1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * EDAC driver for DMC-520 memory controller. 5 * 6 * The driver supports 10 interrupt lines, 7 * though only dram_ecc_errc and dram_ecc_errd are currently handled. 8 * 9 * Authors: Rui Zhao <ruizhao@microsoft.com> 10 * Lei Wang <lewan@microsoft.com> 11 * Shiping Ji <shji@microsoft.com> 12 */ 13 14 #include <linux/bitfield.h> 15 #include <linux/edac.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/platform_device.h> 21 #include <linux/slab.h> 22 #include <linux/spinlock.h> 23 #include "edac_mc.h" 24 25 /* DMC-520 registers */ 26 #define REG_OFFSET_FEATURE_CONFIG 0x130 27 #define REG_OFFSET_ECC_ERRC_COUNT_31_00 0x158 28 #define REG_OFFSET_ECC_ERRC_COUNT_63_32 0x15C 29 #define REG_OFFSET_ECC_ERRD_COUNT_31_00 0x160 30 #define REG_OFFSET_ECC_ERRD_COUNT_63_32 0x164 31 #define REG_OFFSET_INTERRUPT_CONTROL 0x500 32 #define REG_OFFSET_INTERRUPT_CLR 0x508 33 #define REG_OFFSET_INTERRUPT_STATUS 0x510 34 #define REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_31_00 0x528 35 #define REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_63_32 0x52C 36 #define REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_31_00 0x530 37 #define REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_63_32 0x534 38 #define REG_OFFSET_ADDRESS_CONTROL_NOW 0x1010 39 #define REG_OFFSET_MEMORY_TYPE_NOW 0x1128 40 #define REG_OFFSET_SCRUB_CONTROL0_NOW 0x1170 41 #define REG_OFFSET_FORMAT_CONTROL 0x18 42 43 /* DMC-520 types, masks and bitfields */ 44 #define RAM_ECC_INT_CE_BIT BIT(0) 45 #define RAM_ECC_INT_UE_BIT BIT(1) 46 #define DRAM_ECC_INT_CE_BIT BIT(2) 47 #define DRAM_ECC_INT_UE_BIT BIT(3) 48 #define FAILED_ACCESS_INT_BIT BIT(4) 49 #define FAILED_PROG_INT_BIT BIT(5) 50 #define LINK_ERR_INT_BIT BIT(6) 51 #define TEMPERATURE_EVENT_INT_BIT BIT(7) 52 #define ARCH_FSM_INT_BIT BIT(8) 53 #define PHY_REQUEST_INT_BIT BIT(9) 54 #define MEMORY_WIDTH_MASK GENMASK(1, 0) 55 #define SCRUB_TRIGGER0_NEXT_MASK GENMASK(1, 0) 56 #define REG_FIELD_DRAM_ECC_ENABLED GENMASK(1, 0) 57 #define REG_FIELD_MEMORY_TYPE GENMASK(2, 0) 58 #define REG_FIELD_DEVICE_WIDTH GENMASK(9, 8) 59 #define REG_FIELD_ADDRESS_CONTROL_COL GENMASK(2, 0) 60 #define REG_FIELD_ADDRESS_CONTROL_ROW GENMASK(10, 8) 61 #define REG_FIELD_ADDRESS_CONTROL_BANK GENMASK(18, 16) 62 #define REG_FIELD_ADDRESS_CONTROL_RANK GENMASK(25, 24) 63 #define REG_FIELD_ERR_INFO_LOW_VALID BIT(0) 64 #define REG_FIELD_ERR_INFO_LOW_COL GENMASK(10, 1) 65 #define REG_FIELD_ERR_INFO_LOW_ROW GENMASK(28, 11) 66 #define REG_FIELD_ERR_INFO_LOW_RANK GENMASK(31, 29) 67 #define REG_FIELD_ERR_INFO_HIGH_BANK GENMASK(3, 0) 68 #define REG_FIELD_ERR_INFO_HIGH_VALID BIT(31) 69 70 #define DRAM_ADDRESS_CONTROL_MIN_COL_BITS 8 71 #define DRAM_ADDRESS_CONTROL_MIN_ROW_BITS 11 72 73 #define DMC520_SCRUB_TRIGGER_ERR_DETECT 2 74 #define DMC520_SCRUB_TRIGGER_IDLE 3 75 76 /* Driver settings */ 77 /* 78 * The max-length message would be: "rank:7 bank:15 row:262143 col:1023". 79 * Max length is 34. Using a 40-size buffer is enough. 80 */ 81 #define DMC520_MSG_BUF_SIZE 40 82 #define EDAC_MOD_NAME "dmc520-edac" 83 #define EDAC_CTL_NAME "dmc520" 84 85 /* the data bus width for the attached memory chips. */ 86 enum dmc520_mem_width { 87 MEM_WIDTH_X32 = 2, 88 MEM_WIDTH_X64 = 3 89 }; 90 91 /* memory type */ 92 enum dmc520_mem_type { 93 MEM_TYPE_DDR3 = 1, 94 MEM_TYPE_DDR4 = 2 95 }; 96 97 /* memory device width */ 98 enum dmc520_dev_width { 99 DEV_WIDTH_X4 = 0, 100 DEV_WIDTH_X8 = 1, 101 DEV_WIDTH_X16 = 2 102 }; 103 104 struct ecc_error_info { 105 u32 col; 106 u32 row; 107 u32 bank; 108 u32 rank; 109 }; 110 111 /* The interrupt config */ 112 struct dmc520_irq_config { 113 char *name; 114 int mask; 115 }; 116 117 /* The interrupt mappings */ 118 static struct dmc520_irq_config dmc520_irq_configs[] = { 119 { 120 .name = "ram_ecc_errc", 121 .mask = RAM_ECC_INT_CE_BIT 122 }, 123 { 124 .name = "ram_ecc_errd", 125 .mask = RAM_ECC_INT_UE_BIT 126 }, 127 { 128 .name = "dram_ecc_errc", 129 .mask = DRAM_ECC_INT_CE_BIT 130 }, 131 { 132 .name = "dram_ecc_errd", 133 .mask = DRAM_ECC_INT_UE_BIT 134 }, 135 { 136 .name = "failed_access", 137 .mask = FAILED_ACCESS_INT_BIT 138 }, 139 { 140 .name = "failed_prog", 141 .mask = FAILED_PROG_INT_BIT 142 }, 143 { 144 .name = "link_err", 145 .mask = LINK_ERR_INT_BIT 146 }, 147 { 148 .name = "temperature_event", 149 .mask = TEMPERATURE_EVENT_INT_BIT 150 }, 151 { 152 .name = "arch_fsm", 153 .mask = ARCH_FSM_INT_BIT 154 }, 155 { 156 .name = "phy_request", 157 .mask = PHY_REQUEST_INT_BIT 158 } 159 }; 160 161 #define NUMBER_OF_IRQS ARRAY_SIZE(dmc520_irq_configs) 162 163 /* 164 * The EDAC driver private data. 165 * error_lock is to protect concurrent writes to the mci->error_desc through 166 * edac_mc_handle_error(). 167 */ 168 struct dmc520_edac { 169 void __iomem *reg_base; 170 spinlock_t error_lock; 171 u32 mem_width_in_bytes; 172 int irqs[NUMBER_OF_IRQS]; 173 int masks[NUMBER_OF_IRQS]; 174 }; 175 176 static int dmc520_mc_idx; 177 178 static u32 dmc520_read_reg(struct dmc520_edac *pvt, u32 offset) 179 { 180 return readl(pvt->reg_base + offset); 181 } 182 183 static void dmc520_write_reg(struct dmc520_edac *pvt, u32 val, u32 offset) 184 { 185 writel(val, pvt->reg_base + offset); 186 } 187 188 static u32 dmc520_calc_dram_ecc_error(u32 value) 189 { 190 u32 total = 0; 191 192 /* Each rank's error counter takes one byte. */ 193 while (value > 0) { 194 total += (value & 0xFF); 195 value >>= 8; 196 } 197 return total; 198 } 199 200 static u32 dmc520_get_dram_ecc_error_count(struct dmc520_edac *pvt, 201 bool is_ce) 202 { 203 u32 reg_offset_low, reg_offset_high; 204 u32 err_low, err_high; 205 u32 err_count; 206 207 reg_offset_low = is_ce ? REG_OFFSET_ECC_ERRC_COUNT_31_00 : 208 REG_OFFSET_ECC_ERRD_COUNT_31_00; 209 reg_offset_high = is_ce ? REG_OFFSET_ECC_ERRC_COUNT_63_32 : 210 REG_OFFSET_ECC_ERRD_COUNT_63_32; 211 212 err_low = dmc520_read_reg(pvt, reg_offset_low); 213 err_high = dmc520_read_reg(pvt, reg_offset_high); 214 /* Reset error counters */ 215 dmc520_write_reg(pvt, 0, reg_offset_low); 216 dmc520_write_reg(pvt, 0, reg_offset_high); 217 218 err_count = dmc520_calc_dram_ecc_error(err_low) + 219 dmc520_calc_dram_ecc_error(err_high); 220 221 return err_count; 222 } 223 224 static void dmc520_get_dram_ecc_error_info(struct dmc520_edac *pvt, 225 bool is_ce, 226 struct ecc_error_info *info) 227 { 228 u32 reg_offset_low, reg_offset_high; 229 u32 reg_val_low, reg_val_high; 230 bool valid; 231 232 reg_offset_low = is_ce ? REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_31_00 : 233 REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_31_00; 234 reg_offset_high = is_ce ? REG_OFFSET_DRAM_ECC_ERRC_INT_INFO_63_32 : 235 REG_OFFSET_DRAM_ECC_ERRD_INT_INFO_63_32; 236 237 reg_val_low = dmc520_read_reg(pvt, reg_offset_low); 238 reg_val_high = dmc520_read_reg(pvt, reg_offset_high); 239 240 valid = (FIELD_GET(REG_FIELD_ERR_INFO_LOW_VALID, reg_val_low) != 0) && 241 (FIELD_GET(REG_FIELD_ERR_INFO_HIGH_VALID, reg_val_high) != 0); 242 243 if (valid) { 244 info->col = FIELD_GET(REG_FIELD_ERR_INFO_LOW_COL, reg_val_low); 245 info->row = FIELD_GET(REG_FIELD_ERR_INFO_LOW_ROW, reg_val_low); 246 info->rank = FIELD_GET(REG_FIELD_ERR_INFO_LOW_RANK, reg_val_low); 247 info->bank = FIELD_GET(REG_FIELD_ERR_INFO_HIGH_BANK, reg_val_high); 248 } else { 249 memset(info, 0, sizeof(*info)); 250 } 251 } 252 253 static bool dmc520_is_ecc_enabled(void __iomem *reg_base) 254 { 255 u32 reg_val = readl(reg_base + REG_OFFSET_FEATURE_CONFIG); 256 257 return FIELD_GET(REG_FIELD_DRAM_ECC_ENABLED, reg_val); 258 } 259 260 static enum scrub_type dmc520_get_scrub_type(struct dmc520_edac *pvt) 261 { 262 enum scrub_type type = SCRUB_NONE; 263 u32 reg_val, scrub_cfg; 264 265 reg_val = dmc520_read_reg(pvt, REG_OFFSET_SCRUB_CONTROL0_NOW); 266 scrub_cfg = FIELD_GET(SCRUB_TRIGGER0_NEXT_MASK, reg_val); 267 268 if (scrub_cfg == DMC520_SCRUB_TRIGGER_ERR_DETECT || 269 scrub_cfg == DMC520_SCRUB_TRIGGER_IDLE) 270 type = SCRUB_HW_PROG; 271 272 return type; 273 } 274 275 /* Get the memory data bus width, in number of bytes. */ 276 static u32 dmc520_get_memory_width(struct dmc520_edac *pvt) 277 { 278 enum dmc520_mem_width mem_width_field; 279 u32 mem_width_in_bytes = 0; 280 u32 reg_val; 281 282 reg_val = dmc520_read_reg(pvt, REG_OFFSET_FORMAT_CONTROL); 283 mem_width_field = FIELD_GET(MEMORY_WIDTH_MASK, reg_val); 284 285 if (mem_width_field == MEM_WIDTH_X32) 286 mem_width_in_bytes = 4; 287 else if (mem_width_field == MEM_WIDTH_X64) 288 mem_width_in_bytes = 8; 289 return mem_width_in_bytes; 290 } 291 292 static enum mem_type dmc520_get_mtype(struct dmc520_edac *pvt) 293 { 294 enum mem_type mt = MEM_UNKNOWN; 295 enum dmc520_mem_type type; 296 u32 reg_val; 297 298 reg_val = dmc520_read_reg(pvt, REG_OFFSET_MEMORY_TYPE_NOW); 299 type = FIELD_GET(REG_FIELD_MEMORY_TYPE, reg_val); 300 301 switch (type) { 302 case MEM_TYPE_DDR3: 303 mt = MEM_DDR3; 304 break; 305 306 case MEM_TYPE_DDR4: 307 mt = MEM_DDR4; 308 break; 309 } 310 311 return mt; 312 } 313 314 static enum dev_type dmc520_get_dtype(struct dmc520_edac *pvt) 315 { 316 enum dmc520_dev_width device_width; 317 enum dev_type dt = DEV_UNKNOWN; 318 u32 reg_val; 319 320 reg_val = dmc520_read_reg(pvt, REG_OFFSET_MEMORY_TYPE_NOW); 321 device_width = FIELD_GET(REG_FIELD_DEVICE_WIDTH, reg_val); 322 323 switch (device_width) { 324 case DEV_WIDTH_X4: 325 dt = DEV_X4; 326 break; 327 328 case DEV_WIDTH_X8: 329 dt = DEV_X8; 330 break; 331 332 case DEV_WIDTH_X16: 333 dt = DEV_X16; 334 break; 335 } 336 337 return dt; 338 } 339 340 static u32 dmc520_get_rank_count(void __iomem *reg_base) 341 { 342 u32 reg_val, rank_bits; 343 344 reg_val = readl(reg_base + REG_OFFSET_ADDRESS_CONTROL_NOW); 345 rank_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_RANK, reg_val); 346 347 return BIT(rank_bits); 348 } 349 350 static u64 dmc520_get_rank_size(struct dmc520_edac *pvt) 351 { 352 u32 reg_val, col_bits, row_bits, bank_bits; 353 354 reg_val = dmc520_read_reg(pvt, REG_OFFSET_ADDRESS_CONTROL_NOW); 355 356 col_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_COL, reg_val) + 357 DRAM_ADDRESS_CONTROL_MIN_COL_BITS; 358 row_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_ROW, reg_val) + 359 DRAM_ADDRESS_CONTROL_MIN_ROW_BITS; 360 bank_bits = FIELD_GET(REG_FIELD_ADDRESS_CONTROL_BANK, reg_val); 361 362 return (u64)pvt->mem_width_in_bytes << (col_bits + row_bits + bank_bits); 363 } 364 365 static void dmc520_handle_dram_ecc_errors(struct mem_ctl_info *mci, 366 bool is_ce) 367 { 368 struct dmc520_edac *pvt = mci->pvt_info; 369 char message[DMC520_MSG_BUF_SIZE]; 370 struct ecc_error_info info; 371 u32 cnt; 372 373 dmc520_get_dram_ecc_error_info(pvt, is_ce, &info); 374 375 cnt = dmc520_get_dram_ecc_error_count(pvt, is_ce); 376 if (!cnt) 377 return; 378 379 snprintf(message, ARRAY_SIZE(message), 380 "rank:%d bank:%d row:%d col:%d", 381 info.rank, info.bank, 382 info.row, info.col); 383 384 spin_lock(&pvt->error_lock); 385 edac_mc_handle_error((is_ce ? HW_EVENT_ERR_CORRECTED : 386 HW_EVENT_ERR_UNCORRECTED), 387 mci, cnt, 0, 0, 0, info.rank, -1, -1, 388 message, ""); 389 spin_unlock(&pvt->error_lock); 390 } 391 392 static irqreturn_t dmc520_edac_dram_ecc_isr(int irq, struct mem_ctl_info *mci, 393 bool is_ce) 394 { 395 struct dmc520_edac *pvt = mci->pvt_info; 396 u32 i_mask; 397 398 i_mask = is_ce ? DRAM_ECC_INT_CE_BIT : DRAM_ECC_INT_UE_BIT; 399 400 dmc520_handle_dram_ecc_errors(mci, is_ce); 401 402 dmc520_write_reg(pvt, i_mask, REG_OFFSET_INTERRUPT_CLR); 403 404 return IRQ_HANDLED; 405 } 406 407 static irqreturn_t dmc520_edac_dram_all_isr(int irq, struct mem_ctl_info *mci, 408 u32 irq_mask) 409 { 410 struct dmc520_edac *pvt = mci->pvt_info; 411 irqreturn_t irq_ret = IRQ_NONE; 412 u32 status; 413 414 status = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_STATUS); 415 416 if ((irq_mask & DRAM_ECC_INT_CE_BIT) && 417 (status & DRAM_ECC_INT_CE_BIT)) 418 irq_ret = dmc520_edac_dram_ecc_isr(irq, mci, true); 419 420 if ((irq_mask & DRAM_ECC_INT_UE_BIT) && 421 (status & DRAM_ECC_INT_UE_BIT)) 422 irq_ret = dmc520_edac_dram_ecc_isr(irq, mci, false); 423 424 return irq_ret; 425 } 426 427 static irqreturn_t dmc520_isr(int irq, void *data) 428 { 429 struct mem_ctl_info *mci = data; 430 struct dmc520_edac *pvt = mci->pvt_info; 431 u32 mask = 0; 432 int idx; 433 434 for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { 435 if (pvt->irqs[idx] == irq) { 436 mask = pvt->masks[idx]; 437 break; 438 } 439 } 440 return dmc520_edac_dram_all_isr(irq, mci, mask); 441 } 442 443 static void dmc520_init_csrow(struct mem_ctl_info *mci) 444 { 445 struct dmc520_edac *pvt = mci->pvt_info; 446 struct csrow_info *csi; 447 struct dimm_info *dimm; 448 u32 pages_per_rank; 449 enum dev_type dt; 450 enum mem_type mt; 451 int row, ch; 452 u64 rs; 453 454 dt = dmc520_get_dtype(pvt); 455 mt = dmc520_get_mtype(pvt); 456 rs = dmc520_get_rank_size(pvt); 457 pages_per_rank = rs >> PAGE_SHIFT; 458 459 for (row = 0; row < mci->nr_csrows; row++) { 460 csi = mci->csrows[row]; 461 462 for (ch = 0; ch < csi->nr_channels; ch++) { 463 dimm = csi->channels[ch]->dimm; 464 dimm->grain = pvt->mem_width_in_bytes; 465 dimm->dtype = dt; 466 dimm->mtype = mt; 467 dimm->edac_mode = EDAC_SECDED; 468 dimm->nr_pages = pages_per_rank / csi->nr_channels; 469 } 470 } 471 } 472 473 static int dmc520_edac_probe(struct platform_device *pdev) 474 { 475 bool registered[NUMBER_OF_IRQS] = { false }; 476 int irqs[NUMBER_OF_IRQS] = { -ENXIO }; 477 int masks[NUMBER_OF_IRQS] = { 0 }; 478 struct edac_mc_layer layers[1]; 479 struct dmc520_edac *pvt = NULL; 480 struct mem_ctl_info *mci; 481 void __iomem *reg_base; 482 u32 irq_mask_all = 0; 483 struct device *dev; 484 int ret, idx, irq; 485 u32 reg_val; 486 487 /* Parse the device node */ 488 dev = &pdev->dev; 489 490 for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { 491 irq = platform_get_irq_byname_optional(pdev, dmc520_irq_configs[idx].name); 492 irqs[idx] = irq; 493 masks[idx] = dmc520_irq_configs[idx].mask; 494 if (irq >= 0) { 495 irq_mask_all |= dmc520_irq_configs[idx].mask; 496 edac_dbg(0, "Discovered %s, irq: %d.\n", dmc520_irq_configs[idx].name, irq); 497 } 498 } 499 500 if (!irq_mask_all) { 501 edac_printk(KERN_ERR, EDAC_MOD_NAME, 502 "At least one valid interrupt line is expected.\n"); 503 return -EINVAL; 504 } 505 506 /* Initialize dmc520 edac */ 507 reg_base = devm_platform_ioremap_resource(pdev, 0); 508 if (IS_ERR(reg_base)) 509 return PTR_ERR(reg_base); 510 511 if (!dmc520_is_ecc_enabled(reg_base)) 512 return -ENXIO; 513 514 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 515 layers[0].size = dmc520_get_rank_count(reg_base); 516 layers[0].is_virt_csrow = true; 517 518 mci = edac_mc_alloc(dmc520_mc_idx++, ARRAY_SIZE(layers), layers, sizeof(*pvt)); 519 if (!mci) { 520 edac_printk(KERN_ERR, EDAC_MOD_NAME, 521 "Failed to allocate memory for mc instance\n"); 522 ret = -ENOMEM; 523 goto err; 524 } 525 526 pvt = mci->pvt_info; 527 528 pvt->reg_base = reg_base; 529 spin_lock_init(&pvt->error_lock); 530 memcpy(pvt->irqs, irqs, sizeof(irqs)); 531 memcpy(pvt->masks, masks, sizeof(masks)); 532 533 platform_set_drvdata(pdev, mci); 534 535 mci->pdev = dev; 536 mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR4; 537 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; 538 mci->edac_cap = EDAC_FLAG_SECDED; 539 mci->scrub_cap = SCRUB_FLAG_HW_SRC; 540 mci->scrub_mode = dmc520_get_scrub_type(pvt); 541 mci->ctl_name = EDAC_CTL_NAME; 542 mci->dev_name = dev_name(mci->pdev); 543 mci->mod_name = EDAC_MOD_NAME; 544 545 edac_op_state = EDAC_OPSTATE_INT; 546 547 pvt->mem_width_in_bytes = dmc520_get_memory_width(pvt); 548 549 dmc520_init_csrow(mci); 550 551 /* Clear interrupts, not affecting other unrelated interrupts */ 552 reg_val = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_CONTROL); 553 dmc520_write_reg(pvt, reg_val & (~irq_mask_all), 554 REG_OFFSET_INTERRUPT_CONTROL); 555 dmc520_write_reg(pvt, irq_mask_all, REG_OFFSET_INTERRUPT_CLR); 556 557 for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { 558 irq = irqs[idx]; 559 if (irq >= 0) { 560 ret = devm_request_irq(&pdev->dev, irq, 561 dmc520_isr, IRQF_SHARED, 562 dev_name(&pdev->dev), mci); 563 if (ret < 0) { 564 edac_printk(KERN_ERR, EDAC_MC, 565 "Failed to request irq %d\n", irq); 566 goto err; 567 } 568 registered[idx] = true; 569 } 570 } 571 572 /* Reset DRAM CE/UE counters */ 573 if (irq_mask_all & DRAM_ECC_INT_CE_BIT) 574 dmc520_get_dram_ecc_error_count(pvt, true); 575 576 if (irq_mask_all & DRAM_ECC_INT_UE_BIT) 577 dmc520_get_dram_ecc_error_count(pvt, false); 578 579 ret = edac_mc_add_mc(mci); 580 if (ret) { 581 edac_printk(KERN_ERR, EDAC_MOD_NAME, 582 "Failed to register with EDAC core\n"); 583 goto err; 584 } 585 586 /* Enable interrupts, not affecting other unrelated interrupts */ 587 dmc520_write_reg(pvt, reg_val | irq_mask_all, 588 REG_OFFSET_INTERRUPT_CONTROL); 589 590 return 0; 591 592 err: 593 for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { 594 if (registered[idx]) 595 devm_free_irq(&pdev->dev, pvt->irqs[idx], mci); 596 } 597 if (mci) 598 edac_mc_free(mci); 599 600 return ret; 601 } 602 603 static void dmc520_edac_remove(struct platform_device *pdev) 604 { 605 u32 reg_val, idx, irq_mask_all = 0; 606 struct mem_ctl_info *mci; 607 struct dmc520_edac *pvt; 608 609 mci = platform_get_drvdata(pdev); 610 pvt = mci->pvt_info; 611 612 /* Disable interrupts */ 613 reg_val = dmc520_read_reg(pvt, REG_OFFSET_INTERRUPT_CONTROL); 614 dmc520_write_reg(pvt, reg_val & (~irq_mask_all), 615 REG_OFFSET_INTERRUPT_CONTROL); 616 617 /* free irq's */ 618 for (idx = 0; idx < NUMBER_OF_IRQS; idx++) { 619 if (pvt->irqs[idx] >= 0) { 620 irq_mask_all |= pvt->masks[idx]; 621 devm_free_irq(&pdev->dev, pvt->irqs[idx], mci); 622 } 623 } 624 625 edac_mc_del_mc(&pdev->dev); 626 edac_mc_free(mci); 627 } 628 629 static const struct of_device_id dmc520_edac_driver_id[] = { 630 { .compatible = "arm,dmc-520", }, 631 { /* end of table */ } 632 }; 633 634 MODULE_DEVICE_TABLE(of, dmc520_edac_driver_id); 635 636 static struct platform_driver dmc520_edac_driver = { 637 .driver = { 638 .name = "dmc520", 639 .of_match_table = dmc520_edac_driver_id, 640 }, 641 642 .probe = dmc520_edac_probe, 643 .remove_new = dmc520_edac_remove 644 }; 645 646 module_platform_driver(dmc520_edac_driver); 647 648 MODULE_AUTHOR("Rui Zhao <ruizhao@microsoft.com>"); 649 MODULE_AUTHOR("Lei Wang <lewan@microsoft.com>"); 650 MODULE_AUTHOR("Shiping Ji <shji@microsoft.com>"); 651 MODULE_DESCRIPTION("DMC-520 ECC driver"); 652 MODULE_LICENSE("GPL v2"); 653