xref: /linux/drivers/edac/edac_mc.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * edac_mc kernel module
3  * (C) 2005 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *	http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/kthread.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_mc.h"
35 
36 #define EDAC_MC_VERSION "Ver: 2.0.0 " __DATE__
37 
38 /* For now, disable the EDAC sysfs code.  The sysfs interface that EDAC
39  * presents to user space needs more thought, and is likely to change
40  * substantially.
41  */
42 #define DISABLE_EDAC_SYSFS
43 
44 #ifdef CONFIG_EDAC_DEBUG
45 /* Values of 0 to 4 will generate output */
46 int edac_debug_level = 1;
47 EXPORT_SYMBOL_GPL(edac_debug_level);
48 #endif
49 
50 /* EDAC Controls, setable by module parameter, and sysfs */
51 static int log_ue = 1;
52 static int log_ce = 1;
53 static int panic_on_ue;
54 static int poll_msec = 1000;
55 
56 /* lock to memory controller's control array */
57 static DECLARE_MUTEX(mem_ctls_mutex);
58 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
59 
60 static struct task_struct *edac_thread;
61 
62 #ifdef CONFIG_PCI
63 static int check_pci_parity = 0;	/* default YES check PCI parity */
64 static int panic_on_pci_parity;		/* default no panic on PCI Parity */
65 static atomic_t pci_parity_count = ATOMIC_INIT(0);
66 
67 /* Structure of the whitelist and blacklist arrays */
68 struct edac_pci_device_list {
69 	unsigned int  vendor;		/* Vendor ID */
70 	unsigned int  device;		/* Deviice ID */
71 };
72 
73 #define MAX_LISTED_PCI_DEVICES		32
74 
75 /* List of PCI devices (vendor-id:device-id) that should be skipped */
76 static struct edac_pci_device_list pci_blacklist[MAX_LISTED_PCI_DEVICES];
77 static int pci_blacklist_count;
78 
79 /* List of PCI devices (vendor-id:device-id) that should be scanned */
80 static struct edac_pci_device_list pci_whitelist[MAX_LISTED_PCI_DEVICES];
81 static int pci_whitelist_count ;
82 
83 #ifndef DISABLE_EDAC_SYSFS
84 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
85 static struct completion edac_pci_kobj_complete;
86 #endif	/* DISABLE_EDAC_SYSFS */
87 #endif	/* CONFIG_PCI */
88 
89 /*  START sysfs data and methods */
90 
91 #ifndef DISABLE_EDAC_SYSFS
92 
93 static const char *mem_types[] = {
94 	[MEM_EMPTY] = "Empty",
95 	[MEM_RESERVED] = "Reserved",
96 	[MEM_UNKNOWN] = "Unknown",
97 	[MEM_FPM] = "FPM",
98 	[MEM_EDO] = "EDO",
99 	[MEM_BEDO] = "BEDO",
100 	[MEM_SDR] = "Unbuffered-SDR",
101 	[MEM_RDR] = "Registered-SDR",
102 	[MEM_DDR] = "Unbuffered-DDR",
103 	[MEM_RDDR] = "Registered-DDR",
104 	[MEM_RMBS] = "RMBS"
105 };
106 
107 static const char *dev_types[] = {
108 	[DEV_UNKNOWN] = "Unknown",
109 	[DEV_X1] = "x1",
110 	[DEV_X2] = "x2",
111 	[DEV_X4] = "x4",
112 	[DEV_X8] = "x8",
113 	[DEV_X16] = "x16",
114 	[DEV_X32] = "x32",
115 	[DEV_X64] = "x64"
116 };
117 
118 static const char *edac_caps[] = {
119 	[EDAC_UNKNOWN] = "Unknown",
120 	[EDAC_NONE] = "None",
121 	[EDAC_RESERVED] = "Reserved",
122 	[EDAC_PARITY] = "PARITY",
123 	[EDAC_EC] = "EC",
124 	[EDAC_SECDED] = "SECDED",
125 	[EDAC_S2ECD2ED] = "S2ECD2ED",
126 	[EDAC_S4ECD4ED] = "S4ECD4ED",
127 	[EDAC_S8ECD8ED] = "S8ECD8ED",
128 	[EDAC_S16ECD16ED] = "S16ECD16ED"
129 };
130 
131 /* sysfs object: /sys/devices/system/edac */
132 static struct sysdev_class edac_class = {
133 	set_kset_name("edac"),
134 };
135 
136 /* sysfs object:
137  *	/sys/devices/system/edac/mc
138  */
139 static struct kobject edac_memctrl_kobj;
140 
141 /* We use these to wait for the reference counts on edac_memctrl_kobj and
142  * edac_pci_kobj to reach 0.
143  */
144 static struct completion edac_memctrl_kobj_complete;
145 
146 /*
147  * /sys/devices/system/edac/mc;
148  *	data structures and methods
149  */
150 #if 0
151 static ssize_t memctrl_string_show(void *ptr, char *buffer)
152 {
153 	char *value = (char*) ptr;
154 	return sprintf(buffer, "%s\n", value);
155 }
156 #endif
157 
158 static ssize_t memctrl_int_show(void *ptr, char *buffer)
159 {
160 	int *value = (int*) ptr;
161 	return sprintf(buffer, "%d\n", *value);
162 }
163 
164 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
165 {
166 	int *value = (int*) ptr;
167 
168 	if (isdigit(*buffer))
169 		*value = simple_strtoul(buffer, NULL, 0);
170 
171 	return count;
172 }
173 
174 struct memctrl_dev_attribute {
175 	struct attribute attr;
176 	void *value;
177 	ssize_t (*show)(void *,char *);
178 	ssize_t (*store)(void *, const char *, size_t);
179 };
180 
181 /* Set of show/store abstract level functions for memory control object */
182 static ssize_t memctrl_dev_show(struct kobject *kobj,
183 		struct attribute *attr, char *buffer)
184 {
185 	struct memctrl_dev_attribute *memctrl_dev;
186 	memctrl_dev = (struct memctrl_dev_attribute*)attr;
187 
188 	if (memctrl_dev->show)
189 		return memctrl_dev->show(memctrl_dev->value, buffer);
190 
191 	return -EIO;
192 }
193 
194 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
195 		const char *buffer, size_t count)
196 {
197 	struct memctrl_dev_attribute *memctrl_dev;
198 	memctrl_dev = (struct memctrl_dev_attribute*)attr;
199 
200 	if (memctrl_dev->store)
201 		return memctrl_dev->store(memctrl_dev->value, buffer, count);
202 
203 	return -EIO;
204 }
205 
206 static struct sysfs_ops memctrlfs_ops = {
207 	.show   = memctrl_dev_show,
208 	.store  = memctrl_dev_store
209 };
210 
211 #define MEMCTRL_ATTR(_name,_mode,_show,_store)			\
212 struct memctrl_dev_attribute attr_##_name = {			\
213 	.attr = {.name = __stringify(_name), .mode = _mode },	\
214 	.value  = &_name,					\
215 	.show   = _show,					\
216 	.store  = _store,					\
217 };
218 
219 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)	\
220 struct memctrl_dev_attribute attr_##_name = {			\
221 	.attr = {.name = __stringify(_name), .mode = _mode },	\
222 	.value  = _data,					\
223 	.show   = _show,					\
224 	.store  = _store,					\
225 };
226 
227 /* cwrow<id> attribute f*/
228 #if 0
229 MEMCTRL_STRING_ATTR(mc_version,EDAC_MC_VERSION,S_IRUGO,memctrl_string_show,NULL);
230 #endif
231 
232 /* csrow<id> control files */
233 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
234 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
235 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
236 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
237 
238 /* Base Attributes of the memory ECC object */
239 static struct memctrl_dev_attribute *memctrl_attr[] = {
240 	&attr_panic_on_ue,
241 	&attr_log_ue,
242 	&attr_log_ce,
243 	&attr_poll_msec,
244 	NULL,
245 };
246 
247 /* Main MC kobject release() function */
248 static void edac_memctrl_master_release(struct kobject *kobj)
249 {
250 	debugf1("%s()\n", __func__);
251 	complete(&edac_memctrl_kobj_complete);
252 }
253 
254 static struct kobj_type ktype_memctrl = {
255 	.release = edac_memctrl_master_release,
256 	.sysfs_ops = &memctrlfs_ops,
257 	.default_attrs = (struct attribute **) memctrl_attr,
258 };
259 
260 #endif  /* DISABLE_EDAC_SYSFS */
261 
262 /* Initialize the main sysfs entries for edac:
263  *   /sys/devices/system/edac
264  *
265  * and children
266  *
267  * Return:  0 SUCCESS
268  *         !0 FAILURE
269  */
270 static int edac_sysfs_memctrl_setup(void)
271 #ifdef DISABLE_EDAC_SYSFS
272 {
273 	return 0;
274 }
275 #else
276 {
277 	int err=0;
278 
279 	debugf1("%s()\n", __func__);
280 
281 	/* create the /sys/devices/system/edac directory */
282 	err = sysdev_class_register(&edac_class);
283 
284 	if (!err) {
285 		/* Init the MC's kobject */
286 		memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
287 		edac_memctrl_kobj.parent = &edac_class.kset.kobj;
288 		edac_memctrl_kobj.ktype = &ktype_memctrl;
289 
290 		/* generate sysfs "..../edac/mc"   */
291 		err = kobject_set_name(&edac_memctrl_kobj,"mc");
292 
293 		if (!err) {
294 			/* FIXME: maybe new sysdev_create_subdir() */
295 			err = kobject_register(&edac_memctrl_kobj);
296 
297 			if (err)
298 				debugf1("Failed to register '.../edac/mc'\n");
299 			else
300 				debugf1("Registered '.../edac/mc' kobject\n");
301 		}
302 	} else
303 		debugf1("%s() error=%d\n", __func__, err);
304 
305 	return err;
306 }
307 #endif  /* DISABLE_EDAC_SYSFS */
308 
309 /*
310  * MC teardown:
311  *	the '..../edac/mc' kobject followed by '..../edac' itself
312  */
313 static void edac_sysfs_memctrl_teardown(void)
314 {
315 #ifndef DISABLE_EDAC_SYSFS
316 	debugf0("MC: " __FILE__ ": %s()\n", __func__);
317 
318 	/* Unregister the MC's kobject and wait for reference count to reach
319 	 * 0.
320 	 */
321 	init_completion(&edac_memctrl_kobj_complete);
322 	kobject_unregister(&edac_memctrl_kobj);
323 	wait_for_completion(&edac_memctrl_kobj_complete);
324 
325 	/* Unregister the 'edac' object */
326 	sysdev_class_unregister(&edac_class);
327 #endif  /* DISABLE_EDAC_SYSFS */
328 }
329 
330 #ifdef CONFIG_PCI
331 
332 #ifndef DISABLE_EDAC_SYSFS
333 
334 /*
335  * /sys/devices/system/edac/pci;
336  * 	data structures and methods
337  */
338 
339 struct list_control {
340 	struct edac_pci_device_list *list;
341 	int *count;
342 };
343 
344 #if 0
345 /* Output the list as:  vendor_id:device:id<,vendor_id:device_id> */
346 static ssize_t edac_pci_list_string_show(void *ptr, char *buffer)
347 {
348 	struct list_control *listctl;
349 	struct edac_pci_device_list *list;
350 	char *p = buffer;
351 	int len=0;
352 	int i;
353 
354 	listctl = ptr;
355 	list = listctl->list;
356 
357 	for (i = 0; i < *(listctl->count); i++, list++ ) {
358 		if (len > 0)
359 			len += snprintf(p + len, (PAGE_SIZE-len), ",");
360 
361 		len += snprintf(p + len,
362 				(PAGE_SIZE-len),
363 				"%x:%x",
364 				list->vendor,list->device);
365 	}
366 
367 	len += snprintf(p + len,(PAGE_SIZE-len), "\n");
368 	return (ssize_t) len;
369 }
370 
371 /**
372  *
373  * Scan string from **s to **e looking for one 'vendor:device' tuple
374  * where each field is a hex value
375  *
376  * return 0 if an entry is NOT found
377  * return 1 if an entry is found
378  *	fill in *vendor_id and *device_id with values found
379  *
380  * In both cases, make sure *s has been moved forward toward *e
381  */
382 static int parse_one_device(const char **s,const char **e,
383 	unsigned int *vendor_id, unsigned int *device_id)
384 {
385 	const char *runner, *p;
386 
387 	/* if null byte, we are done */
388 	if (!**s) {
389 		(*s)++;  /* keep *s moving */
390 		return 0;
391 	}
392 
393 	/* skip over newlines & whitespace */
394 	if ((**s == '\n') || isspace(**s)) {
395 		(*s)++;
396 		return 0;
397 	}
398 
399 	if (!isxdigit(**s)) {
400 		(*s)++;
401 		return 0;
402 	}
403 
404 	/* parse vendor_id */
405 	runner = *s;
406 
407 	while (runner < *e) {
408 		/* scan for vendor:device delimiter */
409 		if (*runner == ':') {
410 			*vendor_id = simple_strtol((char*) *s, (char**) &p, 16);
411 			runner = p + 1;
412 			break;
413 		}
414 
415 		runner++;
416 	}
417 
418 	if (!isxdigit(*runner)) {
419 		*s = ++runner;
420 		return 0;
421 	}
422 
423 	/* parse device_id */
424 	if (runner < *e) {
425 		*device_id = simple_strtol((char*)runner, (char**)&p, 16);
426 		runner = p;
427 	}
428 
429 	*s = runner;
430 	return 1;
431 }
432 
433 static ssize_t edac_pci_list_string_store(void *ptr, const char *buffer,
434 		size_t count)
435 {
436 	struct list_control *listctl;
437 	struct edac_pci_device_list *list;
438 	unsigned int vendor_id, device_id;
439 	const char *s, *e;
440 	int *index;
441 
442 	s = (char*)buffer;
443 	e = s + count;
444 	listctl = ptr;
445 	list = listctl->list;
446 	index = listctl->count;
447 	*index = 0;
448 
449 	while (*index < MAX_LISTED_PCI_DEVICES) {
450 		if (parse_one_device(&s,&e,&vendor_id,&device_id)) {
451 			list[ *index ].vendor = vendor_id;
452 			list[ *index ].device = device_id;
453 			(*index)++;
454 		}
455 
456 		/* check for all data consume */
457 		if (s >= e)
458 			break;
459 	}
460 
461 	return count;
462 }
463 
464 #endif
465 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
466 {
467 	int *value = ptr;
468 	return sprintf(buffer,"%d\n",*value);
469 }
470 
471 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
472 {
473 	int *value = ptr;
474 
475 	if (isdigit(*buffer))
476 		*value = simple_strtoul(buffer,NULL,0);
477 
478 	return count;
479 }
480 
481 struct edac_pci_dev_attribute {
482 	struct attribute attr;
483 	void *value;
484 	ssize_t (*show)(void *,char *);
485 	ssize_t (*store)(void *, const char *,size_t);
486 };
487 
488 /* Set of show/store abstract level functions for PCI Parity object */
489 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
490 		char *buffer)
491 {
492 	struct edac_pci_dev_attribute *edac_pci_dev;
493 	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
494 
495 	if (edac_pci_dev->show)
496 		return edac_pci_dev->show(edac_pci_dev->value, buffer);
497 	return -EIO;
498 }
499 
500 static ssize_t edac_pci_dev_store(struct kobject *kobj,
501 		struct attribute *attr, const char *buffer, size_t count)
502 {
503 	struct edac_pci_dev_attribute *edac_pci_dev;
504 	edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
505 
506 	if (edac_pci_dev->show)
507 		return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
508 	return -EIO;
509 }
510 
511 static struct sysfs_ops edac_pci_sysfs_ops = {
512 	.show   = edac_pci_dev_show,
513 	.store  = edac_pci_dev_store
514 };
515 
516 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)			\
517 struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
518 	.attr = {.name = __stringify(_name), .mode = _mode },	\
519 	.value  = &_name,					\
520 	.show   = _show,					\
521 	.store  = _store,					\
522 };
523 
524 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)	\
525 struct edac_pci_dev_attribute edac_pci_attr_##_name = {		\
526 	.attr = {.name = __stringify(_name), .mode = _mode },	\
527 	.value  = _data,					\
528 	.show   = _show,					\
529 	.store  = _store,					\
530 };
531 
532 #if 0
533 static struct list_control pci_whitelist_control = {
534 	.list = pci_whitelist,
535 	.count = &pci_whitelist_count
536 };
537 
538 static struct list_control pci_blacklist_control = {
539 	.list = pci_blacklist,
540 	.count = &pci_blacklist_count
541 };
542 
543 /* whitelist attribute */
544 EDAC_PCI_STRING_ATTR(pci_parity_whitelist,
545 	&pci_whitelist_control,
546 	S_IRUGO|S_IWUSR,
547 	edac_pci_list_string_show,
548 	edac_pci_list_string_store);
549 
550 EDAC_PCI_STRING_ATTR(pci_parity_blacklist,
551 	&pci_blacklist_control,
552 	S_IRUGO|S_IWUSR,
553 	edac_pci_list_string_show,
554 	edac_pci_list_string_store);
555 #endif
556 
557 /* PCI Parity control files */
558 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
559 	edac_pci_int_store);
560 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
561 	edac_pci_int_store);
562 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
563 
564 /* Base Attributes of the memory ECC object */
565 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
566 	&edac_pci_attr_check_pci_parity,
567 	&edac_pci_attr_panic_on_pci_parity,
568 	&edac_pci_attr_pci_parity_count,
569 	NULL,
570 };
571 
572 /* No memory to release */
573 static void edac_pci_release(struct kobject *kobj)
574 {
575 	debugf1("%s()\n", __func__);
576 	complete(&edac_pci_kobj_complete);
577 }
578 
579 static struct kobj_type ktype_edac_pci = {
580 	.release = edac_pci_release,
581 	.sysfs_ops = &edac_pci_sysfs_ops,
582 	.default_attrs = (struct attribute **) edac_pci_attr,
583 };
584 
585 #endif  /* DISABLE_EDAC_SYSFS */
586 
587 /**
588  * edac_sysfs_pci_setup()
589  *
590  */
591 static int edac_sysfs_pci_setup(void)
592 #ifdef DISABLE_EDAC_SYSFS
593 {
594 	return 0;
595 }
596 #else
597 {
598 	int err;
599 
600 	debugf1("%s()\n", __func__);
601 
602 	memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
603 	edac_pci_kobj.parent = &edac_class.kset.kobj;
604 	edac_pci_kobj.ktype = &ktype_edac_pci;
605 	err = kobject_set_name(&edac_pci_kobj, "pci");
606 
607 	if (!err) {
608 		/* Instanstiate the csrow object */
609 		/* FIXME: maybe new sysdev_create_subdir() */
610 		err = kobject_register(&edac_pci_kobj);
611 
612 		if (err)
613 			debugf1("Failed to register '.../edac/pci'\n");
614 		else
615 			debugf1("Registered '.../edac/pci' kobject\n");
616 	}
617 
618 	return err;
619 }
620 #endif  /* DISABLE_EDAC_SYSFS */
621 
622 static void edac_sysfs_pci_teardown(void)
623 {
624 #ifndef DISABLE_EDAC_SYSFS
625 	debugf0("%s()\n", __func__);
626 	init_completion(&edac_pci_kobj_complete);
627 	kobject_unregister(&edac_pci_kobj);
628 	wait_for_completion(&edac_pci_kobj_complete);
629 #endif
630 }
631 
632 
633 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
634 {
635 	int where;
636 	u16 status;
637 
638 	where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
639 	pci_read_config_word(dev, where, &status);
640 
641 	/* If we get back 0xFFFF then we must suspect that the card has been
642 	 * pulled but the Linux PCI layer has not yet finished cleaning up.
643 	 * We don't want to report on such devices
644 	 */
645 
646 	if (status == 0xFFFF) {
647 		u32 sanity;
648 
649 		pci_read_config_dword(dev, 0, &sanity);
650 
651 		if (sanity == 0xFFFFFFFF)
652 			return 0;
653 	}
654 
655 	status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
656 		PCI_STATUS_PARITY;
657 
658 	if (status)
659 		/* reset only the bits we are interested in */
660 		pci_write_config_word(dev, where, status);
661 
662 	return status;
663 }
664 
665 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
666 
667 /* Clear any PCI parity errors logged by this device. */
668 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
669 {
670 	u8 header_type;
671 
672 	get_pci_parity_status(dev, 0);
673 
674 	/* read the device TYPE, looking for bridges */
675 	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
676 
677 	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
678 		get_pci_parity_status(dev, 1);
679 }
680 
681 /*
682  *  PCI Parity polling
683  *
684  */
685 static void edac_pci_dev_parity_test(struct pci_dev *dev)
686 {
687 	u16 status;
688 	u8  header_type;
689 
690 	/* read the STATUS register on this device
691 	 */
692 	status = get_pci_parity_status(dev, 0);
693 
694 	debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
695 
696 	/* check the status reg for errors */
697 	if (status) {
698 		if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
699 			edac_printk(KERN_CRIT, EDAC_PCI,
700 				"Signaled System Error on %s\n",
701 				pci_name(dev));
702 
703 		if (status & (PCI_STATUS_PARITY)) {
704 			edac_printk(KERN_CRIT, EDAC_PCI,
705 				"Master Data Parity Error on %s\n",
706 				pci_name(dev));
707 
708 			atomic_inc(&pci_parity_count);
709 		}
710 
711 		if (status & (PCI_STATUS_DETECTED_PARITY)) {
712 			edac_printk(KERN_CRIT, EDAC_PCI,
713 				"Detected Parity Error on %s\n",
714 				pci_name(dev));
715 
716 			atomic_inc(&pci_parity_count);
717 		}
718 	}
719 
720 	/* read the device TYPE, looking for bridges */
721 	pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
722 
723 	debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
724 
725 	if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
726 		/* On bridges, need to examine secondary status register  */
727 		status = get_pci_parity_status(dev, 1);
728 
729 		debugf2("PCI SEC_STATUS= 0x%04x %s\n",
730 				status, dev->dev.bus_id );
731 
732 		/* check the secondary status reg for errors */
733 		if (status) {
734 			if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
735 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
736 					"Signaled System Error on %s\n",
737 					pci_name(dev));
738 
739 			if (status & (PCI_STATUS_PARITY)) {
740 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
741 					"Master Data Parity Error on "
742 					"%s\n", pci_name(dev));
743 
744 				atomic_inc(&pci_parity_count);
745 			}
746 
747 			if (status & (PCI_STATUS_DETECTED_PARITY)) {
748 				edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
749 					"Detected Parity Error on %s\n",
750 					pci_name(dev));
751 
752 				atomic_inc(&pci_parity_count);
753 			}
754 		}
755 	}
756 }
757 
758 /*
759  * check_dev_on_list: Scan for a PCI device on a white/black list
760  * @list:	an EDAC  &edac_pci_device_list  white/black list pointer
761  * @free_index:	index of next free entry on the list
762  * @pci_dev:	PCI Device pointer
763  *
764  * see if list contains the device.
765  *
766  * Returns:  	0 not found
767  *		1 found on list
768  */
769 static int check_dev_on_list(struct edac_pci_device_list *list,
770 		int free_index, struct pci_dev *dev)
771 {
772 	int i;
773 	int rc = 0;     /* Assume not found */
774 	unsigned short vendor=dev->vendor;
775 	unsigned short device=dev->device;
776 
777 	/* Scan the list, looking for a vendor/device match */
778 	for (i = 0; i < free_index; i++, list++ ) {
779 		if ((list->vendor == vendor ) && (list->device == device )) {
780 			rc = 1;
781 			break;
782 		}
783 	}
784 
785 	return rc;
786 }
787 
788 /*
789  * pci_dev parity list iterator
790  *	Scan the PCI device list for one iteration, looking for SERRORs
791  *	Master Parity ERRORS or Parity ERRORs on primary or secondary devices
792  */
793 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
794 {
795 	struct pci_dev *dev = NULL;
796 
797 	/* request for kernel access to the next PCI device, if any,
798 	 * and while we are looking at it have its reference count
799 	 * bumped until we are done with it
800 	 */
801 	while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
802 		/* if whitelist exists then it has priority, so only scan
803 		 * those devices on the whitelist
804 		 */
805 		if (pci_whitelist_count > 0 ) {
806 			if (check_dev_on_list(pci_whitelist,
807 					pci_whitelist_count, dev))
808 				fn(dev);
809 		} else {
810 			/*
811 			 * if no whitelist, then check if this devices is
812 			 * blacklisted
813 			 */
814 			if (!check_dev_on_list(pci_blacklist,
815 					pci_blacklist_count, dev))
816 				fn(dev);
817 		}
818 	}
819 }
820 
821 static void do_pci_parity_check(void)
822 {
823 	unsigned long flags;
824 	int before_count;
825 
826 	debugf3("%s()\n", __func__);
827 
828 	if (!check_pci_parity)
829 		return;
830 
831 	before_count = atomic_read(&pci_parity_count);
832 
833 	/* scan all PCI devices looking for a Parity Error on devices and
834 	 * bridges
835 	 */
836 	local_irq_save(flags);
837 	edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
838 	local_irq_restore(flags);
839 
840 	/* Only if operator has selected panic on PCI Error */
841 	if (panic_on_pci_parity) {
842 		/* If the count is different 'after' from 'before' */
843 		if (before_count != atomic_read(&pci_parity_count))
844 			panic("EDAC: PCI Parity Error");
845 	}
846 }
847 
848 static inline void clear_pci_parity_errors(void)
849 {
850 	/* Clear any PCI bus parity errors that devices initially have logged
851 	 * in their registers.
852 	 */
853 	edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
854 }
855 
856 #else	/* CONFIG_PCI */
857 
858 static inline void do_pci_parity_check(void)
859 {
860 	/* no-op */
861 }
862 
863 static inline void clear_pci_parity_errors(void)
864 {
865 	/* no-op */
866 }
867 
868 static void edac_sysfs_pci_teardown(void)
869 {
870 }
871 
872 static int edac_sysfs_pci_setup(void)
873 {
874 	return 0;
875 }
876 #endif	/* CONFIG_PCI */
877 
878 #ifndef DISABLE_EDAC_SYSFS
879 
880 /* EDAC sysfs CSROW data structures and methods */
881 
882 /* Set of more detailed csrow<id> attribute show/store functions */
883 static ssize_t csrow_ch0_dimm_label_show(struct csrow_info *csrow, char *data)
884 {
885 	ssize_t size = 0;
886 
887 	if (csrow->nr_channels > 0) {
888 		size = snprintf(data, EDAC_MC_LABEL_LEN,"%s\n",
889 			csrow->channels[0].label);
890 	}
891 
892 	return size;
893 }
894 
895 static ssize_t csrow_ch1_dimm_label_show(struct csrow_info *csrow, char *data)
896 {
897 	ssize_t size = 0;
898 
899 	if (csrow->nr_channels > 0) {
900 		size = snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
901 			csrow->channels[1].label);
902 	}
903 
904 	return size;
905 }
906 
907 static ssize_t csrow_ch0_dimm_label_store(struct csrow_info *csrow,
908 		const char *data, size_t size)
909 {
910 	ssize_t max_size = 0;
911 
912 	if (csrow->nr_channels > 0) {
913 		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
914 		strncpy(csrow->channels[0].label, data, max_size);
915 		csrow->channels[0].label[max_size] = '\0';
916 	}
917 
918 	return size;
919 }
920 
921 static ssize_t csrow_ch1_dimm_label_store(struct csrow_info *csrow,
922 		const char *data, size_t size)
923 {
924 	ssize_t max_size = 0;
925 
926 	if (csrow->nr_channels > 1) {
927 		max_size = min((ssize_t)size,(ssize_t)EDAC_MC_LABEL_LEN-1);
928 		strncpy(csrow->channels[1].label, data, max_size);
929 		csrow->channels[1].label[max_size] = '\0';
930 	}
931 
932 	return max_size;
933 }
934 
935 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data)
936 {
937 	return sprintf(data,"%u\n", csrow->ue_count);
938 }
939 
940 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data)
941 {
942 	return sprintf(data,"%u\n", csrow->ce_count);
943 }
944 
945 static ssize_t csrow_ch0_ce_count_show(struct csrow_info *csrow, char *data)
946 {
947 	ssize_t size = 0;
948 
949 	if (csrow->nr_channels > 0) {
950 		size = sprintf(data,"%u\n", csrow->channels[0].ce_count);
951 	}
952 
953 	return size;
954 }
955 
956 static ssize_t csrow_ch1_ce_count_show(struct csrow_info *csrow, char *data)
957 {
958 	ssize_t size = 0;
959 
960 	if (csrow->nr_channels > 1) {
961 		size = sprintf(data,"%u\n", csrow->channels[1].ce_count);
962 	}
963 
964 	return size;
965 }
966 
967 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data)
968 {
969 	return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
970 }
971 
972 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data)
973 {
974 	return sprintf(data,"%s\n", mem_types[csrow->mtype]);
975 }
976 
977 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data)
978 {
979 	return sprintf(data,"%s\n", dev_types[csrow->dtype]);
980 }
981 
982 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data)
983 {
984 	return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
985 }
986 
987 struct csrowdev_attribute {
988 	struct attribute attr;
989 	ssize_t (*show)(struct csrow_info *,char *);
990 	ssize_t (*store)(struct csrow_info *, const char *,size_t);
991 };
992 
993 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
994 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
995 
996 /* Set of show/store higher level functions for csrow objects */
997 static ssize_t csrowdev_show(struct kobject *kobj, struct attribute *attr,
998 		char *buffer)
999 {
1000 	struct csrow_info *csrow = to_csrow(kobj);
1001 	struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
1002 
1003 	if (csrowdev_attr->show)
1004 		return csrowdev_attr->show(csrow, buffer);
1005 
1006 	return -EIO;
1007 }
1008 
1009 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
1010 		const char *buffer, size_t count)
1011 {
1012 	struct csrow_info *csrow = to_csrow(kobj);
1013 	struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
1014 
1015 	if (csrowdev_attr->store)
1016 		return csrowdev_attr->store(csrow, buffer, count);
1017 
1018 	return -EIO;
1019 }
1020 
1021 static struct sysfs_ops csrowfs_ops = {
1022 	.show   = csrowdev_show,
1023 	.store  = csrowdev_store
1024 };
1025 
1026 #define CSROWDEV_ATTR(_name,_mode,_show,_store)			\
1027 struct csrowdev_attribute attr_##_name = {			\
1028 	.attr = {.name = __stringify(_name), .mode = _mode },	\
1029 	.show   = _show,					\
1030 	.store  = _store,					\
1031 };
1032 
1033 /* cwrow<id>/attribute files */
1034 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL);
1035 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL);
1036 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL);
1037 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL);
1038 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL);
1039 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL);
1040 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO,csrow_ch0_ce_count_show,NULL);
1041 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO,csrow_ch1_ce_count_show,NULL);
1042 
1043 /* control/attribute files */
1044 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
1045 		csrow_ch0_dimm_label_show,
1046 		csrow_ch0_dimm_label_store);
1047 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
1048 		csrow_ch1_dimm_label_show,
1049 		csrow_ch1_dimm_label_store);
1050 
1051 /* Attributes of the CSROW<id> object */
1052 static struct csrowdev_attribute *csrow_attr[] = {
1053 	&attr_dev_type,
1054 	&attr_mem_type,
1055 	&attr_edac_mode,
1056 	&attr_size_mb,
1057 	&attr_ue_count,
1058 	&attr_ce_count,
1059 	&attr_ch0_ce_count,
1060 	&attr_ch1_ce_count,
1061 	&attr_ch0_dimm_label,
1062 	&attr_ch1_dimm_label,
1063 	NULL,
1064 };
1065 
1066 /* No memory to release */
1067 static void edac_csrow_instance_release(struct kobject *kobj)
1068 {
1069 	struct csrow_info *cs;
1070 
1071 	debugf1("%s()\n", __func__);
1072 	cs = container_of(kobj, struct csrow_info, kobj);
1073 	complete(&cs->kobj_complete);
1074 }
1075 
1076 static struct kobj_type ktype_csrow = {
1077 	.release = edac_csrow_instance_release,
1078 	.sysfs_ops = &csrowfs_ops,
1079 	.default_attrs = (struct attribute **) csrow_attr,
1080 };
1081 
1082 /* Create a CSROW object under specifed edac_mc_device */
1083 static int edac_create_csrow_object(struct kobject *edac_mci_kobj,
1084 		struct csrow_info *csrow, int index)
1085 {
1086 	int err = 0;
1087 
1088 	debugf0("%s()\n", __func__);
1089 	memset(&csrow->kobj, 0, sizeof(csrow->kobj));
1090 
1091 	/* generate ..../edac/mc/mc<id>/csrow<index>   */
1092 
1093 	csrow->kobj.parent = edac_mci_kobj;
1094 	csrow->kobj.ktype = &ktype_csrow;
1095 
1096 	/* name this instance of csrow<id> */
1097 	err = kobject_set_name(&csrow->kobj,"csrow%d",index);
1098 
1099 	if (!err) {
1100 		/* Instanstiate the csrow object */
1101 		err = kobject_register(&csrow->kobj);
1102 
1103 		if (err)
1104 			debugf0("Failed to register CSROW%d\n",index);
1105 		else
1106 			debugf0("Registered CSROW%d\n",index);
1107 	}
1108 
1109 	return err;
1110 }
1111 
1112 /* sysfs data structures and methods for the MCI kobjects */
1113 
1114 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
1115 		const char *data, size_t count)
1116 {
1117 	int row, chan;
1118 
1119 	mci->ue_noinfo_count = 0;
1120 	mci->ce_noinfo_count = 0;
1121 	mci->ue_count = 0;
1122 	mci->ce_count = 0;
1123 
1124 	for (row = 0; row < mci->nr_csrows; row++) {
1125 		struct csrow_info *ri = &mci->csrows[row];
1126 
1127 		ri->ue_count = 0;
1128 		ri->ce_count = 0;
1129 
1130 		for (chan = 0; chan < ri->nr_channels; chan++)
1131 			ri->channels[chan].ce_count = 0;
1132 	}
1133 
1134 	mci->start_time = jiffies;
1135 	return count;
1136 }
1137 
1138 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
1139 {
1140 	return sprintf(data,"%d\n", mci->ue_count);
1141 }
1142 
1143 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
1144 {
1145 	return sprintf(data,"%d\n", mci->ce_count);
1146 }
1147 
1148 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
1149 {
1150 	return sprintf(data,"%d\n", mci->ce_noinfo_count);
1151 }
1152 
1153 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
1154 {
1155 	return sprintf(data,"%d\n", mci->ue_noinfo_count);
1156 }
1157 
1158 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
1159 {
1160 	return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
1161 }
1162 
1163 static ssize_t mci_mod_name_show(struct mem_ctl_info *mci, char *data)
1164 {
1165 	return sprintf(data,"%s %s\n", mci->mod_name, mci->mod_ver);
1166 }
1167 
1168 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
1169 {
1170 	return sprintf(data,"%s\n", mci->ctl_name);
1171 }
1172 
1173 static int mci_output_edac_cap(char *buf, unsigned long edac_cap)
1174 {
1175 	char *p = buf;
1176 	int bit_idx;
1177 
1178 	for (bit_idx = 0; bit_idx < 8 * sizeof(edac_cap); bit_idx++) {
1179 		if ((edac_cap >> bit_idx) & 0x1)
1180 			p += sprintf(p, "%s ", edac_caps[bit_idx]);
1181 	}
1182 
1183 	return p - buf;
1184 }
1185 
1186 static ssize_t mci_edac_capability_show(struct mem_ctl_info *mci, char *data)
1187 {
1188 	char *p = data;
1189 
1190 	p += mci_output_edac_cap(p,mci->edac_ctl_cap);
1191 	p += sprintf(p, "\n");
1192 	return p - data;
1193 }
1194 
1195 static ssize_t mci_edac_current_capability_show(struct mem_ctl_info *mci,
1196 		char *data)
1197 {
1198 	char *p = data;
1199 
1200 	p += mci_output_edac_cap(p,mci->edac_cap);
1201 	p += sprintf(p, "\n");
1202 	return p - data;
1203 }
1204 
1205 static int mci_output_mtype_cap(char *buf, unsigned long mtype_cap)
1206 {
1207 	char *p = buf;
1208 	int bit_idx;
1209 
1210 	for (bit_idx = 0; bit_idx < 8 * sizeof(mtype_cap); bit_idx++) {
1211 		if ((mtype_cap >> bit_idx) & 0x1)
1212 			p += sprintf(p, "%s ", mem_types[bit_idx]);
1213 	}
1214 
1215 	return p - buf;
1216 }
1217 
1218 static ssize_t mci_supported_mem_type_show(struct mem_ctl_info *mci,
1219 		char *data)
1220 {
1221 	char *p = data;
1222 
1223 	p += mci_output_mtype_cap(p,mci->mtype_cap);
1224 	p += sprintf(p, "\n");
1225 	return p - data;
1226 }
1227 
1228 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
1229 {
1230 	int total_pages, csrow_idx;
1231 
1232 	for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
1233 			csrow_idx++) {
1234 		struct csrow_info *csrow = &mci->csrows[csrow_idx];
1235 
1236 		if (!csrow->nr_pages)
1237 			continue;
1238 
1239 		total_pages += csrow->nr_pages;
1240 	}
1241 
1242 	return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
1243 }
1244 
1245 struct mcidev_attribute {
1246 	struct attribute attr;
1247 	ssize_t (*show)(struct mem_ctl_info *,char *);
1248 	ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
1249 };
1250 
1251 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
1252 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
1253 
1254 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
1255 		char *buffer)
1256 {
1257 	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1258 	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1259 
1260 	if (mcidev_attr->show)
1261 		return mcidev_attr->show(mem_ctl_info, buffer);
1262 
1263 	return -EIO;
1264 }
1265 
1266 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1267 		const char *buffer, size_t count)
1268 {
1269 	struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1270 	struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1271 
1272 	if (mcidev_attr->store)
1273 		return mcidev_attr->store(mem_ctl_info, buffer, count);
1274 
1275 	return -EIO;
1276 }
1277 
1278 static struct sysfs_ops mci_ops = {
1279 	.show = mcidev_show,
1280 	.store = mcidev_store
1281 };
1282 
1283 #define MCIDEV_ATTR(_name,_mode,_show,_store)			\
1284 struct mcidev_attribute mci_attr_##_name = {			\
1285 	.attr = {.name = __stringify(_name), .mode = _mode },	\
1286 	.show   = _show,					\
1287 	.store  = _store,					\
1288 };
1289 
1290 /* Control file */
1291 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1292 
1293 /* Attribute files */
1294 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1295 MCIDEV_ATTR(module_name,S_IRUGO,mci_mod_name_show,NULL);
1296 MCIDEV_ATTR(edac_capability,S_IRUGO,mci_edac_capability_show,NULL);
1297 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1298 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1299 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1300 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1301 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1302 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1303 MCIDEV_ATTR(edac_current_capability,S_IRUGO,
1304 	mci_edac_current_capability_show,NULL);
1305 MCIDEV_ATTR(supported_mem_type,S_IRUGO,
1306 	mci_supported_mem_type_show,NULL);
1307 
1308 static struct mcidev_attribute *mci_attr[] = {
1309 	&mci_attr_reset_counters,
1310 	&mci_attr_module_name,
1311 	&mci_attr_mc_name,
1312 	&mci_attr_edac_capability,
1313 	&mci_attr_edac_current_capability,
1314 	&mci_attr_supported_mem_type,
1315 	&mci_attr_size_mb,
1316 	&mci_attr_seconds_since_reset,
1317 	&mci_attr_ue_noinfo_count,
1318 	&mci_attr_ce_noinfo_count,
1319 	&mci_attr_ue_count,
1320 	&mci_attr_ce_count,
1321 	NULL
1322 };
1323 
1324 /*
1325  * Release of a MC controlling instance
1326  */
1327 static void edac_mci_instance_release(struct kobject *kobj)
1328 {
1329 	struct mem_ctl_info *mci;
1330 
1331 	mci = to_mci(kobj);
1332 	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1333 	complete(&mci->kobj_complete);
1334 }
1335 
1336 static struct kobj_type ktype_mci = {
1337 	.release = edac_mci_instance_release,
1338 	.sysfs_ops = &mci_ops,
1339 	.default_attrs = (struct attribute **) mci_attr,
1340 };
1341 
1342 #endif  /* DISABLE_EDAC_SYSFS */
1343 
1344 #define EDAC_DEVICE_SYMLINK	"device"
1345 
1346 /*
1347  * Create a new Memory Controller kobject instance,
1348  *	mc<id> under the 'mc' directory
1349  *
1350  * Return:
1351  *	0	Success
1352  *	!0	Failure
1353  */
1354 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1355 #ifdef DISABLE_EDAC_SYSFS
1356 {
1357 	return 0;
1358 }
1359 #else
1360 {
1361 	int i;
1362 	int err;
1363 	struct csrow_info *csrow;
1364 	struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1365 
1366 	debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1367 	memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1368 
1369 	/* set the name of the mc<id> object */
1370 	err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1371 
1372 	if (err)
1373 		return err;
1374 
1375 	/* link to our parent the '..../edac/mc' object */
1376 	edac_mci_kobj->parent = &edac_memctrl_kobj;
1377 	edac_mci_kobj->ktype = &ktype_mci;
1378 
1379 	/* register the mc<id> kobject */
1380 	err = kobject_register(edac_mci_kobj);
1381 
1382 	if (err)
1383 		return err;
1384 
1385 	/* create a symlink for the device */
1386 	err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1387 				EDAC_DEVICE_SYMLINK);
1388 
1389 	if (err)
1390 		goto fail0;
1391 
1392 	/* Make directories for each CSROW object
1393 	 * under the mc<id> kobject
1394 	 */
1395 	for (i = 0; i < mci->nr_csrows; i++) {
1396 		csrow = &mci->csrows[i];
1397 
1398 		/* Only expose populated CSROWs */
1399 		if (csrow->nr_pages > 0) {
1400 			err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1401 
1402 			if (err)
1403 				goto fail1;
1404 		}
1405 	}
1406 
1407 	return 0;
1408 
1409 	/* CSROW error: backout what has already been registered,  */
1410 fail1:
1411 	for ( i--; i >= 0; i--) {
1412 		if (csrow->nr_pages > 0) {
1413 			init_completion(&csrow->kobj_complete);
1414 			kobject_unregister(&mci->csrows[i].kobj);
1415 			wait_for_completion(&csrow->kobj_complete);
1416 		}
1417 	}
1418 
1419 fail0:
1420 	init_completion(&mci->kobj_complete);
1421 	kobject_unregister(edac_mci_kobj);
1422 	wait_for_completion(&mci->kobj_complete);
1423 	return err;
1424 }
1425 #endif  /* DISABLE_EDAC_SYSFS */
1426 
1427 /*
1428  * remove a Memory Controller instance
1429  */
1430 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1431 {
1432 #ifndef DISABLE_EDAC_SYSFS
1433 	int i;
1434 
1435 	debugf0("%s()\n", __func__);
1436 
1437 	/* remove all csrow kobjects */
1438 	for (i = 0; i < mci->nr_csrows; i++) {
1439 		if (mci->csrows[i].nr_pages > 0) {
1440 			init_completion(&mci->csrows[i].kobj_complete);
1441 			kobject_unregister(&mci->csrows[i].kobj);
1442 			wait_for_completion(&mci->csrows[i].kobj_complete);
1443 		}
1444 	}
1445 
1446 	sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1447 	init_completion(&mci->kobj_complete);
1448 	kobject_unregister(&mci->edac_mci_kobj);
1449 	wait_for_completion(&mci->kobj_complete);
1450 #endif  /* DISABLE_EDAC_SYSFS */
1451 }
1452 
1453 /* END OF sysfs data and methods */
1454 
1455 #ifdef CONFIG_EDAC_DEBUG
1456 
1457 void edac_mc_dump_channel(struct channel_info *chan)
1458 {
1459 	debugf4("\tchannel = %p\n", chan);
1460 	debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1461 	debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1462 	debugf4("\tchannel->label = '%s'\n", chan->label);
1463 	debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1464 }
1465 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1466 
1467 void edac_mc_dump_csrow(struct csrow_info *csrow)
1468 {
1469 	debugf4("\tcsrow = %p\n", csrow);
1470 	debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1471 	debugf4("\tcsrow->first_page = 0x%lx\n",
1472 		csrow->first_page);
1473 	debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1474 	debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1475 	debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1476 	debugf4("\tcsrow->nr_channels = %d\n",
1477 		csrow->nr_channels);
1478 	debugf4("\tcsrow->channels = %p\n", csrow->channels);
1479 	debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1480 }
1481 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1482 
1483 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1484 {
1485 	debugf3("\tmci = %p\n", mci);
1486 	debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1487 	debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1488 	debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1489 	debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1490 	debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1491 		mci->nr_csrows, mci->csrows);
1492 	debugf3("\tdev = %p\n", mci->dev);
1493 	debugf3("\tmod_name:ctl_name = %s:%s\n",
1494 		mci->mod_name, mci->ctl_name);
1495 	debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1496 }
1497 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1498 
1499 #endif  /* CONFIG_EDAC_DEBUG */
1500 
1501 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1502  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1503  * compiler would provide for X and return the aligned result.
1504  *
1505  * If 'size' is a constant, the compiler will optimize this whole function
1506  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1507  */
1508 static inline char * align_ptr(void *ptr, unsigned size)
1509 {
1510 	unsigned align, r;
1511 
1512 	/* Here we assume that the alignment of a "long long" is the most
1513 	 * stringent alignment that the compiler will ever provide by default.
1514 	 * As far as I know, this is a reasonable assumption.
1515 	 */
1516 	if (size > sizeof(long))
1517 		align = sizeof(long long);
1518 	else if (size > sizeof(int))
1519 		align = sizeof(long);
1520 	else if (size > sizeof(short))
1521 		align = sizeof(int);
1522 	else if (size > sizeof(char))
1523 		align = sizeof(short);
1524 	else
1525 		return (char *) ptr;
1526 
1527 	r = size % align;
1528 
1529 	if (r == 0)
1530 		return (char *) ptr;
1531 
1532 	return (char *) (((unsigned long) ptr) + align - r);
1533 }
1534 
1535 /**
1536  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1537  * @size_pvt:	size of private storage needed
1538  * @nr_csrows:	Number of CWROWS needed for this MC
1539  * @nr_chans:	Number of channels for the MC
1540  *
1541  * Everything is kmalloc'ed as one big chunk - more efficient.
1542  * Only can be used if all structures have the same lifetime - otherwise
1543  * you have to allocate and initialize your own structures.
1544  *
1545  * Use edac_mc_free() to free mc structures allocated by this function.
1546  *
1547  * Returns:
1548  *	NULL allocation failed
1549  *	struct mem_ctl_info pointer
1550  */
1551 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1552 		unsigned nr_chans)
1553 {
1554 	struct mem_ctl_info *mci;
1555 	struct csrow_info *csi, *csrow;
1556 	struct channel_info *chi, *chp, *chan;
1557 	void *pvt;
1558 	unsigned size;
1559 	int row, chn;
1560 
1561 	/* Figure out the offsets of the various items from the start of an mc
1562 	 * structure.  We want the alignment of each item to be at least as
1563 	 * stringent as what the compiler would provide if we could simply
1564 	 * hardcode everything into a single struct.
1565 	 */
1566 	mci = (struct mem_ctl_info *) 0;
1567 	csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1568 	chi = (struct channel_info *)
1569 			align_ptr(&csi[nr_csrows], sizeof(*chi));
1570 	pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1571 	size = ((unsigned long) pvt) + sz_pvt;
1572 
1573 	if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1574 		return NULL;
1575 
1576 	/* Adjust pointers so they point within the memory we just allocated
1577 	 * rather than an imaginary chunk of memory located at address 0.
1578 	 */
1579 	csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1580 	chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1581 	pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1582 
1583 	memset(mci, 0, size);  /* clear all fields */
1584 	mci->csrows = csi;
1585 	mci->pvt_info = pvt;
1586 	mci->nr_csrows = nr_csrows;
1587 
1588 	for (row = 0; row < nr_csrows; row++) {
1589 		csrow = &csi[row];
1590 		csrow->csrow_idx = row;
1591 		csrow->mci = mci;
1592 		csrow->nr_channels = nr_chans;
1593 		chp = &chi[row * nr_chans];
1594 		csrow->channels = chp;
1595 
1596 		for (chn = 0; chn < nr_chans; chn++) {
1597 			chan = &chp[chn];
1598 			chan->chan_idx = chn;
1599 			chan->csrow = csrow;
1600 		}
1601 	}
1602 
1603 	return mci;
1604 }
1605 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1606 
1607 /**
1608  * edac_mc_free:  Free a previously allocated 'mci' structure
1609  * @mci: pointer to a struct mem_ctl_info structure
1610  */
1611 void edac_mc_free(struct mem_ctl_info *mci)
1612 {
1613 	kfree(mci);
1614 }
1615 EXPORT_SYMBOL_GPL(edac_mc_free);
1616 
1617 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1618 {
1619 	struct mem_ctl_info *mci;
1620 	struct list_head *item;
1621 
1622 	debugf3("%s()\n", __func__);
1623 
1624 	list_for_each(item, &mc_devices) {
1625 		mci = list_entry(item, struct mem_ctl_info, link);
1626 
1627 		if (mci->dev == dev)
1628 			return mci;
1629 	}
1630 
1631 	return NULL;
1632 }
1633 
1634 /* Return 0 on success, 1 on failure.
1635  * Before calling this function, caller must
1636  * assign a unique value to mci->mc_idx.
1637  */
1638 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1639 {
1640 	struct list_head *item, *insert_before;
1641 	struct mem_ctl_info *p;
1642 
1643 	insert_before = &mc_devices;
1644 
1645 	if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1646 		goto fail0;
1647 
1648 	list_for_each(item, &mc_devices) {
1649 		p = list_entry(item, struct mem_ctl_info, link);
1650 
1651 		if (p->mc_idx >= mci->mc_idx) {
1652 			if (unlikely(p->mc_idx == mci->mc_idx))
1653 				goto fail1;
1654 
1655 			insert_before = item;
1656 			break;
1657 		}
1658 	}
1659 
1660 	list_add_tail_rcu(&mci->link, insert_before);
1661 	return 0;
1662 
1663 fail0:
1664 	edac_printk(KERN_WARNING, EDAC_MC,
1665 		    "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1666 		    dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1667 	return 1;
1668 
1669 fail1:
1670 	edac_printk(KERN_WARNING, EDAC_MC,
1671 		    "bug in low-level driver: attempt to assign\n"
1672 		    "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1673 	return 1;
1674 }
1675 
1676 static void complete_mc_list_del(struct rcu_head *head)
1677 {
1678 	struct mem_ctl_info *mci;
1679 
1680 	mci = container_of(head, struct mem_ctl_info, rcu);
1681 	INIT_LIST_HEAD(&mci->link);
1682 	complete(&mci->complete);
1683 }
1684 
1685 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1686 {
1687 	list_del_rcu(&mci->link);
1688 	init_completion(&mci->complete);
1689 	call_rcu(&mci->rcu, complete_mc_list_del);
1690 	wait_for_completion(&mci->complete);
1691 }
1692 
1693 /**
1694  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1695  *                 create sysfs entries associated with mci structure
1696  * @mci: pointer to the mci structure to be added to the list
1697  * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1698  *
1699  * Return:
1700  *	0	Success
1701  *	!0	Failure
1702  */
1703 
1704 /* FIXME - should a warning be printed if no error detection? correction? */
1705 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1706 {
1707 	debugf0("%s()\n", __func__);
1708 	mci->mc_idx = mc_idx;
1709 #ifdef CONFIG_EDAC_DEBUG
1710 	if (edac_debug_level >= 3)
1711 		edac_mc_dump_mci(mci);
1712 
1713 	if (edac_debug_level >= 4) {
1714 		int i;
1715 
1716 		for (i = 0; i < mci->nr_csrows; i++) {
1717 			int j;
1718 
1719 			edac_mc_dump_csrow(&mci->csrows[i]);
1720 			for (j = 0; j < mci->csrows[i].nr_channels; j++)
1721 				edac_mc_dump_channel(
1722 					&mci->csrows[i].channels[j]);
1723 		}
1724 	}
1725 #endif
1726 	down(&mem_ctls_mutex);
1727 
1728 	if (add_mc_to_global_list(mci))
1729 		goto fail0;
1730 
1731 	/* set load time so that error rate can be tracked */
1732 	mci->start_time = jiffies;
1733 
1734         if (edac_create_sysfs_mci_device(mci)) {
1735                 edac_mc_printk(mci, KERN_WARNING,
1736 			"failed to create sysfs device\n");
1737                 goto fail1;
1738         }
1739 
1740 	/* Report action taken */
1741 	edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1742 		mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1743 
1744 	up(&mem_ctls_mutex);
1745 	return 0;
1746 
1747 fail1:
1748 	del_mc_from_global_list(mci);
1749 
1750 fail0:
1751 	up(&mem_ctls_mutex);
1752 	return 1;
1753 }
1754 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1755 
1756 /**
1757  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1758  *                 remove mci structure from global list
1759  * @pdev: Pointer to 'struct device' representing mci structure to remove.
1760  *
1761  * Return pointer to removed mci structure, or NULL if device not found.
1762  */
1763 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1764 {
1765 	struct mem_ctl_info *mci;
1766 
1767 	debugf0("MC: %s()\n", __func__);
1768 	down(&mem_ctls_mutex);
1769 
1770 	if ((mci = find_mci_by_dev(dev)) == NULL) {
1771 		up(&mem_ctls_mutex);
1772 		return NULL;
1773 	}
1774 
1775 	edac_remove_sysfs_mci_device(mci);
1776 	del_mc_from_global_list(mci);
1777 	up(&mem_ctls_mutex);
1778 	edac_printk(KERN_INFO, EDAC_MC,
1779 		"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1780 		mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1781 	return mci;
1782 }
1783 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1784 
1785 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1786 {
1787 	struct page *pg;
1788 	void *virt_addr;
1789 	unsigned long flags = 0;
1790 
1791 	debugf3("%s()\n", __func__);
1792 
1793 	/* ECC error page was not in our memory. Ignore it. */
1794 	if(!pfn_valid(page))
1795 		return;
1796 
1797 	/* Find the actual page structure then map it and fix */
1798 	pg = pfn_to_page(page);
1799 
1800 	if (PageHighMem(pg))
1801 		local_irq_save(flags);
1802 
1803 	virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1804 
1805 	/* Perform architecture specific atomic scrub operation */
1806 	atomic_scrub(virt_addr + offset, size);
1807 
1808 	/* Unmap and complete */
1809 	kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1810 
1811 	if (PageHighMem(pg))
1812 		local_irq_restore(flags);
1813 }
1814 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1815 
1816 /* FIXME - should return -1 */
1817 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1818 {
1819 	struct csrow_info *csrows = mci->csrows;
1820 	int row, i;
1821 
1822 	debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1823 	row = -1;
1824 
1825 	for (i = 0; i < mci->nr_csrows; i++) {
1826 		struct csrow_info *csrow = &csrows[i];
1827 
1828 		if (csrow->nr_pages == 0)
1829 			continue;
1830 
1831 		debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1832 			"mask(0x%lx)\n", mci->mc_idx, __func__,
1833 			csrow->first_page, page, csrow->last_page,
1834 			csrow->page_mask);
1835 
1836 		if ((page >= csrow->first_page) &&
1837 		    (page <= csrow->last_page) &&
1838 		    ((page & csrow->page_mask) ==
1839 		     (csrow->first_page & csrow->page_mask))) {
1840 			row = i;
1841 			break;
1842 		}
1843 	}
1844 
1845 	if (row == -1)
1846 		edac_mc_printk(mci, KERN_ERR,
1847 			"could not look up page error address %lx\n",
1848 			(unsigned long) page);
1849 
1850 	return row;
1851 }
1852 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1853 
1854 /* FIXME - setable log (warning/emerg) levels */
1855 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1856 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1857 		unsigned long page_frame_number, unsigned long offset_in_page,
1858 		unsigned long syndrome, int row, int channel, const char *msg)
1859 {
1860 	unsigned long remapped_page;
1861 
1862 	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1863 
1864 	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1865 	if (row >= mci->nr_csrows || row < 0) {
1866 		/* something is wrong */
1867 		edac_mc_printk(mci, KERN_ERR,
1868 			"INTERNAL ERROR: row out of range "
1869 			"(%d >= %d)\n", row, mci->nr_csrows);
1870 		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1871 		return;
1872 	}
1873 
1874 	if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1875 		/* something is wrong */
1876 		edac_mc_printk(mci, KERN_ERR,
1877 			"INTERNAL ERROR: channel out of range "
1878 			"(%d >= %d)\n", channel,
1879 			mci->csrows[row].nr_channels);
1880 		edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1881 		return;
1882 	}
1883 
1884 	if (log_ce)
1885 		/* FIXME - put in DIMM location */
1886 		edac_mc_printk(mci, KERN_WARNING,
1887 			"CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1888 			"0x%lx, row %d, channel %d, label \"%s\": %s\n",
1889 			page_frame_number, offset_in_page,
1890 			mci->csrows[row].grain, syndrome, row, channel,
1891 			mci->csrows[row].channels[channel].label, msg);
1892 
1893 	mci->ce_count++;
1894 	mci->csrows[row].ce_count++;
1895 	mci->csrows[row].channels[channel].ce_count++;
1896 
1897 	if (mci->scrub_mode & SCRUB_SW_SRC) {
1898 		/*
1899 		 * Some MC's can remap memory so that it is still available
1900 		 * at a different address when PCI devices map into memory.
1901 		 * MC's that can't do this lose the memory where PCI devices
1902 		 * are mapped.  This mapping is MC dependant and so we call
1903 		 * back into the MC driver for it to map the MC page to
1904 		 * a physical (CPU) page which can then be mapped to a virtual
1905 		 * page - which can then be scrubbed.
1906 		 */
1907 		remapped_page = mci->ctl_page_to_phys ?
1908 		    mci->ctl_page_to_phys(mci, page_frame_number) :
1909 		    page_frame_number;
1910 
1911 		edac_mc_scrub_block(remapped_page, offset_in_page,
1912 					mci->csrows[row].grain);
1913 	}
1914 }
1915 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1916 
1917 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1918 {
1919 	if (log_ce)
1920 		edac_mc_printk(mci, KERN_WARNING,
1921 			"CE - no information available: %s\n", msg);
1922 
1923 	mci->ce_noinfo_count++;
1924 	mci->ce_count++;
1925 }
1926 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1927 
1928 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1929 		unsigned long page_frame_number, unsigned long offset_in_page,
1930 		int row, const char *msg)
1931 {
1932 	int len = EDAC_MC_LABEL_LEN * 4;
1933 	char labels[len + 1];
1934 	char *pos = labels;
1935 	int chan;
1936 	int chars;
1937 
1938 	debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1939 
1940 	/* FIXME - maybe make panic on INTERNAL ERROR an option */
1941 	if (row >= mci->nr_csrows || row < 0) {
1942 		/* something is wrong */
1943 		edac_mc_printk(mci, KERN_ERR,
1944 			"INTERNAL ERROR: row out of range "
1945 			"(%d >= %d)\n", row, mci->nr_csrows);
1946 		edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1947 		return;
1948 	}
1949 
1950 	chars = snprintf(pos, len + 1, "%s",
1951 			mci->csrows[row].channels[0].label);
1952 	len -= chars;
1953 	pos += chars;
1954 
1955 	for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1956 	     chan++) {
1957 		chars = snprintf(pos, len + 1, ":%s",
1958 				mci->csrows[row].channels[chan].label);
1959 		len -= chars;
1960 		pos += chars;
1961 	}
1962 
1963 	if (log_ue)
1964 		edac_mc_printk(mci, KERN_EMERG,
1965 			"UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1966 			"labels \"%s\": %s\n", page_frame_number,
1967 			offset_in_page, mci->csrows[row].grain, row, labels,
1968 			msg);
1969 
1970 	if (panic_on_ue)
1971 		panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1972 			"row %d, labels \"%s\": %s\n", mci->mc_idx,
1973 			page_frame_number, offset_in_page,
1974 			mci->csrows[row].grain, row, labels, msg);
1975 
1976 	mci->ue_count++;
1977 	mci->csrows[row].ue_count++;
1978 }
1979 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1980 
1981 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1982 {
1983 	if (panic_on_ue)
1984 		panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1985 
1986 	if (log_ue)
1987 		edac_mc_printk(mci, KERN_WARNING,
1988 			"UE - no information available: %s\n", msg);
1989 	mci->ue_noinfo_count++;
1990 	mci->ue_count++;
1991 }
1992 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1993 
1994 
1995 /*
1996  * Iterate over all MC instances and check for ECC, et al, errors
1997  */
1998 static inline void check_mc_devices(void)
1999 {
2000 	struct list_head *item;
2001 	struct mem_ctl_info *mci;
2002 
2003 	debugf3("%s()\n", __func__);
2004 	down(&mem_ctls_mutex);
2005 
2006 	list_for_each(item, &mc_devices) {
2007 		mci = list_entry(item, struct mem_ctl_info, link);
2008 
2009 		if (mci->edac_check != NULL)
2010 			mci->edac_check(mci);
2011 	}
2012 
2013 	up(&mem_ctls_mutex);
2014 }
2015 
2016 /*
2017  * Check MC status every poll_msec.
2018  * Check PCI status every poll_msec as well.
2019  *
2020  * This where the work gets done for edac.
2021  *
2022  * SMP safe, doesn't use NMI, and auto-rate-limits.
2023  */
2024 static void do_edac_check(void)
2025 {
2026 	debugf3("%s()\n", __func__);
2027 	check_mc_devices();
2028 	do_pci_parity_check();
2029 }
2030 
2031 static int edac_kernel_thread(void *arg)
2032 {
2033 	while (!kthread_should_stop()) {
2034 		do_edac_check();
2035 
2036 		/* goto sleep for the interval */
2037 		schedule_timeout_interruptible((HZ * poll_msec) / 1000);
2038 		try_to_freeze();
2039 	}
2040 
2041 	return 0;
2042 }
2043 
2044 /*
2045  * edac_mc_init
2046  *      module initialization entry point
2047  */
2048 static int __init edac_mc_init(void)
2049 {
2050 	edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
2051 
2052 	/*
2053 	 * Harvest and clear any boot/initialization PCI parity errors
2054 	 *
2055 	 * FIXME: This only clears errors logged by devices present at time of
2056 	 * 	module initialization.  We should also do an initial clear
2057 	 *	of each newly hotplugged device.
2058 	 */
2059 	clear_pci_parity_errors();
2060 
2061 	/* Create the MC sysfs entries */
2062 	if (edac_sysfs_memctrl_setup()) {
2063 		edac_printk(KERN_ERR, EDAC_MC,
2064 			"Error initializing sysfs code\n");
2065 		return -ENODEV;
2066 	}
2067 
2068 	/* Create the PCI parity sysfs entries */
2069 	if (edac_sysfs_pci_setup()) {
2070 		edac_sysfs_memctrl_teardown();
2071 		edac_printk(KERN_ERR, EDAC_MC,
2072 			"EDAC PCI: Error initializing sysfs code\n");
2073 		return -ENODEV;
2074 	}
2075 
2076 	/* create our kernel thread */
2077 	edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
2078 
2079 	if (IS_ERR(edac_thread)) {
2080 		/* remove the sysfs entries */
2081 		edac_sysfs_memctrl_teardown();
2082 		edac_sysfs_pci_teardown();
2083 		return PTR_ERR(edac_thread);
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 /*
2090  * edac_mc_exit()
2091  *      module exit/termination functioni
2092  */
2093 static void __exit edac_mc_exit(void)
2094 {
2095 	debugf0("%s()\n", __func__);
2096 	kthread_stop(edac_thread);
2097 
2098         /* tear down the sysfs device */
2099 	edac_sysfs_memctrl_teardown();
2100 	edac_sysfs_pci_teardown();
2101 }
2102 
2103 module_init(edac_mc_init);
2104 module_exit(edac_mc_exit);
2105 
2106 MODULE_LICENSE("GPL");
2107 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
2108 	"Based on work by Dan Hollis et al");
2109 MODULE_DESCRIPTION("Core library routines for MC reporting");
2110 
2111 module_param(panic_on_ue, int, 0644);
2112 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
2113 #ifdef CONFIG_PCI
2114 module_param(check_pci_parity, int, 0644);
2115 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
2116 module_param(panic_on_pci_parity, int, 0644);
2117 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
2118 #endif
2119 module_param(log_ue, int, 0644);
2120 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
2121 module_param(log_ce, int, 0644);
2122 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
2123 module_param(poll_msec, int, 0644);
2124 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
2125 #ifdef CONFIG_EDAC_DEBUG
2126 module_param(edac_debug_level, int, 0644);
2127 MODULE_PARM_DESC(edac_debug_level, "Debug level");
2128 #endif
2129