1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/sysdev.h> 29 #include <linux/ctype.h> 30 #include <linux/edac.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 37 /* lock to memory controller's control array */ 38 static DEFINE_MUTEX(mem_ctls_mutex); 39 static LIST_HEAD(mc_devices); 40 41 #ifdef CONFIG_EDAC_DEBUG 42 43 static void edac_mc_dump_channel(struct channel_info *chan) 44 { 45 debugf4("\tchannel = %p\n", chan); 46 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx); 47 debugf4("\tchannel->ce_count = %d\n", chan->ce_count); 48 debugf4("\tchannel->label = '%s'\n", chan->label); 49 debugf4("\tchannel->csrow = %p\n\n", chan->csrow); 50 } 51 52 static void edac_mc_dump_csrow(struct csrow_info *csrow) 53 { 54 debugf4("\tcsrow = %p\n", csrow); 55 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx); 56 debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page); 57 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page); 58 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask); 59 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages); 60 debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels); 61 debugf4("\tcsrow->channels = %p\n", csrow->channels); 62 debugf4("\tcsrow->mci = %p\n\n", csrow->mci); 63 } 64 65 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 66 { 67 debugf3("\tmci = %p\n", mci); 68 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap); 69 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 70 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap); 71 debugf4("\tmci->edac_check = %p\n", mci->edac_check); 72 debugf3("\tmci->nr_csrows = %d, csrows = %p\n", 73 mci->nr_csrows, mci->csrows); 74 debugf3("\tdev = %p\n", mci->dev); 75 debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name); 76 debugf3("\tpvt_info = %p\n\n", mci->pvt_info); 77 } 78 79 /* 80 * keep those in sync with the enum mem_type 81 */ 82 const char *edac_mem_types[] = { 83 "Empty csrow", 84 "Reserved csrow type", 85 "Unknown csrow type", 86 "Fast page mode RAM", 87 "Extended data out RAM", 88 "Burst Extended data out RAM", 89 "Single data rate SDRAM", 90 "Registered single data rate SDRAM", 91 "Double data rate SDRAM", 92 "Registered Double data rate SDRAM", 93 "Rambus DRAM", 94 "Unbuffered DDR2 RAM", 95 "Fully buffered DDR2", 96 "Registered DDR2 RAM", 97 "Rambus XDR", 98 "Unbuffered DDR3 RAM", 99 "Registered DDR3 RAM", 100 }; 101 EXPORT_SYMBOL_GPL(edac_mem_types); 102 103 #endif /* CONFIG_EDAC_DEBUG */ 104 105 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'. 106 * Adjust 'ptr' so that its alignment is at least as stringent as what the 107 * compiler would provide for X and return the aligned result. 108 * 109 * If 'size' is a constant, the compiler will optimize this whole function 110 * down to either a no-op or the addition of a constant to the value of 'ptr'. 111 */ 112 void *edac_align_ptr(void *ptr, unsigned size) 113 { 114 unsigned align, r; 115 116 /* Here we assume that the alignment of a "long long" is the most 117 * stringent alignment that the compiler will ever provide by default. 118 * As far as I know, this is a reasonable assumption. 119 */ 120 if (size > sizeof(long)) 121 align = sizeof(long long); 122 else if (size > sizeof(int)) 123 align = sizeof(long); 124 else if (size > sizeof(short)) 125 align = sizeof(int); 126 else if (size > sizeof(char)) 127 align = sizeof(short); 128 else 129 return (char *)ptr; 130 131 r = size % align; 132 133 if (r == 0) 134 return (char *)ptr; 135 136 return (void *)(((unsigned long)ptr) + align - r); 137 } 138 139 /** 140 * edac_mc_alloc: Allocate a struct mem_ctl_info structure 141 * @size_pvt: size of private storage needed 142 * @nr_csrows: Number of CWROWS needed for this MC 143 * @nr_chans: Number of channels for the MC 144 * 145 * Everything is kmalloc'ed as one big chunk - more efficient. 146 * Only can be used if all structures have the same lifetime - otherwise 147 * you have to allocate and initialize your own structures. 148 * 149 * Use edac_mc_free() to free mc structures allocated by this function. 150 * 151 * Returns: 152 * NULL allocation failed 153 * struct mem_ctl_info pointer 154 */ 155 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, 156 unsigned nr_chans, int edac_index) 157 { 158 struct mem_ctl_info *mci; 159 struct csrow_info *csi, *csrow; 160 struct channel_info *chi, *chp, *chan; 161 void *pvt; 162 unsigned size; 163 int row, chn; 164 int err; 165 166 /* Figure out the offsets of the various items from the start of an mc 167 * structure. We want the alignment of each item to be at least as 168 * stringent as what the compiler would provide if we could simply 169 * hardcode everything into a single struct. 170 */ 171 mci = (struct mem_ctl_info *)0; 172 csi = edac_align_ptr(&mci[1], sizeof(*csi)); 173 chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi)); 174 pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt); 175 size = ((unsigned long)pvt) + sz_pvt; 176 177 mci = kzalloc(size, GFP_KERNEL); 178 if (mci == NULL) 179 return NULL; 180 181 /* Adjust pointers so they point within the memory we just allocated 182 * rather than an imaginary chunk of memory located at address 0. 183 */ 184 csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi)); 185 chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi)); 186 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 187 188 /* setup index and various internal pointers */ 189 mci->mc_idx = edac_index; 190 mci->csrows = csi; 191 mci->pvt_info = pvt; 192 mci->nr_csrows = nr_csrows; 193 194 for (row = 0; row < nr_csrows; row++) { 195 csrow = &csi[row]; 196 csrow->csrow_idx = row; 197 csrow->mci = mci; 198 csrow->nr_channels = nr_chans; 199 chp = &chi[row * nr_chans]; 200 csrow->channels = chp; 201 202 for (chn = 0; chn < nr_chans; chn++) { 203 chan = &chp[chn]; 204 chan->chan_idx = chn; 205 chan->csrow = csrow; 206 } 207 } 208 209 mci->op_state = OP_ALLOC; 210 INIT_LIST_HEAD(&mci->grp_kobj_list); 211 212 /* 213 * Initialize the 'root' kobj for the edac_mc controller 214 */ 215 err = edac_mc_register_sysfs_main_kobj(mci); 216 if (err) { 217 kfree(mci); 218 return NULL; 219 } 220 221 /* at this point, the root kobj is valid, and in order to 222 * 'free' the object, then the function: 223 * edac_mc_unregister_sysfs_main_kobj() must be called 224 * which will perform kobj unregistration and the actual free 225 * will occur during the kobject callback operation 226 */ 227 return mci; 228 } 229 EXPORT_SYMBOL_GPL(edac_mc_alloc); 230 231 /** 232 * edac_mc_free 233 * 'Free' a previously allocated 'mci' structure 234 * @mci: pointer to a struct mem_ctl_info structure 235 */ 236 void edac_mc_free(struct mem_ctl_info *mci) 237 { 238 debugf1("%s()\n", __func__); 239 240 edac_mc_unregister_sysfs_main_kobj(mci); 241 242 /* free the mci instance memory here */ 243 kfree(mci); 244 } 245 EXPORT_SYMBOL_GPL(edac_mc_free); 246 247 248 /** 249 * find_mci_by_dev 250 * 251 * scan list of controllers looking for the one that manages 252 * the 'dev' device 253 * @dev: pointer to a struct device related with the MCI 254 */ 255 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 256 { 257 struct mem_ctl_info *mci; 258 struct list_head *item; 259 260 debugf3("%s()\n", __func__); 261 262 list_for_each(item, &mc_devices) { 263 mci = list_entry(item, struct mem_ctl_info, link); 264 265 if (mci->dev == dev) 266 return mci; 267 } 268 269 return NULL; 270 } 271 EXPORT_SYMBOL_GPL(find_mci_by_dev); 272 273 /* 274 * handler for EDAC to check if NMI type handler has asserted interrupt 275 */ 276 static int edac_mc_assert_error_check_and_clear(void) 277 { 278 int old_state; 279 280 if (edac_op_state == EDAC_OPSTATE_POLL) 281 return 1; 282 283 old_state = edac_err_assert; 284 edac_err_assert = 0; 285 286 return old_state; 287 } 288 289 /* 290 * edac_mc_workq_function 291 * performs the operation scheduled by a workq request 292 */ 293 static void edac_mc_workq_function(struct work_struct *work_req) 294 { 295 struct delayed_work *d_work = to_delayed_work(work_req); 296 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 297 298 mutex_lock(&mem_ctls_mutex); 299 300 /* if this control struct has movd to offline state, we are done */ 301 if (mci->op_state == OP_OFFLINE) { 302 mutex_unlock(&mem_ctls_mutex); 303 return; 304 } 305 306 /* Only poll controllers that are running polled and have a check */ 307 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 308 mci->edac_check(mci); 309 310 mutex_unlock(&mem_ctls_mutex); 311 312 /* Reschedule */ 313 queue_delayed_work(edac_workqueue, &mci->work, 314 msecs_to_jiffies(edac_mc_get_poll_msec())); 315 } 316 317 /* 318 * edac_mc_workq_setup 319 * initialize a workq item for this mci 320 * passing in the new delay period in msec 321 * 322 * locking model: 323 * 324 * called with the mem_ctls_mutex held 325 */ 326 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) 327 { 328 debugf0("%s()\n", __func__); 329 330 /* if this instance is not in the POLL state, then simply return */ 331 if (mci->op_state != OP_RUNNING_POLL) 332 return; 333 334 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 335 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 336 } 337 338 /* 339 * edac_mc_workq_teardown 340 * stop the workq processing on this mci 341 * 342 * locking model: 343 * 344 * called WITHOUT lock held 345 */ 346 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 347 { 348 int status; 349 350 if (mci->op_state != OP_RUNNING_POLL) 351 return; 352 353 status = cancel_delayed_work(&mci->work); 354 if (status == 0) { 355 debugf0("%s() not canceled, flush the queue\n", 356 __func__); 357 358 /* workq instance might be running, wait for it */ 359 flush_workqueue(edac_workqueue); 360 } 361 } 362 363 /* 364 * edac_mc_reset_delay_period(unsigned long value) 365 * 366 * user space has updated our poll period value, need to 367 * reset our workq delays 368 */ 369 void edac_mc_reset_delay_period(int value) 370 { 371 struct mem_ctl_info *mci; 372 struct list_head *item; 373 374 mutex_lock(&mem_ctls_mutex); 375 376 /* scan the list and turn off all workq timers, doing so under lock 377 */ 378 list_for_each(item, &mc_devices) { 379 mci = list_entry(item, struct mem_ctl_info, link); 380 381 if (mci->op_state == OP_RUNNING_POLL) 382 cancel_delayed_work(&mci->work); 383 } 384 385 mutex_unlock(&mem_ctls_mutex); 386 387 388 /* re-walk the list, and reset the poll delay */ 389 mutex_lock(&mem_ctls_mutex); 390 391 list_for_each(item, &mc_devices) { 392 mci = list_entry(item, struct mem_ctl_info, link); 393 394 edac_mc_workq_setup(mci, (unsigned long) value); 395 } 396 397 mutex_unlock(&mem_ctls_mutex); 398 } 399 400 401 402 /* Return 0 on success, 1 on failure. 403 * Before calling this function, caller must 404 * assign a unique value to mci->mc_idx. 405 * 406 * locking model: 407 * 408 * called with the mem_ctls_mutex lock held 409 */ 410 static int add_mc_to_global_list(struct mem_ctl_info *mci) 411 { 412 struct list_head *item, *insert_before; 413 struct mem_ctl_info *p; 414 415 insert_before = &mc_devices; 416 417 p = find_mci_by_dev(mci->dev); 418 if (unlikely(p != NULL)) 419 goto fail0; 420 421 list_for_each(item, &mc_devices) { 422 p = list_entry(item, struct mem_ctl_info, link); 423 424 if (p->mc_idx >= mci->mc_idx) { 425 if (unlikely(p->mc_idx == mci->mc_idx)) 426 goto fail1; 427 428 insert_before = item; 429 break; 430 } 431 } 432 433 list_add_tail_rcu(&mci->link, insert_before); 434 atomic_inc(&edac_handlers); 435 return 0; 436 437 fail0: 438 edac_printk(KERN_WARNING, EDAC_MC, 439 "%s (%s) %s %s already assigned %d\n", dev_name(p->dev), 440 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 441 return 1; 442 443 fail1: 444 edac_printk(KERN_WARNING, EDAC_MC, 445 "bug in low-level driver: attempt to assign\n" 446 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 447 return 1; 448 } 449 450 static void complete_mc_list_del(struct rcu_head *head) 451 { 452 struct mem_ctl_info *mci; 453 454 mci = container_of(head, struct mem_ctl_info, rcu); 455 INIT_LIST_HEAD(&mci->link); 456 } 457 458 static void del_mc_from_global_list(struct mem_ctl_info *mci) 459 { 460 atomic_dec(&edac_handlers); 461 list_del_rcu(&mci->link); 462 call_rcu(&mci->rcu, complete_mc_list_del); 463 rcu_barrier(); 464 } 465 466 /** 467 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 468 * 469 * If found, return a pointer to the structure. 470 * Else return NULL. 471 * 472 * Caller must hold mem_ctls_mutex. 473 */ 474 struct mem_ctl_info *edac_mc_find(int idx) 475 { 476 struct list_head *item; 477 struct mem_ctl_info *mci; 478 479 list_for_each(item, &mc_devices) { 480 mci = list_entry(item, struct mem_ctl_info, link); 481 482 if (mci->mc_idx >= idx) { 483 if (mci->mc_idx == idx) 484 return mci; 485 486 break; 487 } 488 } 489 490 return NULL; 491 } 492 EXPORT_SYMBOL(edac_mc_find); 493 494 /** 495 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 496 * create sysfs entries associated with mci structure 497 * @mci: pointer to the mci structure to be added to the list 498 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure. 499 * 500 * Return: 501 * 0 Success 502 * !0 Failure 503 */ 504 505 /* FIXME - should a warning be printed if no error detection? correction? */ 506 int edac_mc_add_mc(struct mem_ctl_info *mci) 507 { 508 debugf0("%s()\n", __func__); 509 510 #ifdef CONFIG_EDAC_DEBUG 511 if (edac_debug_level >= 3) 512 edac_mc_dump_mci(mci); 513 514 if (edac_debug_level >= 4) { 515 int i; 516 517 for (i = 0; i < mci->nr_csrows; i++) { 518 int j; 519 520 edac_mc_dump_csrow(&mci->csrows[i]); 521 for (j = 0; j < mci->csrows[i].nr_channels; j++) 522 edac_mc_dump_channel(&mci->csrows[i]. 523 channels[j]); 524 } 525 } 526 #endif 527 mutex_lock(&mem_ctls_mutex); 528 529 if (add_mc_to_global_list(mci)) 530 goto fail0; 531 532 /* set load time so that error rate can be tracked */ 533 mci->start_time = jiffies; 534 535 if (edac_create_sysfs_mci_device(mci)) { 536 edac_mc_printk(mci, KERN_WARNING, 537 "failed to create sysfs device\n"); 538 goto fail1; 539 } 540 541 /* If there IS a check routine, then we are running POLLED */ 542 if (mci->edac_check != NULL) { 543 /* This instance is NOW RUNNING */ 544 mci->op_state = OP_RUNNING_POLL; 545 546 edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); 547 } else { 548 mci->op_state = OP_RUNNING_INTERRUPT; 549 } 550 551 /* Report action taken */ 552 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':" 553 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 554 555 mutex_unlock(&mem_ctls_mutex); 556 return 0; 557 558 fail1: 559 del_mc_from_global_list(mci); 560 561 fail0: 562 mutex_unlock(&mem_ctls_mutex); 563 return 1; 564 } 565 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 566 567 /** 568 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 569 * remove mci structure from global list 570 * @pdev: Pointer to 'struct device' representing mci structure to remove. 571 * 572 * Return pointer to removed mci structure, or NULL if device not found. 573 */ 574 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 575 { 576 struct mem_ctl_info *mci; 577 578 debugf0("%s()\n", __func__); 579 580 mutex_lock(&mem_ctls_mutex); 581 582 /* find the requested mci struct in the global list */ 583 mci = find_mci_by_dev(dev); 584 if (mci == NULL) { 585 mutex_unlock(&mem_ctls_mutex); 586 return NULL; 587 } 588 589 /* marking MCI offline */ 590 mci->op_state = OP_OFFLINE; 591 592 del_mc_from_global_list(mci); 593 mutex_unlock(&mem_ctls_mutex); 594 595 /* flush workq processes and remove sysfs */ 596 edac_mc_workq_teardown(mci); 597 edac_remove_sysfs_mci_device(mci); 598 599 edac_printk(KERN_INFO, EDAC_MC, 600 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 601 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 602 603 return mci; 604 } 605 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 606 607 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 608 u32 size) 609 { 610 struct page *pg; 611 void *virt_addr; 612 unsigned long flags = 0; 613 614 debugf3("%s()\n", __func__); 615 616 /* ECC error page was not in our memory. Ignore it. */ 617 if (!pfn_valid(page)) 618 return; 619 620 /* Find the actual page structure then map it and fix */ 621 pg = pfn_to_page(page); 622 623 if (PageHighMem(pg)) 624 local_irq_save(flags); 625 626 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ); 627 628 /* Perform architecture specific atomic scrub operation */ 629 atomic_scrub(virt_addr + offset, size); 630 631 /* Unmap and complete */ 632 kunmap_atomic(virt_addr, KM_BOUNCE_READ); 633 634 if (PageHighMem(pg)) 635 local_irq_restore(flags); 636 } 637 638 /* FIXME - should return -1 */ 639 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 640 { 641 struct csrow_info *csrows = mci->csrows; 642 int row, i; 643 644 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page); 645 row = -1; 646 647 for (i = 0; i < mci->nr_csrows; i++) { 648 struct csrow_info *csrow = &csrows[i]; 649 650 if (csrow->nr_pages == 0) 651 continue; 652 653 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) " 654 "mask(0x%lx)\n", mci->mc_idx, __func__, 655 csrow->first_page, page, csrow->last_page, 656 csrow->page_mask); 657 658 if ((page >= csrow->first_page) && 659 (page <= csrow->last_page) && 660 ((page & csrow->page_mask) == 661 (csrow->first_page & csrow->page_mask))) { 662 row = i; 663 break; 664 } 665 } 666 667 if (row == -1) 668 edac_mc_printk(mci, KERN_ERR, 669 "could not look up page error address %lx\n", 670 (unsigned long)page); 671 672 return row; 673 } 674 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 675 676 /* FIXME - setable log (warning/emerg) levels */ 677 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */ 678 void edac_mc_handle_ce(struct mem_ctl_info *mci, 679 unsigned long page_frame_number, 680 unsigned long offset_in_page, unsigned long syndrome, 681 int row, int channel, const char *msg) 682 { 683 unsigned long remapped_page; 684 685 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 686 687 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 688 if (row >= mci->nr_csrows || row < 0) { 689 /* something is wrong */ 690 edac_mc_printk(mci, KERN_ERR, 691 "INTERNAL ERROR: row out of range " 692 "(%d >= %d)\n", row, mci->nr_csrows); 693 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 694 return; 695 } 696 697 if (channel >= mci->csrows[row].nr_channels || channel < 0) { 698 /* something is wrong */ 699 edac_mc_printk(mci, KERN_ERR, 700 "INTERNAL ERROR: channel out of range " 701 "(%d >= %d)\n", channel, 702 mci->csrows[row].nr_channels); 703 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 704 return; 705 } 706 707 if (edac_mc_get_log_ce()) 708 /* FIXME - put in DIMM location */ 709 edac_mc_printk(mci, KERN_WARNING, 710 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome " 711 "0x%lx, row %d, channel %d, label \"%s\": %s\n", 712 page_frame_number, offset_in_page, 713 mci->csrows[row].grain, syndrome, row, channel, 714 mci->csrows[row].channels[channel].label, msg); 715 716 mci->ce_count++; 717 mci->csrows[row].ce_count++; 718 mci->csrows[row].channels[channel].ce_count++; 719 720 if (mci->scrub_mode & SCRUB_SW_SRC) { 721 /* 722 * Some MC's can remap memory so that it is still available 723 * at a different address when PCI devices map into memory. 724 * MC's that can't do this lose the memory where PCI devices 725 * are mapped. This mapping is MC dependant and so we call 726 * back into the MC driver for it to map the MC page to 727 * a physical (CPU) page which can then be mapped to a virtual 728 * page - which can then be scrubbed. 729 */ 730 remapped_page = mci->ctl_page_to_phys ? 731 mci->ctl_page_to_phys(mci, page_frame_number) : 732 page_frame_number; 733 734 edac_mc_scrub_block(remapped_page, offset_in_page, 735 mci->csrows[row].grain); 736 } 737 } 738 EXPORT_SYMBOL_GPL(edac_mc_handle_ce); 739 740 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg) 741 { 742 if (edac_mc_get_log_ce()) 743 edac_mc_printk(mci, KERN_WARNING, 744 "CE - no information available: %s\n", msg); 745 746 mci->ce_noinfo_count++; 747 mci->ce_count++; 748 } 749 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info); 750 751 void edac_mc_handle_ue(struct mem_ctl_info *mci, 752 unsigned long page_frame_number, 753 unsigned long offset_in_page, int row, const char *msg) 754 { 755 int len = EDAC_MC_LABEL_LEN * 4; 756 char labels[len + 1]; 757 char *pos = labels; 758 int chan; 759 int chars; 760 761 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 762 763 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 764 if (row >= mci->nr_csrows || row < 0) { 765 /* something is wrong */ 766 edac_mc_printk(mci, KERN_ERR, 767 "INTERNAL ERROR: row out of range " 768 "(%d >= %d)\n", row, mci->nr_csrows); 769 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 770 return; 771 } 772 773 chars = snprintf(pos, len + 1, "%s", 774 mci->csrows[row].channels[0].label); 775 len -= chars; 776 pos += chars; 777 778 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0); 779 chan++) { 780 chars = snprintf(pos, len + 1, ":%s", 781 mci->csrows[row].channels[chan].label); 782 len -= chars; 783 pos += chars; 784 } 785 786 if (edac_mc_get_log_ue()) 787 edac_mc_printk(mci, KERN_EMERG, 788 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, " 789 "labels \"%s\": %s\n", page_frame_number, 790 offset_in_page, mci->csrows[row].grain, row, 791 labels, msg); 792 793 if (edac_mc_get_panic_on_ue()) 794 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, " 795 "row %d, labels \"%s\": %s\n", mci->mc_idx, 796 page_frame_number, offset_in_page, 797 mci->csrows[row].grain, row, labels, msg); 798 799 mci->ue_count++; 800 mci->csrows[row].ue_count++; 801 } 802 EXPORT_SYMBOL_GPL(edac_mc_handle_ue); 803 804 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg) 805 { 806 if (edac_mc_get_panic_on_ue()) 807 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx); 808 809 if (edac_mc_get_log_ue()) 810 edac_mc_printk(mci, KERN_WARNING, 811 "UE - no information available: %s\n", msg); 812 mci->ue_noinfo_count++; 813 mci->ue_count++; 814 } 815 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info); 816 817 /************************************************************* 818 * On Fully Buffered DIMM modules, this help function is 819 * called to process UE events 820 */ 821 void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, 822 unsigned int csrow, 823 unsigned int channela, 824 unsigned int channelb, char *msg) 825 { 826 int len = EDAC_MC_LABEL_LEN * 4; 827 char labels[len + 1]; 828 char *pos = labels; 829 int chars; 830 831 if (csrow >= mci->nr_csrows) { 832 /* something is wrong */ 833 edac_mc_printk(mci, KERN_ERR, 834 "INTERNAL ERROR: row out of range (%d >= %d)\n", 835 csrow, mci->nr_csrows); 836 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 837 return; 838 } 839 840 if (channela >= mci->csrows[csrow].nr_channels) { 841 /* something is wrong */ 842 edac_mc_printk(mci, KERN_ERR, 843 "INTERNAL ERROR: channel-a out of range " 844 "(%d >= %d)\n", 845 channela, mci->csrows[csrow].nr_channels); 846 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 847 return; 848 } 849 850 if (channelb >= mci->csrows[csrow].nr_channels) { 851 /* something is wrong */ 852 edac_mc_printk(mci, KERN_ERR, 853 "INTERNAL ERROR: channel-b out of range " 854 "(%d >= %d)\n", 855 channelb, mci->csrows[csrow].nr_channels); 856 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 857 return; 858 } 859 860 mci->ue_count++; 861 mci->csrows[csrow].ue_count++; 862 863 /* Generate the DIMM labels from the specified channels */ 864 chars = snprintf(pos, len + 1, "%s", 865 mci->csrows[csrow].channels[channela].label); 866 len -= chars; 867 pos += chars; 868 chars = snprintf(pos, len + 1, "-%s", 869 mci->csrows[csrow].channels[channelb].label); 870 871 if (edac_mc_get_log_ue()) 872 edac_mc_printk(mci, KERN_EMERG, 873 "UE row %d, channel-a= %d channel-b= %d " 874 "labels \"%s\": %s\n", csrow, channela, channelb, 875 labels, msg); 876 877 if (edac_mc_get_panic_on_ue()) 878 panic("UE row %d, channel-a= %d channel-b= %d " 879 "labels \"%s\": %s\n", csrow, channela, 880 channelb, labels, msg); 881 } 882 EXPORT_SYMBOL(edac_mc_handle_fbd_ue); 883 884 /************************************************************* 885 * On Fully Buffered DIMM modules, this help function is 886 * called to process CE events 887 */ 888 void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, 889 unsigned int csrow, unsigned int channel, char *msg) 890 { 891 892 /* Ensure boundary values */ 893 if (csrow >= mci->nr_csrows) { 894 /* something is wrong */ 895 edac_mc_printk(mci, KERN_ERR, 896 "INTERNAL ERROR: row out of range (%d >= %d)\n", 897 csrow, mci->nr_csrows); 898 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 899 return; 900 } 901 if (channel >= mci->csrows[csrow].nr_channels) { 902 /* something is wrong */ 903 edac_mc_printk(mci, KERN_ERR, 904 "INTERNAL ERROR: channel out of range (%d >= %d)\n", 905 channel, mci->csrows[csrow].nr_channels); 906 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 907 return; 908 } 909 910 if (edac_mc_get_log_ce()) 911 /* FIXME - put in DIMM location */ 912 edac_mc_printk(mci, KERN_WARNING, 913 "CE row %d, channel %d, label \"%s\": %s\n", 914 csrow, channel, 915 mci->csrows[csrow].channels[channel].label, msg); 916 917 mci->ce_count++; 918 mci->csrows[csrow].ce_count++; 919 mci->csrows[csrow].channels[channel].ce_count++; 920 } 921 EXPORT_SYMBOL(edac_mc_handle_fbd_ce); 922