute *mattr, char *data)
168 {
169 	struct csrow_info *csrow = to_csrow(dev);
170 
171 	return sprintf(data, "%u\n", csrow->ue_count);
172 }
173 
174 static ssize_t csrow_ce_count_show(struct device *dev,
175 				   struct device_attribute *mattr, char *data)
176 {
177 	struct csrow_info *csrow = to_csrow(dev);
178 
179 	return sprintf(data, "%u\n", csrow->ce_count);
180 }
181 
182 static ssize_t csrow_size_show(struct device *dev,
183 			       struct device_attribute *mattr, char *data)
184 {
185 	struct csrow_info *csrow = to_csrow(dev);
186 	int i;
187 	u32 nr_pages = 0;
188 
189 	for (i = 0; i < csrow->nr_channels; i++)
190 		nr_pages += csrow->channels[i]->dimm->nr_pages;
191 	return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193 
194 static ssize_t csrow_mem_type_show(struct device *dev,
195 				   struct device_attribute *mattr, char *data)
196 {
197 	struct csrow_info *csrow = to_csrow(dev);
198 
199 	return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201 
202 static ssize_t csrow_dev_type_show(struct device *dev,
203 				   struct device_attribute *mattr, char *data)
204 {
205 	struct csrow_info *csrow = to_csrow(dev);
206 
207 	return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209 
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211 				    struct device_attribute *mattr,
212 				    char *data)
213 {
214 	struct csrow_info *csrow = to_csrow(dev);
215 
216 	return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218 
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221 				       struct device_attribute *mattr,
222 				       char *data)
223 {
224 	struct csrow_info *csrow = to_csrow(dev);
225 	unsigned chan = to_channel(mattr);
226 	struct rank_info *rank = csrow->channels[chan];
227 
228 	/* if field has not been initialized, there is nothing to send */
229 	if (!rank->dimm->label[0])
230 		return 0;
231 
232 	return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
233 			rank->dimm->label);
234 }
235 
236 static ssize_t channel_dimm_label_store(struct device *dev,
237 					struct device_attribute *mattr,
238 					const char *data, size_t count)
239 {
240 	struct csrow_info *csrow = to_csrow(dev);
241 	unsigned chan = to_channel(mattr);
242 	struct rank_info *rank = csrow->channels[chan];
243 	size_t copy_count = count;
244 
245 	if (count == 0)
246 		return -EINVAL;
247 
248 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
249 		copy_count -= 1;
250 
251 	if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
252 		return -EINVAL;
253 
254 	strncpy(rank->dimm->label, data, copy_count);
255 	rank->dimm->label[copy_count] = '\0';
256 
257 	return count;
258 }
259 
260 /* show function for dynamic chX_ce_count attribute */
261 static ssize_t channel_ce_count_show(struct device *dev,
262 				     struct device_attribute *mattr, char *data)
263 {
264 	struct csrow_info *csrow = to_csrow(dev);
265 	unsigned chan = to_channel(mattr);
266 	struct rank_info *rank = csrow->channels[chan];
267 
268 	return sprintf(data, "%u\n", rank->ce_count);
269 }
270 
271 /* cwrow<id>/attribute files */
272 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
273 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
274 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
275 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
276 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
277 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
278 
279 /* default attributes of the CSROW<id> object */
280 static struct attribute *csrow_attrs[] = {
281 	&dev_attr_legacy_dev_type.attr,
282 	&dev_attr_legacy_mem_type.attr,
283 	&dev_attr_legacy_edac_mode.attr,
284 	&dev_attr_legacy_size_mb.attr,
285 	&dev_attr_legacy_ue_count.attr,
286 	&dev_attr_legacy_ce_count.attr,
287 	NULL,
288 };
289 
290 static struct attribute_group csrow_attr_grp = {
291 	.attrs	= csrow_attrs,
292 };
293 
294 static const struct attribute_group *csrow_attr_groups[] = {
295 	&csrow_attr_grp,
296 	NULL
297 };
298 
299 static void csrow_attr_release(struct device *dev)
300 {
301 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
302 
303 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
304 	kfree(csrow);
305 }
306 
307 static struct device_type csrow_attr_type = {
308 	.groups		= csrow_attr_groups,
309 	.release	= csrow_attr_release,
310 };
311 
312 /*
313  * possible dynamic channel DIMM Label attribute files
314  *
315  */
316 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
317 	channel_dimm_label_show, channel_dimm_label_store, 0);
318 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
319 	channel_dimm_label_show, channel_dimm_label_store, 1);
320 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
321 	channel_dimm_label_show, channel_dimm_label_store, 2);
322 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
323 	channel_dimm_label_show, channel_dimm_label_store, 3);
324 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
325 	channel_dimm_label_show, channel_dimm_label_store, 4);
326 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
327 	channel_dimm_label_show, channel_dimm_label_store, 5);
328 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
329 	channel_dimm_label_show, channel_dimm_label_store, 6);
330 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
331 	channel_dimm_label_show, channel_dimm_label_store, 7);
332 
333 /* Total possible dynamic DIMM Label attribute file table */
334 static struct attribute *dynamic_csrow_dimm_attr[] = {
335 	&dev_attr_legacy_ch0_dimm_label.attr.attr,
336 	&dev_attr_legacy_ch1_dimm_label.attr.attr,
337 	&dev_attr_legacy_ch2_dimm_label.attr.attr,
338 	&dev_attr_legacy_ch3_dimm_label.attr.attr,
339 	&dev_attr_legacy_ch4_dimm_label.attr.attr,
340 	&dev_attr_legacy_ch5_dimm_label.attr.attr,
341 	&dev_attr_legacy_ch6_dimm_label.attr.attr,
342 	&dev_attr_legacy_ch7_dimm_label.attr.attr,
343 	NULL
344 };
345 
346 /* possible dynamic channel ce_count attribute files */
347 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
348 		   channel_ce_count_show, NULL, 0);
349 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
350 		   channel_ce_count_show, NULL, 1);
351 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
352 		   channel_ce_count_show, NULL, 2);
353 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
354 		   channel_ce_count_show, NULL, 3);
355 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
356 		   channel_ce_count_show, NULL, 4);
357 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
358 		   channel_ce_count_show, NULL, 5);
359 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
360 		   channel_ce_count_show, NULL, 6);
361 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
362 		   channel_ce_count_show, NULL, 7);
363 
364 /* Total possible dynamic ce_count attribute file table */
365 static struct attribute *dynamic_csrow_ce_count_attr[] = {
366 	&dev_attr_legacy_ch0_ce_count.attr.attr,
367 	&dev_attr_legacy_ch1_ce_count.attr.attr,
368 	&dev_attr_legacy_ch2_ce_count.attr.attr,
369 	&dev_attr_legacy_ch3_ce_count.attr.attr,
370 	&dev_attr_legacy_ch4_ce_count.attr.attr,
371 	&dev_attr_legacy_ch5_ce_count.attr.attr,
372 	&dev_attr_legacy_ch6_ce_count.attr.attr,
373 	&dev_attr_legacy_ch7_ce_count.attr.attr,
374 	NULL
375 };
376 
377 static umode_t csrow_dev_is_visible(struct kobject *kobj,
378 				    struct attribute *attr, int idx)
379 {
380 	struct device *dev = kobj_to_dev(kobj);
381 	struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
382 
383 	if (idx >= csrow->nr_channels)
384 		return 0;
385 
386 	if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
387 		WARN_ONCE(1, "idx: %d\n", idx);
388 		return 0;
389 	}
390 
391 	/* Only expose populated DIMMs */
392 	if (!csrow->channels[idx]->dimm->nr_pages)
393 		return 0;
394 
395 	return attr->mode;
396 }
397 
398 
399 static const struct attribute_group csrow_dev_dimm_group = {
400 	.attrs = dynamic_csrow_dimm_attr,
401 	.is_visible = csrow_dev_is_visible,
402 };
403 
404 static const struct attribute_group csrow_dev_ce_count_group = {
405 	.attrs = dynamic_csrow_ce_count_attr,
406 	.is_visible = csrow_dev_is_visible,
407 };
408 
409 static const struct attribute_group *csrow_dev_groups[] = {
410 	&csrow_dev_dimm_group,
411 	&csrow_dev_ce_count_group,
412 	NULL
413 };
414 
415 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
416 {
417 	int chan, nr_pages = 0;
418 
419 	for (chan = 0; chan < csrow->nr_channels; chan++)
420 		nr_pages += csrow->channels[chan]->dimm->nr_pages;
421 
422 	return nr_pages;
423 }
424 
425 /* Create a CSROW object under specifed edac_mc_device */
426 static int edac_create_csrow_object(struct mem_ctl_info *mci,
427 				    struct csrow_info *csrow, int index)
428 {
429 	csrow->dev.type = &csrow_attr_type;
430 	csrow->dev.bus = mci->bus;
431 	csrow->dev.groups = csrow_dev_groups;
432 	device_initialize(&csrow->dev);
433 	csrow->dev.parent = &mci->dev;
434 	csrow->mci = mci;
435 	dev_set_name(&csrow->dev, "csrow%d", index);
436 	dev_set_drvdata(&csrow->dev, csrow);
437 
438 	edac_dbg(0, "creating (virtual) csrow node %s\n",
439 		 dev_name(&csrow->dev));
440 
441 	return device_add(&csrow->dev);
442 }
443 
444 /* Create a CSROW object under specifed edac_mc_device */
445 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
446 {
447 	int err, i;
448 	struct csrow_info *csrow;
449 
450 	for (i = 0; i < mci->nr_csrows; i++) {
451 		csrow = mci->csrows[i];
452 		if (!nr_pages_per_csrow(csrow))
453 			continue;
454 		err = edac_create_csrow_object(mci, mci->csrows[i], i);
455 		if (err < 0) {
456 			edac_dbg(1,
457 				 "failure: create csrow objects for csrow %d\n",
458 				 i);
459 			goto error;
460 		}
461 	}
462 	return 0;
463 
464 error:
465 	for (--i; i >= 0; i--) {
466 		csrow = mci->csrows[i];
467 		if (!nr_pages_per_csrow(csrow))
468 			continue;
469 		put_device(&mci->csrows[i]->dev);
470 	}
471 
472 	return err;
473 }
474 
475 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
476 {
477 	int i;
478 	struct csrow_info *csrow;
479 
480 	for (i = mci->nr_csrows - 1; i >= 0; i--) {
481 		csrow = mci->csrows[i];
482 		if (!nr_pages_per_csrow(csrow))
483 			continue;
484 		device_unregister(&mci->csrows[i]->dev);
485 	}
486 }
487 #endif
488 
489 /*
490  * Per-dimm (or per-rank) devices
491  */
492 
493 #define to_dimm(k) container_of(k, struct dimm_info, dev)
494 
495 /* show/store functions for DIMM Label attributes */
496 static ssize_t dimmdev_location_show(struct device *dev,
497 				     struct device_attribute *mattr, char *data)
498 {
499 	struct dimm_info *dimm = to_dimm(dev);
500 
501 	return edac_dimm_info_location(dimm, data, PAGE_SIZE);
502 }
503 
504 static ssize_t dimmdev_label_show(struct device *dev,
505 				  struct device_attribute *mattr, char *data)
506 {
507 	struct dimm_info *dimm = to_dimm(dev);
508 
509 	/* if field has not been initialized, there is nothing to send */
510 	if (!dimm->label[0])
511 		return 0;
512 
513 	return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
514 }
515 
516 static ssize_t dimmdev_label_store(struct device *dev,
517 				   struct device_attribute *mattr,
518 				   const char *data,
519 				   size_t count)
520 {
521 	struct dimm_info *dimm = to_dimm(dev);
522 	size_t copy_count = count;
523 
524 	if (count == 0)
525 		return -EINVAL;
526 
527 	if (data[count - 1] == '\0' || data[count - 1] == '\n')
528 		copy_count -= 1;
529 
530 	if (copy_count == 0 || copy_count >= sizeof(dimm->label))
531 		return -EINVAL;
532 
533 	strncpy(dimm->label, data, copy_count);
534 	dimm->label[copy_count] = '\0';
535 
536 	return count;
537 }
538 
539 static ssize_t dimmdev_size_show(struct device *dev,
540 				 struct device_attribute *mattr, char *data)
541 {
542 	struct dimm_info *dimm = to_dimm(dev);
543 
544 	return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
545 }
546 
547 static ssize_t dimmdev_mem_type_show(struct device *dev,
548 				     struct device_attribute *mattr, char *data)
549 {
550 	struct dimm_info *dimm = to_dimm(dev);
551 
552 	return sprintf(data, "%s\n", mem_types[dimm->mtype]);
553 }
554 
555 static ssize_t dimmdev_dev_type_show(struct device *dev,
556 				     struct device_attribute *mattr, char *data)
557 {
558 	struct dimm_info *dimm = to_dimm(dev);
559 
560 	return sprintf(data, "%s\n", dev_types[dimm->dtype]);
561 }
562 
563 static ssize_t dimmdev_edac_mode_show(struct device *dev,
564 				      struct device_attribute *mattr,
565 				      char *data)
566 {
567 	struct dimm_info *dimm = to_dimm(dev);
568 
569 	return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
570 }
571 
572 /* dimm/rank attribute files */
573 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
574 		   dimmdev_label_show, dimmdev_label_store);
575 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
576 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
577 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
578 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
579 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
580 
581 /* attributes of the dimm<id>/rank<id> object */
582 static struct attribute *dimm_attrs[] = {
583 	&dev_attr_dimm_label.attr,
584 	&dev_attr_dimm_location.attr,
585 	&dev_attr_size.attr,
586 	&dev_attr_dimm_mem_type.attr,
587 	&dev_attr_dimm_dev_type.attr,
588 	&dev_attr_dimm_edac_mode.attr,
589 	NULL,
590 };
591 
592 static struct attribute_group dimm_attr_grp = {
593 	.attrs	= dimm_attrs,
594 };
595 
596 static const struct attribute_group *dimm_attr_groups[] = {
597 	&dimm_attr_grp,
598 	NULL
599 };
600 
601 static void dimm_attr_release(struct device *dev)
602 {
603 	struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
604 
605 	edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
606 	kfree(dimm);
607 }
608 
609 static struct device_type dimm_attr_type = {
610 	.groups		= dimm_attr_groups,
611 	.release	= dimm_attr_release,
612 };
613 
614 /* Create a DIMM object under specifed memory controller device */
615 static int edac_create_dimm_object(struct mem_ctl_info *mci,
616 				   struct dimm_info *dimm,
617 				   int index)
618 {
619 	int err;
620 	dimm->mci = mci;
621 
622 	dimm->dev.type = &dimm_attr_type;
623 	dimm->dev.bus = mci->bus;
624 	device_initialize(&dimm->dev);
625 
626 	dimm->dev.parent = &mci->dev;
627 	if (mci->csbased)
628 		dev_set_name(&dimm->dev, "rank%d", index);
629 	else
630 		dev_set_name(&dimm->dev, "dimm%d", index);
631 	dev_set_drvdata(&dimm->dev, dimm);
632 	pm_runtime_forbid(&mci->dev);
633 
634 	err =  device_add(&dimm->dev);
635 
636 	edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
637 
638 	return err;
639 }
640 
641 /*
642  * Memory controller device
643  */
644 
645 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
646 
647 static ssize_t mci_reset_counters_store(struct device *dev,
648 					struct device_attribute *mattr,
649 					const char *data, size_t count)
650 {
651 	struct mem_ctl_info *mci = to_mci(dev);
652 	int cnt, row, chan, i;
653 	mci->ue_mc = 0;
654 	mci->ce_mc = 0;
655 	mci->ue_noinfo_count = 0;
656 	mci->ce_noinfo_count = 0;
657 
658 	for (row = 0; row < mci->nr_csrows; row++) {
659 		struct csrow_info *ri = mci->csrows[row];
660 
661 		ri->ue_count = 0;
662 		ri->ce_count = 0;
663 
664 		for (chan = 0; chan < ri->nr_channels; chan++)
665 			ri->channels[chan]->ce_count = 0;
666 	}
667 
668 	cnt = 1;
669 	for (i = 0; i < mci->n_layers; i++) {
670 		cnt *= mci->layers[i].size;
671 		memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
672 		memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
673 	}
674 
675 	mci->start_time = jiffies;
676 	return count;
677 }
678 
679 /* Memory scrubbing interface:
680  *
681  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
682  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
683  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
684  *
685  * Negative value still means that an error has occurred while setting
686  * the scrub rate.
687  */
688 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
689 					  struct device_attribute *mattr,
690 					  const char *data, size_t count)
691 {
692 	struct mem_ctl_info *mci = to_mci(dev);
693 	unsigned long bandwidth = 0;
694 	int new_bw = 0;
695 
696 	if (kstrtoul(data, 10, &bandwidth) < 0)
697 		return -EINVAL;
698 
699 	new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
700 	if (new_bw < 0) {
701 		edac_printk(KERN_WARNING, EDAC_MC,
702 			    "Error setting scrub rate to: %lu\n", bandwidth);
703 		return -EINVAL;
704 	}
705 
706 	return count;
707 }
708 
709 /*
710  * ->get_sdram_scrub_rate() return value semantics same as above.
711  */
712 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
713 					 struct device_attribute *mattr,
714 					 char *data)
715 {
716 	struct mem_ctl_info *mci = to_mci(dev);
717 	int bandwidth = 0;
718 
719 	bandwidth = mci->get_sdram_scrub_rate(mci);
720 	if (bandwidth < 0) {
721 		edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
722 		return bandwidth;
723 	}
724 
725 	return sprintf(data, "%d\n", bandwidth);
726 }
727 
728 /* default attribute files for the MCI object */
729 static ssize_t mci_ue_count_show(struct device *dev,
730 				 struct device_attribute *mattr,
731 				 char *data)
732 {
733 	struct mem_ctl_info *mci = to_mci(dev);
734 
735 	return sprintf(data, "%d\n", mci->ue_mc);
736 }
737 
738 static ssize_t mci_ce_count_show(struct device *dev,
739 				 struct device_attribute *mattr,
740 				 char *data)
741 {
742 	struct mem_ctl_info *mci = to_mci(dev);
743 
744 	return sprintf(data, "%d\n", mci->ce_mc);
745 }
746 
747 static ssize_t mci_ce_noinfo_show(struct device *dev,
748 				  struct device_attribute *mattr,
749 				  char *data)
750 {
751 	struct mem_ctl_info *mci = to_mci(dev);
752 
753 	return sprintf(data, "%d\n", mci->ce_noinfo_count);
754 }
755 
756 static ssize_t mci_ue_noinfo_show(struct device *dev,
757 				  struct device_attribute *mattr,
758 				  char *data)
759 {
760 	struct mem_ctl_info *mci = to_mci(dev);
761 
762 	return sprintf(data, "%d\n", mci->ue_noinfo_count);
763 }
764 
765 static ssize_t mci_seconds_show(struct device *dev,
766 				struct device_attribute *mattr,
767 				char *data)
768 {
769 	struct mem_ctl_info *mci = to_mci(dev);
770 
771 	return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
772 }
773 
774 static ssize_t mci_ctl_name_show(struct device *dev,
775 				 struct device_attribute *mattr,
776 				 char *data)
777 {
778 	struct mem_ctl_info *mci = to_mci(dev);
779 
780 	return sprintf(data, "%s\n", mci->ctl_name);
781 }
782 
783 static ssize_t mci_size_mb_show(struct device *dev,
784 				struct device_attribute *mattr,
785 				char *data)
786 {
787 	struct mem_ctl_info *mci = to_mci(dev);
788 	int total_pages = 0, csrow_idx, j;
789 
790 	for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
791 		struct csrow_info *csrow = mci->csrows[csrow_idx];
792 
793 		for (j = 0; j < csrow->nr_channels; j++) {
794 			struct dimm_info *dimm = csrow->channels[j]->dimm;
795 
796 			total_pages += dimm->nr_pages;
797 		}
798 	}
799 
800 	return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
801 }
802 
803 static ssize_t mci_max_location_show(struct device *dev,
804 				     struct device_attribute *mattr,
805 				     char *data)
806 {
807 	struct mem_ctl_info *mci = to_mci(dev);
808 	int i;
809 	char *p = data;
810 
811 	for (i = 0; i < mci->n_layers; i++) {
812 		p += sprintf(p, "%s %d ",
813 			     edac_layer_name[mci->layers[i].type],
814 			     mci->layers[i].size - 1);
815 	}
816 
817 	return p - data;
818 }
819 
820 /* default Control file */
821 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
822 
823 /* default Attribute files */
824 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
825 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
826 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
827 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
828 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
829 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
830 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
831 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
832 
833 /* memory scrubber attribute file */
834 DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
835 	    mci_sdram_scrub_rate_store); /* umode set later in is_visible */
836 
837 static struct attribute *mci_attrs[] = {
838 	&dev_attr_reset_counters.attr,
839 	&dev_attr_mc_name.attr,
840 	&dev_attr_size_mb.attr,
841 	&dev_attr_seconds_since_reset.attr,
842 	&dev_attr_ue_noinfo_count.attr,
843 	&dev_attr_ce_noinfo_count.attr,
844 	&dev_attr_ue_count.attr,
845 	&dev_attr_ce_count.attr,
846 	&dev_attr_max_location.attr,
847 	&dev_attr_sdram_scrub_rate.attr,
848 	NULL
849 };
850 
851 static umode_t mci_attr_is_visible(struct kobject *kobj,
852 				   struct attribute *attr, int idx)
853 {
854 	struct device *dev = kobj_to_dev(kobj);
855 	struct mem_ctl_info *mci = to_mci(dev);
856 	umode_t mode = 0;
857 
858 	if (attr != &dev_attr_sdram_scrub_rate.attr)
859 		return attr->mode;
860 	if (mci->get_sdram_scrub_rate)
861 		mode |= S_IRUGO;
862 	if (mci->set_sdram_scrub_rate)
863 		mode |= S_IWUSR;
864 	return mode;
865 }
866 
867 static struct attribute_group mci_attr_grp = {
868 	.attrs	= mci_attrs,
869 	.is_visible = mci_attr_is_visible,
870 };
871 
872 static const struct attribute_group *mci_attr_groups[] = {
873 	&mci_attr_grp,
874 	NULL
875 };
876 
877 static void mci_attr_release(struct device *dev)
878 {
879 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
880 
881 	edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
882 	kfree(mci);
883 }
884 
885 static struct device_type mci_attr_type = {
886 	.groups		= mci_attr_groups,
887 	.release	= mci_attr_release,
888 };
889 
890 /*
891  * Create a new Memory Controller kobject instance,
892  *	mc<id> under the 'mc' directory
893  *
894  * Return:
895  *	0	Success
896  *	!0	Failure
897  */
898 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
899 				 const struct attribute_group **groups)
900 {
901 	char *name;
902 	int i, err;
903 
904 	/*
905 	 * The memory controller needs its own bus, in order to avoid
906 	 * namespace conflicts at /sys/bus/edac.
907 	 */
908 	name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
909 	if (!name)
910 		return -ENOMEM;
911 
912 	mci->bus->name = name;
913 
914 	edac_dbg(0, "creating bus %s\n", mci->bus->name);
915 
916 	err = bus_register(mci->bus);
917 	if (err < 0) {
918 		kfree(name);
919 		return err;
920 	}
921 
922 	/* get the /sys/devices/system/edac subsys reference */
923 	mci->dev.type = &mci_attr_type;
924 	device_initialize(&mci->dev);
925 
926 	mci->dev.parent = mci_pdev;
927 	mci->dev.bus = mci->bus;
928 	mci->dev.groups = groups;
929 	dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
930 	dev_set_drvdata(&mci->dev, mci);
931 	pm_runtime_forbid(&mci->dev);
932 
933 	edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
934 	err = device_add(&mci->dev);
935 	if (err < 0) {
936 		edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
937 		goto fail_unregister_bus;
938 	}
939 
940 	/*
941 	 * Create the dimm/rank devices
942 	 */
943 	for (i = 0; i < mci->tot_dimms; i++) {
944 		struct dimm_info *dimm = mci->dimms[i];
945 		/* Only expose populated DIMMs */
946 		if (!dimm->nr_pages)
947 			continue;
948 
949 #ifdef CONFIG_EDAC_DEBUG
950 		edac_dbg(1, "creating dimm%d, located at ", i);
951 		if (edac_debug_level >= 1) {
952 			int lay;
953 			for (lay = 0; lay < mci->n_layers; lay++)
954 				printk(KERN_CONT "%s %d ",
955 					edac_layer_name[mci->layers[lay].type],
956 					dimm->location[lay]);
957 			printk(KERN_CONT "\n");
958 		}
959 #endif
960 		err = edac_create_dimm_object(mci, dimm, i);
961 		if (err) {
962 			edac_dbg(1, "failure: create dimm %d obj\n", i);
963 			goto fail_unregister_dimm;
964 		}
965 	}
966 
967 #ifdef CONFIG_EDAC_LEGACY_SYSFS
968 	err = edac_create_csrow_objects(mci);
969 	if (err < 0)
970 		goto fail_unregister_dimm;
971 #endif
972 
973 	edac_create_debugfs_nodes(mci);
974 	return 0;
975 
976 fail_unregister_dimm:
977 	for (i--; i >= 0; i--) {
978 		struct dimm_info *dimm = mci->dimms[i];
979 		if (!dimm->nr_pages)
980 			continue;
981 
982 		device_unregister(&dimm->dev);
983 	}
984 	device_unregister(&mci->dev);
985 fail_unregister_bus:
986 	bus_unregister(mci->bus);
987 	kfree(name);
988 
989 	return err;
990 }
991 
992 /*
993  * remove a Memory Controller instance
994  */
995 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
996 {
997 	int i;
998 
999 	edac_dbg(0, "\n");
1000 
1001 #ifdef CONFIG_EDAC_DEBUG
1002 	edac_debugfs_remove_recursive(mci->debugfs);
1003 #endif
1004 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1005 	edac_delete_csrow_objects(mci);
1006 #endif
1007 
1008 	for (i = 0; i < mci->tot_dimms; i++) {
1009 		struct dimm_info *dimm = mci->dimms[i];
1010 		if (dimm->nr_pages == 0)
1011 			continue;
1012 		edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1013 		device_unregister(&dimm->dev);
1014 	}
1015 }
1016 
1017 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1018 {
1019 	struct bus_type *bus = mci->bus;
1020 	const char *name = mci->bus->name;
1021 
1022 	edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1023 	device_unregister(&mci->dev);
1024 	bus_unregister(bus);
1025 	kfree(name);
1026 }
1027 
1028 static void mc_attr_release(struct device *dev)
1029 {
1030 	/*
1031 	 * There's no container structure here, as this is just the mci
1032 	 * parent device, used to create the /sys/devices/mc sysfs node.
1033 	 * So, there are no attributes on it.
1034 	 */
1035 	edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1036 	kfree(dev);
1037 }
1038 
1039 static struct device_type mc_attr_type = {
1040 	.release	= mc_attr_release,
1041 };
1042 /*
1043  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1044  */
1045 int __init edac_mc_sysfs_init(void)
1046 {
1047 	int err;
1048 
1049 	mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1050 	if (!mci_pdev) {
1051 		err = -ENOMEM;
1052 		goto out;
1053 	}
1054 
1055 	mci_pdev->bus = edac_get_sysfs_subsys();
1056 	mci_pdev->type = &mc_attr_type;
1057 	device_initialize(mci_pdev);
1058 	dev_set_name(mci_pdev, "mc");
1059 
1060 	err = device_add(mci_pdev);
1061 	if (err < 0)
1062 		goto out_dev_free;
1063 
1064 	edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1065 
1066 	return 0;
1067 
1068  out_dev_free:
1069 	kfree(mci_pdev);
1070  out:
1071 	return err;
1072 }
1073 
1074 void edac_mc_sysfs_exit(void)
1075 {
1076 	device_unregister(mci_pdev);
1077 }
1078