1 /* 2 * edac_mc kernel module 3 * (C) 2005 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/config.h> 16 #include <linux/module.h> 17 #include <linux/proc_fs.h> 18 #include <linux/kernel.h> 19 #include <linux/types.h> 20 #include <linux/smp.h> 21 #include <linux/init.h> 22 #include <linux/sysctl.h> 23 #include <linux/highmem.h> 24 #include <linux/timer.h> 25 #include <linux/slab.h> 26 #include <linux/jiffies.h> 27 #include <linux/spinlock.h> 28 #include <linux/list.h> 29 #include <linux/sysdev.h> 30 #include <linux/ctype.h> 31 #include <linux/kthread.h> 32 #include <asm/uaccess.h> 33 #include <asm/page.h> 34 #include <asm/edac.h> 35 #include "edac_mc.h" 36 37 #define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__ 38 39 /* For now, disable the EDAC sysfs code. The sysfs interface that EDAC 40 * presents to user space needs more thought, and is likely to change 41 * substantially. 42 */ 43 #define DISABLE_EDAC_SYSFS 44 45 #ifdef CONFIG_EDAC_DEBUG 46 /* Values of 0 to 4 will generate output */ 47 int edac_debug_level = 1; 48 EXPORT_SYMBOL_GPL(edac_debug_level); 49 #endif 50 51 /* EDAC Controls, setable by module parameter, and sysfs */ 52 static int log_ue = 1; 53 static int log_ce = 1; 54 static int panic_on_ue; 55 static int poll_msec = 1000; 56 57 static int check_pci_parity = 0; /* default YES check PCI parity */ 58 static int panic_on_pci_parity; /* default no panic on PCI Parity */ 59 static atomic_t pci_parity_count = ATOMIC_INIT(0); 60 61 /* lock to memory controller's control array */ 62 static DECLARE_MUTEX(mem_ctls_mutex); 63 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices); 64 65 static struct task_struct *edac_thread; 66 67 /* Structure of the whitelist and blacklist arrays */ 68 struct edac_pci_device_list { 69 unsigned int vendor; /* Vendor ID */ 70 unsigned int device; /* Deviice ID */ 71 }; 72 73 #define MAX_LISTED_PCI_DEVICES 32 74 75 /* List of PCI devices (vendor-id:device-id) that should be skipped */ 76 static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES]; 77 static int pci_blacklist_count; 78 79 /* List of PCI devices (vendor-id:device-id) that should be scanned */ 80 static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES]; 81 static int pci_whitelist_count ; 82 83 /* START sysfs data and methods */ 84 85 #ifndef DISABLE_EDAC_SYSFS 86 87 static const char *mem_types[] = { 88 [MEM_EMPTY] = "Empty", 89 [MEM_RESERVED] = "Reserved", 90 [MEM_UNKNOWN] = "Unknown", 91 [MEM_FPM] = "FPM", 92 [MEM_EDO] = "EDO", 93 [MEM_BEDO] = "BEDO", 94 [MEM_SDR] = "Unbuffered-SDR", 95 [MEM_RDR] = "Registered-SDR", 96 [MEM_DDR] = "Unbuffered-DDR", 97 [MEM_RDDR] = "Registered-DDR", 98 [MEM_RMBS] = "RMBS" 99 }; 100 101 static const char *dev_types[] = { 102 [DEV_UNKNOWN] = "Unknown", 103 [DEV_X1] = "x1", 104 [DEV_X2] = "x2", 105 [DEV_X4] = "x4", 106 [DEV_X8] = "x8", 107 [DEV_X16] = "x16", 108 [DEV_X32] = "x32", 109 [DEV_X64] = "x64" 110 }; 111 112 static const char *edac_caps[] = { 113 [EDAC_UNKNOWN] = "Unknown", 114 [EDAC_NONE] = "None", 115 [EDAC_RESERVED] = "Reserved", 116 [EDAC_PARITY] = "PARITY", 117 [EDAC_EC] = "EC", 118 [EDAC_SECDED] = "SECDED", 119 [EDAC_S2ECD2ED] = "S2ECD2ED", 120 [EDAC_S4ECD4ED] = "S4ECD4ED", 121 [EDAC_S8ECD8ED] = "S8ECD8ED", 122 [EDAC_S16ECD16ED] = "S16ECD16ED" 123 }; 124 125 /* sysfs object: /sys/devices/system/edac */ 126 static struct sysdev_class edac_class = { 127 set_kset_name("edac"), 128 }; 129 130 /* sysfs objects: 131 * /sys/devices/system/edac/mc 132 * /sys/devices/system/edac/pci 133 */ 134 static struct kobject edac_memctrl_kobj; 135 static struct kobject edac_pci_kobj; 136 137 /* We use these to wait for the reference counts on edac_memctrl_kobj and 138 * edac_pci_kobj to reach 0. 139 */ 140 static struct completion edac_memctrl_kobj_complete; 141 static struct completion edac_pci_kobj_complete; 142 143 /* 144 * /sys/devices/system/edac/mc; 145 * data structures and methods 146 */ 147 #if 0 148 static ssize_t memctrl_string_show(void *ptr, char *buffer) 149 { 150 char *value = (char*) ptr; 151 return sprintf(buffer, "%s\n", value); 152 } 153 #endif 154 155 static ssize_t memctrl_int_show(void *ptr, char *buffer) 156 { 157 int *value = (int*) ptr; 158 return sprintf(buffer, "%d\n", *value); 159 } 160 161 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count) 162 { 163 int *value = (int*) ptr; 164 165 if (isdigit(*buffer)) 166 *value = simple_strtoul(buffer, NULL, 0); 167 168 return count; 169 } 170 171 struct memctrl_dev_attribute { 172 struct attribute attr; 173 void *value; 174 ssize_t (*show)(void *,char *); 175 ssize_t (*store)(void *, const char *, size_t); 176 }; 177 178 /* Set of show/store abstract level functions for memory control object */ 179 static ssize_t memctrl_dev_show(struct kobject *kobj, 180 struct attribute *attr, char *buffer) 181 { 182 struct memctrl_dev_attribute *memctrl_dev; 183 memctrl_dev = (struct memctrl_dev_attribute*)attr; 184 185 if (memctrl_dev->show) 186 return memctrl_dev->show(memctrl_dev->value, buffer); 187 188 return -EIO; 189 } 190 191 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr, 192 const char *buffer, size_t count) 193 { 194 struct memctrl_dev_attribute *memctrl_dev; 195 memctrl_dev = (struct memctrl_dev_attribute*)attr; 196 197 if (memctrl_dev->store) 198 return memctrl_dev->store(memctrl_dev->value, buffer, count); 199 200 return -EIO; 201 } 202 203 static struct sysfs_ops memctrlfs_ops = { 204 .show = memctrl_dev_show, 205 .store = memctrl_dev_store 206 }; 207 208 #define MEMCTRL_ATTR(_name,_mode,_show,_store) \ 209 struct memctrl_dev_attribute attr_##_name = { \ 210 .attr = {.name = __stringify(_name), .mode = _mode }, \ 211 .value = &_name, \ 212 .show = _show, \ 213 .store = _store, \ 214 }; 215 216 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \ 217 struct memctrl_dev_attribute attr_##_name = { \ 218 .attr = {.name = __stringify(_name), .mode = _mode }, \ 219 .value = _data, \ 220 .show = _show, \ 221 .store = _store, \ 222 }; 223 224 /* cwrow<id> attribute f*/ 225 #if 0 226 MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL); 227 #endif 228 229 /* csrow<id> control files */ 230 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store); 231 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store); 232 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store); 233 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store); 234 235 /* Base Attributes of the memory ECC object */ 236 static struct memctrl_dev_attribute *memctrl_attr[] = { 237 &attr_panic_on_ue, 238 &attr_log_ue, 239 &attr_log_ce, 240 &attr_poll_msec, 241 NULL, 242 }; 243 244 /* Main MC kobject release() function */ 245 static void edac_memctrl_master_release(struct kobject *kobj) 246 { 247 debugf1("%s()\n", __func__); 248 complete(&edac_memctrl_kobj_complete); 249 } 250 251 static struct kobj_type ktype_memctrl = { 252 .release = edac_memctrl_master_release, 253 .sysfs_ops = &memctrlfs_ops, 254 .default_attrs = (struct attribute **) memctrl_attr, 255 }; 256 257 #endif /* DISABLE_EDAC_SYSFS */ 258 259 /* Initialize the main sysfs entries for edac: 260 * /sys/devices/system/edac 261 * 262 * and children 263 * 264 * Return: 0 SUCCESS 265 * !0 FAILURE 266 */ 267 static int edac_sysfs_memctrl_setup(void) 268 #ifdef DISABLE_EDAC_SYSFS 269 { 270 return 0; 271 } 272 #else 273 { 274 int err=0; 275 276 debugf1("%s()\n", __func__); 277 278 /* create the /sys/devices/system/edac directory */ 279 err = sysdev_class_register(&edac_class); 280 281 if (!err) { 282 /* Init the MC's kobject */ 283 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj)); 284 edac_memctrl_kobj.parent = &edac_class.kset.kobj; 285 edac_memctrl_kobj.ktype = &ktype_memctrl; 286 287 /* generate sysfs "..../edac/mc" */ 288 err = kobject_set_name(&edac_memctrl_kobj,"mc"); 289 290 if (!err) { 291 /* FIXME: maybe new sysdev_create_subdir() */ 292 err = kobject_register(&edac_memctrl_kobj); 293 294 if (err) 295 debugf1("Failed to register '.../edac/mc'\n"); 296 else 297 debugf1("Registered '.../edac/mc' kobject\n"); 298 } 299 } else 300 debugf1("%s() error=%d\n", __func__, err); 301 302 return err; 303 } 304 #endif /* DISABLE_EDAC_SYSFS */ 305 306 /* 307 * MC teardown: 308 * the '..../edac/mc' kobject followed by '..../edac' itself 309 */ 310 static void edac_sysfs_memctrl_teardown(void) 311 { 312 #ifndef DISABLE_EDAC_SYSFS 313 debugf0("MC: " __FILE__ ": %s()\n", __func__); 314 315 /* Unregister the MC's kobject and wait for reference count to reach 316 * 0. 317 */ 318 init_completion(&edac_memctrl_kobj_complete); 319 kobject_unregister(&edac_memctrl_kobj); 320 wait_for_completion(&edac_memctrl_kobj_complete); 321 322 /* Unregister the 'edac' object */ 323 sysdev_class_unregister(&edac_class); 324 #endif /* DISABLE_EDAC_SYSFS */ 325 } 326 327 #ifndef DISABLE_EDAC_SYSFS 328 329 /* 330 * /sys/devices/system/edac/pci; 331 * data structures and methods 332 */ 333 334 struct list_control { 335 struct edac_pci_device_list *list; 336 int *count; 337 }; 338 339 #if 0 340 /* Output the list as: vendor_id:device:id<,vendor_id:device_id> */ 341 static ssize_t edac_pci_list_string_show(void *ptr, char *buffer) 342 { 343 struct list_control *listctl; 344 struct edac_pci_device_list *list; 345 char *p = buffer; 346 int len=0; 347 int i; 348 349 listctl = ptr; 350 list = listctl->list; 351 352 for (i = 0; i < *(listctl->count); i++, list++ ) { 353 if (len > 0) 354 len += snprintf(p + len, (PAGE_SIZE-len), ","); 355 356 len += snprintf(p + len, 357 (PAGE_SIZE-len), 358 "%x:%x", 359 list->vendor,list->device); 360 } 361 362 len += snprintf(p + len,(PAGE_SIZE-len), "\n"); 363 return (ssize_t) len; 364 } 365 366 /** 367 * 368 * Scan string from **s to **e looking for one 'vendor:device' tuple 369 * where each field is a hex value 370 * 371 * return 0 if an entry is NOT found 372 * return 1 if an entry is found 373 * fill in *vendor_id and *device_id with values found 374 * 375 * In both cases, make sure *s has been moved forward toward *e 376 */ 377 static int parse_one_device(const char **s,const char **e, 378 unsigned int *vendor_id, unsigned int *device_id) 379 { 380 const char *runner, *p; 381 382 /* if null byte, we are done */ 383 if (!**s) { 384 (*s)++; /* keep *s moving */ 385 return 0; 386 } 387 388 /* skip over newlines & whitespace */ 389 if ((**s == '\n') || isspace(**s)) { 390 (*s)++; 391 return 0; 392 } 393 394 if (!isxdigit(**s)) { 395 (*s)++; 396 return 0; 397 } 398 399 /* parse vendor_id */ 400 runner = *s; 401 402 while (runner < *e) { 403 /* scan for vendor:device delimiter */ 404 if (*runner == ':') { 405 *vendor_id = simple_strtol((char*) *s, (char**) &p, 16); 406 runner = p + 1; 407 break; 408 } 409 410 runner++; 411 } 412 413 if (!isxdigit(*runner)) { 414 *s = ++runner; 415 return 0; 416 } 417 418 /* parse device_id */ 419 if (runner < *e) { 420 *device_id = simple_strtol((char*)runner, (char**)&p, 16); 421 runner = p; 422 } 423 424 *s = runner; 425 return 1; 426 } 427 428 static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer, 429 size_t count) 430 { 431 struct list_control *listctl; 432 struct edac_pci_device_list *list; 433 unsigned int vendor_id, device_id; 434 const char *s, *e; 435 int *index; 436 437 s = (char*)buffer; 438 e = s + count; 439 listctl = ptr; 440 list = listctl->list; 441 index = listctl->count; 442 *index = 0; 443 444 while (*index < MAX_LISTED_PCI_DEVICES) { 445 if (parse_one_device(&s,&e,&vendor_id,&device_id)) { 446 list[ *index ].vendor = vendor_id; 447 list[ *index ].device = device_id; 448 (*index)++; 449 } 450 451 /* check for all data consume */ 452 if (s >= e) 453 break; 454 } 455 456 return count; 457 } 458 459 #endif 460 static ssize_t edac_pci_int_show(void *ptr, char *buffer) 461 { 462 int *value = ptr; 463 return sprintf(buffer,"%d\n",*value); 464 } 465 466 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count) 467 { 468 int *value = ptr; 469 470 if (isdigit(*buffer)) 471 *value = simple_strtoul(buffer,NULL,0); 472 473 return count; 474 } 475 476 struct edac_pci_dev_attribute { 477 struct attribute attr; 478 void *value; 479 ssize_t (*show)(void *,char *); 480 ssize_t (*store)(void *, const char *,size_t); 481 }; 482 483 /* Set of show/store abstract level functions for PCI Parity object */ 484 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr, 485 char *buffer) 486 { 487 struct edac_pci_dev_attribute *edac_pci_dev; 488 edac_pci_dev= (struct edac_pci_dev_attribute*)attr; 489 490 if (edac_pci_dev->show) 491 return edac_pci_dev->show(edac_pci_dev->value, buffer); 492 return -EIO; 493 } 494 495 static ssize_t edac_pci_dev_store(struct kobject *kobj, 496 struct attribute *attr, const char *buffer, size_t count) 497 { 498 struct edac_pci_dev_attribute *edac_pci_dev; 499 edac_pci_dev= (struct edac_pci_dev_attribute*)attr; 500 501 if (edac_pci_dev->show) 502 return edac_pci_dev->store(edac_pci_dev->value, buffer, count); 503 return -EIO; 504 } 505 506 static struct sysfs_ops edac_pci_sysfs_ops = { 507 .show = edac_pci_dev_show, 508 .store = edac_pci_dev_store 509 }; 510 511 #define EDAC_PCI_ATTR(_name,_mode,_show,_store) \ 512 struct edac_pci_dev_attribute edac_pci_attr_##_name = { \ 513 .attr = {.name = __stringify(_name), .mode = _mode }, \ 514 .value = &_name, \ 515 .show = _show, \ 516 .store = _store, \ 517 }; 518 519 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \ 520 struct edac_pci_dev_attribute edac_pci_attr_##_name = { \ 521 .attr = {.name = __stringify(_name), .mode = _mode }, \ 522 .value = _data, \ 523 .show = _show, \ 524 .store = _store, \ 525 }; 526 527 #if 0 528 static struct list_control pci_whitelist_control = { 529 .list = pci_whitelist, 530 .count = &pci_whitelist_count 531 }; 532 533 static struct list_control pci_blacklist_control = { 534 .list = pci_blacklist, 535 .count = &pci_blacklist_count 536 }; 537 538 /* whitelist attribute */ 539 EDAC_PCI_STRING_ATTR(pci_parity_whitelist, 540 &pci_whitelist_control, 541 S_IRUGO|S_IWUSR, 542 edac_pci_list_string_show, 543 edac_pci_list_string_store); 544 545 EDAC_PCI_STRING_ATTR(pci_parity_blacklist, 546 &pci_blacklist_control, 547 S_IRUGO|S_IWUSR, 548 edac_pci_list_string_show, 549 edac_pci_list_string_store); 550 #endif 551 552 /* PCI Parity control files */ 553 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show, 554 edac_pci_int_store); 555 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show, 556 edac_pci_int_store); 557 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL); 558 559 /* Base Attributes of the memory ECC object */ 560 static struct edac_pci_dev_attribute *edac_pci_attr[] = { 561 &edac_pci_attr_check_pci_parity, 562 &edac_pci_attr_panic_on_pci_parity, 563 &edac_pci_attr_pci_parity_count, 564 NULL, 565 }; 566 567 /* No memory to release */ 568 static void edac_pci_release(struct kobject *kobj) 569 { 570 debugf1("%s()\n", __func__); 571 complete(&edac_pci_kobj_complete); 572 } 573 574 static struct kobj_type ktype_edac_pci = { 575 .release = edac_pci_release, 576 .sysfs_ops = &edac_pci_sysfs_ops, 577 .default_attrs = (struct attribute **) edac_pci_attr, 578 }; 579 580 #endif /* DISABLE_EDAC_SYSFS */ 581 582 /** 583 * edac_sysfs_pci_setup() 584 * 585 */ 586 static int edac_sysfs_pci_setup(void) 587 #ifdef DISABLE_EDAC_SYSFS 588 { 589 return 0; 590 } 591 #else 592 { 593 int err; 594 595 debugf1("%s()\n", __func__); 596 597 memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj)); 598 edac_pci_kobj.parent = &edac_class.kset.kobj; 599 edac_pci_kobj.ktype = &ktype_edac_pci; 600 err = kobject_set_name(&edac_pci_kobj, "pci"); 601 602 if (!err) { 603 /* Instanstiate the csrow object */ 604 /* FIXME: maybe new sysdev_create_subdir() */ 605 err = kobject_register(&edac_pci_kobj); 606 607 if (err) 608 debugf1("Failed to register '.../edac/pci'\n"); 609 else 610 debugf1("Registered '.../edac/pci' kobject\n"); 611 } 612 613 return err; 614 } 615 #endif /* DISABLE_EDAC_SYSFS */ 616 617 static void edac_sysfs_pci_teardown(void) 618 { 619 #ifndef DISABLE_EDAC_SYSFS 620 debugf0("%s()\n", __func__); 621 init_completion(&edac_pci_kobj_complete); 622 kobject_unregister(&edac_pci_kobj); 623 wait_for_completion(&edac_pci_kobj_complete); 624 #endif 625 } 626 627 #ifndef DISABLE_EDAC_SYSFS 628 629 /* EDAC sysfs CSROW data structures and methods */ 630 631 /* Set of more detailed csrow<id> attribute show/store functions */ 632 static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data) 633 { 634 ssize_t size = 0; 635 636 if (csrow->nr_channels > 0) { 637 size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n", 638 csrow->channels[0].label); 639 } 640 641 return size; 642 } 643 644 static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data) 645 { 646 ssize_t size = 0; 647 648 if (csrow->nr_channels > 0) { 649 size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", 650 csrow->channels[1].label); 651 } 652 653 return size; 654 } 655 656 static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow, 657 const char *data, size_t size) 658 { 659 ssize_t max_size = 0; 660 661 if (csrow->nr_channels > 0) { 662 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1); 663 strncpy(csrow->channels[0].label, data, max_size); 664 csrow->channels[0].label[max_size] = '\0'; 665 } 666 667 return size; 668 } 669 670 static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow, 671 const char *data, size_t size) 672 { 673 ssize_t max_size = 0; 674 675 if (csrow->nr_channels > 1) { 676 max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1); 677 strncpy(csrow->channels[1].label, data, max_size); 678 csrow->channels[1].label[max_size] = '\0'; 679 } 680 681 return max_size; 682 } 683 684 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data) 685 { 686 return sprintf(data,"%u\n", csrow->ue_count); 687 } 688 689 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data) 690 { 691 return sprintf(data,"%u\n", csrow->ce_count); 692 } 693 694 static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data) 695 { 696 ssize_t size = 0; 697 698 if (csrow->nr_channels > 0) { 699 size = sprintf(data,"%u\n", csrow->channels[0].ce_count); 700 } 701 702 return size; 703 } 704 705 static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data) 706 { 707 ssize_t size = 0; 708 709 if (csrow->nr_channels > 1) { 710 size = sprintf(data,"%u\n", csrow->channels[1].ce_count); 711 } 712 713 return size; 714 } 715 716 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data) 717 { 718 return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages)); 719 } 720 721 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data) 722 { 723 return sprintf(data,"%s\n", mem_types[csrow->mtype]); 724 } 725 726 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data) 727 { 728 return sprintf(data,"%s\n", dev_types[csrow->dtype]); 729 } 730 731 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data) 732 { 733 return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]); 734 } 735 736 struct csrowdev_attribute { 737 struct attribute attr; 738 ssize_t (*show)(struct csrow_info *,char *); 739 ssize_t (*store)(struct csrow_info *, const char *,size_t); 740 }; 741 742 #define to_csrow(k) container_of(k, struct csrow_info, kobj) 743 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr) 744 745 /* Set of show/store higher level functions for csrow objects */ 746 static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr, 747 char *buffer) 748 { 749 struct csrow_info *csrow = to_csrow(kobj); 750 struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr); 751 752 if (csrowdev_attr->show) 753 return csrowdev_attr->show(csrow, buffer); 754 755 return -EIO; 756 } 757 758 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr, 759 const char *buffer, size_t count) 760 { 761 struct csrow_info *csrow = to_csrow(kobj); 762 struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr); 763 764 if (csrowdev_attr->store) 765 return csrowdev_attr->store(csrow, buffer, count); 766 767 return -EIO; 768 } 769 770 static struct sysfs_ops csrowfs_ops = { 771 .show = csrowdev_show, 772 .store = csrowdev_store 773 }; 774 775 #define CSROWDEV_ATTR(_name,_mode,_show,_store) \ 776 struct csrowdev_attribute attr_##_name = { \ 777 .attr = {.name = __stringify(_name), .mode = _mode }, \ 778 .show = _show, \ 779 .store = _store, \ 780 }; 781 782 /* cwrow<id>/attribute files */ 783 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL); 784 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL); 785 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL); 786 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL); 787 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL); 788 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL); 789 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL); 790 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL); 791 792 /* control/attribute files */ 793 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR, 794 csrow_ch0_dimm_label_show, 795 csrow_ch0_dimm_label_store); 796 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR, 797 csrow_ch1_dimm_label_show, 798 csrow_ch1_dimm_label_store); 799 800 /* Attributes of the CSROW<id> object */ 801 static struct csrowdev_attribute *csrow_attr[] = { 802 &attr_dev_type, 803 &attr_mem_type, 804 &attr_edac_mode, 805 &attr_size_mb, 806 &attr_ue_count, 807 &attr_ce_count, 808 &attr_ch0_ce_count, 809 &attr_ch1_ce_count, 810 &attr_ch0_dimm_label, 811 &attr_ch1_dimm_label, 812 NULL, 813 }; 814 815 /* No memory to release */ 816 static void edac_csrow_instance_release(struct kobject *kobj) 817 { 818 struct csrow_info *cs; 819 820 debugf1("%s()\n", __func__); 821 cs = container_of(kobj, struct csrow_info, kobj); 822 complete(&cs->kobj_complete); 823 } 824 825 static struct kobj_type ktype_csrow = { 826 .release = edac_csrow_instance_release, 827 .sysfs_ops = &csrowfs_ops, 828 .default_attrs = (struct attribute **) csrow_attr, 829 }; 830 831 /* Create a CSROW object under specifed edac_mc_device */ 832 static int edac_create_csrow_object(struct kobject *edac_mci_kobj, 833 struct csrow_info *csrow, int index) 834 { 835 int err = 0; 836 837 debugf0("%s()\n", __func__); 838 memset(&csrow->kobj, 0, sizeof(csrow->kobj)); 839 840 /* generate ..../edac/mc/mc<id>/csrow<index> */ 841 842 csrow->kobj.parent = edac_mci_kobj; 843 csrow->kobj.ktype = &ktype_csrow; 844 845 /* name this instance of csrow<id> */ 846 err = kobject_set_name(&csrow->kobj,"csrow%d",index); 847 848 if (!err) { 849 /* Instanstiate the csrow object */ 850 err = kobject_register(&csrow->kobj); 851 852 if (err) 853 debugf0("Failed to register CSROW%d\n",index); 854 else 855 debugf0("Registered CSROW%d\n",index); 856 } 857 858 return err; 859 } 860 861 /* sysfs data structures and methods for the MCI kobjects */ 862 863 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci, 864 const char *data, size_t count) 865 { 866 int row, chan; 867 868 mci->ue_noinfo_count = 0; 869 mci->ce_noinfo_count = 0; 870 mci->ue_count = 0; 871 mci->ce_count = 0; 872 873 for (row = 0; row < mci->nr_csrows; row++) { 874 struct csrow_info *ri = &mci->csrows[row]; 875 876 ri->ue_count = 0; 877 ri->ce_count = 0; 878 879 for (chan = 0; chan < ri->nr_channels; chan++) 880 ri->channels[chan].ce_count = 0; 881 } 882 883 mci->start_time = jiffies; 884 return count; 885 } 886 887 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data) 888 { 889 return sprintf(data,"%d\n", mci->ue_count); 890 } 891 892 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data) 893 { 894 return sprintf(data,"%d\n", mci->ce_count); 895 } 896 897 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data) 898 { 899 return sprintf(data,"%d\n", mci->ce_noinfo_count); 900 } 901 902 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data) 903 { 904 return sprintf(data,"%d\n", mci->ue_noinfo_count); 905 } 906 907 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data) 908 { 909 return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ); 910 } 911 912 static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data) 913 { 914 return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver); 915 } 916 917 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data) 918 { 919 return sprintf(data,"%s\n", mci->ctl_name); 920 } 921 922 static int mci_output_edac_cap(char *buf, unsigned long edac_cap) 923 { 924 char *p = buf; 925 int bit_idx; 926 927 for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) { 928 if ((edac_cap >> bit_idx) & 0x1) 929 p += sprintf(p, "%s ", edac_caps[bit_idx]); 930 } 931 932 return p - buf; 933 } 934 935 static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data) 936 { 937 char *p = data; 938 939 p += mci_output_edac_cap(p,mci->edac_ctl_cap); 940 p += sprintf(p, "\n"); 941 return p - data; 942 } 943 944 static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci, 945 char *data) 946 { 947 char *p = data; 948 949 p += mci_output_edac_cap(p,mci->edac_cap); 950 p += sprintf(p, "\n"); 951 return p - data; 952 } 953 954 static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap) 955 { 956 char *p = buf; 957 int bit_idx; 958 959 for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) { 960 if ((mtype_cap >> bit_idx) & 0x1) 961 p += sprintf(p, "%s ", mem_types[bit_idx]); 962 } 963 964 return p - buf; 965 } 966 967 static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci, 968 char *data) 969 { 970 char *p = data; 971 972 p += mci_output_mtype_cap(p,mci->mtype_cap); 973 p += sprintf(p, "\n"); 974 return p - data; 975 } 976 977 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data) 978 { 979 int total_pages, csrow_idx; 980 981 for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows; 982 csrow_idx++) { 983 struct csrow_info *csrow = &mci->csrows[csrow_idx]; 984 985 if (!csrow->nr_pages) 986 continue; 987 988 total_pages += csrow->nr_pages; 989 } 990 991 return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages)); 992 } 993 994 struct mcidev_attribute { 995 struct attribute attr; 996 ssize_t (*show)(struct mem_ctl_info *,char *); 997 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t); 998 }; 999 1000 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj) 1001 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr) 1002 1003 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr, 1004 char *buffer) 1005 { 1006 struct mem_ctl_info *mem_ctl_info = to_mci(kobj); 1007 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr); 1008 1009 if (mcidev_attr->show) 1010 return mcidev_attr->show(mem_ctl_info, buffer); 1011 1012 return -EIO; 1013 } 1014 1015 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr, 1016 const char *buffer, size_t count) 1017 { 1018 struct mem_ctl_info *mem_ctl_info = to_mci(kobj); 1019 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr); 1020 1021 if (mcidev_attr->store) 1022 return mcidev_attr->store(mem_ctl_info, buffer, count); 1023 1024 return -EIO; 1025 } 1026 1027 static struct sysfs_ops mci_ops = { 1028 .show = mcidev_show, 1029 .store = mcidev_store 1030 }; 1031 1032 #define MCIDEV_ATTR(_name,_mode,_show,_store) \ 1033 struct mcidev_attribute mci_attr_##_name = { \ 1034 .attr = {.name = __stringify(_name), .mode = _mode }, \ 1035 .show = _show, \ 1036 .store = _store, \ 1037 }; 1038 1039 /* Control file */ 1040 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store); 1041 1042 /* Attribute files */ 1043 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL); 1044 MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL); 1045 MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL); 1046 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL); 1047 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL); 1048 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL); 1049 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL); 1050 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL); 1051 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL); 1052 MCIDEV_ATTR(edac_current_capability,S_IRUGO, 1053 mci_edac_current_capability_show,NULL); 1054 MCIDEV_ATTR(supported_mem_type,S_IRUGO, 1055 mci_supported_mem_type_show,NULL); 1056 1057 static struct mcidev_attribute *mci_attr[] = { 1058 &mci_attr_reset_counters, 1059 &mci_attr_module_name, 1060 &mci_attr_mc_name, 1061 &mci_attr_edac_capability, 1062 &mci_attr_edac_current_capability, 1063 &mci_attr_supported_mem_type, 1064 &mci_attr_size_mb, 1065 &mci_attr_seconds_since_reset, 1066 &mci_attr_ue_noinfo_count, 1067 &mci_attr_ce_noinfo_count, 1068 &mci_attr_ue_count, 1069 &mci_attr_ce_count, 1070 NULL 1071 }; 1072 1073 /* 1074 * Release of a MC controlling instance 1075 */ 1076 static void edac_mci_instance_release(struct kobject *kobj) 1077 { 1078 struct mem_ctl_info *mci; 1079 1080 mci = to_mci(kobj); 1081 debugf0("%s() idx=%d\n", __func__, mci->mc_idx); 1082 complete(&mci->kobj_complete); 1083 } 1084 1085 static struct kobj_type ktype_mci = { 1086 .release = edac_mci_instance_release, 1087 .sysfs_ops = &mci_ops, 1088 .default_attrs = (struct attribute **) mci_attr, 1089 }; 1090 1091 #endif /* DISABLE_EDAC_SYSFS */ 1092 1093 #define EDAC_DEVICE_SYMLINK "device" 1094 1095 /* 1096 * Create a new Memory Controller kobject instance, 1097 * mc<id> under the 'mc' directory 1098 * 1099 * Return: 1100 * 0 Success 1101 * !0 Failure 1102 */ 1103 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci) 1104 #ifdef DISABLE_EDAC_SYSFS 1105 { 1106 return 0; 1107 } 1108 #else 1109 { 1110 int i; 1111 int err; 1112 struct csrow_info *csrow; 1113 struct kobject *edac_mci_kobj=&mci->edac_mci_kobj; 1114 1115 debugf0("%s() idx=%d\n", __func__, mci->mc_idx); 1116 memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj)); 1117 1118 /* set the name of the mc<id> object */ 1119 err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx); 1120 1121 if (err) 1122 return err; 1123 1124 /* link to our parent the '..../edac/mc' object */ 1125 edac_mci_kobj->parent = &edac_memctrl_kobj; 1126 edac_mci_kobj->ktype = &ktype_mci; 1127 1128 /* register the mc<id> kobject */ 1129 err = kobject_register(edac_mci_kobj); 1130 1131 if (err) 1132 return err; 1133 1134 /* create a symlink for the device */ 1135 err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj, 1136 EDAC_DEVICE_SYMLINK); 1137 1138 if (err) 1139 goto fail0; 1140 1141 /* Make directories for each CSROW object 1142 * under the mc<id> kobject 1143 */ 1144 for (i = 0; i < mci->nr_csrows; i++) { 1145 csrow = &mci->csrows[i]; 1146 1147 /* Only expose populated CSROWs */ 1148 if (csrow->nr_pages > 0) { 1149 err = edac_create_csrow_object(edac_mci_kobj,csrow,i); 1150 1151 if (err) 1152 goto fail1; 1153 } 1154 } 1155 1156 return 0; 1157 1158 /* CSROW error: backout what has already been registered, */ 1159 fail1: 1160 for ( i--; i >= 0; i--) { 1161 if (csrow->nr_pages > 0) { 1162 init_completion(&csrow->kobj_complete); 1163 kobject_unregister(&mci->csrows[i].kobj); 1164 wait_for_completion(&csrow->kobj_complete); 1165 } 1166 } 1167 1168 fail0: 1169 init_completion(&mci->kobj_complete); 1170 kobject_unregister(edac_mci_kobj); 1171 wait_for_completion(&mci->kobj_complete); 1172 return err; 1173 } 1174 #endif /* DISABLE_EDAC_SYSFS */ 1175 1176 /* 1177 * remove a Memory Controller instance 1178 */ 1179 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 1180 { 1181 #ifndef DISABLE_EDAC_SYSFS 1182 int i; 1183 1184 debugf0("%s()\n", __func__); 1185 1186 /* remove all csrow kobjects */ 1187 for (i = 0; i < mci->nr_csrows; i++) { 1188 if (mci->csrows[i].nr_pages > 0) { 1189 init_completion(&mci->csrows[i].kobj_complete); 1190 kobject_unregister(&mci->csrows[i].kobj); 1191 wait_for_completion(&mci->csrows[i].kobj_complete); 1192 } 1193 } 1194 1195 sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK); 1196 init_completion(&mci->kobj_complete); 1197 kobject_unregister(&mci->edac_mci_kobj); 1198 wait_for_completion(&mci->kobj_complete); 1199 #endif /* DISABLE_EDAC_SYSFS */ 1200 } 1201 1202 /* END OF sysfs data and methods */ 1203 1204 #ifdef CONFIG_EDAC_DEBUG 1205 1206 void edac_mc_dump_channel(struct channel_info *chan) 1207 { 1208 debugf4("\tchannel = %p\n", chan); 1209 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx); 1210 debugf4("\tchannel->ce_count = %d\n", chan->ce_count); 1211 debugf4("\tchannel->label = '%s'\n", chan->label); 1212 debugf4("\tchannel->csrow = %p\n\n", chan->csrow); 1213 } 1214 EXPORT_SYMBOL_GPL(edac_mc_dump_channel); 1215 1216 void edac_mc_dump_csrow(struct csrow_info *csrow) 1217 { 1218 debugf4("\tcsrow = %p\n", csrow); 1219 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx); 1220 debugf4("\tcsrow->first_page = 0x%lx\n", 1221 csrow->first_page); 1222 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page); 1223 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask); 1224 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages); 1225 debugf4("\tcsrow->nr_channels = %d\n", 1226 csrow->nr_channels); 1227 debugf4("\tcsrow->channels = %p\n", csrow->channels); 1228 debugf4("\tcsrow->mci = %p\n\n", csrow->mci); 1229 } 1230 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow); 1231 1232 void edac_mc_dump_mci(struct mem_ctl_info *mci) 1233 { 1234 debugf3("\tmci = %p\n", mci); 1235 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap); 1236 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 1237 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap); 1238 debugf4("\tmci->edac_check = %p\n", mci->edac_check); 1239 debugf3("\tmci->nr_csrows = %d, csrows = %p\n", 1240 mci->nr_csrows, mci->csrows); 1241 debugf3("\tpdev = %p\n", mci->pdev); 1242 debugf3("\tmod_name:ctl_name = %s:%s\n", 1243 mci->mod_name, mci->ctl_name); 1244 debugf3("\tpvt_info = %p\n\n", mci->pvt_info); 1245 } 1246 EXPORT_SYMBOL_GPL(edac_mc_dump_mci); 1247 1248 #endif /* CONFIG_EDAC_DEBUG */ 1249 1250 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'. 1251 * Adjust 'ptr' so that its alignment is at least as stringent as what the 1252 * compiler would provide for X and return the aligned result. 1253 * 1254 * If 'size' is a constant, the compiler will optimize this whole function 1255 * down to either a no-op or the addition of a constant to the value of 'ptr'. 1256 */ 1257 static inline char * align_ptr(void *ptr, unsigned size) 1258 { 1259 unsigned align, r; 1260 1261 /* Here we assume that the alignment of a "long long" is the most 1262 * stringent alignment that the compiler will ever provide by default. 1263 * As far as I know, this is a reasonable assumption. 1264 */ 1265 if (size > sizeof(long)) 1266 align = sizeof(long long); 1267 else if (size > sizeof(int)) 1268 align = sizeof(long); 1269 else if (size > sizeof(short)) 1270 align = sizeof(int); 1271 else if (size > sizeof(char)) 1272 align = sizeof(short); 1273 else 1274 return (char *) ptr; 1275 1276 r = size % align; 1277 1278 if (r == 0) 1279 return (char *) ptr; 1280 1281 return (char *) (((unsigned long) ptr) + align - r); 1282 } 1283 1284 /** 1285 * edac_mc_alloc: Allocate a struct mem_ctl_info structure 1286 * @size_pvt: size of private storage needed 1287 * @nr_csrows: Number of CWROWS needed for this MC 1288 * @nr_chans: Number of channels for the MC 1289 * 1290 * Everything is kmalloc'ed as one big chunk - more efficient. 1291 * Only can be used if all structures have the same lifetime - otherwise 1292 * you have to allocate and initialize your own structures. 1293 * 1294 * Use edac_mc_free() to free mc structures allocated by this function. 1295 * 1296 * Returns: 1297 * NULL allocation failed 1298 * struct mem_ctl_info pointer 1299 */ 1300 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, 1301 unsigned nr_chans) 1302 { 1303 struct mem_ctl_info *mci; 1304 struct csrow_info *csi, *csrow; 1305 struct channel_info *chi, *chp, *chan; 1306 void *pvt; 1307 unsigned size; 1308 int row, chn; 1309 1310 /* Figure out the offsets of the various items from the start of an mc 1311 * structure. We want the alignment of each item to be at least as 1312 * stringent as what the compiler would provide if we could simply 1313 * hardcode everything into a single struct. 1314 */ 1315 mci = (struct mem_ctl_info *) 0; 1316 csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi)); 1317 chi = (struct channel_info *) 1318 align_ptr(&csi[nr_csrows], sizeof(*chi)); 1319 pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt); 1320 size = ((unsigned long) pvt) + sz_pvt; 1321 1322 if ((mci = kmalloc(size, GFP_KERNEL)) == NULL) 1323 return NULL; 1324 1325 /* Adjust pointers so they point within the memory we just allocated 1326 * rather than an imaginary chunk of memory located at address 0. 1327 */ 1328 csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi)); 1329 chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi)); 1330 pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL; 1331 1332 memset(mci, 0, size); /* clear all fields */ 1333 mci->csrows = csi; 1334 mci->pvt_info = pvt; 1335 mci->nr_csrows = nr_csrows; 1336 1337 for (row = 0; row < nr_csrows; row++) { 1338 csrow = &csi[row]; 1339 csrow->csrow_idx = row; 1340 csrow->mci = mci; 1341 csrow->nr_channels = nr_chans; 1342 chp = &chi[row * nr_chans]; 1343 csrow->channels = chp; 1344 1345 for (chn = 0; chn < nr_chans; chn++) { 1346 chan = &chp[chn]; 1347 chan->chan_idx = chn; 1348 chan->csrow = csrow; 1349 } 1350 } 1351 1352 return mci; 1353 } 1354 EXPORT_SYMBOL_GPL(edac_mc_alloc); 1355 1356 /** 1357 * edac_mc_free: Free a previously allocated 'mci' structure 1358 * @mci: pointer to a struct mem_ctl_info structure 1359 */ 1360 void edac_mc_free(struct mem_ctl_info *mci) 1361 { 1362 kfree(mci); 1363 } 1364 EXPORT_SYMBOL_GPL(edac_mc_free); 1365 1366 static struct mem_ctl_info *find_mci_by_pdev(struct pci_dev *pdev) 1367 { 1368 struct mem_ctl_info *mci; 1369 struct list_head *item; 1370 1371 debugf3("%s()\n", __func__); 1372 1373 list_for_each(item, &mc_devices) { 1374 mci = list_entry(item, struct mem_ctl_info, link); 1375 1376 if (mci->pdev == pdev) 1377 return mci; 1378 } 1379 1380 return NULL; 1381 } 1382 1383 static int add_mc_to_global_list(struct mem_ctl_info *mci) 1384 { 1385 struct list_head *item, *insert_before; 1386 struct mem_ctl_info *p; 1387 int i; 1388 1389 if (list_empty(&mc_devices)) { 1390 mci->mc_idx = 0; 1391 insert_before = &mc_devices; 1392 } else { 1393 if (find_mci_by_pdev(mci->pdev)) { 1394 edac_printk(KERN_WARNING, EDAC_MC, 1395 "%s (%s) %s %s already assigned %d\n", 1396 mci->pdev->dev.bus_id, 1397 pci_name(mci->pdev), mci->mod_name, 1398 mci->ctl_name, mci->mc_idx); 1399 return 1; 1400 } 1401 1402 insert_before = NULL; 1403 i = 0; 1404 1405 list_for_each(item, &mc_devices) { 1406 p = list_entry(item, struct mem_ctl_info, link); 1407 1408 if (p->mc_idx != i) { 1409 insert_before = item; 1410 break; 1411 } 1412 1413 i++; 1414 } 1415 1416 mci->mc_idx = i; 1417 1418 if (insert_before == NULL) 1419 insert_before = &mc_devices; 1420 } 1421 1422 list_add_tail_rcu(&mci->link, insert_before); 1423 return 0; 1424 } 1425 1426 static void complete_mc_list_del(struct rcu_head *head) 1427 { 1428 struct mem_ctl_info *mci; 1429 1430 mci = container_of(head, struct mem_ctl_info, rcu); 1431 INIT_LIST_HEAD(&mci->link); 1432 complete(&mci->complete); 1433 } 1434 1435 static void del_mc_from_global_list(struct mem_ctl_info *mci) 1436 { 1437 list_del_rcu(&mci->link); 1438 init_completion(&mci->complete); 1439 call_rcu(&mci->rcu, complete_mc_list_del); 1440 wait_for_completion(&mci->complete); 1441 } 1442 1443 /** 1444 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 1445 * create sysfs entries associated with mci structure 1446 * @mci: pointer to the mci structure to be added to the list 1447 * 1448 * Return: 1449 * 0 Success 1450 * !0 Failure 1451 */ 1452 1453 /* FIXME - should a warning be printed if no error detection? correction? */ 1454 int edac_mc_add_mc(struct mem_ctl_info *mci) 1455 { 1456 debugf0("%s()\n", __func__); 1457 #ifdef CONFIG_EDAC_DEBUG 1458 if (edac_debug_level >= 3) 1459 edac_mc_dump_mci(mci); 1460 1461 if (edac_debug_level >= 4) { 1462 int i; 1463 1464 for (i = 0; i < mci->nr_csrows; i++) { 1465 int j; 1466 1467 edac_mc_dump_csrow(&mci->csrows[i]); 1468 for (j = 0; j < mci->csrows[i].nr_channels; j++) 1469 edac_mc_dump_channel( 1470 &mci->csrows[i].channels[j]); 1471 } 1472 } 1473 #endif 1474 down(&mem_ctls_mutex); 1475 1476 if (add_mc_to_global_list(mci)) 1477 goto fail0; 1478 1479 /* set load time so that error rate can be tracked */ 1480 mci->start_time = jiffies; 1481 1482 if (edac_create_sysfs_mci_device(mci)) { 1483 edac_mc_printk(mci, KERN_WARNING, 1484 "failed to create sysfs device\n"); 1485 goto fail1; 1486 } 1487 1488 /* Report action taken */ 1489 edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: PCI %s\n", 1490 mci->mod_name, mci->ctl_name, pci_name(mci->pdev)); 1491 1492 up(&mem_ctls_mutex); 1493 return 0; 1494 1495 fail1: 1496 del_mc_from_global_list(mci); 1497 1498 fail0: 1499 up(&mem_ctls_mutex); 1500 return 1; 1501 } 1502 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 1503 1504 /** 1505 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 1506 * remove mci structure from global list 1507 * @pdev: Pointer to 'struct pci_dev' representing mci structure to remove. 1508 * 1509 * Return pointer to removed mci structure, or NULL if device not found. 1510 */ 1511 struct mem_ctl_info * edac_mc_del_mc(struct pci_dev *pdev) 1512 { 1513 struct mem_ctl_info *mci; 1514 1515 debugf0("MC: %s()\n", __func__); 1516 down(&mem_ctls_mutex); 1517 1518 if ((mci = find_mci_by_pdev(pdev)) == NULL) { 1519 up(&mem_ctls_mutex); 1520 return NULL; 1521 } 1522 1523 edac_remove_sysfs_mci_device(mci); 1524 del_mc_from_global_list(mci); 1525 up(&mem_ctls_mutex); 1526 edac_printk(KERN_INFO, EDAC_MC, 1527 "Removed device %d for %s %s: PCI %s\n", mci->mc_idx, 1528 mci->mod_name, mci->ctl_name, pci_name(mci->pdev)); 1529 return mci; 1530 } 1531 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 1532 1533 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size) 1534 { 1535 struct page *pg; 1536 void *virt_addr; 1537 unsigned long flags = 0; 1538 1539 debugf3("%s()\n", __func__); 1540 1541 /* ECC error page was not in our memory. Ignore it. */ 1542 if(!pfn_valid(page)) 1543 return; 1544 1545 /* Find the actual page structure then map it and fix */ 1546 pg = pfn_to_page(page); 1547 1548 if (PageHighMem(pg)) 1549 local_irq_save(flags); 1550 1551 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ); 1552 1553 /* Perform architecture specific atomic scrub operation */ 1554 atomic_scrub(virt_addr + offset, size); 1555 1556 /* Unmap and complete */ 1557 kunmap_atomic(virt_addr, KM_BOUNCE_READ); 1558 1559 if (PageHighMem(pg)) 1560 local_irq_restore(flags); 1561 } 1562 EXPORT_SYMBOL_GPL(edac_mc_scrub_block); 1563 1564 /* FIXME - should return -1 */ 1565 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 1566 { 1567 struct csrow_info *csrows = mci->csrows; 1568 int row, i; 1569 1570 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page); 1571 row = -1; 1572 1573 for (i = 0; i < mci->nr_csrows; i++) { 1574 struct csrow_info *csrow = &csrows[i]; 1575 1576 if (csrow->nr_pages == 0) 1577 continue; 1578 1579 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) " 1580 "mask(0x%lx)\n", mci->mc_idx, __func__, 1581 csrow->first_page, page, csrow->last_page, 1582 csrow->page_mask); 1583 1584 if ((page >= csrow->first_page) && 1585 (page <= csrow->last_page) && 1586 ((page & csrow->page_mask) == 1587 (csrow->first_page & csrow->page_mask))) { 1588 row = i; 1589 break; 1590 } 1591 } 1592 1593 if (row == -1) 1594 edac_mc_printk(mci, KERN_ERR, 1595 "could not look up page error address %lx\n", 1596 (unsigned long) page); 1597 1598 return row; 1599 } 1600 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 1601 1602 /* FIXME - setable log (warning/emerg) levels */ 1603 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */ 1604 void edac_mc_handle_ce(struct mem_ctl_info *mci, 1605 unsigned long page_frame_number, unsigned long offset_in_page, 1606 unsigned long syndrome, int row, int channel, const char *msg) 1607 { 1608 unsigned long remapped_page; 1609 1610 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 1611 1612 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 1613 if (row >= mci->nr_csrows || row < 0) { 1614 /* something is wrong */ 1615 edac_mc_printk(mci, KERN_ERR, 1616 "INTERNAL ERROR: row out of range " 1617 "(%d >= %d)\n", row, mci->nr_csrows); 1618 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 1619 return; 1620 } 1621 1622 if (channel >= mci->csrows[row].nr_channels || channel < 0) { 1623 /* something is wrong */ 1624 edac_mc_printk(mci, KERN_ERR, 1625 "INTERNAL ERROR: channel out of range " 1626 "(%d >= %d)\n", channel, 1627 mci->csrows[row].nr_channels); 1628 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 1629 return; 1630 } 1631 1632 if (log_ce) 1633 /* FIXME - put in DIMM location */ 1634 edac_mc_printk(mci, KERN_WARNING, 1635 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome " 1636 "0x%lx, row %d, channel %d, label \"%s\": %s\n", 1637 page_frame_number, offset_in_page, 1638 mci->csrows[row].grain, syndrome, row, channel, 1639 mci->csrows[row].channels[channel].label, msg); 1640 1641 mci->ce_count++; 1642 mci->csrows[row].ce_count++; 1643 mci->csrows[row].channels[channel].ce_count++; 1644 1645 if (mci->scrub_mode & SCRUB_SW_SRC) { 1646 /* 1647 * Some MC's can remap memory so that it is still available 1648 * at a different address when PCI devices map into memory. 1649 * MC's that can't do this lose the memory where PCI devices 1650 * are mapped. This mapping is MC dependant and so we call 1651 * back into the MC driver for it to map the MC page to 1652 * a physical (CPU) page which can then be mapped to a virtual 1653 * page - which can then be scrubbed. 1654 */ 1655 remapped_page = mci->ctl_page_to_phys ? 1656 mci->ctl_page_to_phys(mci, page_frame_number) : 1657 page_frame_number; 1658 1659 edac_mc_scrub_block(remapped_page, offset_in_page, 1660 mci->csrows[row].grain); 1661 } 1662 } 1663 EXPORT_SYMBOL_GPL(edac_mc_handle_ce); 1664 1665 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg) 1666 { 1667 if (log_ce) 1668 edac_mc_printk(mci, KERN_WARNING, 1669 "CE - no information available: %s\n", msg); 1670 1671 mci->ce_noinfo_count++; 1672 mci->ce_count++; 1673 } 1674 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info); 1675 1676 void edac_mc_handle_ue(struct mem_ctl_info *mci, 1677 unsigned long page_frame_number, unsigned long offset_in_page, 1678 int row, const char *msg) 1679 { 1680 int len = EDAC_MC_LABEL_LEN * 4; 1681 char labels[len + 1]; 1682 char *pos = labels; 1683 int chan; 1684 int chars; 1685 1686 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 1687 1688 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 1689 if (row >= mci->nr_csrows || row < 0) { 1690 /* something is wrong */ 1691 edac_mc_printk(mci, KERN_ERR, 1692 "INTERNAL ERROR: row out of range " 1693 "(%d >= %d)\n", row, mci->nr_csrows); 1694 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 1695 return; 1696 } 1697 1698 chars = snprintf(pos, len + 1, "%s", 1699 mci->csrows[row].channels[0].label); 1700 len -= chars; 1701 pos += chars; 1702 1703 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0); 1704 chan++) { 1705 chars = snprintf(pos, len + 1, ":%s", 1706 mci->csrows[row].channels[chan].label); 1707 len -= chars; 1708 pos += chars; 1709 } 1710 1711 if (log_ue) 1712 edac_mc_printk(mci, KERN_EMERG, 1713 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, " 1714 "labels \"%s\": %s\n", page_frame_number, 1715 offset_in_page, mci->csrows[row].grain, row, labels, 1716 msg); 1717 1718 if (panic_on_ue) 1719 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, " 1720 "row %d, labels \"%s\": %s\n", mci->mc_idx, 1721 page_frame_number, offset_in_page, 1722 mci->csrows[row].grain, row, labels, msg); 1723 1724 mci->ue_count++; 1725 mci->csrows[row].ue_count++; 1726 } 1727 EXPORT_SYMBOL_GPL(edac_mc_handle_ue); 1728 1729 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg) 1730 { 1731 if (panic_on_ue) 1732 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx); 1733 1734 if (log_ue) 1735 edac_mc_printk(mci, KERN_WARNING, 1736 "UE - no information available: %s\n", msg); 1737 mci->ue_noinfo_count++; 1738 mci->ue_count++; 1739 } 1740 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info); 1741 1742 #ifdef CONFIG_PCI 1743 1744 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary) 1745 { 1746 int where; 1747 u16 status; 1748 1749 where = secondary ? PCI_SEC_STATUS : PCI_STATUS; 1750 pci_read_config_word(dev, where, &status); 1751 1752 /* If we get back 0xFFFF then we must suspect that the card has been 1753 * pulled but the Linux PCI layer has not yet finished cleaning up. 1754 * We don't want to report on such devices 1755 */ 1756 1757 if (status == 0xFFFF) { 1758 u32 sanity; 1759 1760 pci_read_config_dword(dev, 0, &sanity); 1761 1762 if (sanity == 0xFFFFFFFF) 1763 return 0; 1764 } 1765 1766 status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | 1767 PCI_STATUS_PARITY; 1768 1769 if (status) 1770 /* reset only the bits we are interested in */ 1771 pci_write_config_word(dev, where, status); 1772 1773 return status; 1774 } 1775 1776 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev); 1777 1778 /* Clear any PCI parity errors logged by this device. */ 1779 static void edac_pci_dev_parity_clear(struct pci_dev *dev) 1780 { 1781 u8 header_type; 1782 1783 get_pci_parity_status(dev, 0); 1784 1785 /* read the device TYPE, looking for bridges */ 1786 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); 1787 1788 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) 1789 get_pci_parity_status(dev, 1); 1790 } 1791 1792 /* 1793 * PCI Parity polling 1794 * 1795 */ 1796 static void edac_pci_dev_parity_test(struct pci_dev *dev) 1797 { 1798 u16 status; 1799 u8 header_type; 1800 1801 /* read the STATUS register on this device 1802 */ 1803 status = get_pci_parity_status(dev, 0); 1804 1805 debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id ); 1806 1807 /* check the status reg for errors */ 1808 if (status) { 1809 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR)) 1810 edac_printk(KERN_CRIT, EDAC_PCI, 1811 "Signaled System Error on %s\n", 1812 pci_name(dev)); 1813 1814 if (status & (PCI_STATUS_PARITY)) { 1815 edac_printk(KERN_CRIT, EDAC_PCI, 1816 "Master Data Parity Error on %s\n", 1817 pci_name(dev)); 1818 1819 atomic_inc(&pci_parity_count); 1820 } 1821 1822 if (status & (PCI_STATUS_DETECTED_PARITY)) { 1823 edac_printk(KERN_CRIT, EDAC_PCI, 1824 "Detected Parity Error on %s\n", 1825 pci_name(dev)); 1826 1827 atomic_inc(&pci_parity_count); 1828 } 1829 } 1830 1831 /* read the device TYPE, looking for bridges */ 1832 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); 1833 1834 debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id ); 1835 1836 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 1837 /* On bridges, need to examine secondary status register */ 1838 status = get_pci_parity_status(dev, 1); 1839 1840 debugf2("PCI SEC_STATUS= 0x%04x %s\n", 1841 status, dev->dev.bus_id ); 1842 1843 /* check the secondary status reg for errors */ 1844 if (status) { 1845 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR)) 1846 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge " 1847 "Signaled System Error on %s\n", 1848 pci_name(dev)); 1849 1850 if (status & (PCI_STATUS_PARITY)) { 1851 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge " 1852 "Master Data Parity Error on " 1853 "%s\n", pci_name(dev)); 1854 1855 atomic_inc(&pci_parity_count); 1856 } 1857 1858 if (status & (PCI_STATUS_DETECTED_PARITY)) { 1859 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge " 1860 "Detected Parity Error on %s\n", 1861 pci_name(dev)); 1862 1863 atomic_inc(&pci_parity_count); 1864 } 1865 } 1866 } 1867 } 1868 1869 /* 1870 * check_dev_on_list: Scan for a PCI device on a white/black list 1871 * @list: an EDAC &edac_pci_device_list white/black list pointer 1872 * @free_index: index of next free entry on the list 1873 * @pci_dev: PCI Device pointer 1874 * 1875 * see if list contains the device. 1876 * 1877 * Returns: 0 not found 1878 * 1 found on list 1879 */ 1880 static int check_dev_on_list(struct edac_pci_device_list *list, 1881 int free_index, struct pci_dev *dev) 1882 { 1883 int i; 1884 int rc = 0; /* Assume not found */ 1885 unsigned short vendor=dev->vendor; 1886 unsigned short device=dev->device; 1887 1888 /* Scan the list, looking for a vendor/device match */ 1889 for (i = 0; i < free_index; i++, list++ ) { 1890 if ((list->vendor == vendor ) && (list->device == device )) { 1891 rc = 1; 1892 break; 1893 } 1894 } 1895 1896 return rc; 1897 } 1898 1899 /* 1900 * pci_dev parity list iterator 1901 * Scan the PCI device list for one iteration, looking for SERRORs 1902 * Master Parity ERRORS or Parity ERRORs on primary or secondary devices 1903 */ 1904 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn) 1905 { 1906 struct pci_dev *dev = NULL; 1907 1908 /* request for kernel access to the next PCI device, if any, 1909 * and while we are looking at it have its reference count 1910 * bumped until we are done with it 1911 */ 1912 while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { 1913 /* if whitelist exists then it has priority, so only scan 1914 * those devices on the whitelist 1915 */ 1916 if (pci_whitelist_count > 0 ) { 1917 if (check_dev_on_list(pci_whitelist, 1918 pci_whitelist_count, dev)) 1919 fn(dev); 1920 } else { 1921 /* 1922 * if no whitelist, then check if this devices is 1923 * blacklisted 1924 */ 1925 if (!check_dev_on_list(pci_blacklist, 1926 pci_blacklist_count, dev)) 1927 fn(dev); 1928 } 1929 } 1930 } 1931 1932 static void do_pci_parity_check(void) 1933 { 1934 unsigned long flags; 1935 int before_count; 1936 1937 debugf3("%s()\n", __func__); 1938 1939 if (!check_pci_parity) 1940 return; 1941 1942 before_count = atomic_read(&pci_parity_count); 1943 1944 /* scan all PCI devices looking for a Parity Error on devices and 1945 * bridges 1946 */ 1947 local_irq_save(flags); 1948 edac_pci_dev_parity_iterator(edac_pci_dev_parity_test); 1949 local_irq_restore(flags); 1950 1951 /* Only if operator has selected panic on PCI Error */ 1952 if (panic_on_pci_parity) { 1953 /* If the count is different 'after' from 'before' */ 1954 if (before_count != atomic_read(&pci_parity_count)) 1955 panic("EDAC: PCI Parity Error"); 1956 } 1957 } 1958 1959 static inline void clear_pci_parity_errors(void) 1960 { 1961 /* Clear any PCI bus parity errors that devices initially have logged 1962 * in their registers. 1963 */ 1964 edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear); 1965 } 1966 1967 #else /* CONFIG_PCI */ 1968 1969 static inline void do_pci_parity_check(void) 1970 { 1971 /* no-op */ 1972 } 1973 1974 static inline void clear_pci_parity_errors(void) 1975 { 1976 /* no-op */ 1977 } 1978 1979 #endif /* CONFIG_PCI */ 1980 1981 /* 1982 * Iterate over all MC instances and check for ECC, et al, errors 1983 */ 1984 static inline void check_mc_devices(void) 1985 { 1986 struct list_head *item; 1987 struct mem_ctl_info *mci; 1988 1989 debugf3("%s()\n", __func__); 1990 down(&mem_ctls_mutex); 1991 1992 list_for_each(item, &mc_devices) { 1993 mci = list_entry(item, struct mem_ctl_info, link); 1994 1995 if (mci->edac_check != NULL) 1996 mci->edac_check(mci); 1997 } 1998 1999 up(&mem_ctls_mutex); 2000 } 2001 2002 /* 2003 * Check MC status every poll_msec. 2004 * Check PCI status every poll_msec as well. 2005 * 2006 * This where the work gets done for edac. 2007 * 2008 * SMP safe, doesn't use NMI, and auto-rate-limits. 2009 */ 2010 static void do_edac_check(void) 2011 { 2012 debugf3("%s()\n", __func__); 2013 check_mc_devices(); 2014 do_pci_parity_check(); 2015 } 2016 2017 static int edac_kernel_thread(void *arg) 2018 { 2019 while (!kthread_should_stop()) { 2020 do_edac_check(); 2021 2022 /* goto sleep for the interval */ 2023 schedule_timeout_interruptible((HZ * poll_msec) / 1000); 2024 try_to_freeze(); 2025 } 2026 2027 return 0; 2028 } 2029 2030 /* 2031 * edac_mc_init 2032 * module initialization entry point 2033 */ 2034 static int __init edac_mc_init(void) 2035 { 2036 edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n"); 2037 2038 /* 2039 * Harvest and clear any boot/initialization PCI parity errors 2040 * 2041 * FIXME: This only clears errors logged by devices present at time of 2042 * module initialization. We should also do an initial clear 2043 * of each newly hotplugged device. 2044 */ 2045 clear_pci_parity_errors(); 2046 2047 /* Create the MC sysfs entries */ 2048 if (edac_sysfs_memctrl_setup()) { 2049 edac_printk(KERN_ERR, EDAC_MC, 2050 "Error initializing sysfs code\n"); 2051 return -ENODEV; 2052 } 2053 2054 /* Create the PCI parity sysfs entries */ 2055 if (edac_sysfs_pci_setup()) { 2056 edac_sysfs_memctrl_teardown(); 2057 edac_printk(KERN_ERR, EDAC_MC, 2058 "EDAC PCI: Error initializing sysfs code\n"); 2059 return -ENODEV; 2060 } 2061 2062 /* create our kernel thread */ 2063 edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac"); 2064 2065 if (IS_ERR(edac_thread)) { 2066 /* remove the sysfs entries */ 2067 edac_sysfs_memctrl_teardown(); 2068 edac_sysfs_pci_teardown(); 2069 return PTR_ERR(edac_thread); 2070 } 2071 2072 return 0; 2073 } 2074 2075 /* 2076 * edac_mc_exit() 2077 * module exit/termination functioni 2078 */ 2079 static void __exit edac_mc_exit(void) 2080 { 2081 debugf0("%s()\n", __func__); 2082 kthread_stop(edac_thread); 2083 2084 /* tear down the sysfs device */ 2085 edac_sysfs_memctrl_teardown(); 2086 edac_sysfs_pci_teardown(); 2087 } 2088 2089 module_init(edac_mc_init); 2090 module_exit(edac_mc_exit); 2091 2092 MODULE_LICENSE("GPL"); 2093 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n" 2094 "Based on work by Dan Hollis et al"); 2095 MODULE_DESCRIPTION("Core library routines for MC reporting"); 2096 2097 module_param(panic_on_ue, int, 0644); 2098 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 2099 module_param(check_pci_parity, int, 0644); 2100 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on"); 2101 module_param(panic_on_pci_parity, int, 0644); 2102 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on"); 2103 module_param(log_ue, int, 0644); 2104 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on"); 2105 module_param(log_ce, int, 0644); 2106 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on"); 2107 module_param(poll_msec, int, 0644); 2108 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds"); 2109 #ifdef CONFIG_EDAC_DEBUG 2110 module_param(edac_debug_level, int, 0644); 2111 MODULE_PARM_DESC(edac_debug_level, "Debug level"); 2112 #endif 2113