1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 37 #define CREATE_TRACE_POINTS 38 #define TRACE_INCLUDE_PATH ../../include/ras 39 #include <ras/ras_event.h> 40 41 /* lock to memory controller's control array */ 42 static DEFINE_MUTEX(mem_ctls_mutex); 43 static LIST_HEAD(mc_devices); 44 45 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 46 unsigned len) 47 { 48 struct mem_ctl_info *mci = dimm->mci; 49 int i, n, count = 0; 50 char *p = buf; 51 52 for (i = 0; i < mci->n_layers; i++) { 53 n = snprintf(p, len, "%s %d ", 54 edac_layer_name[mci->layers[i].type], 55 dimm->location[i]); 56 p += n; 57 len -= n; 58 count += n; 59 if (!len) 60 break; 61 } 62 63 return count; 64 } 65 66 #ifdef CONFIG_EDAC_DEBUG 67 68 static void edac_mc_dump_channel(struct rank_info *chan) 69 { 70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 71 edac_dbg(4, " channel = %p\n", chan); 72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 74 } 75 76 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 77 { 78 char location[80]; 79 80 edac_dimm_info_location(dimm, location, sizeof(location)); 81 82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 83 dimm->mci->mem_is_per_rank ? "rank" : "dimm", 84 number, location, dimm->csrow, dimm->cschannel); 85 edac_dbg(4, " dimm = %p\n", dimm); 86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 90 } 91 92 static void edac_mc_dump_csrow(struct csrow_info *csrow) 93 { 94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 95 edac_dbg(4, " csrow = %p\n", csrow); 96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 102 } 103 104 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 105 { 106 edac_dbg(3, "\tmci = %p\n", mci); 107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 112 mci->nr_csrows, mci->csrows); 113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 114 mci->tot_dimms, mci->dimms); 115 edac_dbg(3, "\tdev = %p\n", mci->pdev); 116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 117 mci->mod_name, mci->ctl_name); 118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 119 } 120 121 #endif /* CONFIG_EDAC_DEBUG */ 122 123 /* 124 * keep those in sync with the enum mem_type 125 */ 126 const char *edac_mem_types[] = { 127 "Empty csrow", 128 "Reserved csrow type", 129 "Unknown csrow type", 130 "Fast page mode RAM", 131 "Extended data out RAM", 132 "Burst Extended data out RAM", 133 "Single data rate SDRAM", 134 "Registered single data rate SDRAM", 135 "Double data rate SDRAM", 136 "Registered Double data rate SDRAM", 137 "Rambus DRAM", 138 "Unbuffered DDR2 RAM", 139 "Fully buffered DDR2", 140 "Registered DDR2 RAM", 141 "Rambus XDR", 142 "Unbuffered DDR3 RAM", 143 "Registered DDR3 RAM", 144 }; 145 EXPORT_SYMBOL_GPL(edac_mem_types); 146 147 /** 148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 149 * @p: pointer to a pointer with the memory offset to be used. At 150 * return, this will be incremented to point to the next offset 151 * @size: Size of the data structure to be reserved 152 * @n_elems: Number of elements that should be reserved 153 * 154 * If 'size' is a constant, the compiler will optimize this whole function 155 * down to either a no-op or the addition of a constant to the value of '*p'. 156 * 157 * The 'p' pointer is absolutely needed to keep the proper advancing 158 * further in memory to the proper offsets when allocating the struct along 159 * with its embedded structs, as edac_device_alloc_ctl_info() does it 160 * above, for example. 161 * 162 * At return, the pointer 'p' will be incremented to be used on a next call 163 * to this function. 164 */ 165 void *edac_align_ptr(void **p, unsigned size, int n_elems) 166 { 167 unsigned align, r; 168 void *ptr = *p; 169 170 *p += size * n_elems; 171 172 /* 173 * 'p' can possibly be an unaligned item X such that sizeof(X) is 174 * 'size'. Adjust 'p' so that its alignment is at least as 175 * stringent as what the compiler would provide for X and return 176 * the aligned result. 177 * Here we assume that the alignment of a "long long" is the most 178 * stringent alignment that the compiler will ever provide by default. 179 * As far as I know, this is a reasonable assumption. 180 */ 181 if (size > sizeof(long)) 182 align = sizeof(long long); 183 else if (size > sizeof(int)) 184 align = sizeof(long); 185 else if (size > sizeof(short)) 186 align = sizeof(int); 187 else if (size > sizeof(char)) 188 align = sizeof(short); 189 else 190 return (char *)ptr; 191 192 r = (unsigned long)p % align; 193 194 if (r == 0) 195 return (char *)ptr; 196 197 *p += align - r; 198 199 return (void *)(((unsigned long)ptr) + align - r); 200 } 201 202 static void _edac_mc_free(struct mem_ctl_info *mci) 203 { 204 int i, chn, row; 205 struct csrow_info *csr; 206 const unsigned int tot_dimms = mci->tot_dimms; 207 const unsigned int tot_channels = mci->num_cschannel; 208 const unsigned int tot_csrows = mci->nr_csrows; 209 210 if (mci->dimms) { 211 for (i = 0; i < tot_dimms; i++) 212 kfree(mci->dimms[i]); 213 kfree(mci->dimms); 214 } 215 if (mci->csrows) { 216 for (row = 0; row < tot_csrows; row++) { 217 csr = mci->csrows[row]; 218 if (csr) { 219 if (csr->channels) { 220 for (chn = 0; chn < tot_channels; chn++) 221 kfree(csr->channels[chn]); 222 kfree(csr->channels); 223 } 224 kfree(csr); 225 } 226 } 227 kfree(mci->csrows); 228 } 229 kfree(mci); 230 } 231 232 /** 233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 234 * @mc_num: Memory controller number 235 * @n_layers: Number of MC hierarchy layers 236 * layers: Describes each layer as seen by the Memory Controller 237 * @size_pvt: size of private storage needed 238 * 239 * 240 * Everything is kmalloc'ed as one big chunk - more efficient. 241 * Only can be used if all structures have the same lifetime - otherwise 242 * you have to allocate and initialize your own structures. 243 * 244 * Use edac_mc_free() to free mc structures allocated by this function. 245 * 246 * NOTE: drivers handle multi-rank memories in different ways: in some 247 * drivers, one multi-rank memory stick is mapped as one entry, while, in 248 * others, a single multi-rank memory stick would be mapped into several 249 * entries. Currently, this function will allocate multiple struct dimm_info 250 * on such scenarios, as grouping the multiple ranks require drivers change. 251 * 252 * Returns: 253 * On failure: NULL 254 * On success: struct mem_ctl_info pointer 255 */ 256 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 257 unsigned n_layers, 258 struct edac_mc_layer *layers, 259 unsigned sz_pvt) 260 { 261 struct mem_ctl_info *mci; 262 struct edac_mc_layer *layer; 263 struct csrow_info *csr; 264 struct rank_info *chan; 265 struct dimm_info *dimm; 266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 267 unsigned pos[EDAC_MAX_LAYERS]; 268 unsigned size, tot_dimms = 1, count = 1; 269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 270 void *pvt, *p, *ptr = NULL; 271 int i, j, row, chn, n, len, off; 272 bool per_rank = false; 273 274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 275 /* 276 * Calculate the total amount of dimms and csrows/cschannels while 277 * in the old API emulation mode 278 */ 279 for (i = 0; i < n_layers; i++) { 280 tot_dimms *= layers[i].size; 281 if (layers[i].is_virt_csrow) 282 tot_csrows *= layers[i].size; 283 else 284 tot_channels *= layers[i].size; 285 286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 287 per_rank = true; 288 } 289 290 /* Figure out the offsets of the various items from the start of an mc 291 * structure. We want the alignment of each item to be at least as 292 * stringent as what the compiler would provide if we could simply 293 * hardcode everything into a single struct. 294 */ 295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 297 for (i = 0; i < n_layers; i++) { 298 count *= layers[i].size; 299 edac_dbg(4, "errcount layer %d size %d\n", i, count); 300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 302 tot_errcount += 2 * count; 303 } 304 305 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 306 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 307 size = ((unsigned long)pvt) + sz_pvt; 308 309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 310 size, 311 tot_dimms, 312 per_rank ? "ranks" : "dimms", 313 tot_csrows * tot_channels); 314 315 mci = kzalloc(size, GFP_KERNEL); 316 if (mci == NULL) 317 return NULL; 318 319 /* Adjust pointers so they point within the memory we just allocated 320 * rather than an imaginary chunk of memory located at address 0. 321 */ 322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 323 for (i = 0; i < n_layers; i++) { 324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 326 } 327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 328 329 /* setup index and various internal pointers */ 330 mci->mc_idx = mc_num; 331 mci->tot_dimms = tot_dimms; 332 mci->pvt_info = pvt; 333 mci->n_layers = n_layers; 334 mci->layers = layer; 335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 336 mci->nr_csrows = tot_csrows; 337 mci->num_cschannel = tot_channels; 338 mci->mem_is_per_rank = per_rank; 339 340 /* 341 * Alocate and fill the csrow/channels structs 342 */ 343 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL); 344 if (!mci->csrows) 345 goto error; 346 for (row = 0; row < tot_csrows; row++) { 347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 348 if (!csr) 349 goto error; 350 mci->csrows[row] = csr; 351 csr->csrow_idx = row; 352 csr->mci = mci; 353 csr->nr_channels = tot_channels; 354 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels, 355 GFP_KERNEL); 356 if (!csr->channels) 357 goto error; 358 359 for (chn = 0; chn < tot_channels; chn++) { 360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 361 if (!chan) 362 goto error; 363 csr->channels[chn] = chan; 364 chan->chan_idx = chn; 365 chan->csrow = csr; 366 } 367 } 368 369 /* 370 * Allocate and fill the dimm structs 371 */ 372 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL); 373 if (!mci->dimms) 374 goto error; 375 376 memset(&pos, 0, sizeof(pos)); 377 row = 0; 378 chn = 0; 379 for (i = 0; i < tot_dimms; i++) { 380 chan = mci->csrows[row]->channels[chn]; 381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 382 if (off < 0 || off >= tot_dimms) { 383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 384 goto error; 385 } 386 387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 388 if (!dimm) 389 goto error; 390 mci->dimms[off] = dimm; 391 dimm->mci = mci; 392 393 /* 394 * Copy DIMM location and initialize it. 395 */ 396 len = sizeof(dimm->label); 397 p = dimm->label; 398 n = snprintf(p, len, "mc#%u", mc_num); 399 p += n; 400 len -= n; 401 for (j = 0; j < n_layers; j++) { 402 n = snprintf(p, len, "%s#%u", 403 edac_layer_name[layers[j].type], 404 pos[j]); 405 p += n; 406 len -= n; 407 dimm->location[j] = pos[j]; 408 409 if (len <= 0) 410 break; 411 } 412 413 /* Link it to the csrows old API data */ 414 chan->dimm = dimm; 415 dimm->csrow = row; 416 dimm->cschannel = chn; 417 418 /* Increment csrow location */ 419 row++; 420 if (row == tot_csrows) { 421 row = 0; 422 chn++; 423 } 424 425 /* Increment dimm location */ 426 for (j = n_layers - 1; j >= 0; j--) { 427 pos[j]++; 428 if (pos[j] < layers[j].size) 429 break; 430 pos[j] = 0; 431 } 432 } 433 434 mci->op_state = OP_ALLOC; 435 436 /* at this point, the root kobj is valid, and in order to 437 * 'free' the object, then the function: 438 * edac_mc_unregister_sysfs_main_kobj() must be called 439 * which will perform kobj unregistration and the actual free 440 * will occur during the kobject callback operation 441 */ 442 443 return mci; 444 445 error: 446 _edac_mc_free(mci); 447 448 return NULL; 449 } 450 EXPORT_SYMBOL_GPL(edac_mc_alloc); 451 452 /** 453 * edac_mc_free 454 * 'Free' a previously allocated 'mci' structure 455 * @mci: pointer to a struct mem_ctl_info structure 456 */ 457 void edac_mc_free(struct mem_ctl_info *mci) 458 { 459 edac_dbg(1, "\n"); 460 461 /* If we're not yet registered with sysfs free only what was allocated 462 * in edac_mc_alloc(). 463 */ 464 if (!device_is_registered(&mci->dev)) { 465 _edac_mc_free(mci); 466 return; 467 } 468 469 /* the mci instance is freed here, when the sysfs object is dropped */ 470 edac_unregister_sysfs(mci); 471 } 472 EXPORT_SYMBOL_GPL(edac_mc_free); 473 474 475 /** 476 * find_mci_by_dev 477 * 478 * scan list of controllers looking for the one that manages 479 * the 'dev' device 480 * @dev: pointer to a struct device related with the MCI 481 */ 482 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 483 { 484 struct mem_ctl_info *mci; 485 struct list_head *item; 486 487 edac_dbg(3, "\n"); 488 489 list_for_each(item, &mc_devices) { 490 mci = list_entry(item, struct mem_ctl_info, link); 491 492 if (mci->pdev == dev) 493 return mci; 494 } 495 496 return NULL; 497 } 498 EXPORT_SYMBOL_GPL(find_mci_by_dev); 499 500 /* 501 * handler for EDAC to check if NMI type handler has asserted interrupt 502 */ 503 static int edac_mc_assert_error_check_and_clear(void) 504 { 505 int old_state; 506 507 if (edac_op_state == EDAC_OPSTATE_POLL) 508 return 1; 509 510 old_state = edac_err_assert; 511 edac_err_assert = 0; 512 513 return old_state; 514 } 515 516 /* 517 * edac_mc_workq_function 518 * performs the operation scheduled by a workq request 519 */ 520 static void edac_mc_workq_function(struct work_struct *work_req) 521 { 522 struct delayed_work *d_work = to_delayed_work(work_req); 523 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 524 525 mutex_lock(&mem_ctls_mutex); 526 527 /* if this control struct has movd to offline state, we are done */ 528 if (mci->op_state == OP_OFFLINE) { 529 mutex_unlock(&mem_ctls_mutex); 530 return; 531 } 532 533 /* Only poll controllers that are running polled and have a check */ 534 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 535 mci->edac_check(mci); 536 537 mutex_unlock(&mem_ctls_mutex); 538 539 /* Reschedule */ 540 queue_delayed_work(edac_workqueue, &mci->work, 541 msecs_to_jiffies(edac_mc_get_poll_msec())); 542 } 543 544 /* 545 * edac_mc_workq_setup 546 * initialize a workq item for this mci 547 * passing in the new delay period in msec 548 * 549 * locking model: 550 * 551 * called with the mem_ctls_mutex held 552 */ 553 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) 554 { 555 edac_dbg(0, "\n"); 556 557 /* if this instance is not in the POLL state, then simply return */ 558 if (mci->op_state != OP_RUNNING_POLL) 559 return; 560 561 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 562 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 563 } 564 565 /* 566 * edac_mc_workq_teardown 567 * stop the workq processing on this mci 568 * 569 * locking model: 570 * 571 * called WITHOUT lock held 572 */ 573 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 574 { 575 int status; 576 577 if (mci->op_state != OP_RUNNING_POLL) 578 return; 579 580 status = cancel_delayed_work(&mci->work); 581 if (status == 0) { 582 edac_dbg(0, "not canceled, flush the queue\n"); 583 584 /* workq instance might be running, wait for it */ 585 flush_workqueue(edac_workqueue); 586 } 587 } 588 589 /* 590 * edac_mc_reset_delay_period(unsigned long value) 591 * 592 * user space has updated our poll period value, need to 593 * reset our workq delays 594 */ 595 void edac_mc_reset_delay_period(int value) 596 { 597 struct mem_ctl_info *mci; 598 struct list_head *item; 599 600 mutex_lock(&mem_ctls_mutex); 601 602 list_for_each(item, &mc_devices) { 603 mci = list_entry(item, struct mem_ctl_info, link); 604 605 edac_mc_workq_setup(mci, (unsigned long) value); 606 } 607 608 mutex_unlock(&mem_ctls_mutex); 609 } 610 611 612 613 /* Return 0 on success, 1 on failure. 614 * Before calling this function, caller must 615 * assign a unique value to mci->mc_idx. 616 * 617 * locking model: 618 * 619 * called with the mem_ctls_mutex lock held 620 */ 621 static int add_mc_to_global_list(struct mem_ctl_info *mci) 622 { 623 struct list_head *item, *insert_before; 624 struct mem_ctl_info *p; 625 626 insert_before = &mc_devices; 627 628 p = find_mci_by_dev(mci->pdev); 629 if (unlikely(p != NULL)) 630 goto fail0; 631 632 list_for_each(item, &mc_devices) { 633 p = list_entry(item, struct mem_ctl_info, link); 634 635 if (p->mc_idx >= mci->mc_idx) { 636 if (unlikely(p->mc_idx == mci->mc_idx)) 637 goto fail1; 638 639 insert_before = item; 640 break; 641 } 642 } 643 644 list_add_tail_rcu(&mci->link, insert_before); 645 atomic_inc(&edac_handlers); 646 return 0; 647 648 fail0: 649 edac_printk(KERN_WARNING, EDAC_MC, 650 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 651 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 652 return 1; 653 654 fail1: 655 edac_printk(KERN_WARNING, EDAC_MC, 656 "bug in low-level driver: attempt to assign\n" 657 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 658 return 1; 659 } 660 661 static void del_mc_from_global_list(struct mem_ctl_info *mci) 662 { 663 atomic_dec(&edac_handlers); 664 list_del_rcu(&mci->link); 665 666 /* these are for safe removal of devices from global list while 667 * NMI handlers may be traversing list 668 */ 669 synchronize_rcu(); 670 INIT_LIST_HEAD(&mci->link); 671 } 672 673 /** 674 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 675 * 676 * If found, return a pointer to the structure. 677 * Else return NULL. 678 * 679 * Caller must hold mem_ctls_mutex. 680 */ 681 struct mem_ctl_info *edac_mc_find(int idx) 682 { 683 struct list_head *item; 684 struct mem_ctl_info *mci; 685 686 list_for_each(item, &mc_devices) { 687 mci = list_entry(item, struct mem_ctl_info, link); 688 689 if (mci->mc_idx >= idx) { 690 if (mci->mc_idx == idx) 691 return mci; 692 693 break; 694 } 695 } 696 697 return NULL; 698 } 699 EXPORT_SYMBOL(edac_mc_find); 700 701 /** 702 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 703 * create sysfs entries associated with mci structure 704 * @mci: pointer to the mci structure to be added to the list 705 * 706 * Return: 707 * 0 Success 708 * !0 Failure 709 */ 710 711 /* FIXME - should a warning be printed if no error detection? correction? */ 712 int edac_mc_add_mc(struct mem_ctl_info *mci) 713 { 714 edac_dbg(0, "\n"); 715 716 #ifdef CONFIG_EDAC_DEBUG 717 if (edac_debug_level >= 3) 718 edac_mc_dump_mci(mci); 719 720 if (edac_debug_level >= 4) { 721 int i; 722 723 for (i = 0; i < mci->nr_csrows; i++) { 724 struct csrow_info *csrow = mci->csrows[i]; 725 u32 nr_pages = 0; 726 int j; 727 728 for (j = 0; j < csrow->nr_channels; j++) 729 nr_pages += csrow->channels[j]->dimm->nr_pages; 730 if (!nr_pages) 731 continue; 732 edac_mc_dump_csrow(csrow); 733 for (j = 0; j < csrow->nr_channels; j++) 734 if (csrow->channels[j]->dimm->nr_pages) 735 edac_mc_dump_channel(csrow->channels[j]); 736 } 737 for (i = 0; i < mci->tot_dimms; i++) 738 if (mci->dimms[i]->nr_pages) 739 edac_mc_dump_dimm(mci->dimms[i], i); 740 } 741 #endif 742 mutex_lock(&mem_ctls_mutex); 743 744 if (add_mc_to_global_list(mci)) 745 goto fail0; 746 747 /* set load time so that error rate can be tracked */ 748 mci->start_time = jiffies; 749 750 if (edac_create_sysfs_mci_device(mci)) { 751 edac_mc_printk(mci, KERN_WARNING, 752 "failed to create sysfs device\n"); 753 goto fail1; 754 } 755 756 /* If there IS a check routine, then we are running POLLED */ 757 if (mci->edac_check != NULL) { 758 /* This instance is NOW RUNNING */ 759 mci->op_state = OP_RUNNING_POLL; 760 761 edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); 762 } else { 763 mci->op_state = OP_RUNNING_INTERRUPT; 764 } 765 766 /* Report action taken */ 767 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':" 768 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 769 770 mutex_unlock(&mem_ctls_mutex); 771 return 0; 772 773 fail1: 774 del_mc_from_global_list(mci); 775 776 fail0: 777 mutex_unlock(&mem_ctls_mutex); 778 return 1; 779 } 780 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 781 782 /** 783 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 784 * remove mci structure from global list 785 * @pdev: Pointer to 'struct device' representing mci structure to remove. 786 * 787 * Return pointer to removed mci structure, or NULL if device not found. 788 */ 789 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 790 { 791 struct mem_ctl_info *mci; 792 793 edac_dbg(0, "\n"); 794 795 mutex_lock(&mem_ctls_mutex); 796 797 /* find the requested mci struct in the global list */ 798 mci = find_mci_by_dev(dev); 799 if (mci == NULL) { 800 mutex_unlock(&mem_ctls_mutex); 801 return NULL; 802 } 803 804 del_mc_from_global_list(mci); 805 mutex_unlock(&mem_ctls_mutex); 806 807 /* flush workq processes */ 808 edac_mc_workq_teardown(mci); 809 810 /* marking MCI offline */ 811 mci->op_state = OP_OFFLINE; 812 813 /* remove from sysfs */ 814 edac_remove_sysfs_mci_device(mci); 815 816 edac_printk(KERN_INFO, EDAC_MC, 817 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 818 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 819 820 return mci; 821 } 822 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 823 824 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 825 u32 size) 826 { 827 struct page *pg; 828 void *virt_addr; 829 unsigned long flags = 0; 830 831 edac_dbg(3, "\n"); 832 833 /* ECC error page was not in our memory. Ignore it. */ 834 if (!pfn_valid(page)) 835 return; 836 837 /* Find the actual page structure then map it and fix */ 838 pg = pfn_to_page(page); 839 840 if (PageHighMem(pg)) 841 local_irq_save(flags); 842 843 virt_addr = kmap_atomic(pg); 844 845 /* Perform architecture specific atomic scrub operation */ 846 atomic_scrub(virt_addr + offset, size); 847 848 /* Unmap and complete */ 849 kunmap_atomic(virt_addr); 850 851 if (PageHighMem(pg)) 852 local_irq_restore(flags); 853 } 854 855 /* FIXME - should return -1 */ 856 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 857 { 858 struct csrow_info **csrows = mci->csrows; 859 int row, i, j, n; 860 861 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 862 row = -1; 863 864 for (i = 0; i < mci->nr_csrows; i++) { 865 struct csrow_info *csrow = csrows[i]; 866 n = 0; 867 for (j = 0; j < csrow->nr_channels; j++) { 868 struct dimm_info *dimm = csrow->channels[j]->dimm; 869 n += dimm->nr_pages; 870 } 871 if (n == 0) 872 continue; 873 874 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 875 mci->mc_idx, 876 csrow->first_page, page, csrow->last_page, 877 csrow->page_mask); 878 879 if ((page >= csrow->first_page) && 880 (page <= csrow->last_page) && 881 ((page & csrow->page_mask) == 882 (csrow->first_page & csrow->page_mask))) { 883 row = i; 884 break; 885 } 886 } 887 888 if (row == -1) 889 edac_mc_printk(mci, KERN_ERR, 890 "could not look up page error address %lx\n", 891 (unsigned long)page); 892 893 return row; 894 } 895 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 896 897 const char *edac_layer_name[] = { 898 [EDAC_MC_LAYER_BRANCH] = "branch", 899 [EDAC_MC_LAYER_CHANNEL] = "channel", 900 [EDAC_MC_LAYER_SLOT] = "slot", 901 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 902 }; 903 EXPORT_SYMBOL_GPL(edac_layer_name); 904 905 static void edac_inc_ce_error(struct mem_ctl_info *mci, 906 bool enable_per_layer_report, 907 const int pos[EDAC_MAX_LAYERS], 908 const u16 count) 909 { 910 int i, index = 0; 911 912 mci->ce_mc += count; 913 914 if (!enable_per_layer_report) { 915 mci->ce_noinfo_count += count; 916 return; 917 } 918 919 for (i = 0; i < mci->n_layers; i++) { 920 if (pos[i] < 0) 921 break; 922 index += pos[i]; 923 mci->ce_per_layer[i][index] += count; 924 925 if (i < mci->n_layers - 1) 926 index *= mci->layers[i + 1].size; 927 } 928 } 929 930 static void edac_inc_ue_error(struct mem_ctl_info *mci, 931 bool enable_per_layer_report, 932 const int pos[EDAC_MAX_LAYERS], 933 const u16 count) 934 { 935 int i, index = 0; 936 937 mci->ue_mc += count; 938 939 if (!enable_per_layer_report) { 940 mci->ce_noinfo_count += count; 941 return; 942 } 943 944 for (i = 0; i < mci->n_layers; i++) { 945 if (pos[i] < 0) 946 break; 947 index += pos[i]; 948 mci->ue_per_layer[i][index] += count; 949 950 if (i < mci->n_layers - 1) 951 index *= mci->layers[i + 1].size; 952 } 953 } 954 955 static void edac_ce_error(struct mem_ctl_info *mci, 956 const u16 error_count, 957 const int pos[EDAC_MAX_LAYERS], 958 const char *msg, 959 const char *location, 960 const char *label, 961 const char *detail, 962 const char *other_detail, 963 const bool enable_per_layer_report, 964 const unsigned long page_frame_number, 965 const unsigned long offset_in_page, 966 long grain) 967 { 968 unsigned long remapped_page; 969 970 if (edac_mc_get_log_ce()) { 971 if (other_detail && *other_detail) 972 edac_mc_printk(mci, KERN_WARNING, 973 "%d CE %s on %s (%s %s - %s)\n", 974 error_count, 975 msg, label, location, 976 detail, other_detail); 977 else 978 edac_mc_printk(mci, KERN_WARNING, 979 "%d CE %s on %s (%s %s)\n", 980 error_count, 981 msg, label, location, 982 detail); 983 } 984 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 985 986 if (mci->scrub_mode & SCRUB_SW_SRC) { 987 /* 988 * Some memory controllers (called MCs below) can remap 989 * memory so that it is still available at a different 990 * address when PCI devices map into memory. 991 * MC's that can't do this, lose the memory where PCI 992 * devices are mapped. This mapping is MC-dependent 993 * and so we call back into the MC driver for it to 994 * map the MC page to a physical (CPU) page which can 995 * then be mapped to a virtual page - which can then 996 * be scrubbed. 997 */ 998 remapped_page = mci->ctl_page_to_phys ? 999 mci->ctl_page_to_phys(mci, page_frame_number) : 1000 page_frame_number; 1001 1002 edac_mc_scrub_block(remapped_page, 1003 offset_in_page, grain); 1004 } 1005 } 1006 1007 static void edac_ue_error(struct mem_ctl_info *mci, 1008 const u16 error_count, 1009 const int pos[EDAC_MAX_LAYERS], 1010 const char *msg, 1011 const char *location, 1012 const char *label, 1013 const char *detail, 1014 const char *other_detail, 1015 const bool enable_per_layer_report) 1016 { 1017 if (edac_mc_get_log_ue()) { 1018 if (other_detail && *other_detail) 1019 edac_mc_printk(mci, KERN_WARNING, 1020 "%d UE %s on %s (%s %s - %s)\n", 1021 error_count, 1022 msg, label, location, detail, 1023 other_detail); 1024 else 1025 edac_mc_printk(mci, KERN_WARNING, 1026 "%d UE %s on %s (%s %s)\n", 1027 error_count, 1028 msg, label, location, detail); 1029 } 1030 1031 if (edac_mc_get_panic_on_ue()) { 1032 if (other_detail && *other_detail) 1033 panic("UE %s on %s (%s%s - %s)\n", 1034 msg, label, location, detail, other_detail); 1035 else 1036 panic("UE %s on %s (%s%s)\n", 1037 msg, label, location, detail); 1038 } 1039 1040 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1041 } 1042 1043 #define OTHER_LABEL " or " 1044 1045 /** 1046 * edac_mc_handle_error - reports a memory event to userspace 1047 * 1048 * @type: severity of the error (CE/UE/Fatal) 1049 * @mci: a struct mem_ctl_info pointer 1050 * @error_count: Number of errors of the same type 1051 * @page_frame_number: mem page where the error occurred 1052 * @offset_in_page: offset of the error inside the page 1053 * @syndrome: ECC syndrome 1054 * @top_layer: Memory layer[0] position 1055 * @mid_layer: Memory layer[1] position 1056 * @low_layer: Memory layer[2] position 1057 * @msg: Message meaningful to the end users that 1058 * explains the event 1059 * @other_detail: Technical details about the event that 1060 * may help hardware manufacturers and 1061 * EDAC developers to analyse the event 1062 */ 1063 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1064 struct mem_ctl_info *mci, 1065 const u16 error_count, 1066 const unsigned long page_frame_number, 1067 const unsigned long offset_in_page, 1068 const unsigned long syndrome, 1069 const int top_layer, 1070 const int mid_layer, 1071 const int low_layer, 1072 const char *msg, 1073 const char *other_detail) 1074 { 1075 /* FIXME: too much for stack: move it to some pre-alocated area */ 1076 char detail[80], location[80]; 1077 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms]; 1078 char *p; 1079 int row = -1, chan = -1; 1080 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1081 int i; 1082 long grain; 1083 bool enable_per_layer_report = false; 1084 u8 grain_bits; 1085 1086 edac_dbg(3, "MC%d\n", mci->mc_idx); 1087 1088 /* 1089 * Check if the event report is consistent and if the memory 1090 * location is known. If it is known, enable_per_layer_report will be 1091 * true, the DIMM(s) label info will be filled and the per-layer 1092 * error counters will be incremented. 1093 */ 1094 for (i = 0; i < mci->n_layers; i++) { 1095 if (pos[i] >= (int)mci->layers[i].size) { 1096 if (type == HW_EVENT_ERR_CORRECTED) 1097 p = "CE"; 1098 else 1099 p = "UE"; 1100 1101 edac_mc_printk(mci, KERN_ERR, 1102 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1103 edac_layer_name[mci->layers[i].type], 1104 pos[i], mci->layers[i].size); 1105 /* 1106 * Instead of just returning it, let's use what's 1107 * known about the error. The increment routines and 1108 * the DIMM filter logic will do the right thing by 1109 * pointing the likely damaged DIMMs. 1110 */ 1111 pos[i] = -1; 1112 } 1113 if (pos[i] >= 0) 1114 enable_per_layer_report = true; 1115 } 1116 1117 /* 1118 * Get the dimm label/grain that applies to the match criteria. 1119 * As the error algorithm may not be able to point to just one memory 1120 * stick, the logic here will get all possible labels that could 1121 * pottentially be affected by the error. 1122 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1123 * to have only the MC channel and the MC dimm (also called "branch") 1124 * but the channel is not known, as the memory is arranged in pairs, 1125 * where each memory belongs to a separate channel within the same 1126 * branch. 1127 */ 1128 grain = 0; 1129 p = label; 1130 *p = '\0'; 1131 for (i = 0; i < mci->tot_dimms; i++) { 1132 struct dimm_info *dimm = mci->dimms[i]; 1133 1134 if (top_layer >= 0 && top_layer != dimm->location[0]) 1135 continue; 1136 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1137 continue; 1138 if (low_layer >= 0 && low_layer != dimm->location[2]) 1139 continue; 1140 1141 /* get the max grain, over the error match range */ 1142 if (dimm->grain > grain) 1143 grain = dimm->grain; 1144 1145 /* 1146 * If the error is memory-controller wide, there's no need to 1147 * seek for the affected DIMMs because the whole 1148 * channel/memory controller/... may be affected. 1149 * Also, don't show errors for empty DIMM slots. 1150 */ 1151 if (enable_per_layer_report && dimm->nr_pages) { 1152 if (p != label) { 1153 strcpy(p, OTHER_LABEL); 1154 p += strlen(OTHER_LABEL); 1155 } 1156 strcpy(p, dimm->label); 1157 p += strlen(p); 1158 *p = '\0'; 1159 1160 /* 1161 * get csrow/channel of the DIMM, in order to allow 1162 * incrementing the compat API counters 1163 */ 1164 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1165 mci->mem_is_per_rank ? "rank" : "dimm", 1166 dimm->csrow, dimm->cschannel); 1167 if (row == -1) 1168 row = dimm->csrow; 1169 else if (row >= 0 && row != dimm->csrow) 1170 row = -2; 1171 1172 if (chan == -1) 1173 chan = dimm->cschannel; 1174 else if (chan >= 0 && chan != dimm->cschannel) 1175 chan = -2; 1176 } 1177 } 1178 1179 if (!enable_per_layer_report) { 1180 strcpy(label, "any memory"); 1181 } else { 1182 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1183 if (p == label) 1184 strcpy(label, "unknown memory"); 1185 if (type == HW_EVENT_ERR_CORRECTED) { 1186 if (row >= 0) { 1187 mci->csrows[row]->ce_count += error_count; 1188 if (chan >= 0) 1189 mci->csrows[row]->channels[chan]->ce_count += error_count; 1190 } 1191 } else 1192 if (row >= 0) 1193 mci->csrows[row]->ue_count += error_count; 1194 } 1195 1196 /* Fill the RAM location data */ 1197 p = location; 1198 for (i = 0; i < mci->n_layers; i++) { 1199 if (pos[i] < 0) 1200 continue; 1201 1202 p += sprintf(p, "%s:%d ", 1203 edac_layer_name[mci->layers[i].type], 1204 pos[i]); 1205 } 1206 if (p > location) 1207 *(p - 1) = '\0'; 1208 1209 /* Report the error via the trace interface */ 1210 1211 grain_bits = fls_long(grain) + 1; 1212 trace_mc_event(type, msg, label, error_count, 1213 mci->mc_idx, top_layer, mid_layer, low_layer, 1214 PAGES_TO_MiB(page_frame_number) | offset_in_page, 1215 grain_bits, syndrome, other_detail); 1216 1217 /* Memory type dependent details about the error */ 1218 if (type == HW_EVENT_ERR_CORRECTED) { 1219 snprintf(detail, sizeof(detail), 1220 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1221 page_frame_number, offset_in_page, 1222 grain, syndrome); 1223 edac_ce_error(mci, error_count, pos, msg, location, label, 1224 detail, other_detail, enable_per_layer_report, 1225 page_frame_number, offset_in_page, grain); 1226 } else { 1227 snprintf(detail, sizeof(detail), 1228 "page:0x%lx offset:0x%lx grain:%ld", 1229 page_frame_number, offset_in_page, grain); 1230 1231 edac_ue_error(mci, error_count, pos, msg, location, label, 1232 detail, other_detail, enable_per_layer_report); 1233 } 1234 } 1235 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1236