xref: /linux/drivers/edac/edac_mc.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * edac_mc kernel module
3  * (C) 2005 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <linux/proc_fs.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/sysctl.h>
23 #include <linux/highmem.h>
24 #include <linux/timer.h>
25 #include <linux/slab.h>
26 #include <linux/jiffies.h>
27 #include <linux/spinlock.h>
28 #include <linux/list.h>
29 #include <linux/sysdev.h>
30 #include <linux/ctype.h>
31 #include <linux/kthread.h>
32 #include <asm/uaccess.h>
33 #include <asm/page.h>
34 #include <asm/edac.h>
35 #include "edac_mc.h"
36 
37 #define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__
38 
39 /* For now, disable the EDAC sysfs code.  The sysfs interface that EDAC
40  * presents to user space needs more thought, and is likely to change
41  * substantially.
42  */
43 #define DISABLE_EDAC_SYSFS
44 
45 #ifdef CONFIG_EDAC_DEBUG
46 /* Values of 0 to 4 will generate output */
47 int edac_debug_level = 1;
48 EXPORT_SYMBOL_GPL(edac_debug_level);
49 #endif
50 
51 /* EDAC Controls, setable by module parameter, and sysfs */
52 static int log_ue = 1;
53 static int log_ce = 1;
54 static int panic_on_ue;
55 static int poll_msec = 1000;
56 
57 static int check_pci_parity = 0;	/* default YES check PCI parity */
58 static int panic_on_pci_parity;		/* default no panic on PCI Parity */
59 static atomic_t pci_parity_count = ATOMIC_INIT(0);
60 
61 /* lock to memory controller's control array */
62 static DECLARE_MUTEX(mem_ctls_mutex);
63 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
64 
65 static struct task_struct *edac_thread;
66 
67 /* Structure of the whitelist and blacklist arrays */
68 struct edac_pci_device_list {
69 	unsigned int  vendor;		/* Vendor ID */
70 	unsigned int  device;		/* Deviice ID */
71 };
72 
73 #define MAX_LISTED_PCI_DEVICES		32
74 
75 /* List of PCI devices (vendor-id:device-id) that should be skipped */
76 static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
77 static int pci_blacklist_count;
78 
79 /* List of PCI devices (vendor-id:device-id) that should be scanned */
80 static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
81 static int pci_whitelist_count ;
82 
83 /*  START sysfs data and methods */
84 
85 #ifndef DISABLE_EDAC_SYSFS
86 
87 static const char *mem_types[] = {
88 	[MEM_EMPTY] = "Empty",
89 	[MEM_RESERVED] = "Reserved",
90 	[MEM_UNKNOWN] = "Unknown",
91 	[MEM_FPM] = "FPM",
92 	[MEM_EDO] = "EDO",
93 	[MEM_BEDO] = "BEDO",
94 	[MEM_SDR] = "Unbuffered-SDR",
95 	[MEM_RDR] = "Registered-SDR",
96 	[MEM_DDR] = "Unbuffered-DDR",
97 	[MEM_RDDR] = "Registered-DDR",
98 	[MEM_RMBS] = "RMBS"
99 };
100 
101 static const char *dev_types[] = {
102 	[DEV_UNKNOWN] = "Unknown",
103 	[DEV_X1] = "x1",
104 	[DEV_X2] = "x2",
105 	[DEV_X4] = "x4",
106 	[DEV_X8] = "x8",
107 	[DEV_X16] = "x16",
108 	[DEV_X32] = "x32",
109 	[DEV_X64] = "x64"
110 };
111 
112 static const char *edac_caps[] = {
113 	[EDAC_UNKNOWN] = "Unknown",
114 	[EDAC_NONE] = "None",
115 	[EDAC_RESERVED] = "Reserved",
116 	[EDAC_PARITY] = "PARITY",
117 	[EDAC_EC] = "EC",
118 	[EDAC_SECDED] = "SECDED",
119 	[EDAC_S2ECD2ED] = "S2ECD2ED",
120 	[EDAC_S4ECD4ED] = "S4ECD4ED",
121 	[EDAC_S8ECD8ED] = "S8ECD8ED",
122 	[EDAC_S16ECD16ED] = "S16ECD16ED"
123 };
124 
125 /* sysfs object: /sys/devices/system/edac */
126 static struct sysdev_class edac_class = {
127 	set_kset_name("edac"),
128 };
129 
130 /* sysfs objects:
131  *	/sys/devices/system/edac/mc
132  *	/sys/devices/system/edac/pci
133  */
134 static struct kobject edac_memctrl_kobj;
135 static struct kobject edac_pci_kobj;
136 
137 /* We use these to wait for the reference counts on edac_memctrl_kobj and
138  * edac_pci_kobj to reach 0.
139  */
140 static struct completion edac_memctrl_kobj_complete;
141 static struct completion edac_pci_kobj_complete;
142 
143 /*
144  * /sys/devices/system/edac/mc;
145  *	data structures and methods
146  */
147 #if 0
148 static ssize_t memctrl_string_show(void *ptr, char *buffer)
149 {
150 	char *value = (char*) ptr;
151 	return sprintf(buffer, "%s\n", value);
152 }
153 #endif
154 
155 static ssize_t memctrl_int_show(void *ptr, char *buffer)
156 {
157 	int *value = (int*) ptr;
158 	return sprintf(buffer, "%d\n", *value);
159 }
160 
161 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
162 {
163 	int *value = (int*) ptr;
164 
165 	if (isdigit(*buffer))
166 		*value = simple_strtoul(buffer, NULL, 0);
167 
168 	return count;
169 }
170 
171 struct memctrl_dev_attribute {
172 	struct attribute attr;
173 	void *value;
174 	ssize_t (*show)(void *,char *);
175 	ssize_t (*store)(void *, const char *, size_t);
176 };
177 
178 /* Set of show/store abstract level functions for memory control object */
179 static ssize_t memctrl_dev_show(struct kobject *kobj,
180 		struct attribute *attr, char *buffer)
181 {
182 	struct memctrl_dev_attribute *memctrl_dev;
183 	memctrl_dev = (struct memctrl_dev_attribute*)attr;
184 
185 	if (memctrl_dev->show)
186 		return memctrl_dev->show(memctrl_dev->value, buffer);
187 
188 	return -EIO;
189 }
190 
191 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
192 		const char *buffer, size_t count)
193 {
194 	struct memctrl_dev_attribute *memctrl_dev;
195 	memctrl_dev = (struct memctrl_dev_attribute*)attr;
196 
197 	if (memctrl_dev->store)
198 		return memctrl_dev->store(memctrl_dev->value, buffer, count);
199 
200 	return -EIO;
201 }
202 
203 static struct sysfs_ops memctrlfs_ops = {
204 	.show   = memctrl_dev_show,
205 	.store  = memctrl_dev_store
206 };
207 
208 #define MEMCTRL_ATTR(_name,_mode,_show,_store)			\
209 struct memctrl_dev_attribute attr_##_name = {			\
210 	.attr = {.name = __stringify(_name), .mode = _mode },	\
211 	.value  = &_name,					\
212 	.show   = _show,					\
213 	.store  = _store,					\
214 };
215 
216 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)	\
217 struct memctrl_dev_attribute attr_##_name = {			\
218 	.attr = {.name = __stringify(_name), .mode = _mode },	\
219 	.value  = _data,					\
220 	.show   = _show,					\
221 	.store  = _store,					\
222 };
223 
224 /* cwrow<id> attribute f*/
225 #if 0
226 MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
227 #endif
228 
229 /* csrow<id> control files */
230 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
231 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
232 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
233 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
234 
235 /* Base Attributes of the memory ECC object */
236 static struct memctrl_dev_attribute *memctrl_attr[] = {
237 	&attr_panic_on_ue,
238 	&attr_log_ue,
239 	&attr_log_ce,
240 	&attr_poll_msec,
241 	NULL,
242 };
243 
244 /* Main MC kobject release() function */
245 static void edac_memctrl_master_release(struct kobject *kobj)
246 {
247 	debugf1("%s()\n", __func__);
248 	complete(&edac_memctrl_kobj_complete);
249 }
250 
251 static struct kobj_type ktype_memctrl = {
252 	.release = edac_memctrl_master_release,
253 	.sysfs_ops = &memctrlfs_ops,
254 	.default_attrs = (struct attribute **) memctrl_attr,
255 };
256 
257 #endif  /* DISABLE_EDAC_SYSFS */
258 
259 /* Initialize the main sysfs entries for edac:
260  *   /sys/devices/system/edac
261  *
262  * and children
263  *
264  * Return:  0 SUCCESS
265  *         !0 FAILURE
266  */
267 static int edac_sysfs_memctrl_setup(void)
268 #ifdef DISABLE_EDAC_SYSFS
269 {
270 	return 0;
271 }
272 #else
273 {
274 	int err=0;
275 
276 	debugf1("%s()\n", __func__);
277 
278 	/* create the /sys/devices/system/edac directory */
279 	err = sysdev_class_register(&edac_class);
280 
281 	if (!err) {
282 		/* Init the MC's kobject */
283 		memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
284 		edac_memctrl_kobj.parent = &edac_class.kset.kobj;
285 		edac_memctrl_kobj.ktype = &ktype_memctrl;
286 
287 		/* generate sysfs "..../edac/mc"   */
288 		err = kobject_set_name(&edac_memctrl_kobj,"mc");
289 
290 		if (!err) {
291 			/* FIXME: maybe new sysdev_create_subdir() */
292 			err = kobject_register(&edac_memctrl_kobj);
293 
294 			if (err)
295 				debugf1("Failed to register '.../edac/mc'\n");
296 			else
297 				debugf1("Registered '.../edac/mc' kobject\n");
298 		}
299 	} else
300 		debugf1("%s() error=%d\n", __func__, err);
301 
302 	return err;
303 }
304 #endif  /* DISABLE_EDAC_SYSFS */
305 
306 /*
307  * MC teardown:
308  *	the '..../edac/mc' kobject followed by '..../edac' itself
309  */
310 static void edac_sysfs_memctrl_teardown(void)
311 {
312 #ifndef DISABLE_EDAC_SYSFS
313 	debugf0("MC: " __FILE__ ": %s()\n", __func__);
314 
315 	/* Unregister the MC's kobject and wait for reference count to reach
316 	 * 0.
317 	 */
318 	init_completion(&edac_memctrl_kobj_complete);
319 	kobject_unregister(&edac_memctrl_kobj);
320 	wait_for_completion(&edac_memctrl_kobj_complete);
321 
322 	/* Unregister the 'edac' object */
323 	sysdev_class_unregister(&edac_class);
324 #endif  /* DISABLE_EDAC_SYSFS */
325 }
326 
327 #ifndef DISABLE_EDAC_SYSFS
328 
329 /*
330  * /sys/devices/system/edac/pci;
331  * 	data structures and methods
332  */
333 
334 struct list_control {
335 	struct edac_pci_device_list *list;
336 	int *count;
337 };
338 
339 #if 0
340 /* Output the list as:  vendor_id:device:id<,vendor_id:device_id> */
341 static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
342 {
343 	struct list_control *listctl;
344 	struct edac_pci_device_list *list;
345 	char *p = buffer;
346 	int len=0;
347 	int i;
348 
349 	listctl = ptr;
350 	list = listctl->list;
351 
352 	for (i = 0; i < *(listctl->count); i++, list++ ) {
353 		if (len > 0)
354 			len += snprintf(p + len, (PAGE_SIZE-len), ",");
355 
356 		len += snprintf(p + len,
357 				(PAGE_SIZE-len),
358 				"%x:%x",
359 				list->vendor,list->device);
360 	}
361 
362 	len += snprintf(p + len,(PAGE_SIZE-len), "\n");
363 	return (ssize_t) len;
364 }
365 
366 /**
367  *
368  * Scan string from **s to **e looking for one 'vendor:device' tuple
369  * where each field is a hex value
370  *
371  * return 0 if an entry is NOT found
372  * return 1 if an entry is found
373  *	fill in *vendor_id and *device_id with values found
374  *
375  * In both cases, make sure *s has been moved forward toward *e
376  */
377 static int parse_one_device(const char **s,const char **e,
378 	unsigned int *vendor_id, unsigned int *device_id)
379 {
380 	const char *runner, *p;
381 
382 	/* if null byte, we are done */
383 	if (!**s) {
384 		(*s)++;  /* keep *s moving */
385 		return 0;
386 	}
387 
388 	/* skip over newlines & whitespace */
389 	if ((**s == '\n') || isspace(**s)) {
390 		(*s)++;
391 		return 0;
392 	}
393 
394 	if (!isxdigit(**s)) {
395 		(*s)++;
396 		return 0;
397 	}
398 
399 	/* parse vendor_id */
400 	runner = *s;
401 
402 	while (runner < *e) {
403 		/* scan for vendor:device delimiter */
404 		if (*runner == ':') {
405 			*vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
406 			runner = p + 1;
407 			break;
408 		}
409 
410 		runner++;
411 	}
412 
413 	if (!isxdigit(*runner)) {
414 		*s = ++runner;
415 		return 0;
416 	}
417 
418 	/* parse device_id */
419 	if (runner < *e) {
420 		*device_id = simple_strtol((char*)runner, (char**)&p, 16);
421 		runner = p;
422 	}
423 
424 	*s = runner;
425 	return 1;
426 }
427 
428 static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
429 		size_t count)
430 {
431 	struct list_control *listctl;
432 	struct edac_pci_device_list *list;
433 	unsigned int vendor_id, device_id;
434 	const char *s, *e;
435 	int *index;
436 
437 	s = (char*)buffer;
438 	e = s + count;
439 	listctl = ptr;
440 	list = listctl->list;
441 	index = listctl->count;
442 	*index = 0;
443 
444 	while (*index < MAX_LISTED_PCI_DEVICES) {
445 		if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
446 			list[ *index ].vendor = vendor_id;
447 			list[ *index ].device = device_id;
448 			(*index)++;
449 		}
450 
451 		/* check for all data consume */
452 		if (s >= e)
453 			break;
454 	}
455 
456 	return count;
457 }
458 
459 #endif
460 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
461 {
462 	int *value = ptr;
463 	return sprintf(buffer,"%d\n",*value);
464 }
465 
466 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
467 {
468 	int *value = ptr;
469 
470 	if (isdigit(*buffer))
471 		*value = simple_strtoul(buffer,NULL,0);
472 
473 	return count;
474 }
475 
476 struct edac_pci_dev_attribute {
477 	struct attribute attr;
478 	void *value;
479 	ssize_t (*show)(void *,char *);
480 	ssize_t (*store)(void *, const char *,size_t);
481 };
482 
483 /* Set of show/store abstract level functions for PCI Parity object */
484 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
485 		char *buffer)
486 {
487 	struct edac_pci_dev_attribute *edac_pci_dev;
488 	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
489 
490 	if (edac_pci_dev->show)
491 		return edac_pci_dev->show(edac_pci_dev->value, buffer);
492 	return -EIO;
493 }
494 
495 static ssize_t edac_pci_dev_store(struct kobject *kobj,
496 		struct attribute *attr, const char *buffer, size_t count)
497 {
498 	struct edac_pci_dev_attribute *edac_pci_dev;
499 	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
500 
501 	if (edac_pci_dev->show)
502 		return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
503 	return -EIO;
504 }
505 
506 static struct sysfs_ops edac_pci_sysfs_ops = {
507 	.show   = edac_pci_dev_show,
508 	.store  = edac_pci_dev_store
509 };
510 
511 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)			\
512 struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
513 	.attr = {.name = __stringify(_name), .mode = _mode },	\
514 	.value  = &_name,					\
515 	.show   = _show,					\
516 	.store  = _store,					\
517 };
518 
519 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)	\
520 struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
521 	.attr = {.name = __stringify(_name), .mode = _mode },	\
522 	.value  = _data,					\
523 	.show   = _show,					\
524 	.store  = _store,					\
525 };
526 
527 #if 0
528 static struct list_control pci_whitelist_control = {
529 	.list = pci_whitelist,
530 	.count = &pci_whitelist_count
531 };
532 
533 static struct list_control pci_blacklist_control = {
534 	.list = pci_blacklist,
535 	.count = &pci_blacklist_count
536 };
537 
538 /* whitelist attribute */
539 EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
540 	&pci_whitelist_control,
541 	S_IRUGO|S_IWUSR,
542 	edac_pci_list_string_show,
543 	edac_pci_list_string_store);
544 
545 EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
546 	&pci_blacklist_control,
547 	S_IRUGO|S_IWUSR,
548 	edac_pci_list_string_show,
549 	edac_pci_list_string_store);
550 #endif
551 
552 /* PCI Parity control files */
553 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
554 	edac_pci_int_store);
555 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
556 	edac_pci_int_store);
557 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
558 
559 /* Base Attributes of the memory ECC object */
560 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
561 	&edac_pci_attr_check_pci_parity,
562 	&edac_pci_attr_panic_on_pci_parity,
563 	&edac_pci_attr_pci_parity_count,
564 	NULL,
565 };
566 
567 /* No memory to release */
568 static void edac_pci_release(struct kobject *kobj)
569 {
570 	debugf1("%s()\n", __func__);
571 	complete(&edac_pci_kobj_complete);
572 }
573 
574 static struct kobj_type ktype_edac_pci = {
575 	.release = edac_pci_release,
576 	.sysfs_ops = &edac_pci_sysfs_ops,
577 	.default_attrs = (struct attribute **) edac_pci_attr,
578 };
579 
580 #endif  /* DISABLE_EDAC_SYSFS */
581 
582 /**
583  * edac_sysfs_pci_setup()
584  *
585  */
586 static int edac_sysfs_pci_setup(void)
587 #ifdef DISABLE_EDAC_SYSFS
588 {
589 	return 0;
590 }
591 #else
592 {
593 	int err;
594 
595 	debugf1("%s()\n", __func__);
596 
597 	memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
598 	edac_pci_kobj.parent = &edac_class.kset.kobj;
599 	edac_pci_kobj.ktype = &ktype_edac_pci;
600 	err = kobject_set_name(&edac_pci_kobj, "pci");
601 
602 	if (!err) {
603 		/* Instanstiate the csrow object */
604 		/* FIXME: maybe new sysdev_create_subdir() */
605 		err = kobject_register(&edac_pci_kobj);
606 
607 		if (err)
608 			debugf1("Failed to register '.../edac/pci'\n");
609 		else
610 			debugf1("Registered '.../edac/pci' kobject\n");
611 	}
612 
613 	return err;
614 }
615 #endif  /* DISABLE_EDAC_SYSFS */
616 
617 static void edac_sysfs_pci_teardown(void)
618 {
619 #ifndef DISABLE_EDAC_SYSFS
620 	debugf0("%s()\n", __func__);
621 	init_completion(&edac_pci_kobj_complete);
622 	kobject_unregister(&edac_pci_kobj);
623 	wait_for_completion(&edac_pci_kobj_complete);
624 #endif
625 }
626 
627 #ifndef DISABLE_EDAC_SYSFS
628 
629 /* EDAC sysfs CSROW data structures and methods */
630 
631 /* Set of more detailed csrow<id> attribute show/store functions */
632 static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
633 {
634 	ssize_t size = 0;
635 
636 	if (csrow->nr_channels > 0) {
637 		size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
638 			csrow->channels[0].label);
639 	}
640 
641 	return size;
642 }
643 
644 static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
645 {
646 	ssize_t size = 0;
647 
648 	if (csrow->nr_channels > 0) {
649 		size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
650 			csrow->channels[1].label);
651 	}
652 
653 	return size;
654 }
655 
656 static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
657 		const char *data, size_t size)
658 {
659 	ssize_t max_size = 0;
660 
661 	if (csrow->nr_channels > 0) {
662 		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
663 		strncpy(csrow->channels[0].label, data, max_size);
664 		csrow->channels[0].label[max_size] = '\0';
665 	}
666 
667 	return size;
668 }
669 
670 static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
671 		const char *data, size_t size)
672 {
673 	ssize_t max_size = 0;
674 
675 	if (csrow->nr_channels > 1) {
676 		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
677 		strncpy(csrow->channels[1].label, data, max_size);
678 		csrow->channels[1].label[max_size] = '\0';
679 	}
680 
681 	return max_size;
682 }
683 
684 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
685 {
686 	return sprintf(data,"%u\n", csrow->ue_count);
687 }
688 
689 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
690 {
691 	return sprintf(data,"%u\n", csrow->ce_count);
692 }
693 
694 static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
695 {
696 	ssize_t size = 0;
697 
698 	if (csrow->nr_channels > 0) {
699 		size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
700 	}
701 
702 	return size;
703 }
704 
705 static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
706 {
707 	ssize_t size = 0;
708 
709 	if (csrow->nr_channels > 1) {
710 		size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
711 	}
712 
713 	return size;
714 }
715 
716 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
717 {
718 	return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
719 }
720 
721 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
722 {
723 	return sprintf(data,"%s\n", mem_types[csrow->mtype]);
724 }
725 
726 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
727 {
728 	return sprintf(data,"%s\n", dev_types[csrow->dtype]);
729 }
730 
731 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
732 {
733 	return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
734 }
735 
736 struct csrowdev_attribute {
737 	struct attribute attr;
738 	ssize_t (*show)(struct csrow_info *,char *);
739 	ssize_t (*store)(struct csrow_info *, const char *,size_t);
740 };
741 
742 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
743 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
744 
745 /* Set of show/store higher level functions for csrow objects */
746 static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
747 		char *buffer)
748 {
749 	struct csrow_info *csrow = to_csrow(kobj);
750 	struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
751 
752 	if (csrowdev_attr->show)
753 		return csrowdev_attr->show(csrow, buffer);
754 
755 	return -EIO;
756 }
757 
758 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
759 		const char *buffer, size_t count)
760 {
761 	struct csrow_info *csrow = to_csrow(kobj);
762 	struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
763 
764 	if (csrowdev_attr->store)
765 		return csrowdev_attr->store(csrow, buffer, count);
766 
767 	return -EIO;
768 }
769 
770 static struct sysfs_ops csrowfs_ops = {
771 	.show   = csrowdev_show,
772 	.store  = csrowdev_store
773 };
774 
775 #define CSROWDEV_ATTR(_name,_mode,_show,_store)			\
776 struct csrowdev_attribute attr_##_name = {			\
777 	.attr = {.name = __stringify(_name), .mode = _mode },	\
778 	.show   = _show,					\
779 	.store  = _store,					\
780 };
781 
782 /* cwrow<id>/attribute files */
783 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
784 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
785 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
786 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
787 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
788 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
789 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
790 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
791 
792 /* control/attribute files */
793 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
794 		csrow_ch0_dimm_label_show,
795 		csrow_ch0_dimm_label_store);
796 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
797 		csrow_ch1_dimm_label_show,
798 		csrow_ch1_dimm_label_store);
799 
800 /* Attributes of the CSROW<id> object */
801 static struct csrowdev_attribute *csrow_attr[] = {
802 	&attr_dev_type,
803 	&attr_mem_type,
804 	&attr_edac_mode,
805 	&attr_size_mb,
806 	&attr_ue_count,
807 	&attr_ce_count,
808 	&attr_ch0_ce_count,
809 	&attr_ch1_ce_count,
810 	&attr_ch0_dimm_label,
811 	&attr_ch1_dimm_label,
812 	NULL,
813 };
814 
815 /* No memory to release */
816 static void edac_csrow_instance_release(struct kobject *kobj)
817 {
818 	struct csrow_info *cs;
819 
820 	debugf1("%s()\n", __func__);
821 	cs = container_of(kobj, struct csrow_info, kobj);
822 	complete(&cs->kobj_complete);
823 }
824 
825 static struct kobj_type ktype_csrow = {
826 	.release = edac_csrow_instance_release,
827 	.sysfs_ops = &csrowfs_ops,
828 	.default_attrs = (struct attribute **) csrow_attr,
829 };
830 
831 /* Create a CSROW object under specifed edac_mc_device */
832 static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
833 		struct csrow_info *csrow, int index)
834 {
835 	int err = 0;
836 
837 	debugf0("%s()\n", __func__);
838 	memset(&csrow->kobj, 0, sizeof(csrow->kobj));
839 
840 	/* generate ..../edac/mc/mc<id>/csrow<index>   */
841 
842 	csrow->kobj.parent = edac_mci_kobj;
843 	csrow->kobj.ktype = &ktype_csrow;
844 
845 	/* name this instance of csrow<id> */
846 	err = kobject_set_name(&csrow->kobj,"csrow%d",index);
847 
848 	if (!err) {
849 		/* Instanstiate the csrow object */
850 		err = kobject_register(&csrow->kobj);
851 
852 		if (err)
853 			debugf0("Failed to register CSROW%d\n",index);
854 		else
855 			debugf0("Registered CSROW%d\n",index);
856 	}
857 
858 	return err;
859 }
860 
861 /* sysfs data structures and methods for the MCI kobjects */
862 
863 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
864 		const char *data, size_t count)
865 {
866 	int row, chan;
867 
868 	mci->ue_noinfo_count = 0;
869 	mci->ce_noinfo_count = 0;
870 	mci->ue_count = 0;
871 	mci->ce_count = 0;
872 
873 	for (row = 0; row < mci->nr_csrows; row++) {
874 		struct csrow_info *ri = &mci->csrows[row];
875 
876 		ri->ue_count = 0;
877 		ri->ce_count = 0;
878 
879 		for (chan = 0; chan < ri->nr_channels; chan++)
880 			ri->channels[chan].ce_count = 0;
881 	}
882 
883 	mci->start_time = jiffies;
884 	return count;
885 }
886 
887 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
888 {
889 	return sprintf(data,"%d\n", mci->ue_count);
890 }
891 
892 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
893 {
894 	return sprintf(data,"%d\n", mci->ce_count);
895 }
896 
897 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
898 {
899 	return sprintf(data,"%d\n", mci->ce_noinfo_count);
900 }
901 
902 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
903 {
904 	return sprintf(data,"%d\n", mci->ue_noinfo_count);
905 }
906 
907 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
908 {
909 	return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
910 }
911 
912 static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
913 {
914 	return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
915 }
916 
917 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
918 {
919 	return sprintf(data,"%s\n", mci->ctl_name);
920 }
921 
922 static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
923 {
924 	char *p = buf;
925 	int bit_idx;
926 
927 	for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
928 		if ((edac_cap >> bit_idx) & 0x1)
929 			p += sprintf(p, "%s ", edac_caps[bit_idx]);
930 	}
931 
932 	return p - buf;
933 }
934 
935 static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
936 {
937 	char *p = data;
938 
939 	p += mci_output_edac_cap(p,mci->edac_ctl_cap);
940 	p += sprintf(p, "\n");
941 	return p - data;
942 }
943 
944 static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
945 		char *data)
946 {
947 	char *p = data;
948 
949 	p += mci_output_edac_cap(p,mci->edac_cap);
950 	p += sprintf(p, "\n");
951 	return p - data;
952 }
953 
954 static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
955 {
956 	char *p = buf;
957 	int bit_idx;
958 
959 	for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
960 		if ((mtype_cap >> bit_idx) & 0x1)
961 			p += sprintf(p, "%s ", mem_types[bit_idx]);
962 	}
963 
964 	return p - buf;
965 }
966 
967 static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci,
968 		char *data)
969 {
970 	char *p = data;
971 
972 	p += mci_output_mtype_cap(p,mci->mtype_cap);
973 	p += sprintf(p, "\n");
974 	return p - data;
975 }
976 
977 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
978 {
979 	int total_pages, csrow_idx;
980 
981 	for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
982 			csrow_idx++) {
983 		struct csrow_info *csrow = &mci->csrows[csrow_idx];
984 
985 		if (!csrow->nr_pages)
986 			continue;
987 
988 		total_pages += csrow->nr_pages;
989 	}
990 
991 	return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
992 }
993 
994 struct mcidev_attribute {
995 	struct attribute attr;
996 	ssize_t (*show)(struct mem_ctl_info *,char *);
997 	ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
998 };
999 
1000 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
1001 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
1002 
1003 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1004 		char *buffer)
1005 {
1006 	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1007 	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1008 
1009 	if (mcidev_attr->show)
1010 		return mcidev_attr->show(mem_ctl_info, buffer);
1011 
1012 	return -EIO;
1013 }
1014 
1015 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1016 		const char *buffer, size_t count)
1017 {
1018 	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1019 	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1020 
1021 	if (mcidev_attr->store)
1022 		return mcidev_attr->store(mem_ctl_info, buffer, count);
1023 
1024 	return -EIO;
1025 }
1026 
1027 static struct sysfs_ops mci_ops = {
1028 	.show = mcidev_show,
1029 	.store = mcidev_store
1030 };
1031 
1032 #define MCIDEV_ATTR(_name,_mode,_show,_store)			\
1033 struct mcidev_attribute mci_attr_##_name = {			\
1034 	.attr = {.name = __stringify(_name), .mode = _mode },	\
1035 	.show   = _show,					\
1036 	.store  = _store,					\
1037 };
1038 
1039 /* Control file */
1040 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1041 
1042 /* Attribute files */
1043 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1044 MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1045 MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1046 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1047 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1048 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1049 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1050 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1051 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1052 MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1053 	mci_edac_current_capability_show,NULL);
1054 MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1055 	mci_supported_mem_type_show,NULL);
1056 
1057 static struct mcidev_attribute *mci_attr[] = {
1058 	&mci_attr_reset_counters,
1059 	&mci_attr_module_name,
1060 	&mci_attr_mc_name,
1061 	&mci_attr_edac_capability,
1062 	&mci_attr_edac_current_capability,
1063 	&mci_attr_supported_mem_type,
1064 	&mci_attr_size_mb,
1065 	&mci_attr_seconds_since_reset,
1066 	&mci_attr_ue_noinfo_count,
1067 	&mci_attr_ce_noinfo_count,
1068 	&mci_attr_ue_count,
1069 	&mci_attr_ce_count,
1070 	NULL
1071 };
1072 
1073 /*
1074  * Release of a MC controlling instance
1075  */
1076 static void edac_mci_instance_release(struct kobject *kobj)
1077 {
1078 	struct mem_ctl_info *mci;
1079 
1080 	mci = to_mci(kobj);
1081 	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1082 	complete(&mci->kobj_complete);
1083 }
1084 
1085 static struct kobj_type ktype_mci = {
1086 	.release = edac_mci_instance_release,
1087 	.sysfs_ops = &mci_ops,
1088 	.default_attrs = (struct attribute **) mci_attr,
1089 };
1090 
1091 #endif  /* DISABLE_EDAC_SYSFS */
1092 
1093 #define EDAC_DEVICE_SYMLINK	"device"
1094 
1095 /*
1096  * Create a new Memory Controller kobject instance,
1097  *	mc<id> under the 'mc' directory
1098  *
1099  * Return:
1100  *	0	Success
1101  *	!0	Failure
1102  */
1103 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1104 #ifdef DISABLE_EDAC_SYSFS
1105 {
1106 	return 0;
1107 }
1108 #else
1109 {
1110 	int i;
1111 	int err;
1112 	struct csrow_info *csrow;
1113 	struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1114 
1115 	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1116 	memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1117 
1118 	/* set the name of the mc<id> object */
1119 	err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1120 
1121 	if (err)
1122 		return err;
1123 
1124 	/* link to our parent the '..../edac/mc' object */
1125 	edac_mci_kobj->parent = &edac_memctrl_kobj;
1126 	edac_mci_kobj->ktype = &ktype_mci;
1127 
1128 	/* register the mc<id> kobject */
1129 	err = kobject_register(edac_mci_kobj);
1130 
1131 	if (err)
1132 		return err;
1133 
1134 	/* create a symlink for the device */
1135 	err = sysfs_create_link(edac_mci_kobj, &mci->pdev->dev.kobj,
1136 				EDAC_DEVICE_SYMLINK);
1137 
1138 	if (err)
1139 		goto fail0;
1140 
1141 	/* Make directories for each CSROW object
1142 	 * under the mc<id> kobject
1143 	 */
1144 	for (i = 0; i < mci->nr_csrows; i++) {
1145 		csrow = &mci->csrows[i];
1146 
1147 		/* Only expose populated CSROWs */
1148 		if (csrow->nr_pages > 0) {
1149 			err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1150 
1151 			if (err)
1152 				goto fail1;
1153 		}
1154 	}
1155 
1156 	return 0;
1157 
1158 	/* CSROW error: backout what has already been registered,  */
1159 fail1:
1160 	for ( i--; i >= 0; i--) {
1161 		if (csrow->nr_pages > 0) {
1162 			init_completion(&csrow->kobj_complete);
1163 			kobject_unregister(&mci->csrows[i].kobj);
1164 			wait_for_completion(&csrow->kobj_complete);
1165 		}
1166 	}
1167 
1168 fail0:
1169 	init_completion(&mci->kobj_complete);
1170 	kobject_unregister(edac_mci_kobj);
1171 	wait_for_completion(&mci->kobj_complete);
1172 	return err;
1173 }
1174 #endif  /* DISABLE_EDAC_SYSFS */
1175 
1176 /*
1177  * remove a Memory Controller instance
1178  */
1179 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1180 {
1181 #ifndef DISABLE_EDAC_SYSFS
1182 	int i;
1183 
1184 	debugf0("%s()\n", __func__);
1185 
1186 	/* remove all csrow kobjects */
1187 	for (i = 0; i < mci->nr_csrows; i++) {
1188 		if (mci->csrows[i].nr_pages > 0) {
1189 			init_completion(&mci->csrows[i].kobj_complete);
1190 			kobject_unregister(&mci->csrows[i].kobj);
1191 			wait_for_completion(&mci->csrows[i].kobj_complete);
1192 		}
1193 	}
1194 
1195 	sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1196 	init_completion(&mci->kobj_complete);
1197 	kobject_unregister(&mci->edac_mci_kobj);
1198 	wait_for_completion(&mci->kobj_complete);
1199 #endif  /* DISABLE_EDAC_SYSFS */
1200 }
1201 
1202 /* END OF sysfs data and methods */
1203 
1204 #ifdef CONFIG_EDAC_DEBUG
1205 
1206 void edac_mc_dump_channel(struct channel_info *chan)
1207 {
1208 	debugf4("\tchannel = %p\n", chan);
1209 	debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1210 	debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1211 	debugf4("\tchannel->label = '%s'\n", chan->label);
1212 	debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1213 }
1214 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1215 
1216 void edac_mc_dump_csrow(struct csrow_info *csrow)
1217 {
1218 	debugf4("\tcsrow = %p\n", csrow);
1219 	debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1220 	debugf4("\tcsrow->first_page = 0x%lx\n",
1221 		csrow->first_page);
1222 	debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1223 	debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1224 	debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1225 	debugf4("\tcsrow->nr_channels = %d\n",
1226 		csrow->nr_channels);
1227 	debugf4("\tcsrow->channels = %p\n", csrow->channels);
1228 	debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1229 }
1230 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1231 
1232 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1233 {
1234 	debugf3("\tmci = %p\n", mci);
1235 	debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1236 	debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1237 	debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1238 	debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1239 	debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1240 		mci->nr_csrows, mci->csrows);
1241 	debugf3("\tpdev = %p\n", mci->pdev);
1242 	debugf3("\tmod_name:ctl_name = %s:%s\n",
1243 		mci->mod_name, mci->ctl_name);
1244 	debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1245 }
1246 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1247 
1248 #endif  /* CONFIG_EDAC_DEBUG */
1249 
1250 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1251  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1252  * compiler would provide for X and return the aligned result.
1253  *
1254  * If 'size' is a constant, the compiler will optimize this whole function
1255  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1256  */
1257 static inline char * align_ptr(void *ptr, unsigned size)
1258 {
1259 	unsigned align, r;
1260 
1261 	/* Here we assume that the alignment of a "long long" is the most
1262 	 * stringent alignment that the compiler will ever provide by default.
1263 	 * As far as I know, this is a reasonable assumption.
1264 	 */
1265 	if (size > sizeof(long))
1266 		align = sizeof(long long);
1267 	else if (size > sizeof(int))
1268 		align = sizeof(long);
1269 	else if (size > sizeof(short))
1270 		align = sizeof(int);
1271 	else if (size > sizeof(char))
1272 		align = sizeof(short);
1273 	else
1274 		return (char *) ptr;
1275 
1276 	r = size % align;
1277 
1278 	if (r == 0)
1279 		return (char *) ptr;
1280 
1281 	return (char *) (((unsigned long) ptr) + align - r);
1282 }
1283 
1284 /**
1285  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1286  * @size_pvt:	size of private storage needed
1287  * @nr_csrows:	Number of CWROWS needed for this MC
1288  * @nr_chans:	Number of channels for the MC
1289  *
1290  * Everything is kmalloc'ed as one big chunk - more efficient.
1291  * Only can be used if all structures have the same lifetime - otherwise
1292  * you have to allocate and initialize your own structures.
1293  *
1294  * Use edac_mc_free() to free mc structures allocated by this function.
1295  *
1296  * Returns:
1297  *	NULL allocation failed
1298  *	struct mem_ctl_info pointer
1299  */
1300 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1301 		unsigned nr_chans)
1302 {
1303 	struct mem_ctl_info *mci;
1304 	struct csrow_info *csi, *csrow;
1305 	struct channel_info *chi, *chp, *chan;
1306 	void *pvt;
1307 	unsigned size;
1308 	int row, chn;
1309 
1310 	/* Figure out the offsets of the various items from the start of an mc
1311 	 * structure.  We want the alignment of each item to be at least as
1312 	 * stringent as what the compiler would provide if we could simply
1313 	 * hardcode everything into a single struct.
1314 	 */
1315 	mci = (struct mem_ctl_info *) 0;
1316 	csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1317 	chi = (struct channel_info *)
1318 			align_ptr(&csi[nr_csrows], sizeof(*chi));
1319 	pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1320 	size = ((unsigned long) pvt) + sz_pvt;
1321 
1322 	if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1323 		return NULL;
1324 
1325 	/* Adjust pointers so they point within the memory we just allocated
1326 	 * rather than an imaginary chunk of memory located at address 0.
1327 	 */
1328 	csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1329 	chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1330 	pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1331 
1332 	memset(mci, 0, size);  /* clear all fields */
1333 	mci->csrows = csi;
1334 	mci->pvt_info = pvt;
1335 	mci->nr_csrows = nr_csrows;
1336 
1337 	for (row = 0; row < nr_csrows; row++) {
1338 		csrow = &csi[row];
1339 		csrow->csrow_idx = row;
1340 		csrow->mci = mci;
1341 		csrow->nr_channels = nr_chans;
1342 		chp = &chi[row * nr_chans];
1343 		csrow->channels = chp;
1344 
1345 		for (chn = 0; chn < nr_chans; chn++) {
1346 			chan = &chp[chn];
1347 			chan->chan_idx = chn;
1348 			chan->csrow = csrow;
1349 		}
1350 	}
1351 
1352 	return mci;
1353 }
1354 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1355 
1356 /**
1357  * edac_mc_free:  Free a previously allocated 'mci' structure
1358  * @mci: pointer to a struct mem_ctl_info structure
1359  */
1360 void edac_mc_free(struct mem_ctl_info *mci)
1361 {
1362 	kfree(mci);
1363 }
1364 EXPORT_SYMBOL_GPL(edac_mc_free);
1365 
1366 static struct mem_ctl_info *find_mci_by_pdev(struct pci_dev *pdev)
1367 {
1368 	struct mem_ctl_info *mci;
1369 	struct list_head *item;
1370 
1371 	debugf3("%s()\n", __func__);
1372 
1373 	list_for_each(item, &mc_devices) {
1374 		mci = list_entry(item, struct mem_ctl_info, link);
1375 
1376 		if (mci->pdev == pdev)
1377 			return mci;
1378 	}
1379 
1380 	return NULL;
1381 }
1382 
1383 static int add_mc_to_global_list(struct mem_ctl_info *mci)
1384 {
1385 	struct list_head *item, *insert_before;
1386 	struct mem_ctl_info *p;
1387 	int i;
1388 
1389 	if (list_empty(&mc_devices)) {
1390 		mci->mc_idx = 0;
1391 		insert_before = &mc_devices;
1392 	} else {
1393 		if (find_mci_by_pdev(mci->pdev)) {
1394 			edac_printk(KERN_WARNING, EDAC_MC,
1395 				"%s (%s) %s %s already assigned %d\n",
1396 				mci->pdev->dev.bus_id,
1397 				pci_name(mci->pdev), mci->mod_name,
1398 				mci->ctl_name, mci->mc_idx);
1399 			return 1;
1400 		}
1401 
1402 		insert_before = NULL;
1403 		i = 0;
1404 
1405 		list_for_each(item, &mc_devices) {
1406 			p = list_entry(item, struct mem_ctl_info, link);
1407 
1408 			if (p->mc_idx != i) {
1409 				insert_before = item;
1410 				break;
1411 			}
1412 
1413 			i++;
1414 		}
1415 
1416 		mci->mc_idx = i;
1417 
1418 		if (insert_before == NULL)
1419 			insert_before = &mc_devices;
1420 	}
1421 
1422 	list_add_tail_rcu(&mci->link, insert_before);
1423 	return 0;
1424 }
1425 
1426 static void complete_mc_list_del(struct rcu_head *head)
1427 {
1428 	struct mem_ctl_info *mci;
1429 
1430 	mci = container_of(head, struct mem_ctl_info, rcu);
1431 	INIT_LIST_HEAD(&mci->link);
1432 	complete(&mci->complete);
1433 }
1434 
1435 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1436 {
1437 	list_del_rcu(&mci->link);
1438 	init_completion(&mci->complete);
1439 	call_rcu(&mci->rcu, complete_mc_list_del);
1440 	wait_for_completion(&mci->complete);
1441 }
1442 
1443 /**
1444  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1445  *                 create sysfs entries associated with mci structure
1446  * @mci: pointer to the mci structure to be added to the list
1447  *
1448  * Return:
1449  *	0	Success
1450  *	!0	Failure
1451  */
1452 
1453 /* FIXME - should a warning be printed if no error detection? correction? */
1454 int edac_mc_add_mc(struct mem_ctl_info *mci)
1455 {
1456 	debugf0("%s()\n", __func__);
1457 #ifdef CONFIG_EDAC_DEBUG
1458 	if (edac_debug_level >= 3)
1459 		edac_mc_dump_mci(mci);
1460 
1461 	if (edac_debug_level >= 4) {
1462 		int i;
1463 
1464 		for (i = 0; i < mci->nr_csrows; i++) {
1465 			int j;
1466 
1467 			edac_mc_dump_csrow(&mci->csrows[i]);
1468 			for (j = 0; j < mci->csrows[i].nr_channels; j++)
1469 				edac_mc_dump_channel(
1470 					&mci->csrows[i].channels[j]);
1471 		}
1472 	}
1473 #endif
1474 	down(&mem_ctls_mutex);
1475 
1476 	if (add_mc_to_global_list(mci))
1477 		goto fail0;
1478 
1479 	/* set load time so that error rate can be tracked */
1480 	mci->start_time = jiffies;
1481 
1482         if (edac_create_sysfs_mci_device(mci)) {
1483                 edac_mc_printk(mci, KERN_WARNING,
1484 			"failed to create sysfs device\n");
1485                 goto fail1;
1486         }
1487 
1488 	/* Report action taken */
1489 	edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: PCI %s\n",
1490 		mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1491 
1492 	up(&mem_ctls_mutex);
1493 	return 0;
1494 
1495 fail1:
1496 	del_mc_from_global_list(mci);
1497 
1498 fail0:
1499 	up(&mem_ctls_mutex);
1500 	return 1;
1501 }
1502 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1503 
1504 /**
1505  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1506  *                 remove mci structure from global list
1507  * @pdev: Pointer to 'struct pci_dev' representing mci structure to remove.
1508  *
1509  * Return pointer to removed mci structure, or NULL if device not found.
1510  */
1511 struct mem_ctl_info * edac_mc_del_mc(struct pci_dev *pdev)
1512 {
1513 	struct mem_ctl_info *mci;
1514 
1515 	debugf0("MC: %s()\n", __func__);
1516 	down(&mem_ctls_mutex);
1517 
1518 	if ((mci = find_mci_by_pdev(pdev)) == NULL) {
1519 		up(&mem_ctls_mutex);
1520 		return NULL;
1521 	}
1522 
1523 	edac_remove_sysfs_mci_device(mci);
1524 	del_mc_from_global_list(mci);
1525 	up(&mem_ctls_mutex);
1526 	edac_printk(KERN_INFO, EDAC_MC,
1527 		"Removed device %d for %s %s: PCI %s\n", mci->mc_idx,
1528 		mci->mod_name, mci->ctl_name, pci_name(mci->pdev));
1529 	return mci;
1530 }
1531 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1532 
1533 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1534 {
1535 	struct page *pg;
1536 	void *virt_addr;
1537 	unsigned long flags = 0;
1538 
1539 	debugf3("%s()\n", __func__);
1540 
1541 	/* ECC error page was not in our memory. Ignore it. */
1542 	if(!pfn_valid(page))
1543 		return;
1544 
1545 	/* Find the actual page structure then map it and fix */
1546 	pg = pfn_to_page(page);
1547 
1548 	if (PageHighMem(pg))
1549 		local_irq_save(flags);
1550 
1551 	virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1552 
1553 	/* Perform architecture specific atomic scrub operation */
1554 	atomic_scrub(virt_addr + offset, size);
1555 
1556 	/* Unmap and complete */
1557 	kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1558 
1559 	if (PageHighMem(pg))
1560 		local_irq_restore(flags);
1561 }
1562 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1563 
1564 /* FIXME - should return -1 */
1565 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1566 {
1567 	struct csrow_info *csrows = mci->csrows;
1568 	int row, i;
1569 
1570 	debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1571 	row = -1;
1572 
1573 	for (i = 0; i < mci->nr_csrows; i++) {
1574 		struct csrow_info *csrow = &csrows[i];
1575 
1576 		if (csrow->nr_pages == 0)
1577 			continue;
1578 
1579 		debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1580 			"mask(0x%lx)\n", mci->mc_idx, __func__,
1581 			csrow->first_page, page, csrow->last_page,
1582 			csrow->page_mask);
1583 
1584 		if ((page >= csrow->first_page) &&
1585 		    (page <= csrow->last_page) &&
1586 		    ((page & csrow->page_mask) ==
1587 		     (csrow->first_page & csrow->page_mask))) {
1588 			row = i;
1589 			break;
1590 		}
1591 	}
1592 
1593 	if (row == -1)
1594 		edac_mc_printk(mci, KERN_ERR,
1595 			"could not look up page error address %lx\n",
1596 			(unsigned long) page);
1597 
1598 	return row;
1599 }
1600 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1601 
1602 /* FIXME - setable log (warning/emerg) levels */
1603 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1604 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1605 		unsigned long page_frame_number, unsigned long offset_in_page,
1606 		unsigned long syndrome, int row, int channel, const char *msg)
1607 {
1608 	unsigned long remapped_page;
1609 
1610 	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1611 
1612 	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1613 	if (row >= mci->nr_csrows || row < 0) {
1614 		/* something is wrong */
1615 		edac_mc_printk(mci, KERN_ERR,
1616 			"INTERNAL ERROR: row out of range "
1617 			"(%d >= %d)\n", row, mci->nr_csrows);
1618 		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1619 		return;
1620 	}
1621 
1622 	if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1623 		/* something is wrong */
1624 		edac_mc_printk(mci, KERN_ERR,
1625 			"INTERNAL ERROR: channel out of range "
1626 			"(%d >= %d)\n", channel,
1627 			mci->csrows[row].nr_channels);
1628 		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1629 		return;
1630 	}
1631 
1632 	if (log_ce)
1633 		/* FIXME - put in DIMM location */
1634 		edac_mc_printk(mci, KERN_WARNING,
1635 			"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1636 			"0x%lx, row %d, channel %d, label \"%s\": %s\n",
1637 			page_frame_number, offset_in_page,
1638 			mci->csrows[row].grain, syndrome, row, channel,
1639 			mci->csrows[row].channels[channel].label, msg);
1640 
1641 	mci->ce_count++;
1642 	mci->csrows[row].ce_count++;
1643 	mci->csrows[row].channels[channel].ce_count++;
1644 
1645 	if (mci->scrub_mode & SCRUB_SW_SRC) {
1646 		/*
1647 		 * Some MC's can remap memory so that it is still available
1648 		 * at a different address when PCI devices map into memory.
1649 		 * MC's that can't do this lose the memory where PCI devices
1650 		 * are mapped.  This mapping is MC dependant and so we call
1651 		 * back into the MC driver for it to map the MC page to
1652 		 * a physical (CPU) page which can then be mapped to a virtual
1653 		 * page - which can then be scrubbed.
1654 		 */
1655 		remapped_page = mci->ctl_page_to_phys ?
1656 		    mci->ctl_page_to_phys(mci, page_frame_number) :
1657 		    page_frame_number;
1658 
1659 		edac_mc_scrub_block(remapped_page, offset_in_page,
1660 					mci->csrows[row].grain);
1661 	}
1662 }
1663 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1664 
1665 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1666 {
1667 	if (log_ce)
1668 		edac_mc_printk(mci, KERN_WARNING,
1669 			"CE - no information available: %s\n", msg);
1670 
1671 	mci->ce_noinfo_count++;
1672 	mci->ce_count++;
1673 }
1674 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1675 
1676 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1677 		unsigned long page_frame_number, unsigned long offset_in_page,
1678 		int row, const char *msg)
1679 {
1680 	int len = EDAC_MC_LABEL_LEN * 4;
1681 	char labels[len + 1];
1682 	char *pos = labels;
1683 	int chan;
1684 	int chars;
1685 
1686 	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1687 
1688 	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1689 	if (row >= mci->nr_csrows || row < 0) {
1690 		/* something is wrong */
1691 		edac_mc_printk(mci, KERN_ERR,
1692 			"INTERNAL ERROR: row out of range "
1693 			"(%d >= %d)\n", row, mci->nr_csrows);
1694 		edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1695 		return;
1696 	}
1697 
1698 	chars = snprintf(pos, len + 1, "%s",
1699 			mci->csrows[row].channels[0].label);
1700 	len -= chars;
1701 	pos += chars;
1702 
1703 	for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1704 	     chan++) {
1705 		chars = snprintf(pos, len + 1, ":%s",
1706 				mci->csrows[row].channels[chan].label);
1707 		len -= chars;
1708 		pos += chars;
1709 	}
1710 
1711 	if (log_ue)
1712 		edac_mc_printk(mci, KERN_EMERG,
1713 			"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1714 			"labels \"%s\": %s\n", page_frame_number,
1715 			offset_in_page, mci->csrows[row].grain, row, labels,
1716 			msg);
1717 
1718 	if (panic_on_ue)
1719 		panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1720 			"row %d, labels \"%s\": %s\n", mci->mc_idx,
1721 			page_frame_number, offset_in_page,
1722 			mci->csrows[row].grain, row, labels, msg);
1723 
1724 	mci->ue_count++;
1725 	mci->csrows[row].ue_count++;
1726 }
1727 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1728 
1729 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1730 {
1731 	if (panic_on_ue)
1732 		panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1733 
1734 	if (log_ue)
1735 		edac_mc_printk(mci, KERN_WARNING,
1736 			"UE - no information available: %s\n", msg);
1737 	mci->ue_noinfo_count++;
1738 	mci->ue_count++;
1739 }
1740 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1741 
1742 #ifdef CONFIG_PCI
1743 
1744 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
1745 {
1746 	int where;
1747 	u16 status;
1748 
1749 	where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
1750 	pci_read_config_word(dev, where, &status);
1751 
1752 	/* If we get back 0xFFFF then we must suspect that the card has been
1753 	 * pulled but the Linux PCI layer has not yet finished cleaning up.
1754 	 * We don't want to report on such devices
1755 	 */
1756 
1757 	if (status == 0xFFFF) {
1758 		u32 sanity;
1759 
1760 		pci_read_config_dword(dev, 0, &sanity);
1761 
1762 		if (sanity == 0xFFFFFFFF)
1763 			return 0;
1764 	}
1765 
1766 	status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1767 		PCI_STATUS_PARITY;
1768 
1769 	if (status)
1770 		/* reset only the bits we are interested in */
1771 		pci_write_config_word(dev, where, status);
1772 
1773 	return status;
1774 }
1775 
1776 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
1777 
1778 /* Clear any PCI parity errors logged by this device. */
1779 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
1780 {
1781 	u8 header_type;
1782 
1783 	get_pci_parity_status(dev, 0);
1784 
1785 	/* read the device TYPE, looking for bridges */
1786 	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1787 
1788 	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
1789 		get_pci_parity_status(dev, 1);
1790 }
1791 
1792 /*
1793  *  PCI Parity polling
1794  *
1795  */
1796 static void edac_pci_dev_parity_test(struct pci_dev *dev)
1797 {
1798 	u16 status;
1799 	u8  header_type;
1800 
1801 	/* read the STATUS register on this device
1802 	 */
1803 	status = get_pci_parity_status(dev, 0);
1804 
1805 	debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
1806 
1807 	/* check the status reg for errors */
1808 	if (status) {
1809 		if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1810 			edac_printk(KERN_CRIT, EDAC_PCI,
1811 				"Signaled System Error on %s\n",
1812 				pci_name(dev));
1813 
1814 		if (status & (PCI_STATUS_PARITY)) {
1815 			edac_printk(KERN_CRIT, EDAC_PCI,
1816 				"Master Data Parity Error on %s\n",
1817 				pci_name(dev));
1818 
1819 			atomic_inc(&pci_parity_count);
1820 		}
1821 
1822 		if (status & (PCI_STATUS_DETECTED_PARITY)) {
1823 			edac_printk(KERN_CRIT, EDAC_PCI,
1824 				"Detected Parity Error on %s\n",
1825 				pci_name(dev));
1826 
1827 			atomic_inc(&pci_parity_count);
1828 		}
1829 	}
1830 
1831 	/* read the device TYPE, looking for bridges */
1832 	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
1833 
1834 	debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
1835 
1836 	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1837 		/* On bridges, need to examine secondary status register  */
1838 		status = get_pci_parity_status(dev, 1);
1839 
1840 		debugf2("PCI SEC_STATUS= 0x%04x %s\n",
1841 				status, dev->dev.bus_id );
1842 
1843 		/* check the secondary status reg for errors */
1844 		if (status) {
1845 			if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
1846 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1847 					"Signaled System Error on %s\n",
1848 					pci_name(dev));
1849 
1850 			if (status & (PCI_STATUS_PARITY)) {
1851 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1852 					"Master Data Parity Error on "
1853 					"%s\n", pci_name(dev));
1854 
1855 				atomic_inc(&pci_parity_count);
1856 			}
1857 
1858 			if (status & (PCI_STATUS_DETECTED_PARITY)) {
1859 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
1860 					"Detected Parity Error on %s\n",
1861 					pci_name(dev));
1862 
1863 				atomic_inc(&pci_parity_count);
1864 			}
1865 		}
1866 	}
1867 }
1868 
1869 /*
1870  * check_dev_on_list: Scan for a PCI device on a white/black list
1871  * @list:	an EDAC  &edac_pci_device_list  white/black list pointer
1872  * @free_index:	index of next free entry on the list
1873  * @pci_dev:	PCI Device pointer
1874  *
1875  * see if list contains the device.
1876  *
1877  * Returns:  	0 not found
1878  *		1 found on list
1879  */
1880 static int check_dev_on_list(struct edac_pci_device_list *list,
1881 		int free_index, struct pci_dev *dev)
1882 {
1883 	int i;
1884 	int rc = 0;     /* Assume not found */
1885 	unsigned short vendor=dev->vendor;
1886 	unsigned short device=dev->device;
1887 
1888 	/* Scan the list, looking for a vendor/device match */
1889 	for (i = 0; i < free_index; i++, list++ ) {
1890 		if ((list->vendor == vendor ) && (list->device == device )) {
1891 			rc = 1;
1892 			break;
1893 		}
1894 	}
1895 
1896 	return rc;
1897 }
1898 
1899 /*
1900  * pci_dev parity list iterator
1901  *	Scan the PCI device list for one iteration, looking for SERRORs
1902  *	Master Parity ERRORS or Parity ERRORs on primary or secondary devices
1903  */
1904 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
1905 {
1906 	struct pci_dev *dev = NULL;
1907 
1908 	/* request for kernel access to the next PCI device, if any,
1909 	 * and while we are looking at it have its reference count
1910 	 * bumped until we are done with it
1911 	 */
1912 	while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1913 		/* if whitelist exists then it has priority, so only scan
1914 		 * those devices on the whitelist
1915 		 */
1916 		if (pci_whitelist_count > 0 ) {
1917 			if (check_dev_on_list(pci_whitelist,
1918 					pci_whitelist_count, dev))
1919 				fn(dev);
1920 		} else {
1921 			/*
1922 			 * if no whitelist, then check if this devices is
1923 			 * blacklisted
1924 			 */
1925 			if (!check_dev_on_list(pci_blacklist,
1926 					pci_blacklist_count, dev))
1927 				fn(dev);
1928 		}
1929 	}
1930 }
1931 
1932 static void do_pci_parity_check(void)
1933 {
1934 	unsigned long flags;
1935 	int before_count;
1936 
1937 	debugf3("%s()\n", __func__);
1938 
1939 	if (!check_pci_parity)
1940 		return;
1941 
1942 	before_count = atomic_read(&pci_parity_count);
1943 
1944 	/* scan all PCI devices looking for a Parity Error on devices and
1945 	 * bridges
1946 	 */
1947 	local_irq_save(flags);
1948 	edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
1949 	local_irq_restore(flags);
1950 
1951 	/* Only if operator has selected panic on PCI Error */
1952 	if (panic_on_pci_parity) {
1953 		/* If the count is different 'after' from 'before' */
1954 		if (before_count != atomic_read(&pci_parity_count))
1955 			panic("EDAC: PCI Parity Error");
1956 	}
1957 }
1958 
1959 static inline void clear_pci_parity_errors(void)
1960 {
1961 	/* Clear any PCI bus parity errors that devices initially have logged
1962 	 * in their registers.
1963 	 */
1964 	edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
1965 }
1966 
1967 #else  /* CONFIG_PCI */
1968 
1969 static inline void do_pci_parity_check(void)
1970 {
1971 	/* no-op */
1972 }
1973 
1974 static inline void clear_pci_parity_errors(void)
1975 {
1976 	/* no-op */
1977 }
1978 
1979 #endif  /* CONFIG_PCI */
1980 
1981 /*
1982  * Iterate over all MC instances and check for ECC, et al, errors
1983  */
1984 static inline void check_mc_devices(void)
1985 {
1986 	struct list_head *item;
1987 	struct mem_ctl_info *mci;
1988 
1989 	debugf3("%s()\n", __func__);
1990 	down(&mem_ctls_mutex);
1991 
1992 	list_for_each(item, &mc_devices) {
1993 		mci = list_entry(item, struct mem_ctl_info, link);
1994 
1995 		if (mci->edac_check != NULL)
1996 			mci->edac_check(mci);
1997 	}
1998 
1999 	up(&mem_ctls_mutex);
2000 }
2001 
2002 /*
2003  * Check MC status every poll_msec.
2004  * Check PCI status every poll_msec as well.
2005  *
2006  * This where the work gets done for edac.
2007  *
2008  * SMP safe, doesn't use NMI, and auto-rate-limits.
2009  */
2010 static void do_edac_check(void)
2011 {
2012 	debugf3("%s()\n", __func__);
2013 	check_mc_devices();
2014 	do_pci_parity_check();
2015 }
2016 
2017 static int edac_kernel_thread(void *arg)
2018 {
2019 	while (!kthread_should_stop()) {
2020 		do_edac_check();
2021 
2022 		/* goto sleep for the interval */
2023 		schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2024 		try_to_freeze();
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 /*
2031  * edac_mc_init
2032  *      module initialization entry point
2033  */
2034 static int __init edac_mc_init(void)
2035 {
2036 	edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2037 
2038 	/*
2039 	 * Harvest and clear any boot/initialization PCI parity errors
2040 	 *
2041 	 * FIXME: This only clears errors logged by devices present at time of
2042 	 * 	module initialization.  We should also do an initial clear
2043 	 *	of each newly hotplugged device.
2044 	 */
2045 	clear_pci_parity_errors();
2046 
2047 	/* Create the MC sysfs entries */
2048 	if (edac_sysfs_memctrl_setup()) {
2049 		edac_printk(KERN_ERR, EDAC_MC,
2050 			"Error initializing sysfs code\n");
2051 		return -ENODEV;
2052 	}
2053 
2054 	/* Create the PCI parity sysfs entries */
2055 	if (edac_sysfs_pci_setup()) {
2056 		edac_sysfs_memctrl_teardown();
2057 		edac_printk(KERN_ERR, EDAC_MC,
2058 			"EDAC PCI: Error initializing sysfs code\n");
2059 		return -ENODEV;
2060 	}
2061 
2062 	/* create our kernel thread */
2063 	edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2064 
2065 	if (IS_ERR(edac_thread)) {
2066 		/* remove the sysfs entries */
2067 		edac_sysfs_memctrl_teardown();
2068 		edac_sysfs_pci_teardown();
2069 		return PTR_ERR(edac_thread);
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 /*
2076  * edac_mc_exit()
2077  *      module exit/termination functioni
2078  */
2079 static void __exit edac_mc_exit(void)
2080 {
2081 	debugf0("%s()\n", __func__);
2082 	kthread_stop(edac_thread);
2083 
2084         /* tear down the sysfs device */
2085 	edac_sysfs_memctrl_teardown();
2086 	edac_sysfs_pci_teardown();
2087 }
2088 
2089 module_init(edac_mc_init);
2090 module_exit(edac_mc_exit);
2091 
2092 MODULE_LICENSE("GPL");
2093 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2094 	"Based on work by Dan Hollis et al");
2095 MODULE_DESCRIPTION("Core library routines for MC reporting");
2096 
2097 module_param(panic_on_ue, int, 0644);
2098 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2099 module_param(check_pci_parity, int, 0644);
2100 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2101 module_param(panic_on_pci_parity, int, 0644);
2102 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2103 module_param(log_ue, int, 0644);
2104 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2105 module_param(log_ce, int, 0644);
2106 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2107 module_param(poll_msec, int, 0644);
2108 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2109 #ifdef CONFIG_EDAC_DEBUG
2110 module_param(edac_debug_level, int, 0644);
2111 MODULE_PARM_DESC(edac_debug_level, "Debug level");
2112 #endif
2113