1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *amd64_ctl_pci; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node driver instances */ 24 static struct mem_ctl_info **mcis; 25 static struct ecc_settings **ecc_stngs; 26 27 /* 28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 30 * or higher value'. 31 * 32 *FIXME: Produce a better mapping/linearisation. 33 */ 34 struct scrubrate { 35 u32 scrubval; /* bit pattern for scrub rate */ 36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 37 } scrubrates[] = { 38 { 0x01, 1600000000UL}, 39 { 0x02, 800000000UL}, 40 { 0x03, 400000000UL}, 41 { 0x04, 200000000UL}, 42 { 0x05, 100000000UL}, 43 { 0x06, 50000000UL}, 44 { 0x07, 25000000UL}, 45 { 0x08, 12284069UL}, 46 { 0x09, 6274509UL}, 47 { 0x0A, 3121951UL}, 48 { 0x0B, 1560975UL}, 49 { 0x0C, 781440UL}, 50 { 0x0D, 390720UL}, 51 { 0x0E, 195300UL}, 52 { 0x0F, 97650UL}, 53 { 0x10, 48854UL}, 54 { 0x11, 24427UL}, 55 { 0x12, 12213UL}, 56 { 0x13, 6101UL}, 57 { 0x14, 3051UL}, 58 { 0x15, 1523UL}, 59 { 0x16, 761UL}, 60 { 0x00, 0UL}, /* scrubbing off */ 61 }; 62 63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 64 u32 *val, const char *func) 65 { 66 int err = 0; 67 68 err = pci_read_config_dword(pdev, offset, val); 69 if (err) 70 amd64_warn("%s: error reading F%dx%03x.\n", 71 func, PCI_FUNC(pdev->devfn), offset); 72 73 return err; 74 } 75 76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 77 u32 val, const char *func) 78 { 79 int err = 0; 80 81 err = pci_write_config_dword(pdev, offset, val); 82 if (err) 83 amd64_warn("%s: error writing to F%dx%03x.\n", 84 func, PCI_FUNC(pdev->devfn), offset); 85 86 return err; 87 } 88 89 /* 90 * 91 * Depending on the family, F2 DCT reads need special handling: 92 * 93 * K8: has a single DCT only 94 * 95 * F10h: each DCT has its own set of regs 96 * DCT0 -> F2x040.. 97 * DCT1 -> F2x140.. 98 * 99 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 100 * 101 */ 102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 103 const char *func) 104 { 105 if (addr >= 0x100) 106 return -EINVAL; 107 108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 109 } 110 111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 112 const char *func) 113 { 114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 115 } 116 117 /* 118 * Select DCT to which PCI cfg accesses are routed 119 */ 120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) 121 { 122 u32 reg = 0; 123 124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 125 reg &= 0xfffffffe; 126 reg |= dct; 127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 128 } 129 130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 131 const char *func) 132 { 133 u8 dct = 0; 134 135 if (addr >= 0x140 && addr <= 0x1a0) { 136 dct = 1; 137 addr -= 0x100; 138 } 139 140 f15h_select_dct(pvt, dct); 141 142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 143 } 144 145 /* 146 * Memory scrubber control interface. For K8, memory scrubbing is handled by 147 * hardware and can involve L2 cache, dcache as well as the main memory. With 148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 149 * functionality. 150 * 151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 153 * bytes/sec for the setting. 154 * 155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 156 * other archs, we might not have access to the caches directly. 157 */ 158 159 /* 160 * scan the scrub rate mapping table for a close or matching bandwidth value to 161 * issue. If requested is too big, then use last maximum value found. 162 */ 163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) 164 { 165 u32 scrubval; 166 int i; 167 168 /* 169 * map the configured rate (new_bw) to a value specific to the AMD64 170 * memory controller and apply to register. Search for the first 171 * bandwidth entry that is greater or equal than the setting requested 172 * and program that. If at last entry, turn off DRAM scrubbing. 173 */ 174 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 175 /* 176 * skip scrub rates which aren't recommended 177 * (see F10 BKDG, F3x58) 178 */ 179 if (scrubrates[i].scrubval < min_rate) 180 continue; 181 182 if (scrubrates[i].bandwidth <= new_bw) 183 break; 184 185 /* 186 * if no suitable bandwidth found, turn off DRAM scrubbing 187 * entirely by falling back to the last element in the 188 * scrubrates array. 189 */ 190 } 191 192 scrubval = scrubrates[i].scrubval; 193 194 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); 195 196 if (scrubval) 197 return scrubrates[i].bandwidth; 198 199 return 0; 200 } 201 202 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 203 { 204 struct amd64_pvt *pvt = mci->pvt_info; 205 u32 min_scrubrate = 0x5; 206 207 if (boot_cpu_data.x86 == 0xf) 208 min_scrubrate = 0x0; 209 210 /* F15h Erratum #505 */ 211 if (boot_cpu_data.x86 == 0x15) 212 f15h_select_dct(pvt, 0); 213 214 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate); 215 } 216 217 static int amd64_get_scrub_rate(struct mem_ctl_info *mci) 218 { 219 struct amd64_pvt *pvt = mci->pvt_info; 220 u32 scrubval = 0; 221 int i, retval = -EINVAL; 222 223 /* F15h Erratum #505 */ 224 if (boot_cpu_data.x86 == 0x15) 225 f15h_select_dct(pvt, 0); 226 227 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 228 229 scrubval = scrubval & 0x001F; 230 231 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 232 if (scrubrates[i].scrubval == scrubval) { 233 retval = scrubrates[i].bandwidth; 234 break; 235 } 236 } 237 return retval; 238 } 239 240 /* 241 * returns true if the SysAddr given by sys_addr matches the 242 * DRAM base/limit associated with node_id 243 */ 244 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, 245 unsigned nid) 246 { 247 u64 addr; 248 249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 250 * all ones if the most significant implemented address bit is 1. 251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 253 * Application Programming. 254 */ 255 addr = sys_addr & 0x000000ffffffffffull; 256 257 return ((addr >= get_dram_base(pvt, nid)) && 258 (addr <= get_dram_limit(pvt, nid))); 259 } 260 261 /* 262 * Attempt to map a SysAddr to a node. On success, return a pointer to the 263 * mem_ctl_info structure for the node that the SysAddr maps to. 264 * 265 * On failure, return NULL. 266 */ 267 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 268 u64 sys_addr) 269 { 270 struct amd64_pvt *pvt; 271 unsigned node_id; 272 u32 intlv_en, bits; 273 274 /* 275 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 276 * 3.4.4.2) registers to map the SysAddr to a node ID. 277 */ 278 pvt = mci->pvt_info; 279 280 /* 281 * The value of this field should be the same for all DRAM Base 282 * registers. Therefore we arbitrarily choose to read it from the 283 * register for node 0. 284 */ 285 intlv_en = dram_intlv_en(pvt, 0); 286 287 if (intlv_en == 0) { 288 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 289 if (amd64_base_limit_match(pvt, sys_addr, node_id)) 290 goto found; 291 } 292 goto err_no_match; 293 } 294 295 if (unlikely((intlv_en != 0x01) && 296 (intlv_en != 0x03) && 297 (intlv_en != 0x07))) { 298 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 299 return NULL; 300 } 301 302 bits = (((u32) sys_addr) >> 12) & intlv_en; 303 304 for (node_id = 0; ; ) { 305 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 306 break; /* intlv_sel field matches */ 307 308 if (++node_id >= DRAM_RANGES) 309 goto err_no_match; 310 } 311 312 /* sanity test for sys_addr */ 313 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { 314 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 315 "range for node %d with node interleaving enabled.\n", 316 __func__, sys_addr, node_id); 317 return NULL; 318 } 319 320 found: 321 return edac_mc_find((int)node_id); 322 323 err_no_match: 324 debugf2("sys_addr 0x%lx doesn't match any node\n", 325 (unsigned long)sys_addr); 326 327 return NULL; 328 } 329 330 /* 331 * compute the CS base address of the @csrow on the DRAM controller @dct. 332 * For details see F2x[5C:40] in the processor's BKDG 333 */ 334 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 335 u64 *base, u64 *mask) 336 { 337 u64 csbase, csmask, base_bits, mask_bits; 338 u8 addr_shift; 339 340 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { 341 csbase = pvt->csels[dct].csbases[csrow]; 342 csmask = pvt->csels[dct].csmasks[csrow]; 343 base_bits = GENMASK(21, 31) | GENMASK(9, 15); 344 mask_bits = GENMASK(21, 29) | GENMASK(9, 15); 345 addr_shift = 4; 346 } else { 347 csbase = pvt->csels[dct].csbases[csrow]; 348 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 349 addr_shift = 8; 350 351 if (boot_cpu_data.x86 == 0x15) 352 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13); 353 else 354 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13); 355 } 356 357 *base = (csbase & base_bits) << addr_shift; 358 359 *mask = ~0ULL; 360 /* poke holes for the csmask */ 361 *mask &= ~(mask_bits << addr_shift); 362 /* OR them in */ 363 *mask |= (csmask & mask_bits) << addr_shift; 364 } 365 366 #define for_each_chip_select(i, dct, pvt) \ 367 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 368 369 #define chip_select_base(i, dct, pvt) \ 370 pvt->csels[dct].csbases[i] 371 372 #define for_each_chip_select_mask(i, dct, pvt) \ 373 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 374 375 /* 376 * @input_addr is an InputAddr associated with the node given by mci. Return the 377 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 378 */ 379 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 380 { 381 struct amd64_pvt *pvt; 382 int csrow; 383 u64 base, mask; 384 385 pvt = mci->pvt_info; 386 387 for_each_chip_select(csrow, 0, pvt) { 388 if (!csrow_enabled(csrow, 0, pvt)) 389 continue; 390 391 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 392 393 mask = ~mask; 394 395 if ((input_addr & mask) == (base & mask)) { 396 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", 397 (unsigned long)input_addr, csrow, 398 pvt->mc_node_id); 399 400 return csrow; 401 } 402 } 403 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", 404 (unsigned long)input_addr, pvt->mc_node_id); 405 406 return -1; 407 } 408 409 /* 410 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 411 * for the node represented by mci. Info is passed back in *hole_base, 412 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 413 * info is invalid. Info may be invalid for either of the following reasons: 414 * 415 * - The revision of the node is not E or greater. In this case, the DRAM Hole 416 * Address Register does not exist. 417 * 418 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 419 * indicating that its contents are not valid. 420 * 421 * The values passed back in *hole_base, *hole_offset, and *hole_size are 422 * complete 32-bit values despite the fact that the bitfields in the DHAR 423 * only represent bits 31-24 of the base and offset values. 424 */ 425 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 426 u64 *hole_offset, u64 *hole_size) 427 { 428 struct amd64_pvt *pvt = mci->pvt_info; 429 u64 base; 430 431 /* only revE and later have the DRAM Hole Address Register */ 432 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { 433 debugf1(" revision %d for node %d does not support DHAR\n", 434 pvt->ext_model, pvt->mc_node_id); 435 return 1; 436 } 437 438 /* valid for Fam10h and above */ 439 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 440 debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); 441 return 1; 442 } 443 444 if (!dhar_valid(pvt)) { 445 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", 446 pvt->mc_node_id); 447 return 1; 448 } 449 450 /* This node has Memory Hoisting */ 451 452 /* +------------------+--------------------+--------------------+----- 453 * | memory | DRAM hole | relocated | 454 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 455 * | | | DRAM hole | 456 * | | | [0x100000000, | 457 * | | | (0x100000000+ | 458 * | | | (0xffffffff-x))] | 459 * +------------------+--------------------+--------------------+----- 460 * 461 * Above is a diagram of physical memory showing the DRAM hole and the 462 * relocated addresses from the DRAM hole. As shown, the DRAM hole 463 * starts at address x (the base address) and extends through address 464 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 465 * addresses in the hole so that they start at 0x100000000. 466 */ 467 468 base = dhar_base(pvt); 469 470 *hole_base = base; 471 *hole_size = (0x1ull << 32) - base; 472 473 if (boot_cpu_data.x86 > 0xf) 474 *hole_offset = f10_dhar_offset(pvt); 475 else 476 *hole_offset = k8_dhar_offset(pvt); 477 478 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 479 pvt->mc_node_id, (unsigned long)*hole_base, 480 (unsigned long)*hole_offset, (unsigned long)*hole_size); 481 482 return 0; 483 } 484 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 485 486 /* 487 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 488 * assumed that sys_addr maps to the node given by mci. 489 * 490 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 491 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 492 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 493 * then it is also involved in translating a SysAddr to a DramAddr. Sections 494 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 495 * These parts of the documentation are unclear. I interpret them as follows: 496 * 497 * When node n receives a SysAddr, it processes the SysAddr as follows: 498 * 499 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 500 * Limit registers for node n. If the SysAddr is not within the range 501 * specified by the base and limit values, then node n ignores the Sysaddr 502 * (since it does not map to node n). Otherwise continue to step 2 below. 503 * 504 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 505 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 506 * the range of relocated addresses (starting at 0x100000000) from the DRAM 507 * hole. If not, skip to step 3 below. Else get the value of the 508 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 509 * offset defined by this value from the SysAddr. 510 * 511 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 512 * Base register for node n. To obtain the DramAddr, subtract the base 513 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 514 */ 515 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 516 { 517 struct amd64_pvt *pvt = mci->pvt_info; 518 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 519 int ret = 0; 520 521 dram_base = get_dram_base(pvt, pvt->mc_node_id); 522 523 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 524 &hole_size); 525 if (!ret) { 526 if ((sys_addr >= (1ull << 32)) && 527 (sys_addr < ((1ull << 32) + hole_size))) { 528 /* use DHAR to translate SysAddr to DramAddr */ 529 dram_addr = sys_addr - hole_offset; 530 531 debugf2("using DHAR to translate SysAddr 0x%lx to " 532 "DramAddr 0x%lx\n", 533 (unsigned long)sys_addr, 534 (unsigned long)dram_addr); 535 536 return dram_addr; 537 } 538 } 539 540 /* 541 * Translate the SysAddr to a DramAddr as shown near the start of 542 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 543 * only deals with 40-bit values. Therefore we discard bits 63-40 of 544 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 545 * discard are all 1s. Otherwise the bits we discard are all 0s. See 546 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 547 * Programmer's Manual Volume 1 Application Programming. 548 */ 549 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base; 550 551 debugf2("using DRAM Base register to translate SysAddr 0x%lx to " 552 "DramAddr 0x%lx\n", (unsigned long)sys_addr, 553 (unsigned long)dram_addr); 554 return dram_addr; 555 } 556 557 /* 558 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 559 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 560 * for node interleaving. 561 */ 562 static int num_node_interleave_bits(unsigned intlv_en) 563 { 564 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 565 int n; 566 567 BUG_ON(intlv_en > 7); 568 n = intlv_shift_table[intlv_en]; 569 return n; 570 } 571 572 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 573 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 574 { 575 struct amd64_pvt *pvt; 576 int intlv_shift; 577 u64 input_addr; 578 579 pvt = mci->pvt_info; 580 581 /* 582 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 583 * concerning translating a DramAddr to an InputAddr. 584 */ 585 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 586 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) + 587 (dram_addr & 0xfff); 588 589 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 590 intlv_shift, (unsigned long)dram_addr, 591 (unsigned long)input_addr); 592 593 return input_addr; 594 } 595 596 /* 597 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 598 * assumed that @sys_addr maps to the node given by mci. 599 */ 600 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 601 { 602 u64 input_addr; 603 604 input_addr = 605 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 606 607 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 608 (unsigned long)sys_addr, (unsigned long)input_addr); 609 610 return input_addr; 611 } 612 613 614 /* 615 * @input_addr is an InputAddr associated with the node represented by mci. 616 * Translate @input_addr to a DramAddr and return the result. 617 */ 618 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) 619 { 620 struct amd64_pvt *pvt; 621 unsigned node_id, intlv_shift; 622 u64 bits, dram_addr; 623 u32 intlv_sel; 624 625 /* 626 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 627 * shows how to translate a DramAddr to an InputAddr. Here we reverse 628 * this procedure. When translating from a DramAddr to an InputAddr, the 629 * bits used for node interleaving are discarded. Here we recover these 630 * bits from the IntlvSel field of the DRAM Limit register (section 631 * 3.4.4.2) for the node that input_addr is associated with. 632 */ 633 pvt = mci->pvt_info; 634 node_id = pvt->mc_node_id; 635 636 BUG_ON(node_id > 7); 637 638 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 639 if (intlv_shift == 0) { 640 debugf1(" InputAddr 0x%lx translates to DramAddr of " 641 "same value\n", (unsigned long)input_addr); 642 643 return input_addr; 644 } 645 646 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) + 647 (input_addr & 0xfff); 648 649 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1); 650 dram_addr = bits + (intlv_sel << 12); 651 652 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " 653 "(%d node interleave bits)\n", (unsigned long)input_addr, 654 (unsigned long)dram_addr, intlv_shift); 655 656 return dram_addr; 657 } 658 659 /* 660 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert 661 * @dram_addr to a SysAddr. 662 */ 663 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) 664 { 665 struct amd64_pvt *pvt = mci->pvt_info; 666 u64 hole_base, hole_offset, hole_size, base, sys_addr; 667 int ret = 0; 668 669 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 670 &hole_size); 671 if (!ret) { 672 if ((dram_addr >= hole_base) && 673 (dram_addr < (hole_base + hole_size))) { 674 sys_addr = dram_addr + hole_offset; 675 676 debugf1("using DHAR to translate DramAddr 0x%lx to " 677 "SysAddr 0x%lx\n", (unsigned long)dram_addr, 678 (unsigned long)sys_addr); 679 680 return sys_addr; 681 } 682 } 683 684 base = get_dram_base(pvt, pvt->mc_node_id); 685 sys_addr = dram_addr + base; 686 687 /* 688 * The sys_addr we have computed up to this point is a 40-bit value 689 * because the k8 deals with 40-bit values. However, the value we are 690 * supposed to return is a full 64-bit physical address. The AMD 691 * x86-64 architecture specifies that the most significant implemented 692 * address bit through bit 63 of a physical address must be either all 693 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a 694 * 64-bit value below. See section 3.4.2 of AMD publication 24592: 695 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application 696 * Programming. 697 */ 698 sys_addr |= ~((sys_addr & (1ull << 39)) - 1); 699 700 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", 701 pvt->mc_node_id, (unsigned long)dram_addr, 702 (unsigned long)sys_addr); 703 704 return sys_addr; 705 } 706 707 /* 708 * @input_addr is an InputAddr associated with the node given by mci. Translate 709 * @input_addr to a SysAddr. 710 */ 711 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, 712 u64 input_addr) 713 { 714 return dram_addr_to_sys_addr(mci, 715 input_addr_to_dram_addr(mci, input_addr)); 716 } 717 718 /* 719 * Find the minimum and maximum InputAddr values that map to the given @csrow. 720 * Pass back these values in *input_addr_min and *input_addr_max. 721 */ 722 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, 723 u64 *input_addr_min, u64 *input_addr_max) 724 { 725 struct amd64_pvt *pvt; 726 u64 base, mask; 727 728 pvt = mci->pvt_info; 729 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt)); 730 731 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 732 733 *input_addr_min = base & ~mask; 734 *input_addr_max = base | mask; 735 } 736 737 /* Map the Error address to a PAGE and PAGE OFFSET. */ 738 static inline void error_address_to_page_and_offset(u64 error_address, 739 u32 *page, u32 *offset) 740 { 741 *page = (u32) (error_address >> PAGE_SHIFT); 742 *offset = ((u32) error_address) & ~PAGE_MASK; 743 } 744 745 /* 746 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 747 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 748 * of a node that detected an ECC memory error. mci represents the node that 749 * the error address maps to (possibly different from the node that detected 750 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 751 * error. 752 */ 753 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 754 { 755 int csrow; 756 757 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 758 759 if (csrow == -1) 760 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 761 "address 0x%lx\n", (unsigned long)sys_addr); 762 return csrow; 763 } 764 765 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 766 767 /* 768 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 769 * are ECC capable. 770 */ 771 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt) 772 { 773 u8 bit; 774 unsigned long edac_cap = EDAC_FLAG_NONE; 775 776 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) 777 ? 19 778 : 17; 779 780 if (pvt->dclr0 & BIT(bit)) 781 edac_cap = EDAC_FLAG_SECDED; 782 783 return edac_cap; 784 } 785 786 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8); 787 788 static void amd64_dump_dramcfg_low(u32 dclr, int chan) 789 { 790 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 791 792 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n", 793 (dclr & BIT(16)) ? "un" : "", 794 (dclr & BIT(19)) ? "yes" : "no"); 795 796 debugf1(" PAR/ERR parity: %s\n", 797 (dclr & BIT(8)) ? "enabled" : "disabled"); 798 799 if (boot_cpu_data.x86 == 0x10) 800 debugf1(" DCT 128bit mode width: %s\n", 801 (dclr & BIT(11)) ? "128b" : "64b"); 802 803 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 804 (dclr & BIT(12)) ? "yes" : "no", 805 (dclr & BIT(13)) ? "yes" : "no", 806 (dclr & BIT(14)) ? "yes" : "no", 807 (dclr & BIT(15)) ? "yes" : "no"); 808 } 809 810 /* Display and decode various NB registers for debug purposes. */ 811 static void dump_misc_regs(struct amd64_pvt *pvt) 812 { 813 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 814 815 debugf1(" NB two channel DRAM capable: %s\n", 816 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 817 818 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n", 819 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 820 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 821 822 amd64_dump_dramcfg_low(pvt->dclr0, 0); 823 824 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 825 826 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " 827 "offset: 0x%08x\n", 828 pvt->dhar, dhar_base(pvt), 829 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt) 830 : f10_dhar_offset(pvt)); 831 832 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 833 834 amd64_debug_display_dimm_sizes(pvt, 0); 835 836 /* everything below this point is Fam10h and above */ 837 if (boot_cpu_data.x86 == 0xf) 838 return; 839 840 amd64_debug_display_dimm_sizes(pvt, 1); 841 842 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); 843 844 /* Only if NOT ganged does dclr1 have valid info */ 845 if (!dct_ganging_enabled(pvt)) 846 amd64_dump_dramcfg_low(pvt->dclr1, 1); 847 } 848 849 /* 850 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 851 */ 852 static void prep_chip_selects(struct amd64_pvt *pvt) 853 { 854 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { 855 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 856 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 857 } else { 858 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 859 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 860 } 861 } 862 863 /* 864 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 865 */ 866 static void read_dct_base_mask(struct amd64_pvt *pvt) 867 { 868 int cs; 869 870 prep_chip_selects(pvt); 871 872 for_each_chip_select(cs, 0, pvt) { 873 int reg0 = DCSB0 + (cs * 4); 874 int reg1 = DCSB1 + (cs * 4); 875 u32 *base0 = &pvt->csels[0].csbases[cs]; 876 u32 *base1 = &pvt->csels[1].csbases[cs]; 877 878 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) 879 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", 880 cs, *base0, reg0); 881 882 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) 883 continue; 884 885 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) 886 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", 887 cs, *base1, reg1); 888 } 889 890 for_each_chip_select_mask(cs, 0, pvt) { 891 int reg0 = DCSM0 + (cs * 4); 892 int reg1 = DCSM1 + (cs * 4); 893 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 894 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 895 896 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) 897 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", 898 cs, *mask0, reg0); 899 900 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) 901 continue; 902 903 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) 904 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", 905 cs, *mask1, reg1); 906 } 907 } 908 909 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) 910 { 911 enum mem_type type; 912 913 /* F15h supports only DDR3 */ 914 if (boot_cpu_data.x86 >= 0x15) 915 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 916 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) { 917 if (pvt->dchr0 & DDR3_MODE) 918 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 919 else 920 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 921 } else { 922 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 923 } 924 925 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); 926 927 return type; 928 } 929 930 /* Get the number of DCT channels the memory controller is using. */ 931 static int k8_early_channel_count(struct amd64_pvt *pvt) 932 { 933 int flag; 934 935 if (pvt->ext_model >= K8_REV_F) 936 /* RevF (NPT) and later */ 937 flag = pvt->dclr0 & WIDTH_128; 938 else 939 /* RevE and earlier */ 940 flag = pvt->dclr0 & REVE_WIDTH_128; 941 942 /* not used */ 943 pvt->dclr1 = 0; 944 945 return (flag) ? 2 : 1; 946 } 947 948 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 949 static u64 get_error_address(struct mce *m) 950 { 951 struct cpuinfo_x86 *c = &boot_cpu_data; 952 u64 addr; 953 u8 start_bit = 1; 954 u8 end_bit = 47; 955 956 if (c->x86 == 0xf) { 957 start_bit = 3; 958 end_bit = 39; 959 } 960 961 addr = m->addr & GENMASK(start_bit, end_bit); 962 963 /* 964 * Erratum 637 workaround 965 */ 966 if (c->x86 == 0x15) { 967 struct amd64_pvt *pvt; 968 u64 cc6_base, tmp_addr; 969 u32 tmp; 970 u8 mce_nid, intlv_en; 971 972 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7) 973 return addr; 974 975 mce_nid = amd_get_nb_id(m->extcpu); 976 pvt = mcis[mce_nid]->pvt_info; 977 978 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 979 intlv_en = tmp >> 21 & 0x7; 980 981 /* add [47:27] + 3 trailing bits */ 982 cc6_base = (tmp & GENMASK(0, 20)) << 3; 983 984 /* reverse and add DramIntlvEn */ 985 cc6_base |= intlv_en ^ 0x7; 986 987 /* pin at [47:24] */ 988 cc6_base <<= 24; 989 990 if (!intlv_en) 991 return cc6_base | (addr & GENMASK(0, 23)); 992 993 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 994 995 /* faster log2 */ 996 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1); 997 998 /* OR DramIntlvSel into bits [14:12] */ 999 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9; 1000 1001 /* add remaining [11:0] bits from original MC4_ADDR */ 1002 tmp_addr |= addr & GENMASK(0, 11); 1003 1004 return cc6_base | tmp_addr; 1005 } 1006 1007 return addr; 1008 } 1009 1010 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 1011 { 1012 struct cpuinfo_x86 *c = &boot_cpu_data; 1013 int off = range << 3; 1014 1015 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 1016 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 1017 1018 if (c->x86 == 0xf) 1019 return; 1020 1021 if (!dram_rw(pvt, range)) 1022 return; 1023 1024 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 1025 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 1026 1027 /* Factor in CC6 save area by reading dst node's limit reg */ 1028 if (c->x86 == 0x15) { 1029 struct pci_dev *f1 = NULL; 1030 u8 nid = dram_dst_node(pvt, range); 1031 u32 llim; 1032 1033 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1)); 1034 if (WARN_ON(!f1)) 1035 return; 1036 1037 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 1038 1039 pvt->ranges[range].lim.lo &= GENMASK(0, 15); 1040 1041 /* {[39:27],111b} */ 1042 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 1043 1044 pvt->ranges[range].lim.hi &= GENMASK(0, 7); 1045 1046 /* [47:40] */ 1047 pvt->ranges[range].lim.hi |= llim >> 13; 1048 1049 pci_dev_put(f1); 1050 } 1051 } 1052 1053 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1054 u16 syndrome) 1055 { 1056 struct mem_ctl_info *src_mci; 1057 struct amd64_pvt *pvt = mci->pvt_info; 1058 int channel, csrow; 1059 u32 page, offset; 1060 1061 /* CHIPKILL enabled */ 1062 if (pvt->nbcfg & NBCFG_CHIPKILL) { 1063 channel = get_channel_from_ecc_syndrome(mci, syndrome); 1064 if (channel < 0) { 1065 /* 1066 * Syndrome didn't map, so we don't know which of the 1067 * 2 DIMMs is in error. So we need to ID 'both' of them 1068 * as suspect. 1069 */ 1070 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible " 1071 "error reporting race\n", syndrome); 1072 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1073 return; 1074 } 1075 } else { 1076 /* 1077 * non-chipkill ecc mode 1078 * 1079 * The k8 documentation is unclear about how to determine the 1080 * channel number when using non-chipkill memory. This method 1081 * was obtained from email communication with someone at AMD. 1082 * (Wish the email was placed in this comment - norsk) 1083 */ 1084 channel = ((sys_addr & BIT(3)) != 0); 1085 } 1086 1087 /* 1088 * Find out which node the error address belongs to. This may be 1089 * different from the node that detected the error. 1090 */ 1091 src_mci = find_mc_by_sys_addr(mci, sys_addr); 1092 if (!src_mci) { 1093 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 1094 (unsigned long)sys_addr); 1095 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1096 return; 1097 } 1098 1099 /* Now map the sys_addr to a CSROW */ 1100 csrow = sys_addr_to_csrow(src_mci, sys_addr); 1101 if (csrow < 0) { 1102 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); 1103 } else { 1104 error_address_to_page_and_offset(sys_addr, &page, &offset); 1105 1106 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, 1107 channel, EDAC_MOD_STR); 1108 } 1109 } 1110 1111 static int ddr2_cs_size(unsigned i, bool dct_width) 1112 { 1113 unsigned shift = 0; 1114 1115 if (i <= 2) 1116 shift = i; 1117 else if (!(i & 0x1)) 1118 shift = i >> 1; 1119 else 1120 shift = (i + 1) >> 1; 1121 1122 return 128 << (shift + !!dct_width); 1123 } 1124 1125 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1126 unsigned cs_mode) 1127 { 1128 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1129 1130 if (pvt->ext_model >= K8_REV_F) { 1131 WARN_ON(cs_mode > 11); 1132 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1133 } 1134 else if (pvt->ext_model >= K8_REV_D) { 1135 WARN_ON(cs_mode > 10); 1136 1137 if (cs_mode == 3 || cs_mode == 8) 1138 return 32 << (cs_mode - 1); 1139 else 1140 return 32 << cs_mode; 1141 } 1142 else { 1143 WARN_ON(cs_mode > 6); 1144 return 32 << cs_mode; 1145 } 1146 } 1147 1148 /* 1149 * Get the number of DCT channels in use. 1150 * 1151 * Return: 1152 * number of Memory Channels in operation 1153 * Pass back: 1154 * contents of the DCL0_LOW register 1155 */ 1156 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1157 { 1158 int i, j, channels = 0; 1159 1160 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1161 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128)) 1162 return 2; 1163 1164 /* 1165 * Need to check if in unganged mode: In such, there are 2 channels, 1166 * but they are not in 128 bit mode and thus the above 'dclr0' status 1167 * bit will be OFF. 1168 * 1169 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1170 * their CSEnable bit on. If so, then SINGLE DIMM case. 1171 */ 1172 debugf0("Data width is not 128 bits - need more decoding\n"); 1173 1174 /* 1175 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1176 * is more than just one DIMM present in unganged mode. Need to check 1177 * both controllers since DIMMs can be placed in either one. 1178 */ 1179 for (i = 0; i < 2; i++) { 1180 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1181 1182 for (j = 0; j < 4; j++) { 1183 if (DBAM_DIMM(j, dbam) > 0) { 1184 channels++; 1185 break; 1186 } 1187 } 1188 } 1189 1190 if (channels > 2) 1191 channels = 2; 1192 1193 amd64_info("MCT channel count: %d\n", channels); 1194 1195 return channels; 1196 } 1197 1198 static int ddr3_cs_size(unsigned i, bool dct_width) 1199 { 1200 unsigned shift = 0; 1201 int cs_size = 0; 1202 1203 if (i == 0 || i == 3 || i == 4) 1204 cs_size = -1; 1205 else if (i <= 2) 1206 shift = i; 1207 else if (i == 12) 1208 shift = 7; 1209 else if (!(i & 0x1)) 1210 shift = i >> 1; 1211 else 1212 shift = (i + 1) >> 1; 1213 1214 if (cs_size != -1) 1215 cs_size = (128 * (1 << !!dct_width)) << shift; 1216 1217 return cs_size; 1218 } 1219 1220 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1221 unsigned cs_mode) 1222 { 1223 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1224 1225 WARN_ON(cs_mode > 11); 1226 1227 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1228 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1229 else 1230 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1231 } 1232 1233 /* 1234 * F15h supports only 64bit DCT interfaces 1235 */ 1236 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1237 unsigned cs_mode) 1238 { 1239 WARN_ON(cs_mode > 12); 1240 1241 return ddr3_cs_size(cs_mode, false); 1242 } 1243 1244 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1245 { 1246 1247 if (boot_cpu_data.x86 == 0xf) 1248 return; 1249 1250 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1251 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1252 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1253 1254 debugf0(" DCTs operate in %s mode.\n", 1255 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1256 1257 if (!dct_ganging_enabled(pvt)) 1258 debugf0(" Address range split per DCT: %s\n", 1259 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1260 1261 debugf0(" data interleave for ECC: %s, " 1262 "DRAM cleared since last warm reset: %s\n", 1263 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1264 (dct_memory_cleared(pvt) ? "yes" : "no")); 1265 1266 debugf0(" channel interleave: %s, " 1267 "interleave bits selector: 0x%x\n", 1268 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1269 dct_sel_interleave_addr(pvt)); 1270 } 1271 1272 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); 1273 } 1274 1275 /* 1276 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1277 * Interleaving Modes. 1278 */ 1279 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1280 bool hi_range_sel, u8 intlv_en) 1281 { 1282 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1283 1284 if (dct_ganging_enabled(pvt)) 1285 return 0; 1286 1287 if (hi_range_sel) 1288 return dct_sel_high; 1289 1290 /* 1291 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1292 */ 1293 if (dct_interleave_enabled(pvt)) { 1294 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1295 1296 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1297 if (!intlv_addr) 1298 return sys_addr >> 6 & 1; 1299 1300 if (intlv_addr & 0x2) { 1301 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1302 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1303 1304 return ((sys_addr >> shift) & 1) ^ temp; 1305 } 1306 1307 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1308 } 1309 1310 if (dct_high_range_enabled(pvt)) 1311 return ~dct_sel_high & 1; 1312 1313 return 0; 1314 } 1315 1316 /* Convert the sys_addr to the normalized DCT address */ 1317 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range, 1318 u64 sys_addr, bool hi_rng, 1319 u32 dct_sel_base_addr) 1320 { 1321 u64 chan_off; 1322 u64 dram_base = get_dram_base(pvt, range); 1323 u64 hole_off = f10_dhar_offset(pvt); 1324 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1325 1326 if (hi_rng) { 1327 /* 1328 * if 1329 * base address of high range is below 4Gb 1330 * (bits [47:27] at [31:11]) 1331 * DRAM address space on this DCT is hoisted above 4Gb && 1332 * sys_addr > 4Gb 1333 * 1334 * remove hole offset from sys_addr 1335 * else 1336 * remove high range offset from sys_addr 1337 */ 1338 if ((!(dct_sel_base_addr >> 16) || 1339 dct_sel_base_addr < dhar_base(pvt)) && 1340 dhar_valid(pvt) && 1341 (sys_addr >= BIT_64(32))) 1342 chan_off = hole_off; 1343 else 1344 chan_off = dct_sel_base_off; 1345 } else { 1346 /* 1347 * if 1348 * we have a valid hole && 1349 * sys_addr > 4Gb 1350 * 1351 * remove hole 1352 * else 1353 * remove dram base to normalize to DCT address 1354 */ 1355 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1356 chan_off = hole_off; 1357 else 1358 chan_off = dram_base; 1359 } 1360 1361 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47)); 1362 } 1363 1364 /* 1365 * checks if the csrow passed in is marked as SPARED, if so returns the new 1366 * spare row 1367 */ 1368 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1369 { 1370 int tmp_cs; 1371 1372 if (online_spare_swap_done(pvt, dct) && 1373 csrow == online_spare_bad_dramcs(pvt, dct)) { 1374 1375 for_each_chip_select(tmp_cs, dct, pvt) { 1376 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1377 csrow = tmp_cs; 1378 break; 1379 } 1380 } 1381 } 1382 return csrow; 1383 } 1384 1385 /* 1386 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1387 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1388 * 1389 * Return: 1390 * -EINVAL: NOT FOUND 1391 * 0..csrow = Chip-Select Row 1392 */ 1393 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct) 1394 { 1395 struct mem_ctl_info *mci; 1396 struct amd64_pvt *pvt; 1397 u64 cs_base, cs_mask; 1398 int cs_found = -EINVAL; 1399 int csrow; 1400 1401 mci = mcis[nid]; 1402 if (!mci) 1403 return cs_found; 1404 1405 pvt = mci->pvt_info; 1406 1407 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1408 1409 for_each_chip_select(csrow, dct, pvt) { 1410 if (!csrow_enabled(csrow, dct, pvt)) 1411 continue; 1412 1413 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1414 1415 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1416 csrow, cs_base, cs_mask); 1417 1418 cs_mask = ~cs_mask; 1419 1420 debugf1(" (InputAddr & ~CSMask)=0x%llx " 1421 "(CSBase & ~CSMask)=0x%llx\n", 1422 (in_addr & cs_mask), (cs_base & cs_mask)); 1423 1424 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1425 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1426 1427 debugf1(" MATCH csrow=%d\n", cs_found); 1428 break; 1429 } 1430 } 1431 return cs_found; 1432 } 1433 1434 /* 1435 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1436 * swapped with a region located at the bottom of memory so that the GPU can use 1437 * the interleaved region and thus two channels. 1438 */ 1439 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1440 { 1441 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1442 1443 if (boot_cpu_data.x86 == 0x10) { 1444 /* only revC3 and revE have that feature */ 1445 if (boot_cpu_data.x86_model < 4 || 1446 (boot_cpu_data.x86_model < 0xa && 1447 boot_cpu_data.x86_mask < 3)) 1448 return sys_addr; 1449 } 1450 1451 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); 1452 1453 if (!(swap_reg & 0x1)) 1454 return sys_addr; 1455 1456 swap_base = (swap_reg >> 3) & 0x7f; 1457 swap_limit = (swap_reg >> 11) & 0x7f; 1458 rgn_size = (swap_reg >> 20) & 0x7f; 1459 tmp_addr = sys_addr >> 27; 1460 1461 if (!(sys_addr >> 34) && 1462 (((tmp_addr >= swap_base) && 1463 (tmp_addr <= swap_limit)) || 1464 (tmp_addr < rgn_size))) 1465 return sys_addr ^ (u64)swap_base << 27; 1466 1467 return sys_addr; 1468 } 1469 1470 /* For a given @dram_range, check if @sys_addr falls within it. */ 1471 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1472 u64 sys_addr, int *nid, int *chan_sel) 1473 { 1474 int cs_found = -EINVAL; 1475 u64 chan_addr; 1476 u32 dct_sel_base; 1477 u8 channel; 1478 bool high_range = false; 1479 1480 u8 node_id = dram_dst_node(pvt, range); 1481 u8 intlv_en = dram_intlv_en(pvt, range); 1482 u32 intlv_sel = dram_intlv_sel(pvt, range); 1483 1484 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1485 range, sys_addr, get_dram_limit(pvt, range)); 1486 1487 if (dhar_valid(pvt) && 1488 dhar_base(pvt) <= sys_addr && 1489 sys_addr < BIT_64(32)) { 1490 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1491 sys_addr); 1492 return -EINVAL; 1493 } 1494 1495 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1496 return -EINVAL; 1497 1498 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1499 1500 dct_sel_base = dct_sel_baseaddr(pvt); 1501 1502 /* 1503 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1504 * select between DCT0 and DCT1. 1505 */ 1506 if (dct_high_range_enabled(pvt) && 1507 !dct_ganging_enabled(pvt) && 1508 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1509 high_range = true; 1510 1511 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1512 1513 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1514 high_range, dct_sel_base); 1515 1516 /* Remove node interleaving, see F1x120 */ 1517 if (intlv_en) 1518 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1519 (chan_addr & 0xfff); 1520 1521 /* remove channel interleave */ 1522 if (dct_interleave_enabled(pvt) && 1523 !dct_high_range_enabled(pvt) && 1524 !dct_ganging_enabled(pvt)) { 1525 1526 if (dct_sel_interleave_addr(pvt) != 1) { 1527 if (dct_sel_interleave_addr(pvt) == 0x3) 1528 /* hash 9 */ 1529 chan_addr = ((chan_addr >> 10) << 9) | 1530 (chan_addr & 0x1ff); 1531 else 1532 /* A[6] or hash 6 */ 1533 chan_addr = ((chan_addr >> 7) << 6) | 1534 (chan_addr & 0x3f); 1535 } else 1536 /* A[12] */ 1537 chan_addr = ((chan_addr >> 13) << 12) | 1538 (chan_addr & 0xfff); 1539 } 1540 1541 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr); 1542 1543 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1544 1545 if (cs_found >= 0) { 1546 *nid = node_id; 1547 *chan_sel = channel; 1548 } 1549 return cs_found; 1550 } 1551 1552 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, 1553 int *node, int *chan_sel) 1554 { 1555 int cs_found = -EINVAL; 1556 unsigned range; 1557 1558 for (range = 0; range < DRAM_RANGES; range++) { 1559 1560 if (!dram_rw(pvt, range)) 1561 continue; 1562 1563 if ((get_dram_base(pvt, range) <= sys_addr) && 1564 (get_dram_limit(pvt, range) >= sys_addr)) { 1565 1566 cs_found = f1x_match_to_this_node(pvt, range, 1567 sys_addr, node, 1568 chan_sel); 1569 if (cs_found >= 0) 1570 break; 1571 } 1572 } 1573 return cs_found; 1574 } 1575 1576 /* 1577 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1578 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1579 * 1580 * The @sys_addr is usually an error address received from the hardware 1581 * (MCX_ADDR). 1582 */ 1583 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1584 u16 syndrome) 1585 { 1586 struct amd64_pvt *pvt = mci->pvt_info; 1587 u32 page, offset; 1588 int nid, csrow, chan = 0; 1589 1590 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); 1591 1592 if (csrow < 0) { 1593 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1594 return; 1595 } 1596 1597 error_address_to_page_and_offset(sys_addr, &page, &offset); 1598 1599 /* 1600 * We need the syndromes for channel detection only when we're 1601 * ganged. Otherwise @chan should already contain the channel at 1602 * this point. 1603 */ 1604 if (dct_ganging_enabled(pvt)) 1605 chan = get_channel_from_ecc_syndrome(mci, syndrome); 1606 1607 if (chan >= 0) 1608 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, 1609 EDAC_MOD_STR); 1610 else 1611 /* 1612 * Channel unknown, report all channels on this CSROW as failed. 1613 */ 1614 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++) 1615 edac_mc_handle_ce(mci, page, offset, syndrome, 1616 csrow, chan, EDAC_MOD_STR); 1617 } 1618 1619 /* 1620 * debug routine to display the memory sizes of all logical DIMMs and its 1621 * CSROWs 1622 */ 1623 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 1624 { 1625 int dimm, size0, size1, factor = 0; 1626 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 1627 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1628 1629 if (boot_cpu_data.x86 == 0xf) { 1630 if (pvt->dclr0 & WIDTH_128) 1631 factor = 1; 1632 1633 /* K8 families < revF not supported yet */ 1634 if (pvt->ext_model < K8_REV_F) 1635 return; 1636 else 1637 WARN_ON(ctrl != 0); 1638 } 1639 1640 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; 1641 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases 1642 : pvt->csels[0].csbases; 1643 1644 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam); 1645 1646 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1647 1648 /* Dump memory sizes for DIMM and its CSROWs */ 1649 for (dimm = 0; dimm < 4; dimm++) { 1650 1651 size0 = 0; 1652 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 1653 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 1654 DBAM_DIMM(dimm, dbam)); 1655 1656 size1 = 0; 1657 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 1658 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 1659 DBAM_DIMM(dimm, dbam)); 1660 1661 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1662 dimm * 2, size0 << factor, 1663 dimm * 2 + 1, size1 << factor); 1664 } 1665 } 1666 1667 static struct amd64_family_type amd64_family_types[] = { 1668 [K8_CPUS] = { 1669 .ctl_name = "K8", 1670 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1671 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1672 .ops = { 1673 .early_channel_count = k8_early_channel_count, 1674 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1675 .dbam_to_cs = k8_dbam_to_chip_select, 1676 .read_dct_pci_cfg = k8_read_dct_pci_cfg, 1677 } 1678 }, 1679 [F10_CPUS] = { 1680 .ctl_name = "F10h", 1681 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1682 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1683 .ops = { 1684 .early_channel_count = f1x_early_channel_count, 1685 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1686 .dbam_to_cs = f10_dbam_to_chip_select, 1687 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1688 } 1689 }, 1690 [F15_CPUS] = { 1691 .ctl_name = "F15h", 1692 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 1693 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, 1694 .ops = { 1695 .early_channel_count = f1x_early_channel_count, 1696 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1697 .dbam_to_cs = f15_dbam_to_chip_select, 1698 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1699 } 1700 }, 1701 }; 1702 1703 static struct pci_dev *pci_get_related_function(unsigned int vendor, 1704 unsigned int device, 1705 struct pci_dev *related) 1706 { 1707 struct pci_dev *dev = NULL; 1708 1709 dev = pci_get_device(vendor, device, dev); 1710 while (dev) { 1711 if ((dev->bus->number == related->bus->number) && 1712 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 1713 break; 1714 dev = pci_get_device(vendor, device, dev); 1715 } 1716 1717 return dev; 1718 } 1719 1720 /* 1721 * These are tables of eigenvectors (one per line) which can be used for the 1722 * construction of the syndrome tables. The modified syndrome search algorithm 1723 * uses those to find the symbol in error and thus the DIMM. 1724 * 1725 * Algorithm courtesy of Ross LaFetra from AMD. 1726 */ 1727 static u16 x4_vectors[] = { 1728 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1729 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1730 0x0001, 0x0002, 0x0004, 0x0008, 1731 0x1013, 0x3032, 0x4044, 0x8088, 1732 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1733 0x4857, 0xc4fe, 0x13cc, 0x3288, 1734 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1735 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1736 0x15c1, 0x2a42, 0x89ac, 0x4758, 1737 0x2b03, 0x1602, 0x4f0c, 0xca08, 1738 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1739 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1740 0x2b87, 0x164e, 0x642c, 0xdc18, 1741 0x40b9, 0x80de, 0x1094, 0x20e8, 1742 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1743 0x11c1, 0x2242, 0x84ac, 0x4c58, 1744 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1745 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1746 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1747 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 1748 0x16b3, 0x3d62, 0x4f34, 0x8518, 1749 0x1e2f, 0x391a, 0x5cac, 0xf858, 1750 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 1751 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 1752 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 1753 0x4397, 0xc27e, 0x17fc, 0x3ea8, 1754 0x1617, 0x3d3e, 0x6464, 0xb8b8, 1755 0x23ff, 0x12aa, 0xab6c, 0x56d8, 1756 0x2dfb, 0x1ba6, 0x913c, 0x7328, 1757 0x185d, 0x2ca6, 0x7914, 0x9e28, 1758 0x171b, 0x3e36, 0x7d7c, 0xebe8, 1759 0x4199, 0x82ee, 0x19f4, 0x2e58, 1760 0x4807, 0xc40e, 0x130c, 0x3208, 1761 0x1905, 0x2e0a, 0x5804, 0xac08, 1762 0x213f, 0x132a, 0xadfc, 0x5ba8, 1763 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 1764 }; 1765 1766 static u16 x8_vectors[] = { 1767 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 1768 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 1769 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 1770 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 1771 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 1772 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 1773 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 1774 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 1775 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 1776 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 1777 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 1778 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 1779 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 1780 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 1781 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 1782 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 1783 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 1784 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1785 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 1786 }; 1787 1788 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs, 1789 unsigned v_dim) 1790 { 1791 unsigned int i, err_sym; 1792 1793 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 1794 u16 s = syndrome; 1795 unsigned v_idx = err_sym * v_dim; 1796 unsigned v_end = (err_sym + 1) * v_dim; 1797 1798 /* walk over all 16 bits of the syndrome */ 1799 for (i = 1; i < (1U << 16); i <<= 1) { 1800 1801 /* if bit is set in that eigenvector... */ 1802 if (v_idx < v_end && vectors[v_idx] & i) { 1803 u16 ev_comp = vectors[v_idx++]; 1804 1805 /* ... and bit set in the modified syndrome, */ 1806 if (s & i) { 1807 /* remove it. */ 1808 s ^= ev_comp; 1809 1810 if (!s) 1811 return err_sym; 1812 } 1813 1814 } else if (s & i) 1815 /* can't get to zero, move to next symbol */ 1816 break; 1817 } 1818 } 1819 1820 debugf0("syndrome(%x) not found\n", syndrome); 1821 return -1; 1822 } 1823 1824 static int map_err_sym_to_channel(int err_sym, int sym_size) 1825 { 1826 if (sym_size == 4) 1827 switch (err_sym) { 1828 case 0x20: 1829 case 0x21: 1830 return 0; 1831 break; 1832 case 0x22: 1833 case 0x23: 1834 return 1; 1835 break; 1836 default: 1837 return err_sym >> 4; 1838 break; 1839 } 1840 /* x8 symbols */ 1841 else 1842 switch (err_sym) { 1843 /* imaginary bits not in a DIMM */ 1844 case 0x10: 1845 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 1846 err_sym); 1847 return -1; 1848 break; 1849 1850 case 0x11: 1851 return 0; 1852 break; 1853 case 0x12: 1854 return 1; 1855 break; 1856 default: 1857 return err_sym >> 3; 1858 break; 1859 } 1860 return -1; 1861 } 1862 1863 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 1864 { 1865 struct amd64_pvt *pvt = mci->pvt_info; 1866 int err_sym = -1; 1867 1868 if (pvt->ecc_sym_sz == 8) 1869 err_sym = decode_syndrome(syndrome, x8_vectors, 1870 ARRAY_SIZE(x8_vectors), 1871 pvt->ecc_sym_sz); 1872 else if (pvt->ecc_sym_sz == 4) 1873 err_sym = decode_syndrome(syndrome, x4_vectors, 1874 ARRAY_SIZE(x4_vectors), 1875 pvt->ecc_sym_sz); 1876 else { 1877 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 1878 return err_sym; 1879 } 1880 1881 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 1882 } 1883 1884 /* 1885 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR 1886 * ADDRESS and process. 1887 */ 1888 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m) 1889 { 1890 struct amd64_pvt *pvt = mci->pvt_info; 1891 u64 sys_addr; 1892 u16 syndrome; 1893 1894 /* Ensure that the Error Address is VALID */ 1895 if (!(m->status & MCI_STATUS_ADDRV)) { 1896 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); 1897 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1898 return; 1899 } 1900 1901 sys_addr = get_error_address(m); 1902 syndrome = extract_syndrome(m->status); 1903 1904 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); 1905 1906 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome); 1907 } 1908 1909 /* Handle any Un-correctable Errors (UEs) */ 1910 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m) 1911 { 1912 struct mem_ctl_info *log_mci, *src_mci = NULL; 1913 int csrow; 1914 u64 sys_addr; 1915 u32 page, offset; 1916 1917 log_mci = mci; 1918 1919 if (!(m->status & MCI_STATUS_ADDRV)) { 1920 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); 1921 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1922 return; 1923 } 1924 1925 sys_addr = get_error_address(m); 1926 1927 /* 1928 * Find out which node the error address belongs to. This may be 1929 * different from the node that detected the error. 1930 */ 1931 src_mci = find_mc_by_sys_addr(mci, sys_addr); 1932 if (!src_mci) { 1933 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n", 1934 (unsigned long)sys_addr); 1935 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1936 return; 1937 } 1938 1939 log_mci = src_mci; 1940 1941 csrow = sys_addr_to_csrow(log_mci, sys_addr); 1942 if (csrow < 0) { 1943 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n", 1944 (unsigned long)sys_addr); 1945 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1946 } else { 1947 error_address_to_page_and_offset(sys_addr, &page, &offset); 1948 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); 1949 } 1950 } 1951 1952 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, 1953 struct mce *m) 1954 { 1955 u16 ec = EC(m->status); 1956 u8 xec = XEC(m->status, 0x1f); 1957 u8 ecc_type = (m->status >> 45) & 0x3; 1958 1959 /* Bail early out if this was an 'observed' error */ 1960 if (PP(ec) == NBSL_PP_OBS) 1961 return; 1962 1963 /* Do only ECC errors */ 1964 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 1965 return; 1966 1967 if (ecc_type == 2) 1968 amd64_handle_ce(mci, m); 1969 else if (ecc_type == 1) 1970 amd64_handle_ue(mci, m); 1971 } 1972 1973 void amd64_decode_bus_error(int node_id, struct mce *m) 1974 { 1975 __amd64_decode_bus_error(mcis[node_id], m); 1976 } 1977 1978 /* 1979 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 1980 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 1981 */ 1982 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 1983 { 1984 /* Reserve the ADDRESS MAP Device */ 1985 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 1986 if (!pvt->F1) { 1987 amd64_err("error address map device not found: " 1988 "vendor %x device 0x%x (broken BIOS?)\n", 1989 PCI_VENDOR_ID_AMD, f1_id); 1990 return -ENODEV; 1991 } 1992 1993 /* Reserve the MISC Device */ 1994 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 1995 if (!pvt->F3) { 1996 pci_dev_put(pvt->F1); 1997 pvt->F1 = NULL; 1998 1999 amd64_err("error F3 device not found: " 2000 "vendor %x device 0x%x (broken BIOS?)\n", 2001 PCI_VENDOR_ID_AMD, f3_id); 2002 2003 return -ENODEV; 2004 } 2005 debugf1("F1: %s\n", pci_name(pvt->F1)); 2006 debugf1("F2: %s\n", pci_name(pvt->F2)); 2007 debugf1("F3: %s\n", pci_name(pvt->F3)); 2008 2009 return 0; 2010 } 2011 2012 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2013 { 2014 pci_dev_put(pvt->F1); 2015 pci_dev_put(pvt->F3); 2016 } 2017 2018 /* 2019 * Retrieve the hardware registers of the memory controller (this includes the 2020 * 'Address Map' and 'Misc' device regs) 2021 */ 2022 static void read_mc_regs(struct amd64_pvt *pvt) 2023 { 2024 struct cpuinfo_x86 *c = &boot_cpu_data; 2025 u64 msr_val; 2026 u32 tmp; 2027 unsigned range; 2028 2029 /* 2030 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2031 * those are Read-As-Zero 2032 */ 2033 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2034 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem); 2035 2036 /* check first whether TOP_MEM2 is enabled */ 2037 rdmsrl(MSR_K8_SYSCFG, msr_val); 2038 if (msr_val & (1U << 21)) { 2039 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2040 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2041 } else 2042 debugf0(" TOP_MEM2 disabled.\n"); 2043 2044 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2045 2046 read_dram_ctl_register(pvt); 2047 2048 for (range = 0; range < DRAM_RANGES; range++) { 2049 u8 rw; 2050 2051 /* read settings for this DRAM range */ 2052 read_dram_base_limit_regs(pvt, range); 2053 2054 rw = dram_rw(pvt, range); 2055 if (!rw) 2056 continue; 2057 2058 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2059 range, 2060 get_dram_base(pvt, range), 2061 get_dram_limit(pvt, range)); 2062 2063 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2064 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2065 (rw & 0x1) ? "R" : "-", 2066 (rw & 0x2) ? "W" : "-", 2067 dram_intlv_sel(pvt, range), 2068 dram_dst_node(pvt, range)); 2069 } 2070 2071 read_dct_base_mask(pvt); 2072 2073 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2074 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); 2075 2076 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2077 2078 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); 2079 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); 2080 2081 if (!dct_ganging_enabled(pvt)) { 2082 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); 2083 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); 2084 } 2085 2086 pvt->ecc_sym_sz = 4; 2087 2088 if (c->x86 >= 0x10) { 2089 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2090 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); 2091 2092 /* F10h, revD and later can do x8 ECC too */ 2093 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25)) 2094 pvt->ecc_sym_sz = 8; 2095 } 2096 dump_misc_regs(pvt); 2097 } 2098 2099 /* 2100 * NOTE: CPU Revision Dependent code 2101 * 2102 * Input: 2103 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2104 * k8 private pointer to --> 2105 * DRAM Bank Address mapping register 2106 * node_id 2107 * DCL register where dual_channel_active is 2108 * 2109 * The DBAM register consists of 4 sets of 4 bits each definitions: 2110 * 2111 * Bits: CSROWs 2112 * 0-3 CSROWs 0 and 1 2113 * 4-7 CSROWs 2 and 3 2114 * 8-11 CSROWs 4 and 5 2115 * 12-15 CSROWs 6 and 7 2116 * 2117 * Values range from: 0 to 15 2118 * The meaning of the values depends on CPU revision and dual-channel state, 2119 * see relevant BKDG more info. 2120 * 2121 * The memory controller provides for total of only 8 CSROWs in its current 2122 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2123 * single channel or two (2) DIMMs in dual channel mode. 2124 * 2125 * The following code logic collapses the various tables for CSROW based on CPU 2126 * revision. 2127 * 2128 * Returns: 2129 * The number of PAGE_SIZE pages on the specified CSROW number it 2130 * encompasses 2131 * 2132 */ 2133 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) 2134 { 2135 u32 cs_mode, nr_pages; 2136 2137 /* 2138 * The math on this doesn't look right on the surface because x/2*4 can 2139 * be simplified to x*2 but this expression makes use of the fact that 2140 * it is integral math where 1/2=0. This intermediate value becomes the 2141 * number of bits to shift the DBAM register to extract the proper CSROW 2142 * field. 2143 */ 2144 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; 2145 2146 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); 2147 2148 /* 2149 * If dual channel then double the memory size of single channel. 2150 * Channel count is 1 or 2 2151 */ 2152 nr_pages <<= (pvt->channel_count - 1); 2153 2154 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); 2155 debugf0(" nr_pages= %u channel-count = %d\n", 2156 nr_pages, pvt->channel_count); 2157 2158 return nr_pages; 2159 } 2160 2161 /* 2162 * Initialize the array of csrow attribute instances, based on the values 2163 * from pci config hardware registers. 2164 */ 2165 static int init_csrows(struct mem_ctl_info *mci) 2166 { 2167 struct csrow_info *csrow; 2168 struct amd64_pvt *pvt = mci->pvt_info; 2169 u64 input_addr_min, input_addr_max, sys_addr, base, mask; 2170 u32 val; 2171 int i, empty = 1; 2172 2173 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2174 2175 pvt->nbcfg = val; 2176 2177 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2178 pvt->mc_node_id, val, 2179 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2180 2181 for_each_chip_select(i, 0, pvt) { 2182 csrow = &mci->csrows[i]; 2183 2184 if (!csrow_enabled(i, 0, pvt)) { 2185 debugf1("----CSROW %d EMPTY for node %d\n", i, 2186 pvt->mc_node_id); 2187 continue; 2188 } 2189 2190 debugf1("----CSROW %d VALID for MC node %d\n", 2191 i, pvt->mc_node_id); 2192 2193 empty = 0; 2194 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i); 2195 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); 2196 sys_addr = input_addr_to_sys_addr(mci, input_addr_min); 2197 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); 2198 sys_addr = input_addr_to_sys_addr(mci, input_addr_max); 2199 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); 2200 2201 get_cs_base_and_mask(pvt, i, 0, &base, &mask); 2202 csrow->page_mask = ~mask; 2203 /* 8 bytes of resolution */ 2204 2205 csrow->mtype = amd64_determine_memory_type(pvt, i); 2206 2207 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); 2208 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", 2209 (unsigned long)input_addr_min, 2210 (unsigned long)input_addr_max); 2211 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", 2212 (unsigned long)sys_addr, csrow->page_mask); 2213 debugf1(" nr_pages: %u first_page: 0x%lx " 2214 "last_page: 0x%lx\n", 2215 (unsigned)csrow->nr_pages, 2216 csrow->first_page, csrow->last_page); 2217 2218 /* 2219 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2220 */ 2221 if (pvt->nbcfg & NBCFG_ECC_ENABLE) 2222 csrow->edac_mode = 2223 (pvt->nbcfg & NBCFG_CHIPKILL) ? 2224 EDAC_S4ECD4ED : EDAC_SECDED; 2225 else 2226 csrow->edac_mode = EDAC_NONE; 2227 } 2228 2229 return empty; 2230 } 2231 2232 /* get all cores on this DCT */ 2233 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid) 2234 { 2235 int cpu; 2236 2237 for_each_online_cpu(cpu) 2238 if (amd_get_nb_id(cpu) == nid) 2239 cpumask_set_cpu(cpu, mask); 2240 } 2241 2242 /* check MCG_CTL on all the cpus on this node */ 2243 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid) 2244 { 2245 cpumask_var_t mask; 2246 int cpu, nbe; 2247 bool ret = false; 2248 2249 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2250 amd64_warn("%s: Error allocating mask\n", __func__); 2251 return false; 2252 } 2253 2254 get_cpus_on_this_dct_cpumask(mask, nid); 2255 2256 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2257 2258 for_each_cpu(cpu, mask) { 2259 struct msr *reg = per_cpu_ptr(msrs, cpu); 2260 nbe = reg->l & MSR_MCGCTL_NBE; 2261 2262 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2263 cpu, reg->q, 2264 (nbe ? "enabled" : "disabled")); 2265 2266 if (!nbe) 2267 goto out; 2268 } 2269 ret = true; 2270 2271 out: 2272 free_cpumask_var(mask); 2273 return ret; 2274 } 2275 2276 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on) 2277 { 2278 cpumask_var_t cmask; 2279 int cpu; 2280 2281 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2282 amd64_warn("%s: error allocating mask\n", __func__); 2283 return false; 2284 } 2285 2286 get_cpus_on_this_dct_cpumask(cmask, nid); 2287 2288 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2289 2290 for_each_cpu(cpu, cmask) { 2291 2292 struct msr *reg = per_cpu_ptr(msrs, cpu); 2293 2294 if (on) { 2295 if (reg->l & MSR_MCGCTL_NBE) 2296 s->flags.nb_mce_enable = 1; 2297 2298 reg->l |= MSR_MCGCTL_NBE; 2299 } else { 2300 /* 2301 * Turn off NB MCE reporting only when it was off before 2302 */ 2303 if (!s->flags.nb_mce_enable) 2304 reg->l &= ~MSR_MCGCTL_NBE; 2305 } 2306 } 2307 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2308 2309 free_cpumask_var(cmask); 2310 2311 return 0; 2312 } 2313 2314 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid, 2315 struct pci_dev *F3) 2316 { 2317 bool ret = true; 2318 u32 value, mask = 0x3; /* UECC/CECC enable */ 2319 2320 if (toggle_ecc_err_reporting(s, nid, ON)) { 2321 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2322 return false; 2323 } 2324 2325 amd64_read_pci_cfg(F3, NBCTL, &value); 2326 2327 s->old_nbctl = value & mask; 2328 s->nbctl_valid = true; 2329 2330 value |= mask; 2331 amd64_write_pci_cfg(F3, NBCTL, value); 2332 2333 amd64_read_pci_cfg(F3, NBCFG, &value); 2334 2335 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2336 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2337 2338 if (!(value & NBCFG_ECC_ENABLE)) { 2339 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2340 2341 s->flags.nb_ecc_prev = 0; 2342 2343 /* Attempt to turn on DRAM ECC Enable */ 2344 value |= NBCFG_ECC_ENABLE; 2345 amd64_write_pci_cfg(F3, NBCFG, value); 2346 2347 amd64_read_pci_cfg(F3, NBCFG, &value); 2348 2349 if (!(value & NBCFG_ECC_ENABLE)) { 2350 amd64_warn("Hardware rejected DRAM ECC enable," 2351 "check memory DIMM configuration.\n"); 2352 ret = false; 2353 } else { 2354 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2355 } 2356 } else { 2357 s->flags.nb_ecc_prev = 1; 2358 } 2359 2360 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2361 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2362 2363 return ret; 2364 } 2365 2366 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid, 2367 struct pci_dev *F3) 2368 { 2369 u32 value, mask = 0x3; /* UECC/CECC enable */ 2370 2371 2372 if (!s->nbctl_valid) 2373 return; 2374 2375 amd64_read_pci_cfg(F3, NBCTL, &value); 2376 value &= ~mask; 2377 value |= s->old_nbctl; 2378 2379 amd64_write_pci_cfg(F3, NBCTL, value); 2380 2381 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2382 if (!s->flags.nb_ecc_prev) { 2383 amd64_read_pci_cfg(F3, NBCFG, &value); 2384 value &= ~NBCFG_ECC_ENABLE; 2385 amd64_write_pci_cfg(F3, NBCFG, value); 2386 } 2387 2388 /* restore the NB Enable MCGCTL bit */ 2389 if (toggle_ecc_err_reporting(s, nid, OFF)) 2390 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2391 } 2392 2393 /* 2394 * EDAC requires that the BIOS have ECC enabled before 2395 * taking over the processing of ECC errors. A command line 2396 * option allows to force-enable hardware ECC later in 2397 * enable_ecc_error_reporting(). 2398 */ 2399 static const char *ecc_msg = 2400 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2401 " Either enable ECC checking or force module loading by setting " 2402 "'ecc_enable_override'.\n" 2403 " (Note that use of the override may cause unknown side effects.)\n"; 2404 2405 static bool ecc_enabled(struct pci_dev *F3, u8 nid) 2406 { 2407 u32 value; 2408 u8 ecc_en = 0; 2409 bool nb_mce_en = false; 2410 2411 amd64_read_pci_cfg(F3, NBCFG, &value); 2412 2413 ecc_en = !!(value & NBCFG_ECC_ENABLE); 2414 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2415 2416 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); 2417 if (!nb_mce_en) 2418 amd64_notice("NB MCE bank disabled, set MSR " 2419 "0x%08x[4] on node %d to enable.\n", 2420 MSR_IA32_MCG_CTL, nid); 2421 2422 if (!ecc_en || !nb_mce_en) { 2423 amd64_notice("%s", ecc_msg); 2424 return false; 2425 } 2426 return true; 2427 } 2428 2429 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + 2430 ARRAY_SIZE(amd64_inj_attrs) + 2431 1]; 2432 2433 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; 2434 2435 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci) 2436 { 2437 unsigned int i = 0, j = 0; 2438 2439 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) 2440 sysfs_attrs[i] = amd64_dbg_attrs[i]; 2441 2442 if (boot_cpu_data.x86 >= 0x10) 2443 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) 2444 sysfs_attrs[i] = amd64_inj_attrs[j]; 2445 2446 sysfs_attrs[i] = terminator; 2447 2448 mci->mc_driver_sysfs_attributes = sysfs_attrs; 2449 } 2450 2451 static void setup_mci_misc_attrs(struct mem_ctl_info *mci, 2452 struct amd64_family_type *fam) 2453 { 2454 struct amd64_pvt *pvt = mci->pvt_info; 2455 2456 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2457 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2458 2459 if (pvt->nbcap & NBCAP_SECDED) 2460 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2461 2462 if (pvt->nbcap & NBCAP_CHIPKILL) 2463 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2464 2465 mci->edac_cap = amd64_determine_edac_cap(pvt); 2466 mci->mod_name = EDAC_MOD_STR; 2467 mci->mod_ver = EDAC_AMD64_VERSION; 2468 mci->ctl_name = fam->ctl_name; 2469 mci->dev_name = pci_name(pvt->F2); 2470 mci->ctl_page_to_phys = NULL; 2471 2472 /* memory scrubber interface */ 2473 mci->set_sdram_scrub_rate = amd64_set_scrub_rate; 2474 mci->get_sdram_scrub_rate = amd64_get_scrub_rate; 2475 } 2476 2477 /* 2478 * returns a pointer to the family descriptor on success, NULL otherwise. 2479 */ 2480 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) 2481 { 2482 u8 fam = boot_cpu_data.x86; 2483 struct amd64_family_type *fam_type = NULL; 2484 2485 switch (fam) { 2486 case 0xf: 2487 fam_type = &amd64_family_types[K8_CPUS]; 2488 pvt->ops = &amd64_family_types[K8_CPUS].ops; 2489 break; 2490 2491 case 0x10: 2492 fam_type = &amd64_family_types[F10_CPUS]; 2493 pvt->ops = &amd64_family_types[F10_CPUS].ops; 2494 break; 2495 2496 case 0x15: 2497 fam_type = &amd64_family_types[F15_CPUS]; 2498 pvt->ops = &amd64_family_types[F15_CPUS].ops; 2499 break; 2500 2501 default: 2502 amd64_err("Unsupported family!\n"); 2503 return NULL; 2504 } 2505 2506 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2507 2508 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 2509 (fam == 0xf ? 2510 (pvt->ext_model >= K8_REV_F ? "revF or later " 2511 : "revE or earlier ") 2512 : ""), pvt->mc_node_id); 2513 return fam_type; 2514 } 2515 2516 static int amd64_init_one_instance(struct pci_dev *F2) 2517 { 2518 struct amd64_pvt *pvt = NULL; 2519 struct amd64_family_type *fam_type = NULL; 2520 struct mem_ctl_info *mci = NULL; 2521 int err = 0, ret; 2522 u8 nid = get_node_id(F2); 2523 2524 ret = -ENOMEM; 2525 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2526 if (!pvt) 2527 goto err_ret; 2528 2529 pvt->mc_node_id = nid; 2530 pvt->F2 = F2; 2531 2532 ret = -EINVAL; 2533 fam_type = amd64_per_family_init(pvt); 2534 if (!fam_type) 2535 goto err_free; 2536 2537 ret = -ENODEV; 2538 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2539 if (err) 2540 goto err_free; 2541 2542 read_mc_regs(pvt); 2543 2544 /* 2545 * We need to determine how many memory channels there are. Then use 2546 * that information for calculating the size of the dynamic instance 2547 * tables in the 'mci' structure. 2548 */ 2549 ret = -EINVAL; 2550 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2551 if (pvt->channel_count < 0) 2552 goto err_siblings; 2553 2554 ret = -ENOMEM; 2555 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid); 2556 if (!mci) 2557 goto err_siblings; 2558 2559 mci->pvt_info = pvt; 2560 mci->dev = &pvt->F2->dev; 2561 2562 setup_mci_misc_attrs(mci, fam_type); 2563 2564 if (init_csrows(mci)) 2565 mci->edac_cap = EDAC_FLAG_NONE; 2566 2567 set_mc_sysfs_attrs(mci); 2568 2569 ret = -ENODEV; 2570 if (edac_mc_add_mc(mci)) { 2571 debugf1("failed edac_mc_add_mc()\n"); 2572 goto err_add_mc; 2573 } 2574 2575 /* register stuff with EDAC MCE */ 2576 if (report_gart_errors) 2577 amd_report_gart_errors(true); 2578 2579 amd_register_ecc_decoder(amd64_decode_bus_error); 2580 2581 mcis[nid] = mci; 2582 2583 atomic_inc(&drv_instances); 2584 2585 return 0; 2586 2587 err_add_mc: 2588 edac_mc_free(mci); 2589 2590 err_siblings: 2591 free_mc_sibling_devs(pvt); 2592 2593 err_free: 2594 kfree(pvt); 2595 2596 err_ret: 2597 return ret; 2598 } 2599 2600 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev, 2601 const struct pci_device_id *mc_type) 2602 { 2603 u8 nid = get_node_id(pdev); 2604 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2605 struct ecc_settings *s; 2606 int ret = 0; 2607 2608 ret = pci_enable_device(pdev); 2609 if (ret < 0) { 2610 debugf0("ret=%d\n", ret); 2611 return -EIO; 2612 } 2613 2614 ret = -ENOMEM; 2615 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2616 if (!s) 2617 goto err_out; 2618 2619 ecc_stngs[nid] = s; 2620 2621 if (!ecc_enabled(F3, nid)) { 2622 ret = -ENODEV; 2623 2624 if (!ecc_enable_override) 2625 goto err_enable; 2626 2627 amd64_warn("Forcing ECC on!\n"); 2628 2629 if (!enable_ecc_error_reporting(s, nid, F3)) 2630 goto err_enable; 2631 } 2632 2633 ret = amd64_init_one_instance(pdev); 2634 if (ret < 0) { 2635 amd64_err("Error probing instance: %d\n", nid); 2636 restore_ecc_error_reporting(s, nid, F3); 2637 } 2638 2639 return ret; 2640 2641 err_enable: 2642 kfree(s); 2643 ecc_stngs[nid] = NULL; 2644 2645 err_out: 2646 return ret; 2647 } 2648 2649 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) 2650 { 2651 struct mem_ctl_info *mci; 2652 struct amd64_pvt *pvt; 2653 u8 nid = get_node_id(pdev); 2654 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2655 struct ecc_settings *s = ecc_stngs[nid]; 2656 2657 /* Remove from EDAC CORE tracking list */ 2658 mci = edac_mc_del_mc(&pdev->dev); 2659 if (!mci) 2660 return; 2661 2662 pvt = mci->pvt_info; 2663 2664 restore_ecc_error_reporting(s, nid, F3); 2665 2666 free_mc_sibling_devs(pvt); 2667 2668 /* unregister from EDAC MCE */ 2669 amd_report_gart_errors(false); 2670 amd_unregister_ecc_decoder(amd64_decode_bus_error); 2671 2672 kfree(ecc_stngs[nid]); 2673 ecc_stngs[nid] = NULL; 2674 2675 /* Free the EDAC CORE resources */ 2676 mci->pvt_info = NULL; 2677 mcis[nid] = NULL; 2678 2679 kfree(pvt); 2680 edac_mc_free(mci); 2681 } 2682 2683 /* 2684 * This table is part of the interface for loading drivers for PCI devices. The 2685 * PCI core identifies what devices are on a system during boot, and then 2686 * inquiry this table to see if this driver is for a given device found. 2687 */ 2688 static const struct pci_device_id amd64_pci_table[] __devinitdata = { 2689 { 2690 .vendor = PCI_VENDOR_ID_AMD, 2691 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2692 .subvendor = PCI_ANY_ID, 2693 .subdevice = PCI_ANY_ID, 2694 .class = 0, 2695 .class_mask = 0, 2696 }, 2697 { 2698 .vendor = PCI_VENDOR_ID_AMD, 2699 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2700 .subvendor = PCI_ANY_ID, 2701 .subdevice = PCI_ANY_ID, 2702 .class = 0, 2703 .class_mask = 0, 2704 }, 2705 { 2706 .vendor = PCI_VENDOR_ID_AMD, 2707 .device = PCI_DEVICE_ID_AMD_15H_NB_F2, 2708 .subvendor = PCI_ANY_ID, 2709 .subdevice = PCI_ANY_ID, 2710 .class = 0, 2711 .class_mask = 0, 2712 }, 2713 2714 {0, } 2715 }; 2716 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2717 2718 static struct pci_driver amd64_pci_driver = { 2719 .name = EDAC_MOD_STR, 2720 .probe = amd64_probe_one_instance, 2721 .remove = __devexit_p(amd64_remove_one_instance), 2722 .id_table = amd64_pci_table, 2723 }; 2724 2725 static void setup_pci_device(void) 2726 { 2727 struct mem_ctl_info *mci; 2728 struct amd64_pvt *pvt; 2729 2730 if (amd64_ctl_pci) 2731 return; 2732 2733 mci = mcis[0]; 2734 if (mci) { 2735 2736 pvt = mci->pvt_info; 2737 amd64_ctl_pci = 2738 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 2739 2740 if (!amd64_ctl_pci) { 2741 pr_warning("%s(): Unable to create PCI control\n", 2742 __func__); 2743 2744 pr_warning("%s(): PCI error report via EDAC not set\n", 2745 __func__); 2746 } 2747 } 2748 } 2749 2750 static int __init amd64_edac_init(void) 2751 { 2752 int err = -ENODEV; 2753 2754 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 2755 2756 opstate_init(); 2757 2758 if (amd_cache_northbridges() < 0) 2759 goto err_ret; 2760 2761 err = -ENOMEM; 2762 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); 2763 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 2764 if (!(mcis && ecc_stngs)) 2765 goto err_free; 2766 2767 msrs = msrs_alloc(); 2768 if (!msrs) 2769 goto err_free; 2770 2771 err = pci_register_driver(&amd64_pci_driver); 2772 if (err) 2773 goto err_pci; 2774 2775 err = -ENODEV; 2776 if (!atomic_read(&drv_instances)) 2777 goto err_no_instances; 2778 2779 setup_pci_device(); 2780 return 0; 2781 2782 err_no_instances: 2783 pci_unregister_driver(&amd64_pci_driver); 2784 2785 err_pci: 2786 msrs_free(msrs); 2787 msrs = NULL; 2788 2789 err_free: 2790 kfree(mcis); 2791 mcis = NULL; 2792 2793 kfree(ecc_stngs); 2794 ecc_stngs = NULL; 2795 2796 err_ret: 2797 return err; 2798 } 2799 2800 static void __exit amd64_edac_exit(void) 2801 { 2802 if (amd64_ctl_pci) 2803 edac_pci_release_generic_ctl(amd64_ctl_pci); 2804 2805 pci_unregister_driver(&amd64_pci_driver); 2806 2807 kfree(ecc_stngs); 2808 ecc_stngs = NULL; 2809 2810 kfree(mcis); 2811 mcis = NULL; 2812 2813 msrs_free(msrs); 2814 msrs = NULL; 2815 } 2816 2817 module_init(amd64_edac_init); 2818 module_exit(amd64_edac_exit); 2819 2820 MODULE_LICENSE("GPL"); 2821 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 2822 "Dave Peterson, Thayne Harbaugh"); 2823 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 2824 EDAC_AMD64_VERSION); 2825 2826 module_param(edac_op_state, int, 0444); 2827 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2828