xref: /linux/drivers/edac/edac_mc.h (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * MC kernel module
3  * (C) 2003 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * NMI handling support added by
12  *     Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
13  *
14  * $Id: edac_mc.h,v 1.4.2.10 2005/10/05 00:43:44 dsp_llnl Exp $
15  *
16  */
17 
18 #ifndef _EDAC_MC_H_
19 #define _EDAC_MC_H_
20 
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/types.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/smp.h>
27 #include <linux/pci.h>
28 #include <linux/time.h>
29 #include <linux/nmi.h>
30 #include <linux/rcupdate.h>
31 #include <linux/completion.h>
32 #include <linux/kobject.h>
33 
34 #define EDAC_MC_LABEL_LEN	31
35 #define MC_PROC_NAME_MAX_LEN 7
36 
37 #if PAGE_SHIFT < 20
38 #define PAGES_TO_MiB( pages )	( ( pages ) >> ( 20 - PAGE_SHIFT ) )
39 #else				/* PAGE_SHIFT > 20 */
40 #define PAGES_TO_MiB( pages )	( ( pages ) << ( PAGE_SHIFT - 20 ) )
41 #endif
42 
43 #define edac_printk(level, prefix, fmt, arg...) \
44 	printk(level "EDAC " prefix ": " fmt, ##arg)
45 
46 #define edac_mc_printk(mci, level, fmt, arg...) \
47 	printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
48 
49 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
50 	printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
51 
52 /* prefixes for edac_printk() and edac_mc_printk() */
53 #define EDAC_MC "MC"
54 #define EDAC_PCI "PCI"
55 #define EDAC_DEBUG "DEBUG"
56 
57 #ifdef CONFIG_EDAC_DEBUG
58 extern int edac_debug_level;
59 
60 #define edac_debug_printk(level, fmt, arg...)                            \
61 	do {                                                             \
62 		if (level <= edac_debug_level)                           \
63 			edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
64 	} while(0)
65 
66 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
67 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
68 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
69 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
70 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
71 
72 #else  /* !CONFIG_EDAC_DEBUG */
73 
74 #define debugf0( ... )
75 #define debugf1( ... )
76 #define debugf2( ... )
77 #define debugf3( ... )
78 #define debugf4( ... )
79 
80 #endif  /* !CONFIG_EDAC_DEBUG */
81 
82 #define edac_xstr(s) edac_str(s)
83 #define edac_str(s) #s
84 #define EDAC_MOD_STR edac_xstr(KBUILD_BASENAME)
85 
86 #define BIT(x) (1 << (x))
87 
88 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
89 	PCI_DEVICE_ID_ ## vend ## _ ## dev
90 
91 /* memory devices */
92 enum dev_type {
93 	DEV_UNKNOWN = 0,
94 	DEV_X1,
95 	DEV_X2,
96 	DEV_X4,
97 	DEV_X8,
98 	DEV_X16,
99 	DEV_X32,		/* Do these parts exist? */
100 	DEV_X64			/* Do these parts exist? */
101 };
102 
103 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
104 #define DEV_FLAG_X1		BIT(DEV_X1)
105 #define DEV_FLAG_X2		BIT(DEV_X2)
106 #define DEV_FLAG_X4		BIT(DEV_X4)
107 #define DEV_FLAG_X8		BIT(DEV_X8)
108 #define DEV_FLAG_X16		BIT(DEV_X16)
109 #define DEV_FLAG_X32		BIT(DEV_X32)
110 #define DEV_FLAG_X64		BIT(DEV_X64)
111 
112 /* memory types */
113 enum mem_type {
114 	MEM_EMPTY = 0,		/* Empty csrow */
115 	MEM_RESERVED,		/* Reserved csrow type */
116 	MEM_UNKNOWN,		/* Unknown csrow type */
117 	MEM_FPM,		/* Fast page mode */
118 	MEM_EDO,		/* Extended data out */
119 	MEM_BEDO,		/* Burst Extended data out */
120 	MEM_SDR,		/* Single data rate SDRAM */
121 	MEM_RDR,		/* Registered single data rate SDRAM */
122 	MEM_DDR,		/* Double data rate SDRAM */
123 	MEM_RDDR,		/* Registered Double data rate SDRAM */
124 	MEM_RMBS		/* Rambus DRAM */
125 };
126 
127 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
128 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
129 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
130 #define MEM_FLAG_FPM		BIT(MEM_FPM)
131 #define MEM_FLAG_EDO		BIT(MEM_EDO)
132 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
133 #define MEM_FLAG_SDR		BIT(MEM_SDR)
134 #define MEM_FLAG_RDR		BIT(MEM_RDR)
135 #define MEM_FLAG_DDR		BIT(MEM_DDR)
136 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
137 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
138 
139 /* chipset Error Detection and Correction capabilities and mode */
140 enum edac_type {
141 	EDAC_UNKNOWN = 0,	/* Unknown if ECC is available */
142 	EDAC_NONE,		/* Doesnt support ECC */
143 	EDAC_RESERVED,		/* Reserved ECC type */
144 	EDAC_PARITY,		/* Detects parity errors */
145 	EDAC_EC,		/* Error Checking - no correction */
146 	EDAC_SECDED,		/* Single bit error correction, Double detection */
147 	EDAC_S2ECD2ED,		/* Chipkill x2 devices - do these exist? */
148 	EDAC_S4ECD4ED,		/* Chipkill x4 devices */
149 	EDAC_S8ECD8ED,		/* Chipkill x8 devices */
150 	EDAC_S16ECD16ED,	/* Chipkill x16 devices */
151 };
152 
153 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
154 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
155 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
156 #define EDAC_FLAG_EC		BIT(EDAC_EC)
157 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
158 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
159 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
160 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
161 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
162 
163 /* scrubbing capabilities */
164 enum scrub_type {
165 	SCRUB_UNKNOWN = 0,	/* Unknown if scrubber is available */
166 	SCRUB_NONE,		/* No scrubber */
167 	SCRUB_SW_PROG,		/* SW progressive (sequential) scrubbing */
168 	SCRUB_SW_SRC,		/* Software scrub only errors */
169 	SCRUB_SW_PROG_SRC,	/* Progressive software scrub from an error */
170 	SCRUB_SW_TUNABLE,	/* Software scrub frequency is tunable */
171 	SCRUB_HW_PROG,		/* HW progressive (sequential) scrubbing */
172 	SCRUB_HW_SRC,		/* Hardware scrub only errors */
173 	SCRUB_HW_PROG_SRC,	/* Progressive hardware scrub from an error */
174 	SCRUB_HW_TUNABLE	/* Hardware scrub frequency is tunable */
175 };
176 
177 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
178 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC_CORR)
179 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC_CORR)
180 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
181 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
182 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC_CORR)
183 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC_CORR)
184 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
185 
186 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
187 
188 /*
189  * There are several things to be aware of that aren't at all obvious:
190  *
191  *
192  * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
193  *
194  * These are some of the many terms that are thrown about that don't always
195  * mean what people think they mean (Inconceivable!).  In the interest of
196  * creating a common ground for discussion, terms and their definitions
197  * will be established.
198  *
199  * Memory devices:	The individual chip on a memory stick.  These devices
200  *			commonly output 4 and 8 bits each.  Grouping several
201  *			of these in parallel provides 64 bits which is common
202  *			for a memory stick.
203  *
204  * Memory Stick:	A printed circuit board that agregates multiple
205  *			memory devices in parallel.  This is the atomic
206  *			memory component that is purchaseable by Joe consumer
207  *			and loaded into a memory socket.
208  *
209  * Socket:		A physical connector on the motherboard that accepts
210  *			a single memory stick.
211  *
212  * Channel:		Set of memory devices on a memory stick that must be
213  *			grouped in parallel with one or more additional
214  *			channels from other memory sticks.  This parallel
215  *			grouping of the output from multiple channels are
216  *			necessary for the smallest granularity of memory access.
217  *			Some memory controllers are capable of single channel -
218  *			which means that memory sticks can be loaded
219  *			individually.  Other memory controllers are only
220  *			capable of dual channel - which means that memory
221  *			sticks must be loaded as pairs (see "socket set").
222  *
223  * Chip-select row:	All of the memory devices that are selected together.
224  *			for a single, minimum grain of memory access.
225  *			This selects all of the parallel memory devices across
226  *			all of the parallel channels.  Common chip-select rows
227  *			for single channel are 64 bits, for dual channel 128
228  *			bits.
229  *
230  * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memmory.
231  *			Motherboards commonly drive two chip-select pins to
232  *			a memory stick. A single-ranked stick, will occupy
233  *			only one of those rows. The other will be unused.
234  *
235  * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
236  *			access different sets of memory devices.  The two
237  *			rows cannot be accessed concurrently.
238  *
239  * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
240  *			A double-sided stick has two chip-select rows which
241  *			access different sets of memory devices.  The two
242  *			rows cannot be accessed concurrently.  "Double-sided"
243  *			is irrespective of the memory devices being mounted
244  *			on both sides of the memory stick.
245  *
246  * Socket set:		All of the memory sticks that are required for for
247  *			a single memory access or all of the memory sticks
248  *			spanned by a chip-select row.  A single socket set
249  *			has two chip-select rows and if double-sided sticks
250  *			are used these will occupy those chip-select rows.
251  *
252  * Bank:		This term is avoided because it is unclear when
253  *			needing to distinguish between chip-select rows and
254  *			socket sets.
255  *
256  * Controller pages:
257  *
258  * Physical pages:
259  *
260  * Virtual pages:
261  *
262  *
263  * STRUCTURE ORGANIZATION AND CHOICES
264  *
265  *
266  *
267  * PS - I enjoyed writing all that about as much as you enjoyed reading it.
268  */
269 
270 struct channel_info {
271 	int chan_idx;		/* channel index */
272 	u32 ce_count;		/* Correctable Errors for this CHANNEL */
273 	char label[EDAC_MC_LABEL_LEN + 1];  /* DIMM label on motherboard */
274 	struct csrow_info *csrow;	/* the parent */
275 };
276 
277 struct csrow_info {
278 	unsigned long first_page;	/* first page number in dimm */
279 	unsigned long last_page;	/* last page number in dimm */
280 	unsigned long page_mask;	/* used for interleaving -
281 					 * 0UL for non intlv
282 					 */
283 	u32 nr_pages;		/* number of pages in csrow */
284 	u32 grain;		/* granularity of reported error in bytes */
285 	int csrow_idx;		/* the chip-select row */
286 	enum dev_type dtype;	/* memory device type */
287 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
288 	u32 ce_count;		/* Correctable Errors for this csrow */
289 	enum mem_type mtype;	/* memory csrow type */
290 	enum edac_type edac_mode;	/* EDAC mode for this csrow */
291 	struct mem_ctl_info *mci;	/* the parent */
292 
293 	struct kobject kobj;	/* sysfs kobject for this csrow */
294 	struct completion kobj_complete;
295 
296 	/* FIXME the number of CHANNELs might need to become dynamic */
297 	u32 nr_channels;
298 	struct channel_info *channels;
299 };
300 
301 struct mem_ctl_info {
302 	struct list_head link;  /* for global list of mem_ctl_info structs */
303 	unsigned long mtype_cap;	/* memory types supported by mc */
304 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
305 	unsigned long edac_cap;	/* configuration capabilities - this is
306 				 * closely related to edac_ctl_cap.  The
307 				 * difference is that the controller may be
308 				 * capable of s4ecd4ed which would be listed
309 				 * in edac_ctl_cap, but if channels aren't
310 				 * capable of s4ecd4ed then the edac_cap would
311 				 * not have that capability.
312 				 */
313 	unsigned long scrub_cap;	/* chipset scrub capabilities */
314 	enum scrub_type scrub_mode;	/* current scrub mode */
315 
316 	/* pointer to edac checking routine */
317 	void (*edac_check) (struct mem_ctl_info * mci);
318 	/*
319 	 * Remaps memory pages: controller pages to physical pages.
320 	 * For most MC's, this will be NULL.
321 	 */
322 	/* FIXME - why not send the phys page to begin with? */
323 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
324 					unsigned long page);
325 	int mc_idx;
326 	int nr_csrows;
327 	struct csrow_info *csrows;
328 	/*
329 	 * FIXME - what about controllers on other busses? - IDs must be
330 	 * unique.  pdev pointer should be sufficiently unique, but
331 	 * BUS:SLOT.FUNC numbers may not be unique.
332 	 */
333 	struct pci_dev *pdev;
334 	const char *mod_name;
335 	const char *mod_ver;
336 	const char *ctl_name;
337 	char proc_name[MC_PROC_NAME_MAX_LEN + 1];
338 	void *pvt_info;
339 	u32 ue_noinfo_count;	/* Uncorrectable Errors w/o info */
340 	u32 ce_noinfo_count;	/* Correctable Errors w/o info */
341 	u32 ue_count;		/* Total Uncorrectable Errors for this MC */
342 	u32 ce_count;		/* Total Correctable Errors for this MC */
343 	unsigned long start_time;	/* mci load start time (in jiffies) */
344 
345 	/* this stuff is for safe removal of mc devices from global list while
346 	 * NMI handlers may be traversing list
347 	 */
348 	struct rcu_head rcu;
349 	struct completion complete;
350 
351 	/* edac sysfs device control */
352 	struct kobject edac_mci_kobj;
353 	struct completion kobj_complete;
354 };
355 
356 /* write all or some bits in a byte-register*/
357 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
358 		u8 mask)
359 {
360 	if (mask != 0xff) {
361 		u8 buf;
362 
363 		pci_read_config_byte(pdev, offset, &buf);
364 		value &= mask;
365 		buf &= ~mask;
366 		value |= buf;
367 	}
368 
369 	pci_write_config_byte(pdev, offset, value);
370 }
371 
372 /* write all or some bits in a word-register*/
373 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
374 		u16 value, u16 mask)
375 {
376 	if (mask != 0xffff) {
377 		u16 buf;
378 
379 		pci_read_config_word(pdev, offset, &buf);
380 		value &= mask;
381 		buf &= ~mask;
382 		value |= buf;
383 	}
384 
385 	pci_write_config_word(pdev, offset, value);
386 }
387 
388 /* write all or some bits in a dword-register*/
389 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
390 		u32 value, u32 mask)
391 {
392 	if (mask != 0xffff) {
393 		u32 buf;
394 
395 		pci_read_config_dword(pdev, offset, &buf);
396 		value &= mask;
397 		buf &= ~mask;
398 		value |= buf;
399 	}
400 
401 	pci_write_config_dword(pdev, offset, value);
402 }
403 
404 #ifdef CONFIG_EDAC_DEBUG
405 void edac_mc_dump_channel(struct channel_info *chan);
406 void edac_mc_dump_mci(struct mem_ctl_info *mci);
407 void edac_mc_dump_csrow(struct csrow_info *csrow);
408 #endif  /* CONFIG_EDAC_DEBUG */
409 
410 extern int edac_mc_add_mc(struct mem_ctl_info *mci);
411 extern struct mem_ctl_info * edac_mc_del_mc(struct pci_dev *pdev);
412 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
413 					unsigned long page);
414 extern void edac_mc_scrub_block(unsigned long page, unsigned long offset,
415 		u32 size);
416 
417 /*
418  * The no info errors are used when error overflows are reported.
419  * There are a limited number of error logging registers that can
420  * be exausted.  When all registers are exhausted and an additional
421  * error occurs then an error overflow register records that an
422  * error occured and the type of error, but doesn't have any
423  * further information.  The ce/ue versions make for cleaner
424  * reporting logic and function interface - reduces conditional
425  * statement clutter and extra function arguments.
426  */
427 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
428 		unsigned long page_frame_number, unsigned long offset_in_page,
429 		unsigned long syndrome, int row, int channel,
430 		const char *msg);
431 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
432 		const char *msg);
433 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
434 		unsigned long page_frame_number, unsigned long offset_in_page,
435 		int row, const char *msg);
436 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
437 		const char *msg);
438 
439 /*
440  * This kmalloc's and initializes all the structures.
441  * Can't be used if all structures don't have the same lifetime.
442  */
443 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
444 		unsigned nr_chans);
445 
446 /* Free an mc previously allocated by edac_mc_alloc() */
447 extern void edac_mc_free(struct mem_ctl_info *mci);
448 
449 #endif				/* _EDAC_MC_H_ */
450