1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <linux/uaccess.h> 32 #include <asm/page.h> 33 #include "edac_mc.h" 34 #include "edac_module.h" 35 #include <ras/ras_event.h> 36 37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB 38 #include <asm/edac.h> 39 #else 40 #define edac_atomic_scrub(va, size) do { } while (0) 41 #endif 42 43 int edac_op_state = EDAC_OPSTATE_INVAL; 44 EXPORT_SYMBOL_GPL(edac_op_state); 45 46 /* lock to memory controller's control array */ 47 static DEFINE_MUTEX(mem_ctls_mutex); 48 static LIST_HEAD(mc_devices); 49 50 /* 51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g. 52 * apei/ghes and i7core_edac to be used at the same time. 53 */ 54 static const char *edac_mc_owner; 55 56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e) 57 { 58 return container_of(e, struct mem_ctl_info, error_desc); 59 } 60 61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, 62 unsigned int len) 63 { 64 struct mem_ctl_info *mci = dimm->mci; 65 int i, n, count = 0; 66 char *p = buf; 67 68 for (i = 0; i < mci->n_layers; i++) { 69 n = scnprintf(p, len, "%s %d ", 70 edac_layer_name[mci->layers[i].type], 71 dimm->location[i]); 72 p += n; 73 len -= n; 74 count += n; 75 } 76 77 return count; 78 } 79 80 #ifdef CONFIG_EDAC_DEBUG 81 82 static void edac_mc_dump_channel(struct rank_info *chan) 83 { 84 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 85 edac_dbg(4, " channel = %p\n", chan); 86 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 87 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 88 } 89 90 static void edac_mc_dump_dimm(struct dimm_info *dimm) 91 { 92 char location[80]; 93 94 if (!dimm->nr_pages) 95 return; 96 97 edac_dimm_info_location(dimm, location, sizeof(location)); 98 99 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 100 dimm->mci->csbased ? "rank" : "dimm", 101 dimm->idx, location, dimm->csrow, dimm->cschannel); 102 edac_dbg(4, " dimm = %p\n", dimm); 103 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 104 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 105 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 106 } 107 108 static void edac_mc_dump_csrow(struct csrow_info *csrow) 109 { 110 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 111 edac_dbg(4, " csrow = %p\n", csrow); 112 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 113 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 114 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 115 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 116 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 117 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 118 } 119 120 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 121 { 122 edac_dbg(3, "\tmci = %p\n", mci); 123 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 124 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 125 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 126 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 127 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 128 mci->nr_csrows, mci->csrows); 129 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 130 mci->tot_dimms, mci->dimms); 131 edac_dbg(3, "\tdev = %p\n", mci->pdev); 132 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 133 mci->mod_name, mci->ctl_name); 134 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 135 } 136 137 #endif /* CONFIG_EDAC_DEBUG */ 138 139 const char * const edac_mem_types[] = { 140 [MEM_EMPTY] = "Empty", 141 [MEM_RESERVED] = "Reserved", 142 [MEM_UNKNOWN] = "Unknown", 143 [MEM_FPM] = "FPM", 144 [MEM_EDO] = "EDO", 145 [MEM_BEDO] = "BEDO", 146 [MEM_SDR] = "Unbuffered-SDR", 147 [MEM_RDR] = "Registered-SDR", 148 [MEM_DDR] = "Unbuffered-DDR", 149 [MEM_RDDR] = "Registered-DDR", 150 [MEM_RMBS] = "RMBS", 151 [MEM_DDR2] = "Unbuffered-DDR2", 152 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 153 [MEM_RDDR2] = "Registered-DDR2", 154 [MEM_XDR] = "XDR", 155 [MEM_DDR3] = "Unbuffered-DDR3", 156 [MEM_RDDR3] = "Registered-DDR3", 157 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", 158 [MEM_LPDDR3] = "Low-Power-DDR3-RAM", 159 [MEM_DDR4] = "Unbuffered-DDR4", 160 [MEM_RDDR4] = "Registered-DDR4", 161 [MEM_LPDDR4] = "Low-Power-DDR4-RAM", 162 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", 163 [MEM_DDR5] = "Unbuffered-DDR5", 164 [MEM_RDDR5] = "Registered-DDR5", 165 [MEM_LRDDR5] = "Load-Reduced-DDR5-RAM", 166 [MEM_NVDIMM] = "Non-volatile-RAM", 167 [MEM_WIO2] = "Wide-IO-2", 168 [MEM_HBM2] = "High-bandwidth-memory-Gen2", 169 }; 170 EXPORT_SYMBOL_GPL(edac_mem_types); 171 172 static void _edac_mc_free(struct mem_ctl_info *mci) 173 { 174 put_device(&mci->dev); 175 } 176 177 static void mci_release(struct device *dev) 178 { 179 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 180 struct csrow_info *csr; 181 int i, chn, row; 182 183 if (mci->dimms) { 184 for (i = 0; i < mci->tot_dimms; i++) 185 kfree(mci->dimms[i]); 186 kfree(mci->dimms); 187 } 188 189 if (mci->csrows) { 190 for (row = 0; row < mci->nr_csrows; row++) { 191 csr = mci->csrows[row]; 192 if (!csr) 193 continue; 194 195 if (csr->channels) { 196 for (chn = 0; chn < mci->num_cschannel; chn++) 197 kfree(csr->channels[chn]); 198 kfree(csr->channels); 199 } 200 kfree(csr); 201 } 202 kfree(mci->csrows); 203 } 204 kfree(mci->pvt_info); 205 kfree(mci->layers); 206 kfree(mci); 207 } 208 209 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci) 210 { 211 unsigned int tot_channels = mci->num_cschannel; 212 unsigned int tot_csrows = mci->nr_csrows; 213 unsigned int row, chn; 214 215 /* 216 * Alocate and fill the csrow/channels structs 217 */ 218 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); 219 if (!mci->csrows) 220 return -ENOMEM; 221 222 for (row = 0; row < tot_csrows; row++) { 223 struct csrow_info *csr; 224 225 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 226 if (!csr) 227 return -ENOMEM; 228 229 mci->csrows[row] = csr; 230 csr->csrow_idx = row; 231 csr->mci = mci; 232 csr->nr_channels = tot_channels; 233 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), 234 GFP_KERNEL); 235 if (!csr->channels) 236 return -ENOMEM; 237 238 for (chn = 0; chn < tot_channels; chn++) { 239 struct rank_info *chan; 240 241 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 242 if (!chan) 243 return -ENOMEM; 244 245 csr->channels[chn] = chan; 246 chan->chan_idx = chn; 247 chan->csrow = csr; 248 } 249 } 250 251 return 0; 252 } 253 254 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci) 255 { 256 unsigned int pos[EDAC_MAX_LAYERS]; 257 unsigned int row, chn, idx; 258 int layer; 259 void *p; 260 261 /* 262 * Allocate and fill the dimm structs 263 */ 264 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); 265 if (!mci->dimms) 266 return -ENOMEM; 267 268 memset(&pos, 0, sizeof(pos)); 269 row = 0; 270 chn = 0; 271 for (idx = 0; idx < mci->tot_dimms; idx++) { 272 struct dimm_info *dimm; 273 struct rank_info *chan; 274 int n, len; 275 276 chan = mci->csrows[row]->channels[chn]; 277 278 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 279 if (!dimm) 280 return -ENOMEM; 281 mci->dimms[idx] = dimm; 282 dimm->mci = mci; 283 dimm->idx = idx; 284 285 /* 286 * Copy DIMM location and initialize it. 287 */ 288 len = sizeof(dimm->label); 289 p = dimm->label; 290 n = scnprintf(p, len, "mc#%u", mci->mc_idx); 291 p += n; 292 len -= n; 293 for (layer = 0; layer < mci->n_layers; layer++) { 294 n = scnprintf(p, len, "%s#%u", 295 edac_layer_name[mci->layers[layer].type], 296 pos[layer]); 297 p += n; 298 len -= n; 299 dimm->location[layer] = pos[layer]; 300 } 301 302 /* Link it to the csrows old API data */ 303 chan->dimm = dimm; 304 dimm->csrow = row; 305 dimm->cschannel = chn; 306 307 /* Increment csrow location */ 308 if (mci->layers[0].is_virt_csrow) { 309 chn++; 310 if (chn == mci->num_cschannel) { 311 chn = 0; 312 row++; 313 } 314 } else { 315 row++; 316 if (row == mci->nr_csrows) { 317 row = 0; 318 chn++; 319 } 320 } 321 322 /* Increment dimm location */ 323 for (layer = mci->n_layers - 1; layer >= 0; layer--) { 324 pos[layer]++; 325 if (pos[layer] < mci->layers[layer].size) 326 break; 327 pos[layer] = 0; 328 } 329 } 330 331 return 0; 332 } 333 334 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, 335 unsigned int n_layers, 336 struct edac_mc_layer *layers, 337 unsigned int sz_pvt) 338 { 339 struct mem_ctl_info *mci; 340 struct edac_mc_layer *layer; 341 unsigned int idx, tot_dimms = 1; 342 unsigned int tot_csrows = 1, tot_channels = 1; 343 bool per_rank = false; 344 345 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) 346 return NULL; 347 348 /* 349 * Calculate the total amount of dimms and csrows/cschannels while 350 * in the old API emulation mode 351 */ 352 for (idx = 0; idx < n_layers; idx++) { 353 tot_dimms *= layers[idx].size; 354 355 if (layers[idx].is_virt_csrow) 356 tot_csrows *= layers[idx].size; 357 else 358 tot_channels *= layers[idx].size; 359 360 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) 361 per_rank = true; 362 } 363 364 mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL); 365 if (!mci) 366 return NULL; 367 368 mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL); 369 if (!mci->layers) 370 goto error; 371 372 mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL); 373 if (!mci->pvt_info) 374 goto error; 375 376 mci->dev.release = mci_release; 377 device_initialize(&mci->dev); 378 379 /* setup index and various internal pointers */ 380 mci->mc_idx = mc_num; 381 mci->tot_dimms = tot_dimms; 382 mci->n_layers = n_layers; 383 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 384 mci->nr_csrows = tot_csrows; 385 mci->num_cschannel = tot_channels; 386 mci->csbased = per_rank; 387 388 if (edac_mc_alloc_csrows(mci)) 389 goto error; 390 391 if (edac_mc_alloc_dimms(mci)) 392 goto error; 393 394 mci->op_state = OP_ALLOC; 395 396 return mci; 397 398 error: 399 _edac_mc_free(mci); 400 401 return NULL; 402 } 403 EXPORT_SYMBOL_GPL(edac_mc_alloc); 404 405 void edac_mc_free(struct mem_ctl_info *mci) 406 { 407 edac_dbg(1, "\n"); 408 409 _edac_mc_free(mci); 410 } 411 EXPORT_SYMBOL_GPL(edac_mc_free); 412 413 bool edac_has_mcs(void) 414 { 415 bool ret; 416 417 mutex_lock(&mem_ctls_mutex); 418 419 ret = list_empty(&mc_devices); 420 421 mutex_unlock(&mem_ctls_mutex); 422 423 return !ret; 424 } 425 EXPORT_SYMBOL_GPL(edac_has_mcs); 426 427 /* Caller must hold mem_ctls_mutex */ 428 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) 429 { 430 struct mem_ctl_info *mci; 431 struct list_head *item; 432 433 edac_dbg(3, "\n"); 434 435 list_for_each(item, &mc_devices) { 436 mci = list_entry(item, struct mem_ctl_info, link); 437 438 if (mci->pdev == dev) 439 return mci; 440 } 441 442 return NULL; 443 } 444 445 /** 446 * find_mci_by_dev 447 * 448 * scan list of controllers looking for the one that manages 449 * the 'dev' device 450 * @dev: pointer to a struct device related with the MCI 451 */ 452 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 453 { 454 struct mem_ctl_info *ret; 455 456 mutex_lock(&mem_ctls_mutex); 457 ret = __find_mci_by_dev(dev); 458 mutex_unlock(&mem_ctls_mutex); 459 460 return ret; 461 } 462 EXPORT_SYMBOL_GPL(find_mci_by_dev); 463 464 /* 465 * edac_mc_workq_function 466 * performs the operation scheduled by a workq request 467 */ 468 static void edac_mc_workq_function(struct work_struct *work_req) 469 { 470 struct delayed_work *d_work = to_delayed_work(work_req); 471 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 472 473 mutex_lock(&mem_ctls_mutex); 474 475 if (mci->op_state != OP_RUNNING_POLL) { 476 mutex_unlock(&mem_ctls_mutex); 477 return; 478 } 479 480 if (edac_op_state == EDAC_OPSTATE_POLL) 481 mci->edac_check(mci); 482 483 mutex_unlock(&mem_ctls_mutex); 484 485 /* Queue ourselves again. */ 486 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 487 } 488 489 /* 490 * edac_mc_reset_delay_period(unsigned long value) 491 * 492 * user space has updated our poll period value, need to 493 * reset our workq delays 494 */ 495 void edac_mc_reset_delay_period(unsigned long value) 496 { 497 struct mem_ctl_info *mci; 498 struct list_head *item; 499 500 mutex_lock(&mem_ctls_mutex); 501 502 list_for_each(item, &mc_devices) { 503 mci = list_entry(item, struct mem_ctl_info, link); 504 505 if (mci->op_state == OP_RUNNING_POLL) 506 edac_mod_work(&mci->work, value); 507 } 508 mutex_unlock(&mem_ctls_mutex); 509 } 510 511 512 513 /* Return 0 on success, 1 on failure. 514 * Before calling this function, caller must 515 * assign a unique value to mci->mc_idx. 516 * 517 * locking model: 518 * 519 * called with the mem_ctls_mutex lock held 520 */ 521 static int add_mc_to_global_list(struct mem_ctl_info *mci) 522 { 523 struct list_head *item, *insert_before; 524 struct mem_ctl_info *p; 525 526 insert_before = &mc_devices; 527 528 p = __find_mci_by_dev(mci->pdev); 529 if (unlikely(p != NULL)) 530 goto fail0; 531 532 list_for_each(item, &mc_devices) { 533 p = list_entry(item, struct mem_ctl_info, link); 534 535 if (p->mc_idx >= mci->mc_idx) { 536 if (unlikely(p->mc_idx == mci->mc_idx)) 537 goto fail1; 538 539 insert_before = item; 540 break; 541 } 542 } 543 544 list_add_tail_rcu(&mci->link, insert_before); 545 return 0; 546 547 fail0: 548 edac_printk(KERN_WARNING, EDAC_MC, 549 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 550 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 551 return 1; 552 553 fail1: 554 edac_printk(KERN_WARNING, EDAC_MC, 555 "bug in low-level driver: attempt to assign\n" 556 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 557 return 1; 558 } 559 560 static int del_mc_from_global_list(struct mem_ctl_info *mci) 561 { 562 list_del_rcu(&mci->link); 563 564 /* these are for safe removal of devices from global list while 565 * NMI handlers may be traversing list 566 */ 567 synchronize_rcu(); 568 INIT_LIST_HEAD(&mci->link); 569 570 return list_empty(&mc_devices); 571 } 572 573 struct mem_ctl_info *edac_mc_find(int idx) 574 { 575 struct mem_ctl_info *mci; 576 struct list_head *item; 577 578 mutex_lock(&mem_ctls_mutex); 579 580 list_for_each(item, &mc_devices) { 581 mci = list_entry(item, struct mem_ctl_info, link); 582 if (mci->mc_idx == idx) 583 goto unlock; 584 } 585 586 mci = NULL; 587 unlock: 588 mutex_unlock(&mem_ctls_mutex); 589 return mci; 590 } 591 EXPORT_SYMBOL(edac_mc_find); 592 593 const char *edac_get_owner(void) 594 { 595 return edac_mc_owner; 596 } 597 EXPORT_SYMBOL_GPL(edac_get_owner); 598 599 /* FIXME - should a warning be printed if no error detection? correction? */ 600 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, 601 const struct attribute_group **groups) 602 { 603 int ret = -EINVAL; 604 edac_dbg(0, "\n"); 605 606 #ifdef CONFIG_EDAC_DEBUG 607 if (edac_debug_level >= 3) 608 edac_mc_dump_mci(mci); 609 610 if (edac_debug_level >= 4) { 611 struct dimm_info *dimm; 612 int i; 613 614 for (i = 0; i < mci->nr_csrows; i++) { 615 struct csrow_info *csrow = mci->csrows[i]; 616 u32 nr_pages = 0; 617 int j; 618 619 for (j = 0; j < csrow->nr_channels; j++) 620 nr_pages += csrow->channels[j]->dimm->nr_pages; 621 if (!nr_pages) 622 continue; 623 edac_mc_dump_csrow(csrow); 624 for (j = 0; j < csrow->nr_channels; j++) 625 if (csrow->channels[j]->dimm->nr_pages) 626 edac_mc_dump_channel(csrow->channels[j]); 627 } 628 629 mci_for_each_dimm(mci, dimm) 630 edac_mc_dump_dimm(dimm); 631 } 632 #endif 633 mutex_lock(&mem_ctls_mutex); 634 635 if (edac_mc_owner && edac_mc_owner != mci->mod_name) { 636 ret = -EPERM; 637 goto fail0; 638 } 639 640 if (add_mc_to_global_list(mci)) 641 goto fail0; 642 643 /* set load time so that error rate can be tracked */ 644 mci->start_time = jiffies; 645 646 mci->bus = edac_get_sysfs_subsys(); 647 648 if (edac_create_sysfs_mci_device(mci, groups)) { 649 edac_mc_printk(mci, KERN_WARNING, 650 "failed to create sysfs device\n"); 651 goto fail1; 652 } 653 654 if (mci->edac_check) { 655 mci->op_state = OP_RUNNING_POLL; 656 657 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 658 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); 659 660 } else { 661 mci->op_state = OP_RUNNING_INTERRUPT; 662 } 663 664 /* Report action taken */ 665 edac_mc_printk(mci, KERN_INFO, 666 "Giving out device to module %s controller %s: DEV %s (%s)\n", 667 mci->mod_name, mci->ctl_name, mci->dev_name, 668 edac_op_state_to_string(mci->op_state)); 669 670 edac_mc_owner = mci->mod_name; 671 672 mutex_unlock(&mem_ctls_mutex); 673 return 0; 674 675 fail1: 676 del_mc_from_global_list(mci); 677 678 fail0: 679 mutex_unlock(&mem_ctls_mutex); 680 return ret; 681 } 682 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); 683 684 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 685 { 686 struct mem_ctl_info *mci; 687 688 edac_dbg(0, "\n"); 689 690 mutex_lock(&mem_ctls_mutex); 691 692 /* find the requested mci struct in the global list */ 693 mci = __find_mci_by_dev(dev); 694 if (mci == NULL) { 695 mutex_unlock(&mem_ctls_mutex); 696 return NULL; 697 } 698 699 /* mark MCI offline: */ 700 mci->op_state = OP_OFFLINE; 701 702 if (del_mc_from_global_list(mci)) 703 edac_mc_owner = NULL; 704 705 mutex_unlock(&mem_ctls_mutex); 706 707 if (mci->edac_check) 708 edac_stop_work(&mci->work); 709 710 /* remove from sysfs */ 711 edac_remove_sysfs_mci_device(mci); 712 713 edac_printk(KERN_INFO, EDAC_MC, 714 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 715 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 716 717 return mci; 718 } 719 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 720 721 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 722 u32 size) 723 { 724 struct page *pg; 725 void *virt_addr; 726 unsigned long flags = 0; 727 728 edac_dbg(3, "\n"); 729 730 /* ECC error page was not in our memory. Ignore it. */ 731 if (!pfn_valid(page)) 732 return; 733 734 /* Find the actual page structure then map it and fix */ 735 pg = pfn_to_page(page); 736 737 if (PageHighMem(pg)) 738 local_irq_save(flags); 739 740 virt_addr = kmap_atomic(pg); 741 742 /* Perform architecture specific atomic scrub operation */ 743 edac_atomic_scrub(virt_addr + offset, size); 744 745 /* Unmap and complete */ 746 kunmap_atomic(virt_addr); 747 748 if (PageHighMem(pg)) 749 local_irq_restore(flags); 750 } 751 752 /* FIXME - should return -1 */ 753 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 754 { 755 struct csrow_info **csrows = mci->csrows; 756 int row, i, j, n; 757 758 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 759 row = -1; 760 761 for (i = 0; i < mci->nr_csrows; i++) { 762 struct csrow_info *csrow = csrows[i]; 763 n = 0; 764 for (j = 0; j < csrow->nr_channels; j++) { 765 struct dimm_info *dimm = csrow->channels[j]->dimm; 766 n += dimm->nr_pages; 767 } 768 if (n == 0) 769 continue; 770 771 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 772 mci->mc_idx, 773 csrow->first_page, page, csrow->last_page, 774 csrow->page_mask); 775 776 if ((page >= csrow->first_page) && 777 (page <= csrow->last_page) && 778 ((page & csrow->page_mask) == 779 (csrow->first_page & csrow->page_mask))) { 780 row = i; 781 break; 782 } 783 } 784 785 if (row == -1) 786 edac_mc_printk(mci, KERN_ERR, 787 "could not look up page error address %lx\n", 788 (unsigned long)page); 789 790 return row; 791 } 792 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 793 794 const char *edac_layer_name[] = { 795 [EDAC_MC_LAYER_BRANCH] = "branch", 796 [EDAC_MC_LAYER_CHANNEL] = "channel", 797 [EDAC_MC_LAYER_SLOT] = "slot", 798 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 799 [EDAC_MC_LAYER_ALL_MEM] = "memory", 800 }; 801 EXPORT_SYMBOL_GPL(edac_layer_name); 802 803 static void edac_inc_ce_error(struct edac_raw_error_desc *e) 804 { 805 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 806 struct mem_ctl_info *mci = error_desc_to_mci(e); 807 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 808 809 mci->ce_mc += e->error_count; 810 811 if (dimm) 812 dimm->ce_count += e->error_count; 813 else 814 mci->ce_noinfo_count += e->error_count; 815 } 816 817 static void edac_inc_ue_error(struct edac_raw_error_desc *e) 818 { 819 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; 820 struct mem_ctl_info *mci = error_desc_to_mci(e); 821 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); 822 823 mci->ue_mc += e->error_count; 824 825 if (dimm) 826 dimm->ue_count += e->error_count; 827 else 828 mci->ue_noinfo_count += e->error_count; 829 } 830 831 static void edac_ce_error(struct edac_raw_error_desc *e) 832 { 833 struct mem_ctl_info *mci = error_desc_to_mci(e); 834 unsigned long remapped_page; 835 836 if (edac_mc_get_log_ce()) { 837 edac_mc_printk(mci, KERN_WARNING, 838 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n", 839 e->error_count, e->msg, 840 *e->msg ? " " : "", 841 e->label, e->location, e->page_frame_number, e->offset_in_page, 842 e->grain, e->syndrome, 843 *e->other_detail ? " - " : "", 844 e->other_detail); 845 } 846 847 edac_inc_ce_error(e); 848 849 if (mci->scrub_mode == SCRUB_SW_SRC) { 850 /* 851 * Some memory controllers (called MCs below) can remap 852 * memory so that it is still available at a different 853 * address when PCI devices map into memory. 854 * MC's that can't do this, lose the memory where PCI 855 * devices are mapped. This mapping is MC-dependent 856 * and so we call back into the MC driver for it to 857 * map the MC page to a physical (CPU) page which can 858 * then be mapped to a virtual page - which can then 859 * be scrubbed. 860 */ 861 remapped_page = mci->ctl_page_to_phys ? 862 mci->ctl_page_to_phys(mci, e->page_frame_number) : 863 e->page_frame_number; 864 865 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain); 866 } 867 } 868 869 static void edac_ue_error(struct edac_raw_error_desc *e) 870 { 871 struct mem_ctl_info *mci = error_desc_to_mci(e); 872 873 if (edac_mc_get_log_ue()) { 874 edac_mc_printk(mci, KERN_WARNING, 875 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 876 e->error_count, e->msg, 877 *e->msg ? " " : "", 878 e->label, e->location, e->page_frame_number, e->offset_in_page, 879 e->grain, 880 *e->other_detail ? " - " : "", 881 e->other_detail); 882 } 883 884 edac_inc_ue_error(e); 885 886 if (edac_mc_get_panic_on_ue()) { 887 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", 888 e->msg, 889 *e->msg ? " " : "", 890 e->label, e->location, e->page_frame_number, e->offset_in_page, 891 e->grain, 892 *e->other_detail ? " - " : "", 893 e->other_detail); 894 } 895 } 896 897 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan) 898 { 899 struct mem_ctl_info *mci = error_desc_to_mci(e); 900 enum hw_event_mc_err_type type = e->type; 901 u16 count = e->error_count; 902 903 if (row < 0) 904 return; 905 906 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 907 908 if (type == HW_EVENT_ERR_CORRECTED) { 909 mci->csrows[row]->ce_count += count; 910 if (chan >= 0) 911 mci->csrows[row]->channels[chan]->ce_count += count; 912 } else { 913 mci->csrows[row]->ue_count += count; 914 } 915 } 916 917 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e) 918 { 919 struct mem_ctl_info *mci = error_desc_to_mci(e); 920 u8 grain_bits; 921 922 /* Sanity-check driver-supplied grain value. */ 923 if (WARN_ON_ONCE(!e->grain)) 924 e->grain = 1; 925 926 grain_bits = fls_long(e->grain - 1); 927 928 /* Report the error via the trace interface */ 929 if (IS_ENABLED(CONFIG_RAS)) 930 trace_mc_event(e->type, e->msg, e->label, e->error_count, 931 mci->mc_idx, e->top_layer, e->mid_layer, 932 e->low_layer, 933 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, 934 grain_bits, e->syndrome, e->other_detail); 935 936 if (e->type == HW_EVENT_ERR_CORRECTED) 937 edac_ce_error(e); 938 else 939 edac_ue_error(e); 940 } 941 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); 942 943 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 944 struct mem_ctl_info *mci, 945 const u16 error_count, 946 const unsigned long page_frame_number, 947 const unsigned long offset_in_page, 948 const unsigned long syndrome, 949 const int top_layer, 950 const int mid_layer, 951 const int low_layer, 952 const char *msg, 953 const char *other_detail) 954 { 955 struct dimm_info *dimm; 956 char *p, *end; 957 int row = -1, chan = -1; 958 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 959 int i, n_labels = 0; 960 struct edac_raw_error_desc *e = &mci->error_desc; 961 bool any_memory = true; 962 const char *prefix; 963 964 edac_dbg(3, "MC%d\n", mci->mc_idx); 965 966 /* Fills the error report buffer */ 967 memset(e, 0, sizeof (*e)); 968 e->error_count = error_count; 969 e->type = type; 970 e->top_layer = top_layer; 971 e->mid_layer = mid_layer; 972 e->low_layer = low_layer; 973 e->page_frame_number = page_frame_number; 974 e->offset_in_page = offset_in_page; 975 e->syndrome = syndrome; 976 /* need valid strings here for both: */ 977 e->msg = msg ?: ""; 978 e->other_detail = other_detail ?: ""; 979 980 /* 981 * Check if the event report is consistent and if the memory location is 982 * known. If it is, the DIMM(s) label info will be filled and the DIMM's 983 * error counters will be incremented. 984 */ 985 for (i = 0; i < mci->n_layers; i++) { 986 if (pos[i] >= (int)mci->layers[i].size) { 987 988 edac_mc_printk(mci, KERN_ERR, 989 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 990 edac_layer_name[mci->layers[i].type], 991 pos[i], mci->layers[i].size); 992 /* 993 * Instead of just returning it, let's use what's 994 * known about the error. The increment routines and 995 * the DIMM filter logic will do the right thing by 996 * pointing the likely damaged DIMMs. 997 */ 998 pos[i] = -1; 999 } 1000 if (pos[i] >= 0) 1001 any_memory = false; 1002 } 1003 1004 /* 1005 * Get the dimm label/grain that applies to the match criteria. 1006 * As the error algorithm may not be able to point to just one memory 1007 * stick, the logic here will get all possible labels that could 1008 * pottentially be affected by the error. 1009 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1010 * to have only the MC channel and the MC dimm (also called "branch") 1011 * but the channel is not known, as the memory is arranged in pairs, 1012 * where each memory belongs to a separate channel within the same 1013 * branch. 1014 */ 1015 p = e->label; 1016 *p = '\0'; 1017 end = p + sizeof(e->label); 1018 prefix = ""; 1019 1020 mci_for_each_dimm(mci, dimm) { 1021 if (top_layer >= 0 && top_layer != dimm->location[0]) 1022 continue; 1023 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1024 continue; 1025 if (low_layer >= 0 && low_layer != dimm->location[2]) 1026 continue; 1027 1028 /* get the max grain, over the error match range */ 1029 if (dimm->grain > e->grain) 1030 e->grain = dimm->grain; 1031 1032 /* 1033 * If the error is memory-controller wide, there's no need to 1034 * seek for the affected DIMMs because the whole channel/memory 1035 * controller/... may be affected. Also, don't show errors for 1036 * empty DIMM slots. 1037 */ 1038 if (!dimm->nr_pages) 1039 continue; 1040 1041 n_labels++; 1042 if (n_labels > EDAC_MAX_LABELS) { 1043 p = e->label; 1044 *p = '\0'; 1045 } else { 1046 p += scnprintf(p, end - p, "%s%s", prefix, dimm->label); 1047 prefix = OTHER_LABEL; 1048 } 1049 1050 /* 1051 * get csrow/channel of the DIMM, in order to allow 1052 * incrementing the compat API counters 1053 */ 1054 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1055 mci->csbased ? "rank" : "dimm", 1056 dimm->csrow, dimm->cschannel); 1057 if (row == -1) 1058 row = dimm->csrow; 1059 else if (row >= 0 && row != dimm->csrow) 1060 row = -2; 1061 1062 if (chan == -1) 1063 chan = dimm->cschannel; 1064 else if (chan >= 0 && chan != dimm->cschannel) 1065 chan = -2; 1066 } 1067 1068 if (any_memory) 1069 strscpy(e->label, "any memory", sizeof(e->label)); 1070 else if (!*e->label) 1071 strscpy(e->label, "unknown memory", sizeof(e->label)); 1072 1073 edac_inc_csrow(e, row, chan); 1074 1075 /* Fill the RAM location data */ 1076 p = e->location; 1077 end = p + sizeof(e->location); 1078 prefix = ""; 1079 1080 for (i = 0; i < mci->n_layers; i++) { 1081 if (pos[i] < 0) 1082 continue; 1083 1084 p += scnprintf(p, end - p, "%s%s:%d", prefix, 1085 edac_layer_name[mci->layers[i].type], pos[i]); 1086 prefix = " "; 1087 } 1088 1089 edac_raw_mc_handle_error(e); 1090 } 1091 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1092