1 /* 2 * edac_mc kernel module 3 * (C) 2005, 2006 Linux Networx (http://lnxi.com) 4 * This file may be distributed under the terms of the 5 * GNU General Public License. 6 * 7 * Written by Thayne Harbaugh 8 * Based on work by Dan Hollis <goemon at anime dot net> and others. 9 * http://www.anime.net/~goemon/linux-ecc/ 10 * 11 * Modified by Dave Peterson and Doug Thompson 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/proc_fs.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/sysctl.h> 22 #include <linux/highmem.h> 23 #include <linux/timer.h> 24 #include <linux/slab.h> 25 #include <linux/jiffies.h> 26 #include <linux/spinlock.h> 27 #include <linux/list.h> 28 #include <linux/ctype.h> 29 #include <linux/edac.h> 30 #include <linux/bitops.h> 31 #include <asm/uaccess.h> 32 #include <asm/page.h> 33 #include <asm/edac.h> 34 #include "edac_core.h" 35 #include "edac_module.h" 36 37 #define CREATE_TRACE_POINTS 38 #define TRACE_INCLUDE_PATH ../../include/ras 39 #include <ras/ras_event.h> 40 41 /* lock to memory controller's control array */ 42 static DEFINE_MUTEX(mem_ctls_mutex); 43 static LIST_HEAD(mc_devices); 44 45 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, 46 unsigned len) 47 { 48 struct mem_ctl_info *mci = dimm->mci; 49 int i, n, count = 0; 50 char *p = buf; 51 52 for (i = 0; i < mci->n_layers; i++) { 53 n = snprintf(p, len, "%s %d ", 54 edac_layer_name[mci->layers[i].type], 55 dimm->location[i]); 56 p += n; 57 len -= n; 58 count += n; 59 if (!len) 60 break; 61 } 62 63 return count; 64 } 65 66 #ifdef CONFIG_EDAC_DEBUG 67 68 static void edac_mc_dump_channel(struct rank_info *chan) 69 { 70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); 71 edac_dbg(4, " channel = %p\n", chan); 72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow); 73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm); 74 } 75 76 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) 77 { 78 char location[80]; 79 80 edac_dimm_info_location(dimm, location, sizeof(location)); 81 82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", 83 dimm->mci->mem_is_per_rank ? "rank" : "dimm", 84 number, location, dimm->csrow, dimm->cschannel); 85 edac_dbg(4, " dimm = %p\n", dimm); 86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label); 87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain); 89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); 90 } 91 92 static void edac_mc_dump_csrow(struct csrow_info *csrow) 93 { 94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); 95 edac_dbg(4, " csrow = %p\n", csrow); 96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); 97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); 98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); 99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); 100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels); 101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci); 102 } 103 104 static void edac_mc_dump_mci(struct mem_ctl_info *mci) 105 { 106 edac_dbg(3, "\tmci = %p\n", mci); 107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); 108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); 109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); 110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); 111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", 112 mci->nr_csrows, mci->csrows); 113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", 114 mci->tot_dimms, mci->dimms); 115 edac_dbg(3, "\tdev = %p\n", mci->pdev); 116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", 117 mci->mod_name, mci->ctl_name); 118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); 119 } 120 121 #endif /* CONFIG_EDAC_DEBUG */ 122 123 /* 124 * keep those in sync with the enum mem_type 125 */ 126 const char *edac_mem_types[] = { 127 "Empty csrow", 128 "Reserved csrow type", 129 "Unknown csrow type", 130 "Fast page mode RAM", 131 "Extended data out RAM", 132 "Burst Extended data out RAM", 133 "Single data rate SDRAM", 134 "Registered single data rate SDRAM", 135 "Double data rate SDRAM", 136 "Registered Double data rate SDRAM", 137 "Rambus DRAM", 138 "Unbuffered DDR2 RAM", 139 "Fully buffered DDR2", 140 "Registered DDR2 RAM", 141 "Rambus XDR", 142 "Unbuffered DDR3 RAM", 143 "Registered DDR3 RAM", 144 }; 145 EXPORT_SYMBOL_GPL(edac_mem_types); 146 147 /** 148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation 149 * @p: pointer to a pointer with the memory offset to be used. At 150 * return, this will be incremented to point to the next offset 151 * @size: Size of the data structure to be reserved 152 * @n_elems: Number of elements that should be reserved 153 * 154 * If 'size' is a constant, the compiler will optimize this whole function 155 * down to either a no-op or the addition of a constant to the value of '*p'. 156 * 157 * The 'p' pointer is absolutely needed to keep the proper advancing 158 * further in memory to the proper offsets when allocating the struct along 159 * with its embedded structs, as edac_device_alloc_ctl_info() does it 160 * above, for example. 161 * 162 * At return, the pointer 'p' will be incremented to be used on a next call 163 * to this function. 164 */ 165 void *edac_align_ptr(void **p, unsigned size, int n_elems) 166 { 167 unsigned align, r; 168 void *ptr = *p; 169 170 *p += size * n_elems; 171 172 /* 173 * 'p' can possibly be an unaligned item X such that sizeof(X) is 174 * 'size'. Adjust 'p' so that its alignment is at least as 175 * stringent as what the compiler would provide for X and return 176 * the aligned result. 177 * Here we assume that the alignment of a "long long" is the most 178 * stringent alignment that the compiler will ever provide by default. 179 * As far as I know, this is a reasonable assumption. 180 */ 181 if (size > sizeof(long)) 182 align = sizeof(long long); 183 else if (size > sizeof(int)) 184 align = sizeof(long); 185 else if (size > sizeof(short)) 186 align = sizeof(int); 187 else if (size > sizeof(char)) 188 align = sizeof(short); 189 else 190 return (char *)ptr; 191 192 r = (unsigned long)p % align; 193 194 if (r == 0) 195 return (char *)ptr; 196 197 *p += align - r; 198 199 return (void *)(((unsigned long)ptr) + align - r); 200 } 201 202 static void _edac_mc_free(struct mem_ctl_info *mci) 203 { 204 int i, chn, row; 205 struct csrow_info *csr; 206 const unsigned int tot_dimms = mci->tot_dimms; 207 const unsigned int tot_channels = mci->num_cschannel; 208 const unsigned int tot_csrows = mci->nr_csrows; 209 210 if (mci->dimms) { 211 for (i = 0; i < tot_dimms; i++) 212 kfree(mci->dimms[i]); 213 kfree(mci->dimms); 214 } 215 if (mci->csrows) { 216 for (row = 0; row < tot_csrows; row++) { 217 csr = mci->csrows[row]; 218 if (csr) { 219 if (csr->channels) { 220 for (chn = 0; chn < tot_channels; chn++) 221 kfree(csr->channels[chn]); 222 kfree(csr->channels); 223 } 224 kfree(csr); 225 } 226 } 227 kfree(mci->csrows); 228 } 229 kfree(mci); 230 } 231 232 /** 233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure 234 * @mc_num: Memory controller number 235 * @n_layers: Number of MC hierarchy layers 236 * layers: Describes each layer as seen by the Memory Controller 237 * @size_pvt: size of private storage needed 238 * 239 * 240 * Everything is kmalloc'ed as one big chunk - more efficient. 241 * Only can be used if all structures have the same lifetime - otherwise 242 * you have to allocate and initialize your own structures. 243 * 244 * Use edac_mc_free() to free mc structures allocated by this function. 245 * 246 * NOTE: drivers handle multi-rank memories in different ways: in some 247 * drivers, one multi-rank memory stick is mapped as one entry, while, in 248 * others, a single multi-rank memory stick would be mapped into several 249 * entries. Currently, this function will allocate multiple struct dimm_info 250 * on such scenarios, as grouping the multiple ranks require drivers change. 251 * 252 * Returns: 253 * On failure: NULL 254 * On success: struct mem_ctl_info pointer 255 */ 256 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, 257 unsigned n_layers, 258 struct edac_mc_layer *layers, 259 unsigned sz_pvt) 260 { 261 struct mem_ctl_info *mci; 262 struct edac_mc_layer *layer; 263 struct csrow_info *csr; 264 struct rank_info *chan; 265 struct dimm_info *dimm; 266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 267 unsigned pos[EDAC_MAX_LAYERS]; 268 unsigned size, tot_dimms = 1, count = 1; 269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; 270 void *pvt, *p, *ptr = NULL; 271 int i, j, row, chn, n, len, off; 272 bool per_rank = false; 273 274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); 275 /* 276 * Calculate the total amount of dimms and csrows/cschannels while 277 * in the old API emulation mode 278 */ 279 for (i = 0; i < n_layers; i++) { 280 tot_dimms *= layers[i].size; 281 if (layers[i].is_virt_csrow) 282 tot_csrows *= layers[i].size; 283 else 284 tot_channels *= layers[i].size; 285 286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) 287 per_rank = true; 288 } 289 290 /* Figure out the offsets of the various items from the start of an mc 291 * structure. We want the alignment of each item to be at least as 292 * stringent as what the compiler would provide if we could simply 293 * hardcode everything into a single struct. 294 */ 295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1); 296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); 297 for (i = 0; i < n_layers; i++) { 298 count *= layers[i].size; 299 edac_dbg(4, "errcount layer %d size %d\n", i, count); 300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); 302 tot_errcount += 2 * count; 303 } 304 305 edac_dbg(4, "allocating %d error counters\n", tot_errcount); 306 pvt = edac_align_ptr(&ptr, sz_pvt, 1); 307 size = ((unsigned long)pvt) + sz_pvt; 308 309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", 310 size, 311 tot_dimms, 312 per_rank ? "ranks" : "dimms", 313 tot_csrows * tot_channels); 314 315 mci = kzalloc(size, GFP_KERNEL); 316 if (mci == NULL) 317 return NULL; 318 319 /* Adjust pointers so they point within the memory we just allocated 320 * rather than an imaginary chunk of memory located at address 0. 321 */ 322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); 323 for (i = 0; i < n_layers; i++) { 324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); 325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); 326 } 327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; 328 329 /* setup index and various internal pointers */ 330 mci->mc_idx = mc_num; 331 mci->tot_dimms = tot_dimms; 332 mci->pvt_info = pvt; 333 mci->n_layers = n_layers; 334 mci->layers = layer; 335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers); 336 mci->nr_csrows = tot_csrows; 337 mci->num_cschannel = tot_channels; 338 mci->mem_is_per_rank = per_rank; 339 340 /* 341 * Alocate and fill the csrow/channels structs 342 */ 343 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL); 344 if (!mci->csrows) 345 goto error; 346 for (row = 0; row < tot_csrows; row++) { 347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); 348 if (!csr) 349 goto error; 350 mci->csrows[row] = csr; 351 csr->csrow_idx = row; 352 csr->mci = mci; 353 csr->nr_channels = tot_channels; 354 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels, 355 GFP_KERNEL); 356 if (!csr->channels) 357 goto error; 358 359 for (chn = 0; chn < tot_channels; chn++) { 360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); 361 if (!chan) 362 goto error; 363 csr->channels[chn] = chan; 364 chan->chan_idx = chn; 365 chan->csrow = csr; 366 } 367 } 368 369 /* 370 * Allocate and fill the dimm structs 371 */ 372 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL); 373 if (!mci->dimms) 374 goto error; 375 376 memset(&pos, 0, sizeof(pos)); 377 row = 0; 378 chn = 0; 379 for (i = 0; i < tot_dimms; i++) { 380 chan = mci->csrows[row]->channels[chn]; 381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); 382 if (off < 0 || off >= tot_dimms) { 383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); 384 goto error; 385 } 386 387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); 388 if (!dimm) 389 goto error; 390 mci->dimms[off] = dimm; 391 dimm->mci = mci; 392 393 /* 394 * Copy DIMM location and initialize it. 395 */ 396 len = sizeof(dimm->label); 397 p = dimm->label; 398 n = snprintf(p, len, "mc#%u", mc_num); 399 p += n; 400 len -= n; 401 for (j = 0; j < n_layers; j++) { 402 n = snprintf(p, len, "%s#%u", 403 edac_layer_name[layers[j].type], 404 pos[j]); 405 p += n; 406 len -= n; 407 dimm->location[j] = pos[j]; 408 409 if (len <= 0) 410 break; 411 } 412 413 /* Link it to the csrows old API data */ 414 chan->dimm = dimm; 415 dimm->csrow = row; 416 dimm->cschannel = chn; 417 418 /* Increment csrow location */ 419 if (layers[0].is_virt_csrow) { 420 chn++; 421 if (chn == tot_channels) { 422 chn = 0; 423 row++; 424 } 425 } else { 426 row++; 427 if (row == tot_csrows) { 428 row = 0; 429 chn++; 430 } 431 } 432 433 /* Increment dimm location */ 434 for (j = n_layers - 1; j >= 0; j--) { 435 pos[j]++; 436 if (pos[j] < layers[j].size) 437 break; 438 pos[j] = 0; 439 } 440 } 441 442 mci->op_state = OP_ALLOC; 443 444 /* at this point, the root kobj is valid, and in order to 445 * 'free' the object, then the function: 446 * edac_mc_unregister_sysfs_main_kobj() must be called 447 * which will perform kobj unregistration and the actual free 448 * will occur during the kobject callback operation 449 */ 450 451 return mci; 452 453 error: 454 _edac_mc_free(mci); 455 456 return NULL; 457 } 458 EXPORT_SYMBOL_GPL(edac_mc_alloc); 459 460 /** 461 * edac_mc_free 462 * 'Free' a previously allocated 'mci' structure 463 * @mci: pointer to a struct mem_ctl_info structure 464 */ 465 void edac_mc_free(struct mem_ctl_info *mci) 466 { 467 edac_dbg(1, "\n"); 468 469 /* If we're not yet registered with sysfs free only what was allocated 470 * in edac_mc_alloc(). 471 */ 472 if (!device_is_registered(&mci->dev)) { 473 _edac_mc_free(mci); 474 return; 475 } 476 477 /* the mci instance is freed here, when the sysfs object is dropped */ 478 edac_unregister_sysfs(mci); 479 } 480 EXPORT_SYMBOL_GPL(edac_mc_free); 481 482 483 /** 484 * find_mci_by_dev 485 * 486 * scan list of controllers looking for the one that manages 487 * the 'dev' device 488 * @dev: pointer to a struct device related with the MCI 489 */ 490 struct mem_ctl_info *find_mci_by_dev(struct device *dev) 491 { 492 struct mem_ctl_info *mci; 493 struct list_head *item; 494 495 edac_dbg(3, "\n"); 496 497 list_for_each(item, &mc_devices) { 498 mci = list_entry(item, struct mem_ctl_info, link); 499 500 if (mci->pdev == dev) 501 return mci; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL_GPL(find_mci_by_dev); 507 508 /* 509 * handler for EDAC to check if NMI type handler has asserted interrupt 510 */ 511 static int edac_mc_assert_error_check_and_clear(void) 512 { 513 int old_state; 514 515 if (edac_op_state == EDAC_OPSTATE_POLL) 516 return 1; 517 518 old_state = edac_err_assert; 519 edac_err_assert = 0; 520 521 return old_state; 522 } 523 524 /* 525 * edac_mc_workq_function 526 * performs the operation scheduled by a workq request 527 */ 528 static void edac_mc_workq_function(struct work_struct *work_req) 529 { 530 struct delayed_work *d_work = to_delayed_work(work_req); 531 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); 532 533 mutex_lock(&mem_ctls_mutex); 534 535 /* if this control struct has movd to offline state, we are done */ 536 if (mci->op_state == OP_OFFLINE) { 537 mutex_unlock(&mem_ctls_mutex); 538 return; 539 } 540 541 /* Only poll controllers that are running polled and have a check */ 542 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) 543 mci->edac_check(mci); 544 545 mutex_unlock(&mem_ctls_mutex); 546 547 /* Reschedule */ 548 queue_delayed_work(edac_workqueue, &mci->work, 549 msecs_to_jiffies(edac_mc_get_poll_msec())); 550 } 551 552 /* 553 * edac_mc_workq_setup 554 * initialize a workq item for this mci 555 * passing in the new delay period in msec 556 * 557 * locking model: 558 * 559 * called with the mem_ctls_mutex held 560 */ 561 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec) 562 { 563 edac_dbg(0, "\n"); 564 565 /* if this instance is not in the POLL state, then simply return */ 566 if (mci->op_state != OP_RUNNING_POLL) 567 return; 568 569 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); 570 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); 571 } 572 573 /* 574 * edac_mc_workq_teardown 575 * stop the workq processing on this mci 576 * 577 * locking model: 578 * 579 * called WITHOUT lock held 580 */ 581 static void edac_mc_workq_teardown(struct mem_ctl_info *mci) 582 { 583 int status; 584 585 if (mci->op_state != OP_RUNNING_POLL) 586 return; 587 588 status = cancel_delayed_work(&mci->work); 589 if (status == 0) { 590 edac_dbg(0, "not canceled, flush the queue\n"); 591 592 /* workq instance might be running, wait for it */ 593 flush_workqueue(edac_workqueue); 594 } 595 } 596 597 /* 598 * edac_mc_reset_delay_period(unsigned long value) 599 * 600 * user space has updated our poll period value, need to 601 * reset our workq delays 602 */ 603 void edac_mc_reset_delay_period(int value) 604 { 605 struct mem_ctl_info *mci; 606 struct list_head *item; 607 608 mutex_lock(&mem_ctls_mutex); 609 610 list_for_each(item, &mc_devices) { 611 mci = list_entry(item, struct mem_ctl_info, link); 612 613 edac_mc_workq_setup(mci, (unsigned long) value); 614 } 615 616 mutex_unlock(&mem_ctls_mutex); 617 } 618 619 620 621 /* Return 0 on success, 1 on failure. 622 * Before calling this function, caller must 623 * assign a unique value to mci->mc_idx. 624 * 625 * locking model: 626 * 627 * called with the mem_ctls_mutex lock held 628 */ 629 static int add_mc_to_global_list(struct mem_ctl_info *mci) 630 { 631 struct list_head *item, *insert_before; 632 struct mem_ctl_info *p; 633 634 insert_before = &mc_devices; 635 636 p = find_mci_by_dev(mci->pdev); 637 if (unlikely(p != NULL)) 638 goto fail0; 639 640 list_for_each(item, &mc_devices) { 641 p = list_entry(item, struct mem_ctl_info, link); 642 643 if (p->mc_idx >= mci->mc_idx) { 644 if (unlikely(p->mc_idx == mci->mc_idx)) 645 goto fail1; 646 647 insert_before = item; 648 break; 649 } 650 } 651 652 list_add_tail_rcu(&mci->link, insert_before); 653 atomic_inc(&edac_handlers); 654 return 0; 655 656 fail0: 657 edac_printk(KERN_WARNING, EDAC_MC, 658 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), 659 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); 660 return 1; 661 662 fail1: 663 edac_printk(KERN_WARNING, EDAC_MC, 664 "bug in low-level driver: attempt to assign\n" 665 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); 666 return 1; 667 } 668 669 static void del_mc_from_global_list(struct mem_ctl_info *mci) 670 { 671 atomic_dec(&edac_handlers); 672 list_del_rcu(&mci->link); 673 674 /* these are for safe removal of devices from global list while 675 * NMI handlers may be traversing list 676 */ 677 synchronize_rcu(); 678 INIT_LIST_HEAD(&mci->link); 679 } 680 681 /** 682 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. 683 * 684 * If found, return a pointer to the structure. 685 * Else return NULL. 686 * 687 * Caller must hold mem_ctls_mutex. 688 */ 689 struct mem_ctl_info *edac_mc_find(int idx) 690 { 691 struct list_head *item; 692 struct mem_ctl_info *mci; 693 694 list_for_each(item, &mc_devices) { 695 mci = list_entry(item, struct mem_ctl_info, link); 696 697 if (mci->mc_idx >= idx) { 698 if (mci->mc_idx == idx) 699 return mci; 700 701 break; 702 } 703 } 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(edac_mc_find); 708 709 /** 710 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and 711 * create sysfs entries associated with mci structure 712 * @mci: pointer to the mci structure to be added to the list 713 * 714 * Return: 715 * 0 Success 716 * !0 Failure 717 */ 718 719 /* FIXME - should a warning be printed if no error detection? correction? */ 720 int edac_mc_add_mc(struct mem_ctl_info *mci) 721 { 722 edac_dbg(0, "\n"); 723 724 #ifdef CONFIG_EDAC_DEBUG 725 if (edac_debug_level >= 3) 726 edac_mc_dump_mci(mci); 727 728 if (edac_debug_level >= 4) { 729 int i; 730 731 for (i = 0; i < mci->nr_csrows; i++) { 732 struct csrow_info *csrow = mci->csrows[i]; 733 u32 nr_pages = 0; 734 int j; 735 736 for (j = 0; j < csrow->nr_channels; j++) 737 nr_pages += csrow->channels[j]->dimm->nr_pages; 738 if (!nr_pages) 739 continue; 740 edac_mc_dump_csrow(csrow); 741 for (j = 0; j < csrow->nr_channels; j++) 742 if (csrow->channels[j]->dimm->nr_pages) 743 edac_mc_dump_channel(csrow->channels[j]); 744 } 745 for (i = 0; i < mci->tot_dimms; i++) 746 if (mci->dimms[i]->nr_pages) 747 edac_mc_dump_dimm(mci->dimms[i], i); 748 } 749 #endif 750 mutex_lock(&mem_ctls_mutex); 751 752 if (add_mc_to_global_list(mci)) 753 goto fail0; 754 755 /* set load time so that error rate can be tracked */ 756 mci->start_time = jiffies; 757 758 if (edac_create_sysfs_mci_device(mci)) { 759 edac_mc_printk(mci, KERN_WARNING, 760 "failed to create sysfs device\n"); 761 goto fail1; 762 } 763 764 /* If there IS a check routine, then we are running POLLED */ 765 if (mci->edac_check != NULL) { 766 /* This instance is NOW RUNNING */ 767 mci->op_state = OP_RUNNING_POLL; 768 769 edac_mc_workq_setup(mci, edac_mc_get_poll_msec()); 770 } else { 771 mci->op_state = OP_RUNNING_INTERRUPT; 772 } 773 774 /* Report action taken */ 775 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':" 776 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 777 778 mutex_unlock(&mem_ctls_mutex); 779 return 0; 780 781 fail1: 782 del_mc_from_global_list(mci); 783 784 fail0: 785 mutex_unlock(&mem_ctls_mutex); 786 return 1; 787 } 788 EXPORT_SYMBOL_GPL(edac_mc_add_mc); 789 790 /** 791 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and 792 * remove mci structure from global list 793 * @pdev: Pointer to 'struct device' representing mci structure to remove. 794 * 795 * Return pointer to removed mci structure, or NULL if device not found. 796 */ 797 struct mem_ctl_info *edac_mc_del_mc(struct device *dev) 798 { 799 struct mem_ctl_info *mci; 800 801 edac_dbg(0, "\n"); 802 803 mutex_lock(&mem_ctls_mutex); 804 805 /* find the requested mci struct in the global list */ 806 mci = find_mci_by_dev(dev); 807 if (mci == NULL) { 808 mutex_unlock(&mem_ctls_mutex); 809 return NULL; 810 } 811 812 del_mc_from_global_list(mci); 813 mutex_unlock(&mem_ctls_mutex); 814 815 /* flush workq processes */ 816 edac_mc_workq_teardown(mci); 817 818 /* marking MCI offline */ 819 mci->op_state = OP_OFFLINE; 820 821 /* remove from sysfs */ 822 edac_remove_sysfs_mci_device(mci); 823 824 edac_printk(KERN_INFO, EDAC_MC, 825 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, 826 mci->mod_name, mci->ctl_name, edac_dev_name(mci)); 827 828 return mci; 829 } 830 EXPORT_SYMBOL_GPL(edac_mc_del_mc); 831 832 static void edac_mc_scrub_block(unsigned long page, unsigned long offset, 833 u32 size) 834 { 835 struct page *pg; 836 void *virt_addr; 837 unsigned long flags = 0; 838 839 edac_dbg(3, "\n"); 840 841 /* ECC error page was not in our memory. Ignore it. */ 842 if (!pfn_valid(page)) 843 return; 844 845 /* Find the actual page structure then map it and fix */ 846 pg = pfn_to_page(page); 847 848 if (PageHighMem(pg)) 849 local_irq_save(flags); 850 851 virt_addr = kmap_atomic(pg); 852 853 /* Perform architecture specific atomic scrub operation */ 854 atomic_scrub(virt_addr + offset, size); 855 856 /* Unmap and complete */ 857 kunmap_atomic(virt_addr); 858 859 if (PageHighMem(pg)) 860 local_irq_restore(flags); 861 } 862 863 /* FIXME - should return -1 */ 864 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) 865 { 866 struct csrow_info **csrows = mci->csrows; 867 int row, i, j, n; 868 869 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); 870 row = -1; 871 872 for (i = 0; i < mci->nr_csrows; i++) { 873 struct csrow_info *csrow = csrows[i]; 874 n = 0; 875 for (j = 0; j < csrow->nr_channels; j++) { 876 struct dimm_info *dimm = csrow->channels[j]->dimm; 877 n += dimm->nr_pages; 878 } 879 if (n == 0) 880 continue; 881 882 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", 883 mci->mc_idx, 884 csrow->first_page, page, csrow->last_page, 885 csrow->page_mask); 886 887 if ((page >= csrow->first_page) && 888 (page <= csrow->last_page) && 889 ((page & csrow->page_mask) == 890 (csrow->first_page & csrow->page_mask))) { 891 row = i; 892 break; 893 } 894 } 895 896 if (row == -1) 897 edac_mc_printk(mci, KERN_ERR, 898 "could not look up page error address %lx\n", 899 (unsigned long)page); 900 901 return row; 902 } 903 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); 904 905 const char *edac_layer_name[] = { 906 [EDAC_MC_LAYER_BRANCH] = "branch", 907 [EDAC_MC_LAYER_CHANNEL] = "channel", 908 [EDAC_MC_LAYER_SLOT] = "slot", 909 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", 910 }; 911 EXPORT_SYMBOL_GPL(edac_layer_name); 912 913 static void edac_inc_ce_error(struct mem_ctl_info *mci, 914 bool enable_per_layer_report, 915 const int pos[EDAC_MAX_LAYERS], 916 const u16 count) 917 { 918 int i, index = 0; 919 920 mci->ce_mc += count; 921 922 if (!enable_per_layer_report) { 923 mci->ce_noinfo_count += count; 924 return; 925 } 926 927 for (i = 0; i < mci->n_layers; i++) { 928 if (pos[i] < 0) 929 break; 930 index += pos[i]; 931 mci->ce_per_layer[i][index] += count; 932 933 if (i < mci->n_layers - 1) 934 index *= mci->layers[i + 1].size; 935 } 936 } 937 938 static void edac_inc_ue_error(struct mem_ctl_info *mci, 939 bool enable_per_layer_report, 940 const int pos[EDAC_MAX_LAYERS], 941 const u16 count) 942 { 943 int i, index = 0; 944 945 mci->ue_mc += count; 946 947 if (!enable_per_layer_report) { 948 mci->ce_noinfo_count += count; 949 return; 950 } 951 952 for (i = 0; i < mci->n_layers; i++) { 953 if (pos[i] < 0) 954 break; 955 index += pos[i]; 956 mci->ue_per_layer[i][index] += count; 957 958 if (i < mci->n_layers - 1) 959 index *= mci->layers[i + 1].size; 960 } 961 } 962 963 static void edac_ce_error(struct mem_ctl_info *mci, 964 const u16 error_count, 965 const int pos[EDAC_MAX_LAYERS], 966 const char *msg, 967 const char *location, 968 const char *label, 969 const char *detail, 970 const char *other_detail, 971 const bool enable_per_layer_report, 972 const unsigned long page_frame_number, 973 const unsigned long offset_in_page, 974 long grain) 975 { 976 unsigned long remapped_page; 977 char *msg_aux = ""; 978 979 if (*msg) 980 msg_aux = " "; 981 982 if (edac_mc_get_log_ce()) { 983 if (other_detail && *other_detail) 984 edac_mc_printk(mci, KERN_WARNING, 985 "%d CE %s%son %s (%s %s - %s)\n", 986 error_count, msg, msg_aux, label, 987 location, detail, other_detail); 988 else 989 edac_mc_printk(mci, KERN_WARNING, 990 "%d CE %s%son %s (%s %s)\n", 991 error_count, msg, msg_aux, label, 992 location, detail); 993 } 994 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); 995 996 if (mci->scrub_mode & SCRUB_SW_SRC) { 997 /* 998 * Some memory controllers (called MCs below) can remap 999 * memory so that it is still available at a different 1000 * address when PCI devices map into memory. 1001 * MC's that can't do this, lose the memory where PCI 1002 * devices are mapped. This mapping is MC-dependent 1003 * and so we call back into the MC driver for it to 1004 * map the MC page to a physical (CPU) page which can 1005 * then be mapped to a virtual page - which can then 1006 * be scrubbed. 1007 */ 1008 remapped_page = mci->ctl_page_to_phys ? 1009 mci->ctl_page_to_phys(mci, page_frame_number) : 1010 page_frame_number; 1011 1012 edac_mc_scrub_block(remapped_page, 1013 offset_in_page, grain); 1014 } 1015 } 1016 1017 static void edac_ue_error(struct mem_ctl_info *mci, 1018 const u16 error_count, 1019 const int pos[EDAC_MAX_LAYERS], 1020 const char *msg, 1021 const char *location, 1022 const char *label, 1023 const char *detail, 1024 const char *other_detail, 1025 const bool enable_per_layer_report) 1026 { 1027 char *msg_aux = ""; 1028 1029 if (*msg) 1030 msg_aux = " "; 1031 1032 if (edac_mc_get_log_ue()) { 1033 if (other_detail && *other_detail) 1034 edac_mc_printk(mci, KERN_WARNING, 1035 "%d UE %s%son %s (%s %s - %s)\n", 1036 error_count, msg, msg_aux, label, 1037 location, detail, other_detail); 1038 else 1039 edac_mc_printk(mci, KERN_WARNING, 1040 "%d UE %s%son %s (%s %s)\n", 1041 error_count, msg, msg_aux, label, 1042 location, detail); 1043 } 1044 1045 if (edac_mc_get_panic_on_ue()) { 1046 if (other_detail && *other_detail) 1047 panic("UE %s%son %s (%s%s - %s)\n", 1048 msg, msg_aux, label, location, detail, other_detail); 1049 else 1050 panic("UE %s%son %s (%s%s)\n", 1051 msg, msg_aux, label, location, detail); 1052 } 1053 1054 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); 1055 } 1056 1057 #define OTHER_LABEL " or " 1058 1059 /** 1060 * edac_mc_handle_error - reports a memory event to userspace 1061 * 1062 * @type: severity of the error (CE/UE/Fatal) 1063 * @mci: a struct mem_ctl_info pointer 1064 * @error_count: Number of errors of the same type 1065 * @page_frame_number: mem page where the error occurred 1066 * @offset_in_page: offset of the error inside the page 1067 * @syndrome: ECC syndrome 1068 * @top_layer: Memory layer[0] position 1069 * @mid_layer: Memory layer[1] position 1070 * @low_layer: Memory layer[2] position 1071 * @msg: Message meaningful to the end users that 1072 * explains the event 1073 * @other_detail: Technical details about the event that 1074 * may help hardware manufacturers and 1075 * EDAC developers to analyse the event 1076 */ 1077 void edac_mc_handle_error(const enum hw_event_mc_err_type type, 1078 struct mem_ctl_info *mci, 1079 const u16 error_count, 1080 const unsigned long page_frame_number, 1081 const unsigned long offset_in_page, 1082 const unsigned long syndrome, 1083 const int top_layer, 1084 const int mid_layer, 1085 const int low_layer, 1086 const char *msg, 1087 const char *other_detail) 1088 { 1089 /* FIXME: too much for stack: move it to some pre-alocated area */ 1090 char detail[80], location[80]; 1091 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms]; 1092 char *p; 1093 int row = -1, chan = -1; 1094 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; 1095 int i; 1096 long grain; 1097 bool enable_per_layer_report = false; 1098 u8 grain_bits; 1099 1100 edac_dbg(3, "MC%d\n", mci->mc_idx); 1101 1102 /* 1103 * Check if the event report is consistent and if the memory 1104 * location is known. If it is known, enable_per_layer_report will be 1105 * true, the DIMM(s) label info will be filled and the per-layer 1106 * error counters will be incremented. 1107 */ 1108 for (i = 0; i < mci->n_layers; i++) { 1109 if (pos[i] >= (int)mci->layers[i].size) { 1110 1111 edac_mc_printk(mci, KERN_ERR, 1112 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", 1113 edac_layer_name[mci->layers[i].type], 1114 pos[i], mci->layers[i].size); 1115 /* 1116 * Instead of just returning it, let's use what's 1117 * known about the error. The increment routines and 1118 * the DIMM filter logic will do the right thing by 1119 * pointing the likely damaged DIMMs. 1120 */ 1121 pos[i] = -1; 1122 } 1123 if (pos[i] >= 0) 1124 enable_per_layer_report = true; 1125 } 1126 1127 /* 1128 * Get the dimm label/grain that applies to the match criteria. 1129 * As the error algorithm may not be able to point to just one memory 1130 * stick, the logic here will get all possible labels that could 1131 * pottentially be affected by the error. 1132 * On FB-DIMM memory controllers, for uncorrected errors, it is common 1133 * to have only the MC channel and the MC dimm (also called "branch") 1134 * but the channel is not known, as the memory is arranged in pairs, 1135 * where each memory belongs to a separate channel within the same 1136 * branch. 1137 */ 1138 grain = 0; 1139 p = label; 1140 *p = '\0'; 1141 1142 for (i = 0; i < mci->tot_dimms; i++) { 1143 struct dimm_info *dimm = mci->dimms[i]; 1144 1145 if (top_layer >= 0 && top_layer != dimm->location[0]) 1146 continue; 1147 if (mid_layer >= 0 && mid_layer != dimm->location[1]) 1148 continue; 1149 if (low_layer >= 0 && low_layer != dimm->location[2]) 1150 continue; 1151 1152 /* get the max grain, over the error match range */ 1153 if (dimm->grain > grain) 1154 grain = dimm->grain; 1155 1156 /* 1157 * If the error is memory-controller wide, there's no need to 1158 * seek for the affected DIMMs because the whole 1159 * channel/memory controller/... may be affected. 1160 * Also, don't show errors for empty DIMM slots. 1161 */ 1162 if (enable_per_layer_report && dimm->nr_pages) { 1163 if (p != label) { 1164 strcpy(p, OTHER_LABEL); 1165 p += strlen(OTHER_LABEL); 1166 } 1167 strcpy(p, dimm->label); 1168 p += strlen(p); 1169 *p = '\0'; 1170 1171 /* 1172 * get csrow/channel of the DIMM, in order to allow 1173 * incrementing the compat API counters 1174 */ 1175 edac_dbg(4, "%s csrows map: (%d,%d)\n", 1176 mci->mem_is_per_rank ? "rank" : "dimm", 1177 dimm->csrow, dimm->cschannel); 1178 if (row == -1) 1179 row = dimm->csrow; 1180 else if (row >= 0 && row != dimm->csrow) 1181 row = -2; 1182 1183 if (chan == -1) 1184 chan = dimm->cschannel; 1185 else if (chan >= 0 && chan != dimm->cschannel) 1186 chan = -2; 1187 } 1188 } 1189 1190 if (!enable_per_layer_report) { 1191 strcpy(label, "any memory"); 1192 } else { 1193 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); 1194 if (p == label) 1195 strcpy(label, "unknown memory"); 1196 if (type == HW_EVENT_ERR_CORRECTED) { 1197 if (row >= 0) { 1198 mci->csrows[row]->ce_count += error_count; 1199 if (chan >= 0) 1200 mci->csrows[row]->channels[chan]->ce_count += error_count; 1201 } 1202 } else 1203 if (row >= 0) 1204 mci->csrows[row]->ue_count += error_count; 1205 } 1206 1207 /* Fill the RAM location data */ 1208 p = location; 1209 1210 for (i = 0; i < mci->n_layers; i++) { 1211 if (pos[i] < 0) 1212 continue; 1213 1214 p += sprintf(p, "%s:%d ", 1215 edac_layer_name[mci->layers[i].type], 1216 pos[i]); 1217 } 1218 if (p > location) 1219 *(p - 1) = '\0'; 1220 1221 /* Report the error via the trace interface */ 1222 grain_bits = fls_long(grain) + 1; 1223 trace_mc_event(type, msg, label, error_count, 1224 mci->mc_idx, top_layer, mid_layer, low_layer, 1225 PAGES_TO_MiB(page_frame_number) | offset_in_page, 1226 grain_bits, syndrome, other_detail); 1227 1228 /* Memory type dependent details about the error */ 1229 if (type == HW_EVENT_ERR_CORRECTED) { 1230 snprintf(detail, sizeof(detail), 1231 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", 1232 page_frame_number, offset_in_page, 1233 grain, syndrome); 1234 edac_ce_error(mci, error_count, pos, msg, location, label, 1235 detail, other_detail, enable_per_layer_report, 1236 page_frame_number, offset_in_page, grain); 1237 } else { 1238 snprintf(detail, sizeof(detail), 1239 "page:0x%lx offset:0x%lx grain:%ld", 1240 page_frame_number, offset_in_page, grain); 1241 1242 edac_ue_error(mci, error_count, pos, msg, location, label, 1243 detail, other_detail, enable_per_layer_report); 1244 } 1245 } 1246 EXPORT_SYMBOL_GPL(edac_mc_handle_error); 1247