xref: /linux/drivers/edac/edac_device.c (revision be4ebf999a38dfe9d7d705c4913624ec816c48f2)
1 
2 /*
3  * edac_device.c
4  * (C) 2007 www.douglaskthompson.com
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License.
8  *
9  * Written by Doug Thompson <norsk5@xmission.com>
10  *
11  * edac_device API implementation
12  * 19 Jan 2007
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/smp.h>
18 #include <linux/init.h>
19 #include <linux/sysctl.h>
20 #include <linux/highmem.h>
21 #include <linux/timer.h>
22 #include <linux/slab.h>
23 #include <linux/jiffies.h>
24 #include <linux/spinlock.h>
25 #include <linux/list.h>
26 #include <linux/sysdev.h>
27 #include <linux/ctype.h>
28 #include <linux/workqueue.h>
29 #include <asm/uaccess.h>
30 #include <asm/page.h>
31 
32 #include "edac_core.h"
33 #include "edac_module.h"
34 
35 /* lock for the list: 'edac_device_list', manipulation of this list
36  * is protected by the 'device_ctls_mutex' lock
37  */
38 static DEFINE_MUTEX(device_ctls_mutex);
39 static LIST_HEAD(edac_device_list);
40 
41 #ifdef CONFIG_EDAC_DEBUG
42 static void edac_device_dump_device(struct edac_device_ctl_info *edac_dev)
43 {
44 	debugf3("\tedac_dev = %p dev_idx=%d \n", edac_dev, edac_dev->dev_idx);
45 	debugf4("\tedac_dev->edac_check = %p\n", edac_dev->edac_check);
46 	debugf3("\tdev = %p\n", edac_dev->dev);
47 	debugf3("\tmod_name:ctl_name = %s:%s\n",
48 		edac_dev->mod_name, edac_dev->ctl_name);
49 	debugf3("\tpvt_info = %p\n\n", edac_dev->pvt_info);
50 }
51 #endif				/* CONFIG_EDAC_DEBUG */
52 
53 
54 /*
55  * edac_device_alloc_ctl_info()
56  *	Allocate a new edac device control info structure
57  *
58  *	The control structure is allocated in complete chunk
59  *	from the OS. It is in turn sub allocated to the
60  *	various objects that compose the struture
61  *
62  *	The structure has a 'nr_instance' array within itself.
63  *	Each instance represents a major component
64  *		Example:  L1 cache and L2 cache are 2 instance components
65  *
66  *	Within each instance is an array of 'nr_blocks' blockoffsets
67  */
68 struct edac_device_ctl_info *edac_device_alloc_ctl_info(
69 	unsigned sz_private,
70 	char *edac_device_name, unsigned nr_instances,
71 	char *edac_block_name, unsigned nr_blocks,
72 	unsigned offset_value,		/* zero, 1, or other based offset */
73 	struct edac_dev_sysfs_block_attribute *attrib_spec, unsigned nr_attrib,
74 	int device_index)
75 {
76 	struct edac_device_ctl_info *dev_ctl;
77 	struct edac_device_instance *dev_inst, *inst;
78 	struct edac_device_block *dev_blk, *blk_p, *blk;
79 	struct edac_dev_sysfs_block_attribute *dev_attrib, *attrib_p, *attrib;
80 	unsigned total_size;
81 	unsigned count;
82 	unsigned instance, block, attr;
83 	void *pvt;
84 	int err;
85 
86 	debugf4("%s() instances=%d blocks=%d\n",
87 		__func__, nr_instances, nr_blocks);
88 
89 	/* Calculate the size of memory we need to allocate AND
90 	 * determine the offsets of the various item arrays
91 	 * (instance,block,attrib) from the start of an  allocated structure.
92 	 * We want the alignment of each item  (instance,block,attrib)
93 	 * to be at least as stringent as what the compiler would
94 	 * provide if we could simply hardcode everything into a single struct.
95 	 */
96 	dev_ctl = (struct edac_device_ctl_info *)NULL;
97 
98 	/* Calc the 'end' offset past end of ONE ctl_info structure
99 	 * which will become the start of the 'instance' array
100 	 */
101 	dev_inst = edac_align_ptr(&dev_ctl[1], sizeof(*dev_inst));
102 
103 	/* Calc the 'end' offset past the instance array within the ctl_info
104 	 * which will become the start of the block array
105 	 */
106 	dev_blk = edac_align_ptr(&dev_inst[nr_instances], sizeof(*dev_blk));
107 
108 	/* Calc the 'end' offset past the dev_blk array
109 	 * which will become the start of the attrib array, if any.
110 	 */
111 	count = nr_instances * nr_blocks;
112 	dev_attrib = edac_align_ptr(&dev_blk[count], sizeof(*dev_attrib));
113 
114 	/* Check for case of when an attribute array is specified */
115 	if (nr_attrib > 0) {
116 		/* calc how many nr_attrib we need */
117 		count *= nr_attrib;
118 
119 		/* Calc the 'end' offset past the attributes array */
120 		pvt = edac_align_ptr(&dev_attrib[count], sz_private);
121 	} else {
122 		/* no attribute array specificed */
123 		pvt = edac_align_ptr(dev_attrib, sz_private);
124 	}
125 
126 	/* 'pvt' now points to where the private data area is.
127 	 * At this point 'pvt' (like dev_inst,dev_blk and dev_attrib)
128 	 * is baselined at ZERO
129 	 */
130 	total_size = ((unsigned long)pvt) + sz_private;
131 
132 	/* Allocate the amount of memory for the set of control structures */
133 	dev_ctl = kzalloc(total_size, GFP_KERNEL);
134 	if (dev_ctl == NULL)
135 		return NULL;
136 
137 	/* Adjust pointers so they point within the actual memory we
138 	 * just allocated rather than an imaginary chunk of memory
139 	 * located at address 0.
140 	 * 'dev_ctl' points to REAL memory, while the others are
141 	 * ZERO based and thus need to be adjusted to point within
142 	 * the allocated memory.
143 	 */
144 	dev_inst = (struct edac_device_instance *)
145 		(((char *)dev_ctl) + ((unsigned long)dev_inst));
146 	dev_blk = (struct edac_device_block *)
147 		(((char *)dev_ctl) + ((unsigned long)dev_blk));
148 	dev_attrib = (struct edac_dev_sysfs_block_attribute *)
149 		(((char *)dev_ctl) + ((unsigned long)dev_attrib));
150 	pvt = sz_private ? (((char *)dev_ctl) + ((unsigned long)pvt)) : NULL;
151 
152 	/* Begin storing the information into the control info structure */
153 	dev_ctl->dev_idx = device_index;
154 	dev_ctl->nr_instances = nr_instances;
155 	dev_ctl->instances = dev_inst;
156 	dev_ctl->pvt_info = pvt;
157 
158 	/* Default logging of CEs and UEs */
159 	dev_ctl->log_ce = 1;
160 	dev_ctl->log_ue = 1;
161 
162 	/* Name of this edac device */
163 	snprintf(dev_ctl->name,sizeof(dev_ctl->name),"%s",edac_device_name);
164 
165 	debugf4("%s() edac_dev=%p next after end=%p\n",
166 		__func__, dev_ctl, pvt + sz_private );
167 
168 	/* Initialize every Instance */
169 	for (instance = 0; instance < nr_instances; instance++) {
170 		inst = &dev_inst[instance];
171 		inst->ctl = dev_ctl;
172 		inst->nr_blocks = nr_blocks;
173 		blk_p = &dev_blk[instance * nr_blocks];
174 		inst->blocks = blk_p;
175 
176 		/* name of this instance */
177 		snprintf(inst->name, sizeof(inst->name),
178 			 "%s%u", edac_device_name, instance);
179 
180 		/* Initialize every block in each instance */
181 		for (block = 0; block < nr_blocks; block++) {
182 			blk = &blk_p[block];
183 			blk->instance = inst;
184 			snprintf(blk->name, sizeof(blk->name),
185 				 "%s%d", edac_block_name, block+offset_value);
186 
187 			debugf4("%s() instance=%d inst_p=%p block=#%d "
188 				"block_p=%p name='%s'\n",
189 				__func__, instance, inst, block,
190 				blk, blk->name);
191 
192 			/* if there are NO attributes OR no attribute pointer
193 			 * then continue on to next block iteration
194 			 */
195 			if ((nr_attrib == 0) || (attrib_spec == NULL))
196 				continue;
197 
198 			/* setup the attribute array for this block */
199 			blk->nr_attribs = nr_attrib;
200 			attrib_p = &dev_attrib[block*nr_instances*nr_attrib];
201 			blk->block_attributes = attrib_p;
202 
203 			debugf4("%s() THIS BLOCK_ATTRIB=%p\n",
204 				__func__, blk->block_attributes);
205 
206 			/* Initialize every user specified attribute in this
207 			 * block with the data the caller passed in
208 			 * Each block gets its own copy of pointers,
209 			 * and its unique 'value'
210 			 */
211 			for (attr = 0; attr < nr_attrib; attr++) {
212 				attrib = &attrib_p[attr];
213 
214 				/* populate the unique per attrib
215 				 * with the code pointers and info
216 				 */
217 				attrib->attr = attrib_spec[attr].attr;
218 				attrib->show = attrib_spec[attr].show;
219 				attrib->store = attrib_spec[attr].store;
220 
221 				attrib->block = blk;	/* up link */
222 
223 				debugf4("%s() alloc-attrib=%p attrib_name='%s' "
224 					"attrib-spec=%p spec-name=%s\n",
225 					__func__, attrib, attrib->attr.name,
226 					&attrib_spec[attr],
227 					attrib_spec[attr].attr.name
228 					);
229 			}
230 		}
231 	}
232 
233 	/* Mark this instance as merely ALLOCATED */
234 	dev_ctl->op_state = OP_ALLOC;
235 
236 	/*
237 	 * Initialize the 'root' kobj for the edac_device controller
238 	 */
239 	err = edac_device_register_sysfs_main_kobj(dev_ctl);
240 	if (err) {
241 		kfree(dev_ctl);
242 		return NULL;
243 	}
244 
245 	/* at this point, the root kobj is valid, and in order to
246 	 * 'free' the object, then the function:
247 	 *	edac_device_unregister_sysfs_main_kobj() must be called
248 	 * which will perform kobj unregistration and the actual free
249 	 * will occur during the kobject callback operation
250 	 */
251 
252 	return dev_ctl;
253 }
254 EXPORT_SYMBOL_GPL(edac_device_alloc_ctl_info);
255 
256 /*
257  * edac_device_free_ctl_info()
258  *	frees the memory allocated by the edac_device_alloc_ctl_info()
259  *	function
260  */
261 void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info)
262 {
263 	edac_device_unregister_sysfs_main_kobj(ctl_info);
264 }
265 EXPORT_SYMBOL_GPL(edac_device_free_ctl_info);
266 
267 /*
268  * find_edac_device_by_dev
269  *	scans the edac_device list for a specific 'struct device *'
270  *
271  *	lock to be held prior to call:	device_ctls_mutex
272  *
273  *	Return:
274  *		pointer to control structure managing 'dev'
275  *		NULL if not found on list
276  */
277 static struct edac_device_ctl_info *find_edac_device_by_dev(struct device *dev)
278 {
279 	struct edac_device_ctl_info *edac_dev;
280 	struct list_head *item;
281 
282 	debugf0("%s()\n", __func__);
283 
284 	list_for_each(item, &edac_device_list) {
285 		edac_dev = list_entry(item, struct edac_device_ctl_info, link);
286 
287 		if (edac_dev->dev == dev)
288 			return edac_dev;
289 	}
290 
291 	return NULL;
292 }
293 
294 /*
295  * add_edac_dev_to_global_list
296  *	Before calling this function, caller must
297  *	assign a unique value to edac_dev->dev_idx.
298  *
299  *	lock to be held prior to call:	device_ctls_mutex
300  *
301  *	Return:
302  *		0 on success
303  *		1 on failure.
304  */
305 static int add_edac_dev_to_global_list(struct edac_device_ctl_info *edac_dev)
306 {
307 	struct list_head *item, *insert_before;
308 	struct edac_device_ctl_info *rover;
309 
310 	insert_before = &edac_device_list;
311 
312 	/* Determine if already on the list */
313 	rover = find_edac_device_by_dev(edac_dev->dev);
314 	if (unlikely(rover != NULL))
315 		goto fail0;
316 
317 	/* Insert in ascending order by 'dev_idx', so find position */
318 	list_for_each(item, &edac_device_list) {
319 		rover = list_entry(item, struct edac_device_ctl_info, link);
320 
321 		if (rover->dev_idx >= edac_dev->dev_idx) {
322 			if (unlikely(rover->dev_idx == edac_dev->dev_idx))
323 				goto fail1;
324 
325 			insert_before = item;
326 			break;
327 		}
328 	}
329 
330 	list_add_tail_rcu(&edac_dev->link, insert_before);
331 	return 0;
332 
333 fail0:
334 	edac_printk(KERN_WARNING, EDAC_MC,
335 			"%s (%s) %s %s already assigned %d\n",
336 			dev_name(rover->dev), edac_dev_name(rover),
337 			rover->mod_name, rover->ctl_name, rover->dev_idx);
338 	return 1;
339 
340 fail1:
341 	edac_printk(KERN_WARNING, EDAC_MC,
342 			"bug in low-level driver: attempt to assign\n"
343 			"    duplicate dev_idx %d in %s()\n", rover->dev_idx,
344 			__func__);
345 	return 1;
346 }
347 
348 /*
349  * complete_edac_device_list_del
350  *
351  *	callback function when reference count is zero
352  */
353 static void complete_edac_device_list_del(struct rcu_head *head)
354 {
355 	struct edac_device_ctl_info *edac_dev;
356 
357 	edac_dev = container_of(head, struct edac_device_ctl_info, rcu);
358 	INIT_LIST_HEAD(&edac_dev->link);
359 	complete(&edac_dev->removal_complete);
360 }
361 
362 /*
363  * del_edac_device_from_global_list
364  *
365  *	remove the RCU, setup for a callback call,
366  *	then wait for the callback to occur
367  */
368 static void del_edac_device_from_global_list(struct edac_device_ctl_info
369 						*edac_device)
370 {
371 	list_del_rcu(&edac_device->link);
372 
373 	init_completion(&edac_device->removal_complete);
374 	call_rcu(&edac_device->rcu, complete_edac_device_list_del);
375 	wait_for_completion(&edac_device->removal_complete);
376 }
377 
378 /*
379  * edac_device_workq_function
380  *	performs the operation scheduled by a workq request
381  *
382  *	this workq is embedded within an edac_device_ctl_info
383  *	structure, that needs to be polled for possible error events.
384  *
385  *	This operation is to acquire the list mutex lock
386  *	(thus preventing insertation or deletion)
387  *	and then call the device's poll function IFF this device is
388  *	running polled and there is a poll function defined.
389  */
390 static void edac_device_workq_function(struct work_struct *work_req)
391 {
392 	struct delayed_work *d_work = to_delayed_work(work_req);
393 	struct edac_device_ctl_info *edac_dev = to_edac_device_ctl_work(d_work);
394 
395 	mutex_lock(&device_ctls_mutex);
396 
397 	/* If we are being removed, bail out immediately */
398 	if (edac_dev->op_state == OP_OFFLINE) {
399 		mutex_unlock(&device_ctls_mutex);
400 		return;
401 	}
402 
403 	/* Only poll controllers that are running polled and have a check */
404 	if ((edac_dev->op_state == OP_RUNNING_POLL) &&
405 		(edac_dev->edac_check != NULL)) {
406 			edac_dev->edac_check(edac_dev);
407 	}
408 
409 	mutex_unlock(&device_ctls_mutex);
410 
411 	/* Reschedule the workq for the next time period to start again
412 	 * if the number of msec is for 1 sec, then adjust to the next
413 	 * whole one second to save timers fireing all over the period
414 	 * between integral seconds
415 	 */
416 	if (edac_dev->poll_msec == 1000)
417 		queue_delayed_work(edac_workqueue, &edac_dev->work,
418 				round_jiffies_relative(edac_dev->delay));
419 	else
420 		queue_delayed_work(edac_workqueue, &edac_dev->work,
421 				edac_dev->delay);
422 }
423 
424 /*
425  * edac_device_workq_setup
426  *	initialize a workq item for this edac_device instance
427  *	passing in the new delay period in msec
428  */
429 void edac_device_workq_setup(struct edac_device_ctl_info *edac_dev,
430 				unsigned msec)
431 {
432 	debugf0("%s()\n", __func__);
433 
434 	/* take the arg 'msec' and set it into the control structure
435 	 * to used in the time period calculation
436 	 * then calc the number of jiffies that represents
437 	 */
438 	edac_dev->poll_msec = msec;
439 	edac_dev->delay = msecs_to_jiffies(msec);
440 
441 	INIT_DELAYED_WORK(&edac_dev->work, edac_device_workq_function);
442 
443 	/* optimize here for the 1 second case, which will be normal value, to
444 	 * fire ON the 1 second time event. This helps reduce all sorts of
445 	 * timers firing on sub-second basis, while they are happy
446 	 * to fire together on the 1 second exactly
447 	 */
448 	if (edac_dev->poll_msec == 1000)
449 		queue_delayed_work(edac_workqueue, &edac_dev->work,
450 				round_jiffies_relative(edac_dev->delay));
451 	else
452 		queue_delayed_work(edac_workqueue, &edac_dev->work,
453 				edac_dev->delay);
454 }
455 
456 /*
457  * edac_device_workq_teardown
458  *	stop the workq processing on this edac_dev
459  */
460 void edac_device_workq_teardown(struct edac_device_ctl_info *edac_dev)
461 {
462 	int status;
463 
464 	status = cancel_delayed_work(&edac_dev->work);
465 	if (status == 0) {
466 		/* workq instance might be running, wait for it */
467 		flush_workqueue(edac_workqueue);
468 	}
469 }
470 
471 /*
472  * edac_device_reset_delay_period
473  *
474  *	need to stop any outstanding workq queued up at this time
475  *	because we will be resetting the sleep time.
476  *	Then restart the workq on the new delay
477  */
478 void edac_device_reset_delay_period(struct edac_device_ctl_info *edac_dev,
479 					unsigned long value)
480 {
481 	/* cancel the current workq request, without the mutex lock */
482 	edac_device_workq_teardown(edac_dev);
483 
484 	/* acquire the mutex before doing the workq setup */
485 	mutex_lock(&device_ctls_mutex);
486 
487 	/* restart the workq request, with new delay value */
488 	edac_device_workq_setup(edac_dev, value);
489 
490 	mutex_unlock(&device_ctls_mutex);
491 }
492 
493 /*
494  * edac_device_alloc_index: Allocate a unique device index number
495  *
496  * Return:
497  *	allocated index number
498  */
499 int edac_device_alloc_index(void)
500 {
501 	static atomic_t device_indexes = ATOMIC_INIT(0);
502 
503 	return atomic_inc_return(&device_indexes) - 1;
504 }
505 EXPORT_SYMBOL_GPL(edac_device_alloc_index);
506 
507 /**
508  * edac_device_add_device: Insert the 'edac_dev' structure into the
509  * edac_device global list and create sysfs entries associated with
510  * edac_device structure.
511  * @edac_device: pointer to the edac_device structure to be added to the list
512  * 'edac_device' structure.
513  *
514  * Return:
515  *	0	Success
516  *	!0	Failure
517  */
518 int edac_device_add_device(struct edac_device_ctl_info *edac_dev)
519 {
520 	debugf0("%s()\n", __func__);
521 
522 #ifdef CONFIG_EDAC_DEBUG
523 	if (edac_debug_level >= 3)
524 		edac_device_dump_device(edac_dev);
525 #endif
526 	mutex_lock(&device_ctls_mutex);
527 
528 	if (add_edac_dev_to_global_list(edac_dev))
529 		goto fail0;
530 
531 	/* set load time so that error rate can be tracked */
532 	edac_dev->start_time = jiffies;
533 
534 	/* create this instance's sysfs entries */
535 	if (edac_device_create_sysfs(edac_dev)) {
536 		edac_device_printk(edac_dev, KERN_WARNING,
537 					"failed to create sysfs device\n");
538 		goto fail1;
539 	}
540 
541 	/* If there IS a check routine, then we are running POLLED */
542 	if (edac_dev->edac_check != NULL) {
543 		/* This instance is NOW RUNNING */
544 		edac_dev->op_state = OP_RUNNING_POLL;
545 
546 		/*
547 		 * enable workq processing on this instance,
548 		 * default = 1000 msec
549 		 */
550 		edac_device_workq_setup(edac_dev, 1000);
551 	} else {
552 		edac_dev->op_state = OP_RUNNING_INTERRUPT;
553 	}
554 
555 	/* Report action taken */
556 	edac_device_printk(edac_dev, KERN_INFO,
557 				"Giving out device to module '%s' controller "
558 				"'%s': DEV '%s' (%s)\n",
559 				edac_dev->mod_name,
560 				edac_dev->ctl_name,
561 				edac_dev_name(edac_dev),
562 				edac_op_state_to_string(edac_dev->op_state));
563 
564 	mutex_unlock(&device_ctls_mutex);
565 	return 0;
566 
567 fail1:
568 	/* Some error, so remove the entry from the lsit */
569 	del_edac_device_from_global_list(edac_dev);
570 
571 fail0:
572 	mutex_unlock(&device_ctls_mutex);
573 	return 1;
574 }
575 EXPORT_SYMBOL_GPL(edac_device_add_device);
576 
577 /**
578  * edac_device_del_device:
579  *	Remove sysfs entries for specified edac_device structure and
580  *	then remove edac_device structure from global list
581  *
582  * @pdev:
583  *	Pointer to 'struct device' representing edac_device
584  *	structure to remove.
585  *
586  * Return:
587  *	Pointer to removed edac_device structure,
588  *	OR NULL if device not found.
589  */
590 struct edac_device_ctl_info *edac_device_del_device(struct device *dev)
591 {
592 	struct edac_device_ctl_info *edac_dev;
593 
594 	debugf0("%s()\n", __func__);
595 
596 	mutex_lock(&device_ctls_mutex);
597 
598 	/* Find the structure on the list, if not there, then leave */
599 	edac_dev = find_edac_device_by_dev(dev);
600 	if (edac_dev == NULL) {
601 		mutex_unlock(&device_ctls_mutex);
602 		return NULL;
603 	}
604 
605 	/* mark this instance as OFFLINE */
606 	edac_dev->op_state = OP_OFFLINE;
607 
608 	/* deregister from global list */
609 	del_edac_device_from_global_list(edac_dev);
610 
611 	mutex_unlock(&device_ctls_mutex);
612 
613 	/* clear workq processing on this instance */
614 	edac_device_workq_teardown(edac_dev);
615 
616 	/* Tear down the sysfs entries for this instance */
617 	edac_device_remove_sysfs(edac_dev);
618 
619 	edac_printk(KERN_INFO, EDAC_MC,
620 		"Removed device %d for %s %s: DEV %s\n",
621 		edac_dev->dev_idx,
622 		edac_dev->mod_name, edac_dev->ctl_name, edac_dev_name(edac_dev));
623 
624 	return edac_dev;
625 }
626 EXPORT_SYMBOL_GPL(edac_device_del_device);
627 
628 static inline int edac_device_get_log_ce(struct edac_device_ctl_info *edac_dev)
629 {
630 	return edac_dev->log_ce;
631 }
632 
633 static inline int edac_device_get_log_ue(struct edac_device_ctl_info *edac_dev)
634 {
635 	return edac_dev->log_ue;
636 }
637 
638 static inline int edac_device_get_panic_on_ue(struct edac_device_ctl_info
639 					*edac_dev)
640 {
641 	return edac_dev->panic_on_ue;
642 }
643 
644 /*
645  * edac_device_handle_ce
646  *	perform a common output and handling of an 'edac_dev' CE event
647  */
648 void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
649 			int inst_nr, int block_nr, const char *msg)
650 {
651 	struct edac_device_instance *instance;
652 	struct edac_device_block *block = NULL;
653 
654 	if ((inst_nr >= edac_dev->nr_instances) || (inst_nr < 0)) {
655 		edac_device_printk(edac_dev, KERN_ERR,
656 				"INTERNAL ERROR: 'instance' out of range "
657 				"(%d >= %d)\n", inst_nr,
658 				edac_dev->nr_instances);
659 		return;
660 	}
661 
662 	instance = edac_dev->instances + inst_nr;
663 
664 	if ((block_nr >= instance->nr_blocks) || (block_nr < 0)) {
665 		edac_device_printk(edac_dev, KERN_ERR,
666 				"INTERNAL ERROR: instance %d 'block' "
667 				"out of range (%d >= %d)\n",
668 				inst_nr, block_nr,
669 				instance->nr_blocks);
670 		return;
671 	}
672 
673 	if (instance->nr_blocks > 0) {
674 		block = instance->blocks + block_nr;
675 		block->counters.ce_count++;
676 	}
677 
678 	/* Propogate the count up the 'totals' tree */
679 	instance->counters.ce_count++;
680 	edac_dev->counters.ce_count++;
681 
682 	if (edac_device_get_log_ce(edac_dev))
683 		edac_device_printk(edac_dev, KERN_WARNING,
684 				"CE: %s instance: %s block: %s '%s'\n",
685 				edac_dev->ctl_name, instance->name,
686 				block ? block->name : "N/A", msg);
687 }
688 EXPORT_SYMBOL_GPL(edac_device_handle_ce);
689 
690 /*
691  * edac_device_handle_ue
692  *	perform a common output and handling of an 'edac_dev' UE event
693  */
694 void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
695 			int inst_nr, int block_nr, const char *msg)
696 {
697 	struct edac_device_instance *instance;
698 	struct edac_device_block *block = NULL;
699 
700 	if ((inst_nr >= edac_dev->nr_instances) || (inst_nr < 0)) {
701 		edac_device_printk(edac_dev, KERN_ERR,
702 				"INTERNAL ERROR: 'instance' out of range "
703 				"(%d >= %d)\n", inst_nr,
704 				edac_dev->nr_instances);
705 		return;
706 	}
707 
708 	instance = edac_dev->instances + inst_nr;
709 
710 	if ((block_nr >= instance->nr_blocks) || (block_nr < 0)) {
711 		edac_device_printk(edac_dev, KERN_ERR,
712 				"INTERNAL ERROR: instance %d 'block' "
713 				"out of range (%d >= %d)\n",
714 				inst_nr, block_nr,
715 				instance->nr_blocks);
716 		return;
717 	}
718 
719 	if (instance->nr_blocks > 0) {
720 		block = instance->blocks + block_nr;
721 		block->counters.ue_count++;
722 	}
723 
724 	/* Propogate the count up the 'totals' tree */
725 	instance->counters.ue_count++;
726 	edac_dev->counters.ue_count++;
727 
728 	if (edac_device_get_log_ue(edac_dev))
729 		edac_device_printk(edac_dev, KERN_EMERG,
730 				"UE: %s instance: %s block: %s '%s'\n",
731 				edac_dev->ctl_name, instance->name,
732 				block ? block->name : "N/A", msg);
733 
734 	if (edac_device_get_panic_on_ue(edac_dev))
735 		panic("EDAC %s: UE instance: %s block %s '%s'\n",
736 			edac_dev->ctl_name, instance->name,
737 			block ? block->name : "N/A", msg);
738 }
739 EXPORT_SYMBOL_GPL(edac_device_handle_ue);
740