xref: /linux/drivers/edac/edac_mc.h (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * MC kernel module
3  * (C) 2003 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * NMI handling support added by
12  *     Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
13  *
14  * $Id: edac_mc.h,v 1.4.2.10 2005/10/05 00:43:44 dsp_llnl Exp $
15  *
16  */
17 
18 #ifndef _EDAC_MC_H_
19 #define _EDAC_MC_H_
20 
21 #include <linux/kernel.h>
22 #include <linux/types.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/smp.h>
26 #include <linux/pci.h>
27 #include <linux/time.h>
28 #include <linux/nmi.h>
29 #include <linux/rcupdate.h>
30 #include <linux/completion.h>
31 #include <linux/kobject.h>
32 
33 #define EDAC_MC_LABEL_LEN	31
34 #define MC_PROC_NAME_MAX_LEN 7
35 
36 #if PAGE_SHIFT < 20
37 #define PAGES_TO_MiB( pages )	( ( pages ) >> ( 20 - PAGE_SHIFT ) )
38 #else				/* PAGE_SHIFT > 20 */
39 #define PAGES_TO_MiB( pages )	( ( pages ) << ( PAGE_SHIFT - 20 ) )
40 #endif
41 
42 #define edac_printk(level, prefix, fmt, arg...) \
43 	printk(level "EDAC " prefix ": " fmt, ##arg)
44 
45 #define edac_mc_printk(mci, level, fmt, arg...) \
46 	printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
47 
48 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
49 	printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
50 
51 /* prefixes for edac_printk() and edac_mc_printk() */
52 #define EDAC_MC "MC"
53 #define EDAC_PCI "PCI"
54 #define EDAC_DEBUG "DEBUG"
55 
56 #ifdef CONFIG_EDAC_DEBUG
57 extern int edac_debug_level;
58 
59 #define edac_debug_printk(level, fmt, arg...)                            \
60 	do {                                                             \
61 		if (level <= edac_debug_level)                           \
62 			edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
63 	} while(0)
64 
65 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
66 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
67 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
68 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
69 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
70 
71 #else  /* !CONFIG_EDAC_DEBUG */
72 
73 #define debugf0( ... )
74 #define debugf1( ... )
75 #define debugf2( ... )
76 #define debugf3( ... )
77 #define debugf4( ... )
78 
79 #endif  /* !CONFIG_EDAC_DEBUG */
80 
81 #define BIT(x) (1 << (x))
82 
83 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
84 	PCI_DEVICE_ID_ ## vend ## _ ## dev
85 
86 #if defined(CONFIG_X86) && defined(CONFIG_PCI)
87 #define dev_name(dev) pci_name(to_pci_dev(dev))
88 #else
89 #define dev_name(dev) to_platform_device(dev)->name
90 #endif
91 
92 /* memory devices */
93 enum dev_type {
94 	DEV_UNKNOWN = 0,
95 	DEV_X1,
96 	DEV_X2,
97 	DEV_X4,
98 	DEV_X8,
99 	DEV_X16,
100 	DEV_X32,		/* Do these parts exist? */
101 	DEV_X64			/* Do these parts exist? */
102 };
103 
104 #define DEV_FLAG_UNKNOWN	BIT(DEV_UNKNOWN)
105 #define DEV_FLAG_X1		BIT(DEV_X1)
106 #define DEV_FLAG_X2		BIT(DEV_X2)
107 #define DEV_FLAG_X4		BIT(DEV_X4)
108 #define DEV_FLAG_X8		BIT(DEV_X8)
109 #define DEV_FLAG_X16		BIT(DEV_X16)
110 #define DEV_FLAG_X32		BIT(DEV_X32)
111 #define DEV_FLAG_X64		BIT(DEV_X64)
112 
113 /* memory types */
114 enum mem_type {
115 	MEM_EMPTY = 0,		/* Empty csrow */
116 	MEM_RESERVED,		/* Reserved csrow type */
117 	MEM_UNKNOWN,		/* Unknown csrow type */
118 	MEM_FPM,		/* Fast page mode */
119 	MEM_EDO,		/* Extended data out */
120 	MEM_BEDO,		/* Burst Extended data out */
121 	MEM_SDR,		/* Single data rate SDRAM */
122 	MEM_RDR,		/* Registered single data rate SDRAM */
123 	MEM_DDR,		/* Double data rate SDRAM */
124 	MEM_RDDR,		/* Registered Double data rate SDRAM */
125 	MEM_RMBS		/* Rambus DRAM */
126 };
127 
128 #define MEM_FLAG_EMPTY		BIT(MEM_EMPTY)
129 #define MEM_FLAG_RESERVED	BIT(MEM_RESERVED)
130 #define MEM_FLAG_UNKNOWN	BIT(MEM_UNKNOWN)
131 #define MEM_FLAG_FPM		BIT(MEM_FPM)
132 #define MEM_FLAG_EDO		BIT(MEM_EDO)
133 #define MEM_FLAG_BEDO		BIT(MEM_BEDO)
134 #define MEM_FLAG_SDR		BIT(MEM_SDR)
135 #define MEM_FLAG_RDR		BIT(MEM_RDR)
136 #define MEM_FLAG_DDR		BIT(MEM_DDR)
137 #define MEM_FLAG_RDDR		BIT(MEM_RDDR)
138 #define MEM_FLAG_RMBS		BIT(MEM_RMBS)
139 
140 /* chipset Error Detection and Correction capabilities and mode */
141 enum edac_type {
142 	EDAC_UNKNOWN = 0,	/* Unknown if ECC is available */
143 	EDAC_NONE,		/* Doesnt support ECC */
144 	EDAC_RESERVED,		/* Reserved ECC type */
145 	EDAC_PARITY,		/* Detects parity errors */
146 	EDAC_EC,		/* Error Checking - no correction */
147 	EDAC_SECDED,		/* Single bit error correction, Double detection */
148 	EDAC_S2ECD2ED,		/* Chipkill x2 devices - do these exist? */
149 	EDAC_S4ECD4ED,		/* Chipkill x4 devices */
150 	EDAC_S8ECD8ED,		/* Chipkill x8 devices */
151 	EDAC_S16ECD16ED,	/* Chipkill x16 devices */
152 };
153 
154 #define EDAC_FLAG_UNKNOWN	BIT(EDAC_UNKNOWN)
155 #define EDAC_FLAG_NONE		BIT(EDAC_NONE)
156 #define EDAC_FLAG_PARITY	BIT(EDAC_PARITY)
157 #define EDAC_FLAG_EC		BIT(EDAC_EC)
158 #define EDAC_FLAG_SECDED	BIT(EDAC_SECDED)
159 #define EDAC_FLAG_S2ECD2ED	BIT(EDAC_S2ECD2ED)
160 #define EDAC_FLAG_S4ECD4ED	BIT(EDAC_S4ECD4ED)
161 #define EDAC_FLAG_S8ECD8ED	BIT(EDAC_S8ECD8ED)
162 #define EDAC_FLAG_S16ECD16ED	BIT(EDAC_S16ECD16ED)
163 
164 /* scrubbing capabilities */
165 enum scrub_type {
166 	SCRUB_UNKNOWN = 0,	/* Unknown if scrubber is available */
167 	SCRUB_NONE,		/* No scrubber */
168 	SCRUB_SW_PROG,		/* SW progressive (sequential) scrubbing */
169 	SCRUB_SW_SRC,		/* Software scrub only errors */
170 	SCRUB_SW_PROG_SRC,	/* Progressive software scrub from an error */
171 	SCRUB_SW_TUNABLE,	/* Software scrub frequency is tunable */
172 	SCRUB_HW_PROG,		/* HW progressive (sequential) scrubbing */
173 	SCRUB_HW_SRC,		/* Hardware scrub only errors */
174 	SCRUB_HW_PROG_SRC,	/* Progressive hardware scrub from an error */
175 	SCRUB_HW_TUNABLE	/* Hardware scrub frequency is tunable */
176 };
177 
178 #define SCRUB_FLAG_SW_PROG	BIT(SCRUB_SW_PROG)
179 #define SCRUB_FLAG_SW_SRC	BIT(SCRUB_SW_SRC_CORR)
180 #define SCRUB_FLAG_SW_PROG_SRC	BIT(SCRUB_SW_PROG_SRC_CORR)
181 #define SCRUB_FLAG_SW_TUN	BIT(SCRUB_SW_SCRUB_TUNABLE)
182 #define SCRUB_FLAG_HW_PROG	BIT(SCRUB_HW_PROG)
183 #define SCRUB_FLAG_HW_SRC	BIT(SCRUB_HW_SRC_CORR)
184 #define SCRUB_FLAG_HW_PROG_SRC	BIT(SCRUB_HW_PROG_SRC_CORR)
185 #define SCRUB_FLAG_HW_TUN	BIT(SCRUB_HW_TUNABLE)
186 
187 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
188 
189 /*
190  * There are several things to be aware of that aren't at all obvious:
191  *
192  *
193  * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
194  *
195  * These are some of the many terms that are thrown about that don't always
196  * mean what people think they mean (Inconceivable!).  In the interest of
197  * creating a common ground for discussion, terms and their definitions
198  * will be established.
199  *
200  * Memory devices:	The individual chip on a memory stick.  These devices
201  *			commonly output 4 and 8 bits each.  Grouping several
202  *			of these in parallel provides 64 bits which is common
203  *			for a memory stick.
204  *
205  * Memory Stick:	A printed circuit board that agregates multiple
206  *			memory devices in parallel.  This is the atomic
207  *			memory component that is purchaseable by Joe consumer
208  *			and loaded into a memory socket.
209  *
210  * Socket:		A physical connector on the motherboard that accepts
211  *			a single memory stick.
212  *
213  * Channel:		Set of memory devices on a memory stick that must be
214  *			grouped in parallel with one or more additional
215  *			channels from other memory sticks.  This parallel
216  *			grouping of the output from multiple channels are
217  *			necessary for the smallest granularity of memory access.
218  *			Some memory controllers are capable of single channel -
219  *			which means that memory sticks can be loaded
220  *			individually.  Other memory controllers are only
221  *			capable of dual channel - which means that memory
222  *			sticks must be loaded as pairs (see "socket set").
223  *
224  * Chip-select row:	All of the memory devices that are selected together.
225  *			for a single, minimum grain of memory access.
226  *			This selects all of the parallel memory devices across
227  *			all of the parallel channels.  Common chip-select rows
228  *			for single channel are 64 bits, for dual channel 128
229  *			bits.
230  *
231  * Single-Ranked stick:	A Single-ranked stick has 1 chip-select row of memmory.
232  *			Motherboards commonly drive two chip-select pins to
233  *			a memory stick. A single-ranked stick, will occupy
234  *			only one of those rows. The other will be unused.
235  *
236  * Double-Ranked stick:	A double-ranked stick has two chip-select rows which
237  *			access different sets of memory devices.  The two
238  *			rows cannot be accessed concurrently.
239  *
240  * Double-sided stick:	DEPRECATED TERM, see Double-Ranked stick.
241  *			A double-sided stick has two chip-select rows which
242  *			access different sets of memory devices.  The two
243  *			rows cannot be accessed concurrently.  "Double-sided"
244  *			is irrespective of the memory devices being mounted
245  *			on both sides of the memory stick.
246  *
247  * Socket set:		All of the memory sticks that are required for for
248  *			a single memory access or all of the memory sticks
249  *			spanned by a chip-select row.  A single socket set
250  *			has two chip-select rows and if double-sided sticks
251  *			are used these will occupy those chip-select rows.
252  *
253  * Bank:		This term is avoided because it is unclear when
254  *			needing to distinguish between chip-select rows and
255  *			socket sets.
256  *
257  * Controller pages:
258  *
259  * Physical pages:
260  *
261  * Virtual pages:
262  *
263  *
264  * STRUCTURE ORGANIZATION AND CHOICES
265  *
266  *
267  *
268  * PS - I enjoyed writing all that about as much as you enjoyed reading it.
269  */
270 
271 struct channel_info {
272 	int chan_idx;		/* channel index */
273 	u32 ce_count;		/* Correctable Errors for this CHANNEL */
274 	char label[EDAC_MC_LABEL_LEN + 1];  /* DIMM label on motherboard */
275 	struct csrow_info *csrow;	/* the parent */
276 };
277 
278 struct csrow_info {
279 	unsigned long first_page;	/* first page number in dimm */
280 	unsigned long last_page;	/* last page number in dimm */
281 	unsigned long page_mask;	/* used for interleaving -
282 					 * 0UL for non intlv
283 					 */
284 	u32 nr_pages;		/* number of pages in csrow */
285 	u32 grain;		/* granularity of reported error in bytes */
286 	int csrow_idx;		/* the chip-select row */
287 	enum dev_type dtype;	/* memory device type */
288 	u32 ue_count;		/* Uncorrectable Errors for this csrow */
289 	u32 ce_count;		/* Correctable Errors for this csrow */
290 	enum mem_type mtype;	/* memory csrow type */
291 	enum edac_type edac_mode;	/* EDAC mode for this csrow */
292 	struct mem_ctl_info *mci;	/* the parent */
293 
294 	struct kobject kobj;	/* sysfs kobject for this csrow */
295 	struct completion kobj_complete;
296 
297 	/* FIXME the number of CHANNELs might need to become dynamic */
298 	u32 nr_channels;
299 	struct channel_info *channels;
300 };
301 
302 struct mem_ctl_info {
303 	struct list_head link;  /* for global list of mem_ctl_info structs */
304 	unsigned long mtype_cap;	/* memory types supported by mc */
305 	unsigned long edac_ctl_cap;	/* Mem controller EDAC capabilities */
306 	unsigned long edac_cap;	/* configuration capabilities - this is
307 				 * closely related to edac_ctl_cap.  The
308 				 * difference is that the controller may be
309 				 * capable of s4ecd4ed which would be listed
310 				 * in edac_ctl_cap, but if channels aren't
311 				 * capable of s4ecd4ed then the edac_cap would
312 				 * not have that capability.
313 				 */
314 	unsigned long scrub_cap;	/* chipset scrub capabilities */
315 	enum scrub_type scrub_mode;	/* current scrub mode */
316 
317 	/* pointer to edac checking routine */
318 	void (*edac_check) (struct mem_ctl_info * mci);
319 	/*
320 	 * Remaps memory pages: controller pages to physical pages.
321 	 * For most MC's, this will be NULL.
322 	 */
323 	/* FIXME - why not send the phys page to begin with? */
324 	unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
325 					unsigned long page);
326 	int mc_idx;
327 	int nr_csrows;
328 	struct csrow_info *csrows;
329 	/*
330 	 * FIXME - what about controllers on other busses? - IDs must be
331 	 * unique.  dev pointer should be sufficiently unique, but
332 	 * BUS:SLOT.FUNC numbers may not be unique.
333 	 */
334 	struct device *dev;
335 	const char *mod_name;
336 	const char *mod_ver;
337 	const char *ctl_name;
338 	char proc_name[MC_PROC_NAME_MAX_LEN + 1];
339 	void *pvt_info;
340 	u32 ue_noinfo_count;	/* Uncorrectable Errors w/o info */
341 	u32 ce_noinfo_count;	/* Correctable Errors w/o info */
342 	u32 ue_count;		/* Total Uncorrectable Errors for this MC */
343 	u32 ce_count;		/* Total Correctable Errors for this MC */
344 	unsigned long start_time;	/* mci load start time (in jiffies) */
345 
346 	/* this stuff is for safe removal of mc devices from global list while
347 	 * NMI handlers may be traversing list
348 	 */
349 	struct rcu_head rcu;
350 	struct completion complete;
351 
352 	/* edac sysfs device control */
353 	struct kobject edac_mci_kobj;
354 	struct completion kobj_complete;
355 };
356 
357 #ifdef CONFIG_PCI
358 
359 /* write all or some bits in a byte-register*/
360 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
361 		u8 mask)
362 {
363 	if (mask != 0xff) {
364 		u8 buf;
365 
366 		pci_read_config_byte(pdev, offset, &buf);
367 		value &= mask;
368 		buf &= ~mask;
369 		value |= buf;
370 	}
371 
372 	pci_write_config_byte(pdev, offset, value);
373 }
374 
375 /* write all or some bits in a word-register*/
376 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
377 		u16 value, u16 mask)
378 {
379 	if (mask != 0xffff) {
380 		u16 buf;
381 
382 		pci_read_config_word(pdev, offset, &buf);
383 		value &= mask;
384 		buf &= ~mask;
385 		value |= buf;
386 	}
387 
388 	pci_write_config_word(pdev, offset, value);
389 }
390 
391 /* write all or some bits in a dword-register*/
392 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
393 		u32 value, u32 mask)
394 {
395 	if (mask != 0xffff) {
396 		u32 buf;
397 
398 		pci_read_config_dword(pdev, offset, &buf);
399 		value &= mask;
400 		buf &= ~mask;
401 		value |= buf;
402 	}
403 
404 	pci_write_config_dword(pdev, offset, value);
405 }
406 
407 #endif /* CONFIG_PCI */
408 
409 #ifdef CONFIG_EDAC_DEBUG
410 void edac_mc_dump_channel(struct channel_info *chan);
411 void edac_mc_dump_mci(struct mem_ctl_info *mci);
412 void edac_mc_dump_csrow(struct csrow_info *csrow);
413 #endif  /* CONFIG_EDAC_DEBUG */
414 
415 extern int edac_mc_add_mc(struct mem_ctl_info *mci,int mc_idx);
416 extern struct mem_ctl_info * edac_mc_del_mc(struct device *dev);
417 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
418 					unsigned long page);
419 extern void edac_mc_scrub_block(unsigned long page, unsigned long offset,
420 		u32 size);
421 
422 /*
423  * The no info errors are used when error overflows are reported.
424  * There are a limited number of error logging registers that can
425  * be exausted.  When all registers are exhausted and an additional
426  * error occurs then an error overflow register records that an
427  * error occured and the type of error, but doesn't have any
428  * further information.  The ce/ue versions make for cleaner
429  * reporting logic and function interface - reduces conditional
430  * statement clutter and extra function arguments.
431  */
432 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
433 		unsigned long page_frame_number, unsigned long offset_in_page,
434 		unsigned long syndrome, int row, int channel,
435 		const char *msg);
436 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
437 		const char *msg);
438 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
439 		unsigned long page_frame_number, unsigned long offset_in_page,
440 		int row, const char *msg);
441 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
442 		const char *msg);
443 
444 /*
445  * This kmalloc's and initializes all the structures.
446  * Can't be used if all structures don't have the same lifetime.
447  */
448 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
449 		unsigned nr_chans);
450 
451 /* Free an mc previously allocated by edac_mc_alloc() */
452 extern void edac_mc_free(struct mem_ctl_info *mci);
453 
454 #endif				/* _EDAC_MC_H_ */
455