1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <asm/uaccess.h> 31 #include <asm/page.h> 32 #include <asm/edac.h> 33 #include "edac_core.h" 34 #include "edac_module.h" 35 36 /* lock to memory controller's control array */ 37 static DEFINE_MUTEX(mem_ctls_mutex); 38 static LIST_HEAD(mc_devices); 39 40 #ifdef CONFIG_EDAC_DEBUG 41 42 static void edac_mc_dump_channel(struct channel_info *chan) 43 { 44 debugf4("\tchannel = %p\n", chan); 45 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx); 46 debugf4("\tchannel->ce_count = %d\n", chan->ce_count); 47 debugf4("\tchannel->label = '%s'\n", chan->label); 48 debugf4("\tchannel->csrow = %p\n\n", chan->csrow); 49 } 50 51 static void edac_mc_dump_csrow(struct csrow_info *csrow) 52 { 53 debugf4("\tcsrow = %p\n", csrow); 54 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx); 55 debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page); 56 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page); 57 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask); 58 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages); 59 debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels); 60 debugf4("\tcsrow->channels = %p\n", csrow->channels); 61 debugf4("\tcsrow->mci = %p\n\n", csrow->mci); 62 } 63 64 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 65 { 66 debugf3("\tmci = %p\n", mci); 67 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap); 68 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 69 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap); 70 debugf4("\tmci->edac_check = %p\n", mci->edac_check); 71 debugf3("\tmci->nr_csrows = %d, csrows = %p\n", 72 mci->nr_csrows, mci->csrows); 73 debugf3("\tdev = %p\n", mci->dev); 74 debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name); 75 debugf3("\tpvt_info = %p\n\n", mci->pvt_info); 76 } 77 78 #endif /* CONFIG_EDAC_DEBUG */ 79 80 /* 81 * keep those in sync with the enum mem_type 82 */ 83 const char *edac_mem_types[] = { 84 "Empty csrow", 85 "Reserved csrow type", 86 "Unknown csrow type", 87 "Fast page mode RAM", 88 "Extended data out RAM", 89 "Burst Extended data out RAM", 90 "Single data rate SDRAM", 91 "Registered single data rate SDRAM", 92 "Double data rate SDRAM", 93 "Registered Double data rate SDRAM", 94 "Rambus DRAM", 95 "Unbuffered DDR2 RAM", 96 "Fully buffered DDR2", 97 "Registered DDR2 RAM", 98 "Rambus XDR", 99 "Unbuffered DDR3 RAM", 100 "Registered DDR3 RAM", 101 }; 102 EXPORT_SYMBOL_GPL(edac_mem_types); 103 104 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'. 105 * Adjust 'ptr' so that its alignment is at least as stringent as what the 106 * compiler would provide for X and return the aligned result. 107 * 108 * If 'size' is a constant, the compiler will optimize this whole function 109 * down to either a no-op or the addition of a constant to the value of 'ptr'. 110 */ 111 void *edac_align_ptr(void *ptr, unsigned size) 112 { 113 unsigned align, r; 114 115 /* Here we assume that the alignment of a "long long" is the most 116 * stringent alignment that the compiler will ever provide by default. 117 * As far as I know, this is a reasonable assumption. 118 */ 119 if (size > sizeof(long)) 120 align = sizeof(long long); 121 else if (size > sizeof(int)) 122 align = sizeof(long); 123 else if (size > sizeof(short)) 124 align = sizeof(int); 125 else if (size > sizeof(char)) 126 align = sizeof(short); 127 else 128 return (char *)ptr; 129 130 r = size % align; 131 132 if (r == 0) 133 return (char *)ptr; 134 135 return (void *)(((unsigned long)ptr) + align - r); 136 } 137 138 /** 139 * edac_mc_alloc: Allocate a struct mem_ctl_info structure 140 * @size_pvt: size of private storage needed 141 * @nr_csrows: Number of CWROWS needed for this MC 142 * @nr_chans: Number of channels for the MC 143 * 144 * Everything is kmalloc'ed as one big chunk - more efficient. 145 * Only can be used if all structures have the same lifetime - otherwise 146 * you have to allocate and initialize your own structures. 147 * 148 * Use edac_mc_free() to free mc structures allocated by this function. 149 * 150 * Returns: 151 * NULL allocation failed 152 * struct mem_ctl_info pointer 153 */ 154 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, 155 unsigned nr_chans, int edac_index) 156 { 157 struct mem_ctl_info *mci; 158 struct csrow_info *csi, *csrow; 159 struct channel_info *chi, *chp, *chan; 160 void *pvt; 161 unsigned size; 162 int row, chn; 163 int err; 164 165 /* Figure out the offsets of the various items from the start of an mc 166 * structure. We want the alignment of each item to be at least as 167 * stringent as what the compiler would provide if we could simply 168 * hardcode everything into a single struct. 169 */ 170 mci = (struct mem_ctl_info *)0; 171 csi = edac_align_ptr(&mci[1], sizeof(*csi)); 172 chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi)); 173 pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt); 174 size = ((unsigned long)pvt) + sz_pvt; 175 176 mci = kzalloc(size, GFP_KERNEL); 177 if (mci == NULL) 178 return NULL; 179 180 /* Adjust pointers so they point within the memory we just allocated 181 * rather than an imaginary chunk of memory located at address 0. 182 */ 183 csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi)); 184 chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi)); 185 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 186 187 /* setup index and various internal pointers */ 188 mci->mc_idx = edac_index; 189 mci->csrows = csi; 190 mci->pvt_info = pvt; 191 mci->nr_csrows = nr_csrows; 192 193 for (row = 0; row < nr_csrows; row++) { 194 csrow = &csi[row]; 195 csrow->csrow_idx = row; 196 csrow->mci = mci; 197 csrow->nr_channels = nr_chans; 198 chp = &chi[row * nr_chans]; 199 csrow->channels = chp; 200 201 for (chn = 0; chn < nr_chans; chn++) { 202 chan = &chp[chn]; 203 chan->chan_idx = chn; 204 chan->csrow = csrow; 205 } 206 } 207 208 mci->op_state = OP_ALLOC; 209 INIT_LIST_HEAD(&mci->grp_kobj_list); 210 211 /* 212 * Initialize the 'root' kobj for the edac_mc controller 213 */ 214 err = edac_mc_register_sysfs_main_kobj(mci); 215 if (err) { 216 kfree(mci); 217 return NULL; 218 } 219 220 /* at this point, the root kobj is valid, and in order to 221 * 'free' the object, then the function: 222 * edac_mc_unregister_sysfs_main_kobj() must be called 223 * which will perform kobj unregistration and the actual free 224 * will occur during the kobject callback operation 225 */ 226 return mci; 227 } 228 EXPORT_SYMBOL_GPL(edac_mc_alloc); 229 230 /** 231 * edac_mc_free 232 * 'Free' a previously allocated 'mci' structure 233 * @mci: pointer to a struct mem_ctl_info structure 234 */ 235 void edac_mc_free(struct mem_ctl_info *mci) 236 { 237 debugf1("%s()\n", __func__); 238 239 edac_mc_unregister_sysfs_main_kobj(mci); 240 241 /* free the mci instance memory here */ 242 kfree(mci); 243 } 244 EXPORT_SYMBOL_GPL(edac_mc_free); 245 246 247 /** 248 * find_mci_by_dev 249 * 250 * scan list of controllers looking for the one that manages 251 * the 'dev' device 252 * @dev: pointer to a struct device related with the MCI 253 */ 254 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 255 { 256 struct mem_ctl_info *mci; 257 struct list_head *item; 258 259 debugf3("%s()\n", __func__); 260 261 list_for_each(item, &mc_devices) { 262 mci = list_entry(item, struct mem_ctl_info, link); 263 264 if (mci->dev == dev) 265 return mci; 266 } 267 268 return NULL; 269 } 270 EXPORT_SYMBOL_GPL(find_mci_by_dev); 271 272 /* 273 * handler for EDAC to check if NMI type handler has asserted interrupt 274 */ 275 static int edac_mc_assert_error_check_and_clear(void) 276 { 277 int old_state; 278 279 if (edac_op_state == EDAC_OPSTATE_POLL) 280 return 1; 281 282 old_state = edac_err_assert; 283 edac_err_assert = 0; 284 285 return old_state; 286 } 287 288 /* 289 * edac_mc_workq_function 290 * performs the operation scheduled by a workq request 291 */ 292 static void edac_mc_workq_function(struct work_struct *work_req) 293 { 294 struct delayed_work *d_work = to_delayed_work(work_req); 295 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 296 297 mutex_lock(&mem_ctls_mutex); 298 299 /* if this control struct has movd to offline state, we are done */ 300 if (mci->op_state == OP_OFFLINE) { 301 mutex_unlock(&mem_ctls_mutex); 302 return; 303 } 304 305 /* Only poll controllers that are running polled and have a check */ 306 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 307 mci->edac_check(mci); 308 309 mutex_unlock(&mem_ctls_mutex); 310 311 /* Reschedule */ 312 queue_delayed_work(edac_workqueue, &mci->work, 313 msecs_to_jiffies(edac_mc_get_poll_msec())); 314 } 315 316 /* 317 * edac_mc_workq_setup 318 * initialize a workq item for this mci 319 * passing in the new delay period in msec 320 * 321 * locking model: 322 * 323 * called with the mem_ctls_mutex held 324 */ 325 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) 326 { 327 debugf0("%s()\n", __func__); 328 329 /* if this instance is not in the POLL state, then simply return */ 330 if (mci->op_state != OP_RUNNING_POLL) 331 return; 332 333 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 334 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 335 } 336 337 /* 338 * edac_mc_workq_teardown 339 * stop the workq processing on this mci 340 * 341 * locking model: 342 * 343 * called WITHOUT lock held 344 */ 345 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 346 { 347 int status; 348 349 if (mci->op_state != OP_RUNNING_POLL) 350 return; 351 352 status = cancel_delayed_work(&mci->work); 353 if (status == 0) { 354 debugf0("%s() not canceled, flush the queue\n", 355 __func__); 356 357 /* workq instance might be running, wait for it */ 358 flush_workqueue(edac_workqueue); 359 } 360 } 361 362 /* 363 * edac_mc_reset_delay_period(unsigned long value) 364 * 365 * user space has updated our poll period value, need to 366 * reset our workq delays 367 */ 368 void edac_mc_reset_delay_period(int value) 369 { 370 struct mem_ctl_info *mci; 371 struct list_head *item; 372 373 mutex_lock(&mem_ctls_mutex); 374 375 /* scan the list and turn off all workq timers, doing so under lock 376 */ 377 list_for_each(item, &mc_devices) { 378 mci = list_entry(item, struct mem_ctl_info, link); 379 380 if (mci->op_state == OP_RUNNING_POLL) 381 cancel_delayed_work(&mci->work); 382 } 383 384 mutex_unlock(&mem_ctls_mutex); 385 386 387 /* re-walk the list, and reset the poll delay */ 388 mutex_lock(&mem_ctls_mutex); 389 390 list_for_each(item, &mc_devices) { 391 mci = list_entry(item, struct mem_ctl_info, link); 392 393 edac_mc_workq_setup(mci, (unsigned long) value); 394 } 395 396 mutex_unlock(&mem_ctls_mutex); 397 } 398 399 400 401 /* Return 0 on success, 1 on failure. 402 * Before calling this function, caller must 403 * assign a unique value to mci->mc_idx. 404 * 405 * locking model: 406 * 407 * called with the mem_ctls_mutex lock held 408 */ 409 static int add_mc_to_global_list(struct mem_ctl_info *mci) 410 { 411 struct list_head *item, *insert_before; 412 struct mem_ctl_info *p; 413 414 insert_before = &mc_devices; 415 416 p = find_mci_by_dev(mci->dev); 417 if (unlikely(p != NULL)) 418 goto fail0; 419 420 list_for_each(item, &mc_devices) { 421 p = list_entry(item, struct mem_ctl_info, link); 422 423 if (p->mc_idx >= mci->mc_idx) { 424 if (unlikely(p->mc_idx == mci->mc_idx)) 425 goto fail1; 426 427 insert_before = item; 428 break; 429 } 430 } 431 432 list_add_tail_rcu(&mci->link, insert_before); 433 atomic_inc(&edac_handlers); 434 return 0; 435 436 fail0: 437 edac_printk(KERN_WARNING, EDAC_MC, 438 "%s (%s) %s %s already assigned %d\n", dev_name(p->dev), 439 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 440 return 1; 441 442 fail1: 443 edac_printk(KERN_WARNING, EDAC_MC, 444 "bug in low-level driver: attempt to assign\n" 445 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 446 return 1; 447 } 448 449 static void del_mc_from_global_list(struct mem_ctl_info *mci) 450 { 451 atomic_dec(&edac_handlers); 452 list_del_rcu(&mci->link); 453 454 /* these are for safe removal of devices from global list while 455 * NMI handlers may be traversing list 456 */ 457 synchronize_rcu(); 458 INIT_LIST_HEAD(&mci->link); 459 } 460 461 /** 462 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 463 * 464 * If found, return a pointer to the structure. 465 * Else return NULL. 466 * 467 * Caller must hold mem_ctls_mutex. 468 */ 469 struct mem_ctl_info *edac_mc_find(int idx) 470 { 471 struct list_head *item; 472 struct mem_ctl_info *mci; 473 474 list_for_each(item, &mc_devices) { 475 mci = list_entry(item, struct mem_ctl_info, link); 476 477 if (mci->mc_idx >= idx) { 478 if (mci->mc_idx == idx) 479 return mci; 480 481 break; 482 } 483 } 484 485 return NULL; 486 } 487 EXPORT_SYMBOL(edac_mc_find); 488 489 /** 490 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 491 * create sysfs entries associated with mci structure 492 * @mci: pointer to the mci structure to be added to the list 493 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure. 494 * 495 * Return: 496 * 0 Success 497 * !0 Failure 498 */ 499 500 /* FIXME - should a warning be printed if no error detection? correction? */ 501 int edac_mc_add_mc(struct mem_ctl_info *mci) 502 { 503 debugf0("%s()\n", __func__); 504 505 #ifdef CONFIG_EDAC_DEBUG 506 if (edac_debug_level >= 3) 507 edac_mc_dump_mci(mci); 508 509 if (edac_debug_level >= 4) { 510 int i; 511 512 for (i = 0; i < mci->nr_csrows; i++) { 513 int j; 514 515 edac_mc_dump_csrow(&mci->csrows[i]); 516 for (j = 0; j < mci->csrows[i].nr_channels; j++) 517 edac_mc_dump_channel(&mci->csrows[i]. 518 channels[j]); 519 } 520 } 521 #endif 522 mutex_lock(&mem_ctls_mutex); 523 524 if (add_mc_to_global_list(mci)) 525 goto fail0; 526 527 /* set load time so that error rate can be tracked */ 528 mci->start_time = jiffies; 529 530 if (edac_create_sysfs_mci_device(mci)) { 531 edac_mc_printk(mci, KERN_WARNING, 532 "failed to create sysfs device\n"); 533 goto fail1; 534 } 535 536 /* If there IS a check routine, then we are running POLLED */ 537 if (mci->edac_check != NULL) { 538 /* This instance is NOW RUNNING */ 539 mci->op_state = OP_RUNNING_POLL; 540 541 edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); 542 } else { 543 mci->op_state = OP_RUNNING_INTERRUPT; 544 } 545 546 /* Report action taken */ 547 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':" 548 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 549 550 mutex_unlock(&mem_ctls_mutex); 551 return 0; 552 553 fail1: 554 del_mc_from_global_list(mci); 555 556 fail0: 557 mutex_unlock(&mem_ctls_mutex); 558 return 1; 559 } 560 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 561 562 /** 563 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 564 * remove mci structure from global list 565 * @pdev: Pointer to 'struct device' representing mci structure to remove. 566 * 567 * Return pointer to removed mci structure, or NULL if device not found. 568 */ 569 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 570 { 571 struct mem_ctl_info *mci; 572 573 debugf0("%s()\n", __func__); 574 575 mutex_lock(&mem_ctls_mutex); 576 577 /* find the requested mci struct in the global list */ 578 mci = find_mci_by_dev(dev); 579 if (mci == NULL) { 580 mutex_unlock(&mem_ctls_mutex); 581 return NULL; 582 } 583 584 del_mc_from_global_list(mci); 585 mutex_unlock(&mem_ctls_mutex); 586 587 /* flush workq processes */ 588 edac_mc_workq_teardown(mci); 589 590 /* marking MCI offline */ 591 mci->op_state = OP_OFFLINE; 592 593 /* remove from sysfs */ 594 edac_remove_sysfs_mci_device(mci); 595 596 edac_printk(KERN_INFO, EDAC_MC, 597 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 598 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 599 600 return mci; 601 } 602 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 603 604 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 605 u32 size) 606 { 607 struct page *pg; 608 void *virt_addr; 609 unsigned long flags = 0; 610 611 debugf3("%s()\n", __func__); 612 613 /* ECC error page was not in our memory. Ignore it. */ 614 if (!pfn_valid(page)) 615 return; 616 617 /* Find the actual page structure then map it and fix */ 618 pg = pfn_to_page(page); 619 620 if (PageHighMem(pg)) 621 local_irq_save(flags); 622 623 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ); 624 625 /* Perform architecture specific atomic scrub operation */ 626 atomic_scrub(virt_addr + offset, size); 627 628 /* Unmap and complete */ 629 kunmap_atomic(virt_addr, KM_BOUNCE_READ); 630 631 if (PageHighMem(pg)) 632 local_irq_restore(flags); 633 } 634 635 /* FIXME - should return -1 */ 636 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 637 { 638 struct csrow_info *csrows = mci->csrows; 639 int row, i; 640 641 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page); 642 row = -1; 643 644 for (i = 0; i < mci->nr_csrows; i++) { 645 struct csrow_info *csrow = &csrows[i]; 646 647 if (csrow->nr_pages == 0) 648 continue; 649 650 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) " 651 "mask(0x%lx)\n", mci->mc_idx, __func__, 652 csrow->first_page, page, csrow->last_page, 653 csrow->page_mask); 654 655 if ((page >= csrow->first_page) && 656 (page <= csrow->last_page) && 657 ((page & csrow->page_mask) == 658 (csrow->first_page & csrow->page_mask))) { 659 row = i; 660 break; 661 } 662 } 663 664 if (row == -1) 665 edac_mc_printk(mci, KERN_ERR, 666 "could not look up page error address %lx\n", 667 (unsigned long)page); 668 669 return row; 670 } 671 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 672 673 /* FIXME - setable log (warning/emerg) levels */ 674 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */ 675 void edac_mc_handle_ce(struct mem_ctl_info *mci, 676 unsigned long page_frame_number, 677 unsigned long offset_in_page, unsigned long syndrome, 678 int row, int channel, const char *msg) 679 { 680 unsigned long remapped_page; 681 682 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 683 684 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 685 if (row >= mci->nr_csrows || row < 0) { 686 /* something is wrong */ 687 edac_mc_printk(mci, KERN_ERR, 688 "INTERNAL ERROR: row out of range " 689 "(%d >= %d)\n", row, mci->nr_csrows); 690 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 691 return; 692 } 693 694 if (channel >= mci->csrows[row].nr_channels || channel < 0) { 695 /* something is wrong */ 696 edac_mc_printk(mci, KERN_ERR, 697 "INTERNAL ERROR: channel out of range " 698 "(%d >= %d)\n", channel, 699 mci->csrows[row].nr_channels); 700 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 701 return; 702 } 703 704 if (edac_mc_get_log_ce()) 705 /* FIXME - put in DIMM location */ 706 edac_mc_printk(mci, KERN_WARNING, 707 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome " 708 "0x%lx, row %d, channel %d, label \"%s\": %s\n", 709 page_frame_number, offset_in_page, 710 mci->csrows[row].grain, syndrome, row, channel, 711 mci->csrows[row].channels[channel].label, msg); 712 713 mci->ce_count++; 714 mci->csrows[row].ce_count++; 715 mci->csrows[row].channels[channel].ce_count++; 716 717 if (mci->scrub_mode & SCRUB_SW_SRC) { 718 /* 719 * Some MC's can remap memory so that it is still available 720 * at a different address when PCI devices map into memory. 721 * MC's that can't do this lose the memory where PCI devices 722 * are mapped. This mapping is MC dependent and so we call 723 * back into the MC driver for it to map the MC page to 724 * a physical (CPU) page which can then be mapped to a virtual 725 * page - which can then be scrubbed. 726 */ 727 remapped_page = mci->ctl_page_to_phys ? 728 mci->ctl_page_to_phys(mci, page_frame_number) : 729 page_frame_number; 730 731 edac_mc_scrub_block(remapped_page, offset_in_page, 732 mci->csrows[row].grain); 733 } 734 } 735 EXPORT_SYMBOL_GPL(edac_mc_handle_ce); 736 737 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg) 738 { 739 if (edac_mc_get_log_ce()) 740 edac_mc_printk(mci, KERN_WARNING, 741 "CE - no information available: %s\n", msg); 742 743 mci->ce_noinfo_count++; 744 mci->ce_count++; 745 } 746 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info); 747 748 void edac_mc_handle_ue(struct mem_ctl_info *mci, 749 unsigned long page_frame_number, 750 unsigned long offset_in_page, int row, const char *msg) 751 { 752 int len = EDAC_MC_LABEL_LEN * 4; 753 char labels[len + 1]; 754 char *pos = labels; 755 int chan; 756 int chars; 757 758 debugf3("MC%d: %s()\n", mci->mc_idx, __func__); 759 760 /* FIXME - maybe make panic on INTERNAL ERROR an option */ 761 if (row >= mci->nr_csrows || row < 0) { 762 /* something is wrong */ 763 edac_mc_printk(mci, KERN_ERR, 764 "INTERNAL ERROR: row out of range " 765 "(%d >= %d)\n", row, mci->nr_csrows); 766 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 767 return; 768 } 769 770 chars = snprintf(pos, len + 1, "%s", 771 mci->csrows[row].channels[0].label); 772 len -= chars; 773 pos += chars; 774 775 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0); 776 chan++) { 777 chars = snprintf(pos, len + 1, ":%s", 778 mci->csrows[row].channels[chan].label); 779 len -= chars; 780 pos += chars; 781 } 782 783 if (edac_mc_get_log_ue()) 784 edac_mc_printk(mci, KERN_EMERG, 785 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, " 786 "labels \"%s\": %s\n", page_frame_number, 787 offset_in_page, mci->csrows[row].grain, row, 788 labels, msg); 789 790 if (edac_mc_get_panic_on_ue()) 791 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, " 792 "row %d, labels \"%s\": %s\n", mci->mc_idx, 793 page_frame_number, offset_in_page, 794 mci->csrows[row].grain, row, labels, msg); 795 796 mci->ue_count++; 797 mci->csrows[row].ue_count++; 798 } 799 EXPORT_SYMBOL_GPL(edac_mc_handle_ue); 800 801 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg) 802 { 803 if (edac_mc_get_panic_on_ue()) 804 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx); 805 806 if (edac_mc_get_log_ue()) 807 edac_mc_printk(mci, KERN_WARNING, 808 "UE - no information available: %s\n", msg); 809 mci->ue_noinfo_count++; 810 mci->ue_count++; 811 } 812 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info); 813 814 /************************************************************* 815 * On Fully Buffered DIMM modules, this help function is 816 * called to process UE events 817 */ 818 void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, 819 unsigned int csrow, 820 unsigned int channela, 821 unsigned int channelb, char *msg) 822 { 823 int len = EDAC_MC_LABEL_LEN * 4; 824 char labels[len + 1]; 825 char *pos = labels; 826 int chars; 827 828 if (csrow >= mci->nr_csrows) { 829 /* something is wrong */ 830 edac_mc_printk(mci, KERN_ERR, 831 "INTERNAL ERROR: row out of range (%d >= %d)\n", 832 csrow, mci->nr_csrows); 833 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 834 return; 835 } 836 837 if (channela >= mci->csrows[csrow].nr_channels) { 838 /* something is wrong */ 839 edac_mc_printk(mci, KERN_ERR, 840 "INTERNAL ERROR: channel-a out of range " 841 "(%d >= %d)\n", 842 channela, mci->csrows[csrow].nr_channels); 843 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 844 return; 845 } 846 847 if (channelb >= mci->csrows[csrow].nr_channels) { 848 /* something is wrong */ 849 edac_mc_printk(mci, KERN_ERR, 850 "INTERNAL ERROR: channel-b out of range " 851 "(%d >= %d)\n", 852 channelb, mci->csrows[csrow].nr_channels); 853 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR"); 854 return; 855 } 856 857 mci->ue_count++; 858 mci->csrows[csrow].ue_count++; 859 860 /* Generate the DIMM labels from the specified channels */ 861 chars = snprintf(pos, len + 1, "%s", 862 mci->csrows[csrow].channels[channela].label); 863 len -= chars; 864 pos += chars; 865 chars = snprintf(pos, len + 1, "-%s", 866 mci->csrows[csrow].channels[channelb].label); 867 868 if (edac_mc_get_log_ue()) 869 edac_mc_printk(mci, KERN_EMERG, 870 "UE row %d, channel-a= %d channel-b= %d " 871 "labels \"%s\": %s\n", csrow, channela, channelb, 872 labels, msg); 873 874 if (edac_mc_get_panic_on_ue()) 875 panic("UE row %d, channel-a= %d channel-b= %d " 876 "labels \"%s\": %s\n", csrow, channela, 877 channelb, labels, msg); 878 } 879 EXPORT_SYMBOL(edac_mc_handle_fbd_ue); 880 881 /************************************************************* 882 * On Fully Buffered DIMM modules, this help function is 883 * called to process CE events 884 */ 885 void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, 886 unsigned int csrow, unsigned int channel, char *msg) 887 { 888 889 /* Ensure boundary values */ 890 if (csrow >= mci->nr_csrows) { 891 /* something is wrong */ 892 edac_mc_printk(mci, KERN_ERR, 893 "INTERNAL ERROR: row out of range (%d >= %d)\n", 894 csrow, mci->nr_csrows); 895 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 896 return; 897 } 898 if (channel >= mci->csrows[csrow].nr_channels) { 899 /* something is wrong */ 900 edac_mc_printk(mci, KERN_ERR, 901 "INTERNAL ERROR: channel out of range (%d >= %d)\n", 902 channel, mci->csrows[csrow].nr_channels); 903 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR"); 904 return; 905 } 906 907 if (edac_mc_get_log_ce()) 908 /* FIXME - put in DIMM location */ 909 edac_mc_printk(mci, KERN_WARNING, 910 "CE row %d, channel %d, label \"%s\": %s\n", 911 csrow, channel, 912 mci->csrows[csrow].channels[channel].label, msg); 913 914 mci->ce_count++; 915 mci->csrows[csrow].ce_count++; 916 mci->csrows[csrow].channels[channel].ce_count++; 917 } 918 EXPORT_SYMBOL(edac_mc_handle_fbd_ce); 919