xref: /linux/drivers/edac/edac_mc.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36 
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42 
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45 
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49 
50 /*
51  * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52  *	apei/ghes and i7core_edac to be used at the same time.
53  */
54 static const char *edac_mc_owner;
55 
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58 	return container_of(e, struct mem_ctl_info, error_desc);
59 }
60 
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62 				     unsigned int len)
63 {
64 	struct mem_ctl_info *mci = dimm->mci;
65 	int i, n, count = 0;
66 	char *p = buf;
67 
68 	for (i = 0; i < mci->n_layers; i++) {
69 		n = scnprintf(p, len, "%s %d ",
70 			      edac_layer_name[mci->layers[i].type],
71 			      dimm->location[i]);
72 		p += n;
73 		len -= n;
74 		count += n;
75 	}
76 
77 	return count;
78 }
79 
80 #ifdef CONFIG_EDAC_DEBUG
81 
82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84 	edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
85 	edac_dbg(4, "    channel = %p\n", chan);
86 	edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
87 	edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
88 }
89 
90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92 	char location[80];
93 
94 	if (!dimm->nr_pages)
95 		return;
96 
97 	edac_dimm_info_location(dimm, location, sizeof(location));
98 
99 	edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100 		 dimm->mci->csbased ? "rank" : "dimm",
101 		 dimm->idx, location, dimm->csrow, dimm->cschannel);
102 	edac_dbg(4, "  dimm = %p\n", dimm);
103 	edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
104 	edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105 	edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
106 }
107 
108 static void edac_mc_dump_csrow(struct csrow_info *csrow)
109 {
110 	edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
111 	edac_dbg(4, "  csrow = %p\n", csrow);
112 	edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
113 	edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
114 	edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
115 	edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
116 	edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
117 	edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
118 }
119 
120 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
121 {
122 	edac_dbg(3, "\tmci = %p\n", mci);
123 	edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
124 	edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
125 	edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
126 	edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
127 	edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
128 		 mci->nr_csrows, mci->csrows);
129 	edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
130 		 mci->tot_dimms, mci->dimms);
131 	edac_dbg(3, "\tdev = %p\n", mci->pdev);
132 	edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
133 		 mci->mod_name, mci->ctl_name);
134 	edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
135 }
136 
137 #endif				/* CONFIG_EDAC_DEBUG */
138 
139 const char * const edac_mem_types[] = {
140 	[MEM_EMPTY]	= "Empty",
141 	[MEM_RESERVED]	= "Reserved",
142 	[MEM_UNKNOWN]	= "Unknown",
143 	[MEM_FPM]	= "FPM",
144 	[MEM_EDO]	= "EDO",
145 	[MEM_BEDO]	= "BEDO",
146 	[MEM_SDR]	= "Unbuffered-SDR",
147 	[MEM_RDR]	= "Registered-SDR",
148 	[MEM_DDR]	= "Unbuffered-DDR",
149 	[MEM_RDDR]	= "Registered-DDR",
150 	[MEM_RMBS]	= "RMBS",
151 	[MEM_DDR2]	= "Unbuffered-DDR2",
152 	[MEM_FB_DDR2]	= "FullyBuffered-DDR2",
153 	[MEM_RDDR2]	= "Registered-DDR2",
154 	[MEM_XDR]	= "XDR",
155 	[MEM_DDR3]	= "Unbuffered-DDR3",
156 	[MEM_RDDR3]	= "Registered-DDR3",
157 	[MEM_LRDDR3]	= "Load-Reduced-DDR3-RAM",
158 	[MEM_LPDDR3]	= "Low-Power-DDR3-RAM",
159 	[MEM_DDR4]	= "Unbuffered-DDR4",
160 	[MEM_RDDR4]	= "Registered-DDR4",
161 	[MEM_LPDDR4]	= "Low-Power-DDR4-RAM",
162 	[MEM_LRDDR4]	= "Load-Reduced-DDR4-RAM",
163 	[MEM_DDR5]	= "Unbuffered-DDR5",
164 	[MEM_RDDR5]	= "Registered-DDR5",
165 	[MEM_LRDDR5]	= "Load-Reduced-DDR5-RAM",
166 	[MEM_NVDIMM]	= "Non-volatile-RAM",
167 	[MEM_WIO2]	= "Wide-IO-2",
168 	[MEM_HBM2]	= "High-bandwidth-memory-Gen2",
169 	[MEM_HBM3]	= "High-bandwidth-memory-Gen3",
170 };
171 EXPORT_SYMBOL_GPL(edac_mem_types);
172 
173 static void _edac_mc_free(struct mem_ctl_info *mci)
174 {
175 	put_device(&mci->dev);
176 }
177 
178 static void mci_release(struct device *dev)
179 {
180 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
181 	struct csrow_info *csr;
182 	int i, chn, row;
183 
184 	if (mci->dimms) {
185 		for (i = 0; i < mci->tot_dimms; i++)
186 			kfree(mci->dimms[i]);
187 		kfree(mci->dimms);
188 	}
189 
190 	if (mci->csrows) {
191 		for (row = 0; row < mci->nr_csrows; row++) {
192 			csr = mci->csrows[row];
193 			if (!csr)
194 				continue;
195 
196 			if (csr->channels) {
197 				for (chn = 0; chn < mci->num_cschannel; chn++)
198 					kfree(csr->channels[chn]);
199 				kfree(csr->channels);
200 			}
201 			kfree(csr);
202 		}
203 		kfree(mci->csrows);
204 	}
205 	kfree(mci->pvt_info);
206 	kfree(mci->layers);
207 	kfree(mci);
208 }
209 
210 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
211 {
212 	unsigned int tot_channels = mci->num_cschannel;
213 	unsigned int tot_csrows = mci->nr_csrows;
214 	unsigned int row, chn;
215 
216 	/*
217 	 * Alocate and fill the csrow/channels structs
218 	 */
219 	mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
220 	if (!mci->csrows)
221 		return -ENOMEM;
222 
223 	for (row = 0; row < tot_csrows; row++) {
224 		struct csrow_info *csr;
225 
226 		csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
227 		if (!csr)
228 			return -ENOMEM;
229 
230 		mci->csrows[row] = csr;
231 		csr->csrow_idx = row;
232 		csr->mci = mci;
233 		csr->nr_channels = tot_channels;
234 		csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
235 					GFP_KERNEL);
236 		if (!csr->channels)
237 			return -ENOMEM;
238 
239 		for (chn = 0; chn < tot_channels; chn++) {
240 			struct rank_info *chan;
241 
242 			chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
243 			if (!chan)
244 				return -ENOMEM;
245 
246 			csr->channels[chn] = chan;
247 			chan->chan_idx = chn;
248 			chan->csrow = csr;
249 		}
250 	}
251 
252 	return 0;
253 }
254 
255 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
256 {
257 	unsigned int pos[EDAC_MAX_LAYERS];
258 	unsigned int row, chn, idx;
259 	int layer;
260 	void *p;
261 
262 	/*
263 	 * Allocate and fill the dimm structs
264 	 */
265 	mci->dimms  = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
266 	if (!mci->dimms)
267 		return -ENOMEM;
268 
269 	memset(&pos, 0, sizeof(pos));
270 	row = 0;
271 	chn = 0;
272 	for (idx = 0; idx < mci->tot_dimms; idx++) {
273 		struct dimm_info *dimm;
274 		struct rank_info *chan;
275 		int n, len;
276 
277 		chan = mci->csrows[row]->channels[chn];
278 
279 		dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
280 		if (!dimm)
281 			return -ENOMEM;
282 		mci->dimms[idx] = dimm;
283 		dimm->mci = mci;
284 		dimm->idx = idx;
285 
286 		/*
287 		 * Copy DIMM location and initialize it.
288 		 */
289 		len = sizeof(dimm->label);
290 		p = dimm->label;
291 		n = scnprintf(p, len, "mc#%u", mci->mc_idx);
292 		p += n;
293 		len -= n;
294 		for (layer = 0; layer < mci->n_layers; layer++) {
295 			n = scnprintf(p, len, "%s#%u",
296 				      edac_layer_name[mci->layers[layer].type],
297 				      pos[layer]);
298 			p += n;
299 			len -= n;
300 			dimm->location[layer] = pos[layer];
301 		}
302 
303 		/* Link it to the csrows old API data */
304 		chan->dimm = dimm;
305 		dimm->csrow = row;
306 		dimm->cschannel = chn;
307 
308 		/* Increment csrow location */
309 		if (mci->layers[0].is_virt_csrow) {
310 			chn++;
311 			if (chn == mci->num_cschannel) {
312 				chn = 0;
313 				row++;
314 			}
315 		} else {
316 			row++;
317 			if (row == mci->nr_csrows) {
318 				row = 0;
319 				chn++;
320 			}
321 		}
322 
323 		/* Increment dimm location */
324 		for (layer = mci->n_layers - 1; layer >= 0; layer--) {
325 			pos[layer]++;
326 			if (pos[layer] < mci->layers[layer].size)
327 				break;
328 			pos[layer] = 0;
329 		}
330 	}
331 
332 	return 0;
333 }
334 
335 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
336 				   unsigned int n_layers,
337 				   struct edac_mc_layer *layers,
338 				   unsigned int sz_pvt)
339 {
340 	struct mem_ctl_info *mci;
341 	struct edac_mc_layer *layer;
342 	unsigned int idx, tot_dimms = 1;
343 	unsigned int tot_csrows = 1, tot_channels = 1;
344 	bool per_rank = false;
345 
346 	if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
347 		return NULL;
348 
349 	/*
350 	 * Calculate the total amount of dimms and csrows/cschannels while
351 	 * in the old API emulation mode
352 	 */
353 	for (idx = 0; idx < n_layers; idx++) {
354 		tot_dimms *= layers[idx].size;
355 
356 		if (layers[idx].is_virt_csrow)
357 			tot_csrows *= layers[idx].size;
358 		else
359 			tot_channels *= layers[idx].size;
360 
361 		if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
362 			per_rank = true;
363 	}
364 
365 	mci = kzalloc(sizeof(struct mem_ctl_info), GFP_KERNEL);
366 	if (!mci)
367 		return NULL;
368 
369 	mci->layers = kcalloc(n_layers, sizeof(struct edac_mc_layer), GFP_KERNEL);
370 	if (!mci->layers)
371 		goto error;
372 
373 	mci->pvt_info = kzalloc(sz_pvt, GFP_KERNEL);
374 	if (!mci->pvt_info)
375 		goto error;
376 
377 	mci->dev.release = mci_release;
378 	device_initialize(&mci->dev);
379 
380 	/* setup index and various internal pointers */
381 	mci->mc_idx = mc_num;
382 	mci->tot_dimms = tot_dimms;
383 	mci->n_layers = n_layers;
384 	memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
385 	mci->nr_csrows = tot_csrows;
386 	mci->num_cschannel = tot_channels;
387 	mci->csbased = per_rank;
388 
389 	if (edac_mc_alloc_csrows(mci))
390 		goto error;
391 
392 	if (edac_mc_alloc_dimms(mci))
393 		goto error;
394 
395 	mci->op_state = OP_ALLOC;
396 
397 	return mci;
398 
399 error:
400 	_edac_mc_free(mci);
401 
402 	return NULL;
403 }
404 EXPORT_SYMBOL_GPL(edac_mc_alloc);
405 
406 void edac_mc_free(struct mem_ctl_info *mci)
407 {
408 	edac_dbg(1, "\n");
409 
410 	_edac_mc_free(mci);
411 }
412 EXPORT_SYMBOL_GPL(edac_mc_free);
413 
414 bool edac_has_mcs(void)
415 {
416 	bool ret;
417 
418 	mutex_lock(&mem_ctls_mutex);
419 
420 	ret = list_empty(&mc_devices);
421 
422 	mutex_unlock(&mem_ctls_mutex);
423 
424 	return !ret;
425 }
426 EXPORT_SYMBOL_GPL(edac_has_mcs);
427 
428 /* Caller must hold mem_ctls_mutex */
429 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
430 {
431 	struct mem_ctl_info *mci;
432 	struct list_head *item;
433 
434 	edac_dbg(3, "\n");
435 
436 	list_for_each(item, &mc_devices) {
437 		mci = list_entry(item, struct mem_ctl_info, link);
438 
439 		if (mci->pdev == dev)
440 			return mci;
441 	}
442 
443 	return NULL;
444 }
445 
446 /**
447  * find_mci_by_dev
448  *
449  *	scan list of controllers looking for the one that manages
450  *	the 'dev' device
451  * @dev: pointer to a struct device related with the MCI
452  */
453 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
454 {
455 	struct mem_ctl_info *ret;
456 
457 	mutex_lock(&mem_ctls_mutex);
458 	ret = __find_mci_by_dev(dev);
459 	mutex_unlock(&mem_ctls_mutex);
460 
461 	return ret;
462 }
463 EXPORT_SYMBOL_GPL(find_mci_by_dev);
464 
465 /*
466  * edac_mc_workq_function
467  *	performs the operation scheduled by a workq request
468  */
469 static void edac_mc_workq_function(struct work_struct *work_req)
470 {
471 	struct delayed_work *d_work = to_delayed_work(work_req);
472 	struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
473 
474 	mutex_lock(&mem_ctls_mutex);
475 
476 	if (mci->op_state != OP_RUNNING_POLL) {
477 		mutex_unlock(&mem_ctls_mutex);
478 		return;
479 	}
480 
481 	if (edac_op_state == EDAC_OPSTATE_POLL)
482 		mci->edac_check(mci);
483 
484 	mutex_unlock(&mem_ctls_mutex);
485 
486 	/* Queue ourselves again. */
487 	edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
488 }
489 
490 /*
491  * edac_mc_reset_delay_period(unsigned long value)
492  *
493  *	user space has updated our poll period value, need to
494  *	reset our workq delays
495  */
496 void edac_mc_reset_delay_period(unsigned long value)
497 {
498 	struct mem_ctl_info *mci;
499 	struct list_head *item;
500 
501 	mutex_lock(&mem_ctls_mutex);
502 
503 	list_for_each(item, &mc_devices) {
504 		mci = list_entry(item, struct mem_ctl_info, link);
505 
506 		if (mci->op_state == OP_RUNNING_POLL)
507 			edac_mod_work(&mci->work, value);
508 	}
509 	mutex_unlock(&mem_ctls_mutex);
510 }
511 
512 
513 
514 /* Return 0 on success, 1 on failure.
515  * Before calling this function, caller must
516  * assign a unique value to mci->mc_idx.
517  *
518  *	locking model:
519  *
520  *		called with the mem_ctls_mutex lock held
521  */
522 static int add_mc_to_global_list(struct mem_ctl_info *mci)
523 {
524 	struct list_head *item, *insert_before;
525 	struct mem_ctl_info *p;
526 
527 	insert_before = &mc_devices;
528 
529 	p = __find_mci_by_dev(mci->pdev);
530 	if (unlikely(p != NULL))
531 		goto fail0;
532 
533 	list_for_each(item, &mc_devices) {
534 		p = list_entry(item, struct mem_ctl_info, link);
535 
536 		if (p->mc_idx >= mci->mc_idx) {
537 			if (unlikely(p->mc_idx == mci->mc_idx))
538 				goto fail1;
539 
540 			insert_before = item;
541 			break;
542 		}
543 	}
544 
545 	list_add_tail_rcu(&mci->link, insert_before);
546 	return 0;
547 
548 fail0:
549 	edac_printk(KERN_WARNING, EDAC_MC,
550 		"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
551 		edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
552 	return 1;
553 
554 fail1:
555 	edac_printk(KERN_WARNING, EDAC_MC,
556 		"bug in low-level driver: attempt to assign\n"
557 		"    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
558 	return 1;
559 }
560 
561 static int del_mc_from_global_list(struct mem_ctl_info *mci)
562 {
563 	list_del_rcu(&mci->link);
564 
565 	/* these are for safe removal of devices from global list while
566 	 * NMI handlers may be traversing list
567 	 */
568 	synchronize_rcu();
569 	INIT_LIST_HEAD(&mci->link);
570 
571 	return list_empty(&mc_devices);
572 }
573 
574 struct mem_ctl_info *edac_mc_find(int idx)
575 {
576 	struct mem_ctl_info *mci;
577 	struct list_head *item;
578 
579 	mutex_lock(&mem_ctls_mutex);
580 
581 	list_for_each(item, &mc_devices) {
582 		mci = list_entry(item, struct mem_ctl_info, link);
583 		if (mci->mc_idx == idx)
584 			goto unlock;
585 	}
586 
587 	mci = NULL;
588 unlock:
589 	mutex_unlock(&mem_ctls_mutex);
590 	return mci;
591 }
592 EXPORT_SYMBOL(edac_mc_find);
593 
594 const char *edac_get_owner(void)
595 {
596 	return edac_mc_owner;
597 }
598 EXPORT_SYMBOL_GPL(edac_get_owner);
599 
600 /* FIXME - should a warning be printed if no error detection? correction? */
601 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
602 			       const struct attribute_group **groups)
603 {
604 	int ret = -EINVAL;
605 	edac_dbg(0, "\n");
606 
607 #ifdef CONFIG_EDAC_DEBUG
608 	if (edac_debug_level >= 3)
609 		edac_mc_dump_mci(mci);
610 
611 	if (edac_debug_level >= 4) {
612 		struct dimm_info *dimm;
613 		int i;
614 
615 		for (i = 0; i < mci->nr_csrows; i++) {
616 			struct csrow_info *csrow = mci->csrows[i];
617 			u32 nr_pages = 0;
618 			int j;
619 
620 			for (j = 0; j < csrow->nr_channels; j++)
621 				nr_pages += csrow->channels[j]->dimm->nr_pages;
622 			if (!nr_pages)
623 				continue;
624 			edac_mc_dump_csrow(csrow);
625 			for (j = 0; j < csrow->nr_channels; j++)
626 				if (csrow->channels[j]->dimm->nr_pages)
627 					edac_mc_dump_channel(csrow->channels[j]);
628 		}
629 
630 		mci_for_each_dimm(mci, dimm)
631 			edac_mc_dump_dimm(dimm);
632 	}
633 #endif
634 	mutex_lock(&mem_ctls_mutex);
635 
636 	if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
637 		ret = -EPERM;
638 		goto fail0;
639 	}
640 
641 	if (add_mc_to_global_list(mci))
642 		goto fail0;
643 
644 	/* set load time so that error rate can be tracked */
645 	mci->start_time = jiffies;
646 
647 	mci->bus = edac_get_sysfs_subsys();
648 
649 	if (edac_create_sysfs_mci_device(mci, groups)) {
650 		edac_mc_printk(mci, KERN_WARNING,
651 			"failed to create sysfs device\n");
652 		goto fail1;
653 	}
654 
655 	if (mci->edac_check) {
656 		mci->op_state = OP_RUNNING_POLL;
657 
658 		INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
659 		edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
660 
661 	} else {
662 		mci->op_state = OP_RUNNING_INTERRUPT;
663 	}
664 
665 	/* Report action taken */
666 	edac_mc_printk(mci, KERN_INFO,
667 		"Giving out device to module %s controller %s: DEV %s (%s)\n",
668 		mci->mod_name, mci->ctl_name, mci->dev_name,
669 		edac_op_state_to_string(mci->op_state));
670 
671 	edac_mc_owner = mci->mod_name;
672 
673 	mutex_unlock(&mem_ctls_mutex);
674 	return 0;
675 
676 fail1:
677 	del_mc_from_global_list(mci);
678 
679 fail0:
680 	mutex_unlock(&mem_ctls_mutex);
681 	return ret;
682 }
683 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
684 
685 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
686 {
687 	struct mem_ctl_info *mci;
688 
689 	edac_dbg(0, "\n");
690 
691 	mutex_lock(&mem_ctls_mutex);
692 
693 	/* find the requested mci struct in the global list */
694 	mci = __find_mci_by_dev(dev);
695 	if (mci == NULL) {
696 		mutex_unlock(&mem_ctls_mutex);
697 		return NULL;
698 	}
699 
700 	/* mark MCI offline: */
701 	mci->op_state = OP_OFFLINE;
702 
703 	if (del_mc_from_global_list(mci))
704 		edac_mc_owner = NULL;
705 
706 	mutex_unlock(&mem_ctls_mutex);
707 
708 	if (mci->edac_check)
709 		edac_stop_work(&mci->work);
710 
711 	/* remove from sysfs */
712 	edac_remove_sysfs_mci_device(mci);
713 
714 	edac_printk(KERN_INFO, EDAC_MC,
715 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
716 		mci->mod_name, mci->ctl_name, edac_dev_name(mci));
717 
718 	return mci;
719 }
720 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
721 
722 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
723 				u32 size)
724 {
725 	struct page *pg;
726 	void *virt_addr;
727 	unsigned long flags = 0;
728 
729 	edac_dbg(3, "\n");
730 
731 	/* ECC error page was not in our memory. Ignore it. */
732 	if (!pfn_valid(page))
733 		return;
734 
735 	/* Find the actual page structure then map it and fix */
736 	pg = pfn_to_page(page);
737 
738 	if (PageHighMem(pg))
739 		local_irq_save(flags);
740 
741 	virt_addr = kmap_atomic(pg);
742 
743 	/* Perform architecture specific atomic scrub operation */
744 	edac_atomic_scrub(virt_addr + offset, size);
745 
746 	/* Unmap and complete */
747 	kunmap_atomic(virt_addr);
748 
749 	if (PageHighMem(pg))
750 		local_irq_restore(flags);
751 }
752 
753 /* FIXME - should return -1 */
754 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
755 {
756 	struct csrow_info **csrows = mci->csrows;
757 	int row, i, j, n;
758 
759 	edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
760 	row = -1;
761 
762 	for (i = 0; i < mci->nr_csrows; i++) {
763 		struct csrow_info *csrow = csrows[i];
764 		n = 0;
765 		for (j = 0; j < csrow->nr_channels; j++) {
766 			struct dimm_info *dimm = csrow->channels[j]->dimm;
767 			n += dimm->nr_pages;
768 		}
769 		if (n == 0)
770 			continue;
771 
772 		edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
773 			 mci->mc_idx,
774 			 csrow->first_page, page, csrow->last_page,
775 			 csrow->page_mask);
776 
777 		if ((page >= csrow->first_page) &&
778 		    (page <= csrow->last_page) &&
779 		    ((page & csrow->page_mask) ==
780 		     (csrow->first_page & csrow->page_mask))) {
781 			row = i;
782 			break;
783 		}
784 	}
785 
786 	if (row == -1)
787 		edac_mc_printk(mci, KERN_ERR,
788 			"could not look up page error address %lx\n",
789 			(unsigned long)page);
790 
791 	return row;
792 }
793 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
794 
795 const char *edac_layer_name[] = {
796 	[EDAC_MC_LAYER_BRANCH] = "branch",
797 	[EDAC_MC_LAYER_CHANNEL] = "channel",
798 	[EDAC_MC_LAYER_SLOT] = "slot",
799 	[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
800 	[EDAC_MC_LAYER_ALL_MEM] = "memory",
801 };
802 EXPORT_SYMBOL_GPL(edac_layer_name);
803 
804 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
805 {
806 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
807 	struct mem_ctl_info *mci = error_desc_to_mci(e);
808 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
809 
810 	mci->ce_mc += e->error_count;
811 
812 	if (dimm)
813 		dimm->ce_count += e->error_count;
814 	else
815 		mci->ce_noinfo_count += e->error_count;
816 }
817 
818 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
819 {
820 	int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
821 	struct mem_ctl_info *mci = error_desc_to_mci(e);
822 	struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
823 
824 	mci->ue_mc += e->error_count;
825 
826 	if (dimm)
827 		dimm->ue_count += e->error_count;
828 	else
829 		mci->ue_noinfo_count += e->error_count;
830 }
831 
832 static void edac_ce_error(struct edac_raw_error_desc *e)
833 {
834 	struct mem_ctl_info *mci = error_desc_to_mci(e);
835 	unsigned long remapped_page;
836 
837 	if (edac_mc_get_log_ce()) {
838 		edac_mc_printk(mci, KERN_WARNING,
839 			"%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
840 			e->error_count, e->msg,
841 			*e->msg ? " " : "",
842 			e->label, e->location, e->page_frame_number, e->offset_in_page,
843 			e->grain, e->syndrome,
844 			*e->other_detail ? " - " : "",
845 			e->other_detail);
846 	}
847 
848 	edac_inc_ce_error(e);
849 
850 	if (mci->scrub_mode == SCRUB_SW_SRC) {
851 		/*
852 			* Some memory controllers (called MCs below) can remap
853 			* memory so that it is still available at a different
854 			* address when PCI devices map into memory.
855 			* MC's that can't do this, lose the memory where PCI
856 			* devices are mapped. This mapping is MC-dependent
857 			* and so we call back into the MC driver for it to
858 			* map the MC page to a physical (CPU) page which can
859 			* then be mapped to a virtual page - which can then
860 			* be scrubbed.
861 			*/
862 		remapped_page = mci->ctl_page_to_phys ?
863 			mci->ctl_page_to_phys(mci, e->page_frame_number) :
864 			e->page_frame_number;
865 
866 		edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
867 	}
868 }
869 
870 static void edac_ue_error(struct edac_raw_error_desc *e)
871 {
872 	struct mem_ctl_info *mci = error_desc_to_mci(e);
873 
874 	if (edac_mc_get_log_ue()) {
875 		edac_mc_printk(mci, KERN_WARNING,
876 			"%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
877 			e->error_count, e->msg,
878 			*e->msg ? " " : "",
879 			e->label, e->location, e->page_frame_number, e->offset_in_page,
880 			e->grain,
881 			*e->other_detail ? " - " : "",
882 			e->other_detail);
883 	}
884 
885 	edac_inc_ue_error(e);
886 
887 	if (edac_mc_get_panic_on_ue()) {
888 		panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
889 			e->msg,
890 			*e->msg ? " " : "",
891 			e->label, e->location, e->page_frame_number, e->offset_in_page,
892 			e->grain,
893 			*e->other_detail ? " - " : "",
894 			e->other_detail);
895 	}
896 }
897 
898 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
899 {
900 	struct mem_ctl_info *mci = error_desc_to_mci(e);
901 	enum hw_event_mc_err_type type = e->type;
902 	u16 count = e->error_count;
903 
904 	if (row < 0)
905 		return;
906 
907 	edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
908 
909 	if (type == HW_EVENT_ERR_CORRECTED) {
910 		mci->csrows[row]->ce_count += count;
911 		if (chan >= 0)
912 			mci->csrows[row]->channels[chan]->ce_count += count;
913 	} else {
914 		mci->csrows[row]->ue_count += count;
915 	}
916 }
917 
918 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
919 {
920 	struct mem_ctl_info *mci = error_desc_to_mci(e);
921 	u8 grain_bits;
922 
923 	/* Sanity-check driver-supplied grain value. */
924 	if (WARN_ON_ONCE(!e->grain))
925 		e->grain = 1;
926 
927 	grain_bits = fls_long(e->grain - 1);
928 
929 	/* Report the error via the trace interface */
930 	if (IS_ENABLED(CONFIG_RAS))
931 		trace_mc_event(e->type, e->msg, e->label, e->error_count,
932 			       mci->mc_idx, e->top_layer, e->mid_layer,
933 			       e->low_layer,
934 			       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
935 			       grain_bits, e->syndrome, e->other_detail);
936 
937 	if (e->type == HW_EVENT_ERR_CORRECTED)
938 		edac_ce_error(e);
939 	else
940 		edac_ue_error(e);
941 }
942 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
943 
944 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
945 			  struct mem_ctl_info *mci,
946 			  const u16 error_count,
947 			  const unsigned long page_frame_number,
948 			  const unsigned long offset_in_page,
949 			  const unsigned long syndrome,
950 			  const int top_layer,
951 			  const int mid_layer,
952 			  const int low_layer,
953 			  const char *msg,
954 			  const char *other_detail)
955 {
956 	struct dimm_info *dimm;
957 	char *p, *end;
958 	int row = -1, chan = -1;
959 	int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
960 	int i, n_labels = 0;
961 	struct edac_raw_error_desc *e = &mci->error_desc;
962 	bool any_memory = true;
963 	const char *prefix;
964 
965 	edac_dbg(3, "MC%d\n", mci->mc_idx);
966 
967 	/* Fills the error report buffer */
968 	memset(e, 0, sizeof (*e));
969 	e->error_count = error_count;
970 	e->type = type;
971 	e->top_layer = top_layer;
972 	e->mid_layer = mid_layer;
973 	e->low_layer = low_layer;
974 	e->page_frame_number = page_frame_number;
975 	e->offset_in_page = offset_in_page;
976 	e->syndrome = syndrome;
977 	/* need valid strings here for both: */
978 	e->msg = msg ?: "";
979 	e->other_detail = other_detail ?: "";
980 
981 	/*
982 	 * Check if the event report is consistent and if the memory location is
983 	 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
984 	 * error counters will be incremented.
985 	 */
986 	for (i = 0; i < mci->n_layers; i++) {
987 		if (pos[i] >= (int)mci->layers[i].size) {
988 
989 			edac_mc_printk(mci, KERN_ERR,
990 				       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
991 				       edac_layer_name[mci->layers[i].type],
992 				       pos[i], mci->layers[i].size);
993 			/*
994 			 * Instead of just returning it, let's use what's
995 			 * known about the error. The increment routines and
996 			 * the DIMM filter logic will do the right thing by
997 			 * pointing the likely damaged DIMMs.
998 			 */
999 			pos[i] = -1;
1000 		}
1001 		if (pos[i] >= 0)
1002 			any_memory = false;
1003 	}
1004 
1005 	/*
1006 	 * Get the dimm label/grain that applies to the match criteria.
1007 	 * As the error algorithm may not be able to point to just one memory
1008 	 * stick, the logic here will get all possible labels that could
1009 	 * pottentially be affected by the error.
1010 	 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1011 	 * to have only the MC channel and the MC dimm (also called "branch")
1012 	 * but the channel is not known, as the memory is arranged in pairs,
1013 	 * where each memory belongs to a separate channel within the same
1014 	 * branch.
1015 	 */
1016 	p = e->label;
1017 	*p = '\0';
1018 	end = p + sizeof(e->label);
1019 	prefix = "";
1020 
1021 	mci_for_each_dimm(mci, dimm) {
1022 		if (top_layer >= 0 && top_layer != dimm->location[0])
1023 			continue;
1024 		if (mid_layer >= 0 && mid_layer != dimm->location[1])
1025 			continue;
1026 		if (low_layer >= 0 && low_layer != dimm->location[2])
1027 			continue;
1028 
1029 		/* get the max grain, over the error match range */
1030 		if (dimm->grain > e->grain)
1031 			e->grain = dimm->grain;
1032 
1033 		/*
1034 		 * If the error is memory-controller wide, there's no need to
1035 		 * seek for the affected DIMMs because the whole channel/memory
1036 		 * controller/... may be affected. Also, don't show errors for
1037 		 * empty DIMM slots.
1038 		 */
1039 		if (!dimm->nr_pages)
1040 			continue;
1041 
1042 		n_labels++;
1043 		if (n_labels > EDAC_MAX_LABELS) {
1044 			p = e->label;
1045 			*p = '\0';
1046 		} else {
1047 			p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1048 			prefix = OTHER_LABEL;
1049 		}
1050 
1051 		/*
1052 		 * get csrow/channel of the DIMM, in order to allow
1053 		 * incrementing the compat API counters
1054 		 */
1055 		edac_dbg(4, "%s csrows map: (%d,%d)\n",
1056 			mci->csbased ? "rank" : "dimm",
1057 			dimm->csrow, dimm->cschannel);
1058 		if (row == -1)
1059 			row = dimm->csrow;
1060 		else if (row >= 0 && row != dimm->csrow)
1061 			row = -2;
1062 
1063 		if (chan == -1)
1064 			chan = dimm->cschannel;
1065 		else if (chan >= 0 && chan != dimm->cschannel)
1066 			chan = -2;
1067 	}
1068 
1069 	if (any_memory)
1070 		strscpy(e->label, "any memory", sizeof(e->label));
1071 	else if (!*e->label)
1072 		strscpy(e->label, "unknown memory", sizeof(e->label));
1073 
1074 	edac_inc_csrow(e, row, chan);
1075 
1076 	/* Fill the RAM location data */
1077 	p = e->location;
1078 	end = p + sizeof(e->location);
1079 	prefix = "";
1080 
1081 	for (i = 0; i < mci->n_layers; i++) {
1082 		if (pos[i] < 0)
1083 			continue;
1084 
1085 		p += scnprintf(p, end - p, "%s%s:%d", prefix,
1086 			       edac_layer_name[mci->layers[i].type], pos[i]);
1087 		prefix = " ";
1088 	}
1089 
1090 	edac_raw_mc_handle_error(e);
1091 }
1092 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1093