xref: /linux/drivers/edac/amd64_edac.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /*
19  * count successfully initialized driver instances for setup_pci_device()
20  */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22 
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26 
27 /*
28  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30  * or higher value'.
31  *
32  *FIXME: Produce a better mapping/linearisation.
33  */
34 struct scrubrate {
35        u32 scrubval;           /* bit pattern for scrub rate */
36        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 	{ 0x01, 1600000000UL},
39 	{ 0x02, 800000000UL},
40 	{ 0x03, 400000000UL},
41 	{ 0x04, 200000000UL},
42 	{ 0x05, 100000000UL},
43 	{ 0x06, 50000000UL},
44 	{ 0x07, 25000000UL},
45 	{ 0x08, 12284069UL},
46 	{ 0x09, 6274509UL},
47 	{ 0x0A, 3121951UL},
48 	{ 0x0B, 1560975UL},
49 	{ 0x0C, 781440UL},
50 	{ 0x0D, 390720UL},
51 	{ 0x0E, 195300UL},
52 	{ 0x0F, 97650UL},
53 	{ 0x10, 48854UL},
54 	{ 0x11, 24427UL},
55 	{ 0x12, 12213UL},
56 	{ 0x13, 6101UL},
57 	{ 0x14, 3051UL},
58 	{ 0x15, 1523UL},
59 	{ 0x16, 761UL},
60 	{ 0x00, 0UL},        /* scrubbing off */
61 };
62 
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 				      u32 *val, const char *func)
65 {
66 	int err = 0;
67 
68 	err = pci_read_config_dword(pdev, offset, val);
69 	if (err)
70 		amd64_warn("%s: error reading F%dx%03x.\n",
71 			   func, PCI_FUNC(pdev->devfn), offset);
72 
73 	return err;
74 }
75 
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 				u32 val, const char *func)
78 {
79 	int err = 0;
80 
81 	err = pci_write_config_dword(pdev, offset, val);
82 	if (err)
83 		amd64_warn("%s: error writing to F%dx%03x.\n",
84 			   func, PCI_FUNC(pdev->devfn), offset);
85 
86 	return err;
87 }
88 
89 /*
90  *
91  * Depending on the family, F2 DCT reads need special handling:
92  *
93  * K8: has a single DCT only
94  *
95  * F10h: each DCT has its own set of regs
96  *	DCT0 -> F2x040..
97  *	DCT1 -> F2x140..
98  *
99  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100  *
101  */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 			       const char *func)
104 {
105 	if (addr >= 0x100)
106 		return -EINVAL;
107 
108 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110 
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 				 const char *func)
113 {
114 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116 
117 /*
118  * Select DCT to which PCI cfg accesses are routed
119  */
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 	u32 reg = 0;
123 
124 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 	reg &= 0xfffffffe;
126 	reg |= dct;
127 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129 
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 				 const char *func)
132 {
133 	u8 dct  = 0;
134 
135 	if (addr >= 0x140 && addr <= 0x1a0) {
136 		dct   = 1;
137 		addr -= 0x100;
138 	}
139 
140 	f15h_select_dct(pvt, dct);
141 
142 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144 
145 /*
146  * Memory scrubber control interface. For K8, memory scrubbing is handled by
147  * hardware and can involve L2 cache, dcache as well as the main memory. With
148  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149  * functionality.
150  *
151  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153  * bytes/sec for the setting.
154  *
155  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156  * other archs, we might not have access to the caches directly.
157  */
158 
159 /*
160  * scan the scrub rate mapping table for a close or matching bandwidth value to
161  * issue. If requested is too big, then use last maximum value found.
162  */
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 	u32 scrubval;
166 	int i;
167 
168 	/*
169 	 * map the configured rate (new_bw) to a value specific to the AMD64
170 	 * memory controller and apply to register. Search for the first
171 	 * bandwidth entry that is greater or equal than the setting requested
172 	 * and program that. If at last entry, turn off DRAM scrubbing.
173 	 */
174 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 		/*
176 		 * skip scrub rates which aren't recommended
177 		 * (see F10 BKDG, F3x58)
178 		 */
179 		if (scrubrates[i].scrubval < min_rate)
180 			continue;
181 
182 		if (scrubrates[i].bandwidth <= new_bw)
183 			break;
184 
185 		/*
186 		 * if no suitable bandwidth found, turn off DRAM scrubbing
187 		 * entirely by falling back to the last element in the
188 		 * scrubrates array.
189 		 */
190 	}
191 
192 	scrubval = scrubrates[i].scrubval;
193 
194 	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
195 
196 	if (scrubval)
197 		return scrubrates[i].bandwidth;
198 
199 	return 0;
200 }
201 
202 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
203 {
204 	struct amd64_pvt *pvt = mci->pvt_info;
205 	u32 min_scrubrate = 0x5;
206 
207 	if (boot_cpu_data.x86 == 0xf)
208 		min_scrubrate = 0x0;
209 
210 	/* F15h Erratum #505 */
211 	if (boot_cpu_data.x86 == 0x15)
212 		f15h_select_dct(pvt, 0);
213 
214 	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
215 }
216 
217 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
218 {
219 	struct amd64_pvt *pvt = mci->pvt_info;
220 	u32 scrubval = 0;
221 	int i, retval = -EINVAL;
222 
223 	/* F15h Erratum #505 */
224 	if (boot_cpu_data.x86 == 0x15)
225 		f15h_select_dct(pvt, 0);
226 
227 	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
228 
229 	scrubval = scrubval & 0x001F;
230 
231 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
232 		if (scrubrates[i].scrubval == scrubval) {
233 			retval = scrubrates[i].bandwidth;
234 			break;
235 		}
236 	}
237 	return retval;
238 }
239 
240 /*
241  * returns true if the SysAddr given by sys_addr matches the
242  * DRAM base/limit associated with node_id
243  */
244 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 				   unsigned nid)
246 {
247 	u64 addr;
248 
249 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
250 	 * all ones if the most significant implemented address bit is 1.
251 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
252 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 	 * Application Programming.
254 	 */
255 	addr = sys_addr & 0x000000ffffffffffull;
256 
257 	return ((addr >= get_dram_base(pvt, nid)) &&
258 		(addr <= get_dram_limit(pvt, nid)));
259 }
260 
261 /*
262  * Attempt to map a SysAddr to a node. On success, return a pointer to the
263  * mem_ctl_info structure for the node that the SysAddr maps to.
264  *
265  * On failure, return NULL.
266  */
267 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 						u64 sys_addr)
269 {
270 	struct amd64_pvt *pvt;
271 	unsigned node_id;
272 	u32 intlv_en, bits;
273 
274 	/*
275 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 	 */
278 	pvt = mci->pvt_info;
279 
280 	/*
281 	 * The value of this field should be the same for all DRAM Base
282 	 * registers.  Therefore we arbitrarily choose to read it from the
283 	 * register for node 0.
284 	 */
285 	intlv_en = dram_intlv_en(pvt, 0);
286 
287 	if (intlv_en == 0) {
288 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
289 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
290 				goto found;
291 		}
292 		goto err_no_match;
293 	}
294 
295 	if (unlikely((intlv_en != 0x01) &&
296 		     (intlv_en != 0x03) &&
297 		     (intlv_en != 0x07))) {
298 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
299 		return NULL;
300 	}
301 
302 	bits = (((u32) sys_addr) >> 12) & intlv_en;
303 
304 	for (node_id = 0; ; ) {
305 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
306 			break;	/* intlv_sel field matches */
307 
308 		if (++node_id >= DRAM_RANGES)
309 			goto err_no_match;
310 	}
311 
312 	/* sanity test for sys_addr */
313 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
314 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 			   "range for node %d with node interleaving enabled.\n",
316 			   __func__, sys_addr, node_id);
317 		return NULL;
318 	}
319 
320 found:
321 	return edac_mc_find((int)node_id);
322 
323 err_no_match:
324 	debugf2("sys_addr 0x%lx doesn't match any node\n",
325 		(unsigned long)sys_addr);
326 
327 	return NULL;
328 }
329 
330 /*
331  * compute the CS base address of the @csrow on the DRAM controller @dct.
332  * For details see F2x[5C:40] in the processor's BKDG
333  */
334 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 				 u64 *base, u64 *mask)
336 {
337 	u64 csbase, csmask, base_bits, mask_bits;
338 	u8 addr_shift;
339 
340 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 		csbase		= pvt->csels[dct].csbases[csrow];
342 		csmask		= pvt->csels[dct].csmasks[csrow];
343 		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
344 		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
345 		addr_shift	= 4;
346 	} else {
347 		csbase		= pvt->csels[dct].csbases[csrow];
348 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
349 		addr_shift	= 8;
350 
351 		if (boot_cpu_data.x86 == 0x15)
352 			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 		else
354 			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 	}
356 
357 	*base  = (csbase & base_bits) << addr_shift;
358 
359 	*mask  = ~0ULL;
360 	/* poke holes for the csmask */
361 	*mask &= ~(mask_bits << addr_shift);
362 	/* OR them in */
363 	*mask |= (csmask & mask_bits) << addr_shift;
364 }
365 
366 #define for_each_chip_select(i, dct, pvt) \
367 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368 
369 #define chip_select_base(i, dct, pvt) \
370 	pvt->csels[dct].csbases[i]
371 
372 #define for_each_chip_select_mask(i, dct, pvt) \
373 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374 
375 /*
376  * @input_addr is an InputAddr associated with the node given by mci. Return the
377  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378  */
379 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380 {
381 	struct amd64_pvt *pvt;
382 	int csrow;
383 	u64 base, mask;
384 
385 	pvt = mci->pvt_info;
386 
387 	for_each_chip_select(csrow, 0, pvt) {
388 		if (!csrow_enabled(csrow, 0, pvt))
389 			continue;
390 
391 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392 
393 		mask = ~mask;
394 
395 		if ((input_addr & mask) == (base & mask)) {
396 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
397 				(unsigned long)input_addr, csrow,
398 				pvt->mc_node_id);
399 
400 			return csrow;
401 		}
402 	}
403 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 		(unsigned long)input_addr, pvt->mc_node_id);
405 
406 	return -1;
407 }
408 
409 /*
410  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411  * for the node represented by mci. Info is passed back in *hole_base,
412  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
413  * info is invalid. Info may be invalid for either of the following reasons:
414  *
415  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
416  *   Address Register does not exist.
417  *
418  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419  *   indicating that its contents are not valid.
420  *
421  * The values passed back in *hole_base, *hole_offset, and *hole_size are
422  * complete 32-bit values despite the fact that the bitfields in the DHAR
423  * only represent bits 31-24 of the base and offset values.
424  */
425 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 			     u64 *hole_offset, u64 *hole_size)
427 {
428 	struct amd64_pvt *pvt = mci->pvt_info;
429 	u64 base;
430 
431 	/* only revE and later have the DRAM Hole Address Register */
432 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
433 		debugf1("  revision %d for node %d does not support DHAR\n",
434 			pvt->ext_model, pvt->mc_node_id);
435 		return 1;
436 	}
437 
438 	/* valid for Fam10h and above */
439 	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
440 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
441 		return 1;
442 	}
443 
444 	if (!dhar_valid(pvt)) {
445 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
446 			pvt->mc_node_id);
447 		return 1;
448 	}
449 
450 	/* This node has Memory Hoisting */
451 
452 	/* +------------------+--------------------+--------------------+-----
453 	 * | memory           | DRAM hole          | relocated          |
454 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
455 	 * |                  |                    | DRAM hole          |
456 	 * |                  |                    | [0x100000000,      |
457 	 * |                  |                    |  (0x100000000+     |
458 	 * |                  |                    |   (0xffffffff-x))] |
459 	 * +------------------+--------------------+--------------------+-----
460 	 *
461 	 * Above is a diagram of physical memory showing the DRAM hole and the
462 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
463 	 * starts at address x (the base address) and extends through address
464 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
465 	 * addresses in the hole so that they start at 0x100000000.
466 	 */
467 
468 	base = dhar_base(pvt);
469 
470 	*hole_base = base;
471 	*hole_size = (0x1ull << 32) - base;
472 
473 	if (boot_cpu_data.x86 > 0xf)
474 		*hole_offset = f10_dhar_offset(pvt);
475 	else
476 		*hole_offset = k8_dhar_offset(pvt);
477 
478 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 		pvt->mc_node_id, (unsigned long)*hole_base,
480 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485 
486 /*
487  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
488  * assumed that sys_addr maps to the node given by mci.
489  *
490  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493  * then it is also involved in translating a SysAddr to a DramAddr. Sections
494  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495  * These parts of the documentation are unclear. I interpret them as follows:
496  *
497  * When node n receives a SysAddr, it processes the SysAddr as follows:
498  *
499  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500  *    Limit registers for node n. If the SysAddr is not within the range
501  *    specified by the base and limit values, then node n ignores the Sysaddr
502  *    (since it does not map to node n). Otherwise continue to step 2 below.
503  *
504  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
507  *    hole. If not, skip to step 3 below. Else get the value of the
508  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509  *    offset defined by this value from the SysAddr.
510  *
511  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512  *    Base register for node n. To obtain the DramAddr, subtract the base
513  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514  */
515 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516 {
517 	struct amd64_pvt *pvt = mci->pvt_info;
518 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 	int ret = 0;
520 
521 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
522 
523 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 				      &hole_size);
525 	if (!ret) {
526 		if ((sys_addr >= (1ull << 32)) &&
527 		    (sys_addr < ((1ull << 32) + hole_size))) {
528 			/* use DHAR to translate SysAddr to DramAddr */
529 			dram_addr = sys_addr - hole_offset;
530 
531 			debugf2("using DHAR to translate SysAddr 0x%lx to "
532 				"DramAddr 0x%lx\n",
533 				(unsigned long)sys_addr,
534 				(unsigned long)dram_addr);
535 
536 			return dram_addr;
537 		}
538 	}
539 
540 	/*
541 	 * Translate the SysAddr to a DramAddr as shown near the start of
542 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
543 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
544 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
545 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
546 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
547 	 * Programmer's Manual Volume 1 Application Programming.
548 	 */
549 	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
550 
551 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
552 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
553 		(unsigned long)dram_addr);
554 	return dram_addr;
555 }
556 
557 /*
558  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
559  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
560  * for node interleaving.
561  */
562 static int num_node_interleave_bits(unsigned intlv_en)
563 {
564 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
565 	int n;
566 
567 	BUG_ON(intlv_en > 7);
568 	n = intlv_shift_table[intlv_en];
569 	return n;
570 }
571 
572 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
573 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
574 {
575 	struct amd64_pvt *pvt;
576 	int intlv_shift;
577 	u64 input_addr;
578 
579 	pvt = mci->pvt_info;
580 
581 	/*
582 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
583 	 * concerning translating a DramAddr to an InputAddr.
584 	 */
585 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
586 	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
587 		      (dram_addr & 0xfff);
588 
589 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
590 		intlv_shift, (unsigned long)dram_addr,
591 		(unsigned long)input_addr);
592 
593 	return input_addr;
594 }
595 
596 /*
597  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
598  * assumed that @sys_addr maps to the node given by mci.
599  */
600 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
601 {
602 	u64 input_addr;
603 
604 	input_addr =
605 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
606 
607 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
608 		(unsigned long)sys_addr, (unsigned long)input_addr);
609 
610 	return input_addr;
611 }
612 
613 
614 /*
615  * @input_addr is an InputAddr associated with the node represented by mci.
616  * Translate @input_addr to a DramAddr and return the result.
617  */
618 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
619 {
620 	struct amd64_pvt *pvt;
621 	unsigned node_id, intlv_shift;
622 	u64 bits, dram_addr;
623 	u32 intlv_sel;
624 
625 	/*
626 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
627 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
628 	 * this procedure. When translating from a DramAddr to an InputAddr, the
629 	 * bits used for node interleaving are discarded.  Here we recover these
630 	 * bits from the IntlvSel field of the DRAM Limit register (section
631 	 * 3.4.4.2) for the node that input_addr is associated with.
632 	 */
633 	pvt = mci->pvt_info;
634 	node_id = pvt->mc_node_id;
635 
636 	BUG_ON(node_id > 7);
637 
638 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
639 	if (intlv_shift == 0) {
640 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
641 			"same value\n",	(unsigned long)input_addr);
642 
643 		return input_addr;
644 	}
645 
646 	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
647 		(input_addr & 0xfff);
648 
649 	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
650 	dram_addr = bits + (intlv_sel << 12);
651 
652 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
653 		"(%d node interleave bits)\n", (unsigned long)input_addr,
654 		(unsigned long)dram_addr, intlv_shift);
655 
656 	return dram_addr;
657 }
658 
659 /*
660  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
661  * @dram_addr to a SysAddr.
662  */
663 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
664 {
665 	struct amd64_pvt *pvt = mci->pvt_info;
666 	u64 hole_base, hole_offset, hole_size, base, sys_addr;
667 	int ret = 0;
668 
669 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
670 				      &hole_size);
671 	if (!ret) {
672 		if ((dram_addr >= hole_base) &&
673 		    (dram_addr < (hole_base + hole_size))) {
674 			sys_addr = dram_addr + hole_offset;
675 
676 			debugf1("using DHAR to translate DramAddr 0x%lx to "
677 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
678 				(unsigned long)sys_addr);
679 
680 			return sys_addr;
681 		}
682 	}
683 
684 	base     = get_dram_base(pvt, pvt->mc_node_id);
685 	sys_addr = dram_addr + base;
686 
687 	/*
688 	 * The sys_addr we have computed up to this point is a 40-bit value
689 	 * because the k8 deals with 40-bit values.  However, the value we are
690 	 * supposed to return is a full 64-bit physical address.  The AMD
691 	 * x86-64 architecture specifies that the most significant implemented
692 	 * address bit through bit 63 of a physical address must be either all
693 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
694 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
695 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
696 	 * Programming.
697 	 */
698 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
699 
700 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
701 		pvt->mc_node_id, (unsigned long)dram_addr,
702 		(unsigned long)sys_addr);
703 
704 	return sys_addr;
705 }
706 
707 /*
708  * @input_addr is an InputAddr associated with the node given by mci. Translate
709  * @input_addr to a SysAddr.
710  */
711 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
712 					 u64 input_addr)
713 {
714 	return dram_addr_to_sys_addr(mci,
715 				     input_addr_to_dram_addr(mci, input_addr));
716 }
717 
718 /*
719  * Find the minimum and maximum InputAddr values that map to the given @csrow.
720  * Pass back these values in *input_addr_min and *input_addr_max.
721  */
722 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
723 			      u64 *input_addr_min, u64 *input_addr_max)
724 {
725 	struct amd64_pvt *pvt;
726 	u64 base, mask;
727 
728 	pvt = mci->pvt_info;
729 	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
730 
731 	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
732 
733 	*input_addr_min = base & ~mask;
734 	*input_addr_max = base | mask;
735 }
736 
737 /* Map the Error address to a PAGE and PAGE OFFSET. */
738 static inline void error_address_to_page_and_offset(u64 error_address,
739 						    u32 *page, u32 *offset)
740 {
741 	*page = (u32) (error_address >> PAGE_SHIFT);
742 	*offset = ((u32) error_address) & ~PAGE_MASK;
743 }
744 
745 /*
746  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
747  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
748  * of a node that detected an ECC memory error.  mci represents the node that
749  * the error address maps to (possibly different from the node that detected
750  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
751  * error.
752  */
753 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
754 {
755 	int csrow;
756 
757 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
758 
759 	if (csrow == -1)
760 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
761 				  "address 0x%lx\n", (unsigned long)sys_addr);
762 	return csrow;
763 }
764 
765 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
766 
767 /*
768  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
769  * are ECC capable.
770  */
771 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
772 {
773 	u8 bit;
774 	unsigned long edac_cap = EDAC_FLAG_NONE;
775 
776 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
777 		? 19
778 		: 17;
779 
780 	if (pvt->dclr0 & BIT(bit))
781 		edac_cap = EDAC_FLAG_SECDED;
782 
783 	return edac_cap;
784 }
785 
786 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
787 
788 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
789 {
790 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
791 
792 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
793 		(dclr & BIT(16)) ?  "un" : "",
794 		(dclr & BIT(19)) ? "yes" : "no");
795 
796 	debugf1("  PAR/ERR parity: %s\n",
797 		(dclr & BIT(8)) ?  "enabled" : "disabled");
798 
799 	if (boot_cpu_data.x86 == 0x10)
800 		debugf1("  DCT 128bit mode width: %s\n",
801 			(dclr & BIT(11)) ?  "128b" : "64b");
802 
803 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
804 		(dclr & BIT(12)) ?  "yes" : "no",
805 		(dclr & BIT(13)) ?  "yes" : "no",
806 		(dclr & BIT(14)) ?  "yes" : "no",
807 		(dclr & BIT(15)) ?  "yes" : "no");
808 }
809 
810 /* Display and decode various NB registers for debug purposes. */
811 static void dump_misc_regs(struct amd64_pvt *pvt)
812 {
813 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
814 
815 	debugf1("  NB two channel DRAM capable: %s\n",
816 		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
817 
818 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
819 		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
820 		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
821 
822 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
823 
824 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
825 
826 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
827 			"offset: 0x%08x\n",
828 			pvt->dhar, dhar_base(pvt),
829 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
830 						   : f10_dhar_offset(pvt));
831 
832 	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
833 
834 	amd64_debug_display_dimm_sizes(pvt, 0);
835 
836 	/* everything below this point is Fam10h and above */
837 	if (boot_cpu_data.x86 == 0xf)
838 		return;
839 
840 	amd64_debug_display_dimm_sizes(pvt, 1);
841 
842 	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
843 
844 	/* Only if NOT ganged does dclr1 have valid info */
845 	if (!dct_ganging_enabled(pvt))
846 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
847 }
848 
849 /*
850  * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
851  */
852 static void prep_chip_selects(struct amd64_pvt *pvt)
853 {
854 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
855 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
856 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
857 	} else {
858 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
859 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
860 	}
861 }
862 
863 /*
864  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
865  */
866 static void read_dct_base_mask(struct amd64_pvt *pvt)
867 {
868 	int cs;
869 
870 	prep_chip_selects(pvt);
871 
872 	for_each_chip_select(cs, 0, pvt) {
873 		int reg0   = DCSB0 + (cs * 4);
874 		int reg1   = DCSB1 + (cs * 4);
875 		u32 *base0 = &pvt->csels[0].csbases[cs];
876 		u32 *base1 = &pvt->csels[1].csbases[cs];
877 
878 		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
879 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
880 				cs, *base0, reg0);
881 
882 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
883 			continue;
884 
885 		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
886 			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
887 				cs, *base1, reg1);
888 	}
889 
890 	for_each_chip_select_mask(cs, 0, pvt) {
891 		int reg0   = DCSM0 + (cs * 4);
892 		int reg1   = DCSM1 + (cs * 4);
893 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
894 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
895 
896 		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
897 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
898 				cs, *mask0, reg0);
899 
900 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
901 			continue;
902 
903 		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
904 			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
905 				cs, *mask1, reg1);
906 	}
907 }
908 
909 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
910 {
911 	enum mem_type type;
912 
913 	/* F15h supports only DDR3 */
914 	if (boot_cpu_data.x86 >= 0x15)
915 		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
916 	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
917 		if (pvt->dchr0 & DDR3_MODE)
918 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
919 		else
920 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
921 	} else {
922 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
923 	}
924 
925 	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
926 
927 	return type;
928 }
929 
930 /* Get the number of DCT channels the memory controller is using. */
931 static int k8_early_channel_count(struct amd64_pvt *pvt)
932 {
933 	int flag;
934 
935 	if (pvt->ext_model >= K8_REV_F)
936 		/* RevF (NPT) and later */
937 		flag = pvt->dclr0 & WIDTH_128;
938 	else
939 		/* RevE and earlier */
940 		flag = pvt->dclr0 & REVE_WIDTH_128;
941 
942 	/* not used */
943 	pvt->dclr1 = 0;
944 
945 	return (flag) ? 2 : 1;
946 }
947 
948 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
949 static u64 get_error_address(struct mce *m)
950 {
951 	struct cpuinfo_x86 *c = &boot_cpu_data;
952 	u64 addr;
953 	u8 start_bit = 1;
954 	u8 end_bit   = 47;
955 
956 	if (c->x86 == 0xf) {
957 		start_bit = 3;
958 		end_bit   = 39;
959 	}
960 
961 	addr = m->addr & GENMASK(start_bit, end_bit);
962 
963 	/*
964 	 * Erratum 637 workaround
965 	 */
966 	if (c->x86 == 0x15) {
967 		struct amd64_pvt *pvt;
968 		u64 cc6_base, tmp_addr;
969 		u32 tmp;
970 		u8 mce_nid, intlv_en;
971 
972 		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
973 			return addr;
974 
975 		mce_nid	= amd_get_nb_id(m->extcpu);
976 		pvt	= mcis[mce_nid]->pvt_info;
977 
978 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
979 		intlv_en = tmp >> 21 & 0x7;
980 
981 		/* add [47:27] + 3 trailing bits */
982 		cc6_base  = (tmp & GENMASK(0, 20)) << 3;
983 
984 		/* reverse and add DramIntlvEn */
985 		cc6_base |= intlv_en ^ 0x7;
986 
987 		/* pin at [47:24] */
988 		cc6_base <<= 24;
989 
990 		if (!intlv_en)
991 			return cc6_base | (addr & GENMASK(0, 23));
992 
993 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
994 
995 							/* faster log2 */
996 		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
997 
998 		/* OR DramIntlvSel into bits [14:12] */
999 		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
1000 
1001 		/* add remaining [11:0] bits from original MC4_ADDR */
1002 		tmp_addr |= addr & GENMASK(0, 11);
1003 
1004 		return cc6_base | tmp_addr;
1005 	}
1006 
1007 	return addr;
1008 }
1009 
1010 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1011 {
1012 	struct cpuinfo_x86 *c = &boot_cpu_data;
1013 	int off = range << 3;
1014 
1015 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
1016 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1017 
1018 	if (c->x86 == 0xf)
1019 		return;
1020 
1021 	if (!dram_rw(pvt, range))
1022 		return;
1023 
1024 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
1025 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1026 
1027 	/* Factor in CC6 save area by reading dst node's limit reg */
1028 	if (c->x86 == 0x15) {
1029 		struct pci_dev *f1 = NULL;
1030 		u8 nid = dram_dst_node(pvt, range);
1031 		u32 llim;
1032 
1033 		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1034 		if (WARN_ON(!f1))
1035 			return;
1036 
1037 		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1038 
1039 		pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1040 
1041 					    /* {[39:27],111b} */
1042 		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1043 
1044 		pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1045 
1046 					    /* [47:40] */
1047 		pvt->ranges[range].lim.hi |= llim >> 13;
1048 
1049 		pci_dev_put(f1);
1050 	}
1051 }
1052 
1053 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1054 				    u16 syndrome)
1055 {
1056 	struct mem_ctl_info *src_mci;
1057 	struct amd64_pvt *pvt = mci->pvt_info;
1058 	int channel, csrow;
1059 	u32 page, offset;
1060 
1061 	/* CHIPKILL enabled */
1062 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1063 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1064 		if (channel < 0) {
1065 			/*
1066 			 * Syndrome didn't map, so we don't know which of the
1067 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1068 			 * as suspect.
1069 			 */
1070 			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1071 					   "error reporting race\n", syndrome);
1072 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1073 			return;
1074 		}
1075 	} else {
1076 		/*
1077 		 * non-chipkill ecc mode
1078 		 *
1079 		 * The k8 documentation is unclear about how to determine the
1080 		 * channel number when using non-chipkill memory.  This method
1081 		 * was obtained from email communication with someone at AMD.
1082 		 * (Wish the email was placed in this comment - norsk)
1083 		 */
1084 		channel = ((sys_addr & BIT(3)) != 0);
1085 	}
1086 
1087 	/*
1088 	 * Find out which node the error address belongs to. This may be
1089 	 * different from the node that detected the error.
1090 	 */
1091 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1092 	if (!src_mci) {
1093 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1094 			     (unsigned long)sys_addr);
1095 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1096 		return;
1097 	}
1098 
1099 	/* Now map the sys_addr to a CSROW */
1100 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1101 	if (csrow < 0) {
1102 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1103 	} else {
1104 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1105 
1106 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1107 				  channel, EDAC_MOD_STR);
1108 	}
1109 }
1110 
1111 static int ddr2_cs_size(unsigned i, bool dct_width)
1112 {
1113 	unsigned shift = 0;
1114 
1115 	if (i <= 2)
1116 		shift = i;
1117 	else if (!(i & 0x1))
1118 		shift = i >> 1;
1119 	else
1120 		shift = (i + 1) >> 1;
1121 
1122 	return 128 << (shift + !!dct_width);
1123 }
1124 
1125 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1126 				  unsigned cs_mode)
1127 {
1128 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1129 
1130 	if (pvt->ext_model >= K8_REV_F) {
1131 		WARN_ON(cs_mode > 11);
1132 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1133 	}
1134 	else if (pvt->ext_model >= K8_REV_D) {
1135 		WARN_ON(cs_mode > 10);
1136 
1137 		if (cs_mode == 3 || cs_mode == 8)
1138 			return 32 << (cs_mode - 1);
1139 		else
1140 			return 32 << cs_mode;
1141 	}
1142 	else {
1143 		WARN_ON(cs_mode > 6);
1144 		return 32 << cs_mode;
1145 	}
1146 }
1147 
1148 /*
1149  * Get the number of DCT channels in use.
1150  *
1151  * Return:
1152  *	number of Memory Channels in operation
1153  * Pass back:
1154  *	contents of the DCL0_LOW register
1155  */
1156 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1157 {
1158 	int i, j, channels = 0;
1159 
1160 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1161 	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1162 		return 2;
1163 
1164 	/*
1165 	 * Need to check if in unganged mode: In such, there are 2 channels,
1166 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1167 	 * bit will be OFF.
1168 	 *
1169 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1170 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1171 	 */
1172 	debugf0("Data width is not 128 bits - need more decoding\n");
1173 
1174 	/*
1175 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1176 	 * is more than just one DIMM present in unganged mode. Need to check
1177 	 * both controllers since DIMMs can be placed in either one.
1178 	 */
1179 	for (i = 0; i < 2; i++) {
1180 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1181 
1182 		for (j = 0; j < 4; j++) {
1183 			if (DBAM_DIMM(j, dbam) > 0) {
1184 				channels++;
1185 				break;
1186 			}
1187 		}
1188 	}
1189 
1190 	if (channels > 2)
1191 		channels = 2;
1192 
1193 	amd64_info("MCT channel count: %d\n", channels);
1194 
1195 	return channels;
1196 }
1197 
1198 static int ddr3_cs_size(unsigned i, bool dct_width)
1199 {
1200 	unsigned shift = 0;
1201 	int cs_size = 0;
1202 
1203 	if (i == 0 || i == 3 || i == 4)
1204 		cs_size = -1;
1205 	else if (i <= 2)
1206 		shift = i;
1207 	else if (i == 12)
1208 		shift = 7;
1209 	else if (!(i & 0x1))
1210 		shift = i >> 1;
1211 	else
1212 		shift = (i + 1) >> 1;
1213 
1214 	if (cs_size != -1)
1215 		cs_size = (128 * (1 << !!dct_width)) << shift;
1216 
1217 	return cs_size;
1218 }
1219 
1220 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1221 				   unsigned cs_mode)
1222 {
1223 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1224 
1225 	WARN_ON(cs_mode > 11);
1226 
1227 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1228 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1229 	else
1230 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1231 }
1232 
1233 /*
1234  * F15h supports only 64bit DCT interfaces
1235  */
1236 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1237 				   unsigned cs_mode)
1238 {
1239 	WARN_ON(cs_mode > 12);
1240 
1241 	return ddr3_cs_size(cs_mode, false);
1242 }
1243 
1244 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1245 {
1246 
1247 	if (boot_cpu_data.x86 == 0xf)
1248 		return;
1249 
1250 	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1251 		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1252 			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1253 
1254 		debugf0("  DCTs operate in %s mode.\n",
1255 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1256 
1257 		if (!dct_ganging_enabled(pvt))
1258 			debugf0("  Address range split per DCT: %s\n",
1259 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1260 
1261 		debugf0("  data interleave for ECC: %s, "
1262 			"DRAM cleared since last warm reset: %s\n",
1263 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1264 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1265 
1266 		debugf0("  channel interleave: %s, "
1267 			"interleave bits selector: 0x%x\n",
1268 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1269 			dct_sel_interleave_addr(pvt));
1270 	}
1271 
1272 	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1273 }
1274 
1275 /*
1276  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1277  * Interleaving Modes.
1278  */
1279 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1280 				bool hi_range_sel, u8 intlv_en)
1281 {
1282 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1283 
1284 	if (dct_ganging_enabled(pvt))
1285 		return 0;
1286 
1287 	if (hi_range_sel)
1288 		return dct_sel_high;
1289 
1290 	/*
1291 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1292 	 */
1293 	if (dct_interleave_enabled(pvt)) {
1294 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1295 
1296 		/* return DCT select function: 0=DCT0, 1=DCT1 */
1297 		if (!intlv_addr)
1298 			return sys_addr >> 6 & 1;
1299 
1300 		if (intlv_addr & 0x2) {
1301 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1302 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1303 
1304 			return ((sys_addr >> shift) & 1) ^ temp;
1305 		}
1306 
1307 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1308 	}
1309 
1310 	if (dct_high_range_enabled(pvt))
1311 		return ~dct_sel_high & 1;
1312 
1313 	return 0;
1314 }
1315 
1316 /* Convert the sys_addr to the normalized DCT address */
1317 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1318 				 u64 sys_addr, bool hi_rng,
1319 				 u32 dct_sel_base_addr)
1320 {
1321 	u64 chan_off;
1322 	u64 dram_base		= get_dram_base(pvt, range);
1323 	u64 hole_off		= f10_dhar_offset(pvt);
1324 	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1325 
1326 	if (hi_rng) {
1327 		/*
1328 		 * if
1329 		 * base address of high range is below 4Gb
1330 		 * (bits [47:27] at [31:11])
1331 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
1332 		 * sys_addr > 4Gb
1333 		 *
1334 		 *	remove hole offset from sys_addr
1335 		 * else
1336 		 *	remove high range offset from sys_addr
1337 		 */
1338 		if ((!(dct_sel_base_addr >> 16) ||
1339 		     dct_sel_base_addr < dhar_base(pvt)) &&
1340 		    dhar_valid(pvt) &&
1341 		    (sys_addr >= BIT_64(32)))
1342 			chan_off = hole_off;
1343 		else
1344 			chan_off = dct_sel_base_off;
1345 	} else {
1346 		/*
1347 		 * if
1348 		 * we have a valid hole		&&
1349 		 * sys_addr > 4Gb
1350 		 *
1351 		 *	remove hole
1352 		 * else
1353 		 *	remove dram base to normalize to DCT address
1354 		 */
1355 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1356 			chan_off = hole_off;
1357 		else
1358 			chan_off = dram_base;
1359 	}
1360 
1361 	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1362 }
1363 
1364 /*
1365  * checks if the csrow passed in is marked as SPARED, if so returns the new
1366  * spare row
1367  */
1368 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1369 {
1370 	int tmp_cs;
1371 
1372 	if (online_spare_swap_done(pvt, dct) &&
1373 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
1374 
1375 		for_each_chip_select(tmp_cs, dct, pvt) {
1376 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1377 				csrow = tmp_cs;
1378 				break;
1379 			}
1380 		}
1381 	}
1382 	return csrow;
1383 }
1384 
1385 /*
1386  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1387  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1388  *
1389  * Return:
1390  *	-EINVAL:  NOT FOUND
1391  *	0..csrow = Chip-Select Row
1392  */
1393 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1394 {
1395 	struct mem_ctl_info *mci;
1396 	struct amd64_pvt *pvt;
1397 	u64 cs_base, cs_mask;
1398 	int cs_found = -EINVAL;
1399 	int csrow;
1400 
1401 	mci = mcis[nid];
1402 	if (!mci)
1403 		return cs_found;
1404 
1405 	pvt = mci->pvt_info;
1406 
1407 	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1408 
1409 	for_each_chip_select(csrow, dct, pvt) {
1410 		if (!csrow_enabled(csrow, dct, pvt))
1411 			continue;
1412 
1413 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1414 
1415 		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1416 			csrow, cs_base, cs_mask);
1417 
1418 		cs_mask = ~cs_mask;
1419 
1420 		debugf1("    (InputAddr & ~CSMask)=0x%llx "
1421 			"(CSBase & ~CSMask)=0x%llx\n",
1422 			(in_addr & cs_mask), (cs_base & cs_mask));
1423 
1424 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1425 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1426 
1427 			debugf1(" MATCH csrow=%d\n", cs_found);
1428 			break;
1429 		}
1430 	}
1431 	return cs_found;
1432 }
1433 
1434 /*
1435  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1436  * swapped with a region located at the bottom of memory so that the GPU can use
1437  * the interleaved region and thus two channels.
1438  */
1439 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1440 {
1441 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1442 
1443 	if (boot_cpu_data.x86 == 0x10) {
1444 		/* only revC3 and revE have that feature */
1445 		if (boot_cpu_data.x86_model < 4 ||
1446 		    (boot_cpu_data.x86_model < 0xa &&
1447 		     boot_cpu_data.x86_mask < 3))
1448 			return sys_addr;
1449 	}
1450 
1451 	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1452 
1453 	if (!(swap_reg & 0x1))
1454 		return sys_addr;
1455 
1456 	swap_base	= (swap_reg >> 3) & 0x7f;
1457 	swap_limit	= (swap_reg >> 11) & 0x7f;
1458 	rgn_size	= (swap_reg >> 20) & 0x7f;
1459 	tmp_addr	= sys_addr >> 27;
1460 
1461 	if (!(sys_addr >> 34) &&
1462 	    (((tmp_addr >= swap_base) &&
1463 	     (tmp_addr <= swap_limit)) ||
1464 	     (tmp_addr < rgn_size)))
1465 		return sys_addr ^ (u64)swap_base << 27;
1466 
1467 	return sys_addr;
1468 }
1469 
1470 /* For a given @dram_range, check if @sys_addr falls within it. */
1471 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1472 				  u64 sys_addr, int *nid, int *chan_sel)
1473 {
1474 	int cs_found = -EINVAL;
1475 	u64 chan_addr;
1476 	u32 dct_sel_base;
1477 	u8 channel;
1478 	bool high_range = false;
1479 
1480 	u8 node_id    = dram_dst_node(pvt, range);
1481 	u8 intlv_en   = dram_intlv_en(pvt, range);
1482 	u32 intlv_sel = dram_intlv_sel(pvt, range);
1483 
1484 	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1485 		range, sys_addr, get_dram_limit(pvt, range));
1486 
1487 	if (dhar_valid(pvt) &&
1488 	    dhar_base(pvt) <= sys_addr &&
1489 	    sys_addr < BIT_64(32)) {
1490 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1491 			    sys_addr);
1492 		return -EINVAL;
1493 	}
1494 
1495 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1496 		return -EINVAL;
1497 
1498 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1499 
1500 	dct_sel_base = dct_sel_baseaddr(pvt);
1501 
1502 	/*
1503 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1504 	 * select between DCT0 and DCT1.
1505 	 */
1506 	if (dct_high_range_enabled(pvt) &&
1507 	   !dct_ganging_enabled(pvt) &&
1508 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1509 		high_range = true;
1510 
1511 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1512 
1513 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1514 					  high_range, dct_sel_base);
1515 
1516 	/* Remove node interleaving, see F1x120 */
1517 	if (intlv_en)
1518 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1519 			    (chan_addr & 0xfff);
1520 
1521 	/* remove channel interleave */
1522 	if (dct_interleave_enabled(pvt) &&
1523 	   !dct_high_range_enabled(pvt) &&
1524 	   !dct_ganging_enabled(pvt)) {
1525 
1526 		if (dct_sel_interleave_addr(pvt) != 1) {
1527 			if (dct_sel_interleave_addr(pvt) == 0x3)
1528 				/* hash 9 */
1529 				chan_addr = ((chan_addr >> 10) << 9) |
1530 					     (chan_addr & 0x1ff);
1531 			else
1532 				/* A[6] or hash 6 */
1533 				chan_addr = ((chan_addr >> 7) << 6) |
1534 					     (chan_addr & 0x3f);
1535 		} else
1536 			/* A[12] */
1537 			chan_addr = ((chan_addr >> 13) << 12) |
1538 				     (chan_addr & 0xfff);
1539 	}
1540 
1541 	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1542 
1543 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1544 
1545 	if (cs_found >= 0) {
1546 		*nid = node_id;
1547 		*chan_sel = channel;
1548 	}
1549 	return cs_found;
1550 }
1551 
1552 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1553 				       int *node, int *chan_sel)
1554 {
1555 	int cs_found = -EINVAL;
1556 	unsigned range;
1557 
1558 	for (range = 0; range < DRAM_RANGES; range++) {
1559 
1560 		if (!dram_rw(pvt, range))
1561 			continue;
1562 
1563 		if ((get_dram_base(pvt, range)  <= sys_addr) &&
1564 		    (get_dram_limit(pvt, range) >= sys_addr)) {
1565 
1566 			cs_found = f1x_match_to_this_node(pvt, range,
1567 							  sys_addr, node,
1568 							  chan_sel);
1569 			if (cs_found >= 0)
1570 				break;
1571 		}
1572 	}
1573 	return cs_found;
1574 }
1575 
1576 /*
1577  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1578  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1579  *
1580  * The @sys_addr is usually an error address received from the hardware
1581  * (MCX_ADDR).
1582  */
1583 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1584 				     u16 syndrome)
1585 {
1586 	struct amd64_pvt *pvt = mci->pvt_info;
1587 	u32 page, offset;
1588 	int nid, csrow, chan = 0;
1589 
1590 	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1591 
1592 	if (csrow < 0) {
1593 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1594 		return;
1595 	}
1596 
1597 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1598 
1599 	/*
1600 	 * We need the syndromes for channel detection only when we're
1601 	 * ganged. Otherwise @chan should already contain the channel at
1602 	 * this point.
1603 	 */
1604 	if (dct_ganging_enabled(pvt))
1605 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1606 
1607 	if (chan >= 0)
1608 		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1609 				  EDAC_MOD_STR);
1610 	else
1611 		/*
1612 		 * Channel unknown, report all channels on this CSROW as failed.
1613 		 */
1614 		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1615 			edac_mc_handle_ce(mci, page, offset, syndrome,
1616 					  csrow, chan, EDAC_MOD_STR);
1617 }
1618 
1619 /*
1620  * debug routine to display the memory sizes of all logical DIMMs and its
1621  * CSROWs
1622  */
1623 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1624 {
1625 	int dimm, size0, size1, factor = 0;
1626 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1627 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1628 
1629 	if (boot_cpu_data.x86 == 0xf) {
1630 		if (pvt->dclr0 & WIDTH_128)
1631 			factor = 1;
1632 
1633 		/* K8 families < revF not supported yet */
1634 	       if (pvt->ext_model < K8_REV_F)
1635 			return;
1636 	       else
1637 		       WARN_ON(ctrl != 0);
1638 	}
1639 
1640 	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1641 	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1642 						   : pvt->csels[0].csbases;
1643 
1644 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1645 
1646 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1647 
1648 	/* Dump memory sizes for DIMM and its CSROWs */
1649 	for (dimm = 0; dimm < 4; dimm++) {
1650 
1651 		size0 = 0;
1652 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1653 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1654 						     DBAM_DIMM(dimm, dbam));
1655 
1656 		size1 = 0;
1657 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1658 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1659 						     DBAM_DIMM(dimm, dbam));
1660 
1661 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1662 				dimm * 2,     size0 << factor,
1663 				dimm * 2 + 1, size1 << factor);
1664 	}
1665 }
1666 
1667 static struct amd64_family_type amd64_family_types[] = {
1668 	[K8_CPUS] = {
1669 		.ctl_name = "K8",
1670 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1671 		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1672 		.ops = {
1673 			.early_channel_count	= k8_early_channel_count,
1674 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1675 			.dbam_to_cs		= k8_dbam_to_chip_select,
1676 			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1677 		}
1678 	},
1679 	[F10_CPUS] = {
1680 		.ctl_name = "F10h",
1681 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1682 		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1683 		.ops = {
1684 			.early_channel_count	= f1x_early_channel_count,
1685 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1686 			.dbam_to_cs		= f10_dbam_to_chip_select,
1687 			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
1688 		}
1689 	},
1690 	[F15_CPUS] = {
1691 		.ctl_name = "F15h",
1692 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1693 		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1694 		.ops = {
1695 			.early_channel_count	= f1x_early_channel_count,
1696 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1697 			.dbam_to_cs		= f15_dbam_to_chip_select,
1698 			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1699 		}
1700 	},
1701 };
1702 
1703 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1704 						unsigned int device,
1705 						struct pci_dev *related)
1706 {
1707 	struct pci_dev *dev = NULL;
1708 
1709 	dev = pci_get_device(vendor, device, dev);
1710 	while (dev) {
1711 		if ((dev->bus->number == related->bus->number) &&
1712 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1713 			break;
1714 		dev = pci_get_device(vendor, device, dev);
1715 	}
1716 
1717 	return dev;
1718 }
1719 
1720 /*
1721  * These are tables of eigenvectors (one per line) which can be used for the
1722  * construction of the syndrome tables. The modified syndrome search algorithm
1723  * uses those to find the symbol in error and thus the DIMM.
1724  *
1725  * Algorithm courtesy of Ross LaFetra from AMD.
1726  */
1727 static u16 x4_vectors[] = {
1728 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1729 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1730 	0x0001, 0x0002, 0x0004, 0x0008,
1731 	0x1013, 0x3032, 0x4044, 0x8088,
1732 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1733 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1734 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1735 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1736 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1737 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1738 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1739 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1740 	0x2b87, 0x164e, 0x642c, 0xdc18,
1741 	0x40b9, 0x80de, 0x1094, 0x20e8,
1742 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1743 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1744 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1745 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1746 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1747 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1748 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1749 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1750 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1751 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1752 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1753 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1754 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1755 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1756 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1757 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1758 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1759 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1760 	0x4807, 0xc40e, 0x130c, 0x3208,
1761 	0x1905, 0x2e0a, 0x5804, 0xac08,
1762 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1763 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1764 };
1765 
1766 static u16 x8_vectors[] = {
1767 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1768 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1769 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1770 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1771 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1772 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1773 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1774 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1775 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1776 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1777 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1778 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1779 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1780 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1781 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1782 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1783 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1784 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1785 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1786 };
1787 
1788 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1789 			   unsigned v_dim)
1790 {
1791 	unsigned int i, err_sym;
1792 
1793 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1794 		u16 s = syndrome;
1795 		unsigned v_idx =  err_sym * v_dim;
1796 		unsigned v_end = (err_sym + 1) * v_dim;
1797 
1798 		/* walk over all 16 bits of the syndrome */
1799 		for (i = 1; i < (1U << 16); i <<= 1) {
1800 
1801 			/* if bit is set in that eigenvector... */
1802 			if (v_idx < v_end && vectors[v_idx] & i) {
1803 				u16 ev_comp = vectors[v_idx++];
1804 
1805 				/* ... and bit set in the modified syndrome, */
1806 				if (s & i) {
1807 					/* remove it. */
1808 					s ^= ev_comp;
1809 
1810 					if (!s)
1811 						return err_sym;
1812 				}
1813 
1814 			} else if (s & i)
1815 				/* can't get to zero, move to next symbol */
1816 				break;
1817 		}
1818 	}
1819 
1820 	debugf0("syndrome(%x) not found\n", syndrome);
1821 	return -1;
1822 }
1823 
1824 static int map_err_sym_to_channel(int err_sym, int sym_size)
1825 {
1826 	if (sym_size == 4)
1827 		switch (err_sym) {
1828 		case 0x20:
1829 		case 0x21:
1830 			return 0;
1831 			break;
1832 		case 0x22:
1833 		case 0x23:
1834 			return 1;
1835 			break;
1836 		default:
1837 			return err_sym >> 4;
1838 			break;
1839 		}
1840 	/* x8 symbols */
1841 	else
1842 		switch (err_sym) {
1843 		/* imaginary bits not in a DIMM */
1844 		case 0x10:
1845 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1846 					  err_sym);
1847 			return -1;
1848 			break;
1849 
1850 		case 0x11:
1851 			return 0;
1852 			break;
1853 		case 0x12:
1854 			return 1;
1855 			break;
1856 		default:
1857 			return err_sym >> 3;
1858 			break;
1859 		}
1860 	return -1;
1861 }
1862 
1863 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1864 {
1865 	struct amd64_pvt *pvt = mci->pvt_info;
1866 	int err_sym = -1;
1867 
1868 	if (pvt->ecc_sym_sz == 8)
1869 		err_sym = decode_syndrome(syndrome, x8_vectors,
1870 					  ARRAY_SIZE(x8_vectors),
1871 					  pvt->ecc_sym_sz);
1872 	else if (pvt->ecc_sym_sz == 4)
1873 		err_sym = decode_syndrome(syndrome, x4_vectors,
1874 					  ARRAY_SIZE(x4_vectors),
1875 					  pvt->ecc_sym_sz);
1876 	else {
1877 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1878 		return err_sym;
1879 	}
1880 
1881 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1882 }
1883 
1884 /*
1885  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1886  * ADDRESS and process.
1887  */
1888 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1889 {
1890 	struct amd64_pvt *pvt = mci->pvt_info;
1891 	u64 sys_addr;
1892 	u16 syndrome;
1893 
1894 	/* Ensure that the Error Address is VALID */
1895 	if (!(m->status & MCI_STATUS_ADDRV)) {
1896 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1897 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1898 		return;
1899 	}
1900 
1901 	sys_addr = get_error_address(m);
1902 	syndrome = extract_syndrome(m->status);
1903 
1904 	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1905 
1906 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1907 }
1908 
1909 /* Handle any Un-correctable Errors (UEs) */
1910 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1911 {
1912 	struct mem_ctl_info *log_mci, *src_mci = NULL;
1913 	int csrow;
1914 	u64 sys_addr;
1915 	u32 page, offset;
1916 
1917 	log_mci = mci;
1918 
1919 	if (!(m->status & MCI_STATUS_ADDRV)) {
1920 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1921 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1922 		return;
1923 	}
1924 
1925 	sys_addr = get_error_address(m);
1926 
1927 	/*
1928 	 * Find out which node the error address belongs to. This may be
1929 	 * different from the node that detected the error.
1930 	 */
1931 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1932 	if (!src_mci) {
1933 		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1934 				  (unsigned long)sys_addr);
1935 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1936 		return;
1937 	}
1938 
1939 	log_mci = src_mci;
1940 
1941 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1942 	if (csrow < 0) {
1943 		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1944 				  (unsigned long)sys_addr);
1945 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1946 	} else {
1947 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1948 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1949 	}
1950 }
1951 
1952 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1953 					    struct mce *m)
1954 {
1955 	u16 ec = EC(m->status);
1956 	u8 xec = XEC(m->status, 0x1f);
1957 	u8 ecc_type = (m->status >> 45) & 0x3;
1958 
1959 	/* Bail early out if this was an 'observed' error */
1960 	if (PP(ec) == NBSL_PP_OBS)
1961 		return;
1962 
1963 	/* Do only ECC errors */
1964 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1965 		return;
1966 
1967 	if (ecc_type == 2)
1968 		amd64_handle_ce(mci, m);
1969 	else if (ecc_type == 1)
1970 		amd64_handle_ue(mci, m);
1971 }
1972 
1973 void amd64_decode_bus_error(int node_id, struct mce *m)
1974 {
1975 	__amd64_decode_bus_error(mcis[node_id], m);
1976 }
1977 
1978 /*
1979  * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1980  * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1981  */
1982 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1983 {
1984 	/* Reserve the ADDRESS MAP Device */
1985 	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1986 	if (!pvt->F1) {
1987 		amd64_err("error address map device not found: "
1988 			  "vendor %x device 0x%x (broken BIOS?)\n",
1989 			  PCI_VENDOR_ID_AMD, f1_id);
1990 		return -ENODEV;
1991 	}
1992 
1993 	/* Reserve the MISC Device */
1994 	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1995 	if (!pvt->F3) {
1996 		pci_dev_put(pvt->F1);
1997 		pvt->F1 = NULL;
1998 
1999 		amd64_err("error F3 device not found: "
2000 			  "vendor %x device 0x%x (broken BIOS?)\n",
2001 			  PCI_VENDOR_ID_AMD, f3_id);
2002 
2003 		return -ENODEV;
2004 	}
2005 	debugf1("F1: %s\n", pci_name(pvt->F1));
2006 	debugf1("F2: %s\n", pci_name(pvt->F2));
2007 	debugf1("F3: %s\n", pci_name(pvt->F3));
2008 
2009 	return 0;
2010 }
2011 
2012 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2013 {
2014 	pci_dev_put(pvt->F1);
2015 	pci_dev_put(pvt->F3);
2016 }
2017 
2018 /*
2019  * Retrieve the hardware registers of the memory controller (this includes the
2020  * 'Address Map' and 'Misc' device regs)
2021  */
2022 static void read_mc_regs(struct amd64_pvt *pvt)
2023 {
2024 	struct cpuinfo_x86 *c = &boot_cpu_data;
2025 	u64 msr_val;
2026 	u32 tmp;
2027 	unsigned range;
2028 
2029 	/*
2030 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2031 	 * those are Read-As-Zero
2032 	 */
2033 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2034 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2035 
2036 	/* check first whether TOP_MEM2 is enabled */
2037 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2038 	if (msr_val & (1U << 21)) {
2039 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2040 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2041 	} else
2042 		debugf0("  TOP_MEM2 disabled.\n");
2043 
2044 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2045 
2046 	read_dram_ctl_register(pvt);
2047 
2048 	for (range = 0; range < DRAM_RANGES; range++) {
2049 		u8 rw;
2050 
2051 		/* read settings for this DRAM range */
2052 		read_dram_base_limit_regs(pvt, range);
2053 
2054 		rw = dram_rw(pvt, range);
2055 		if (!rw)
2056 			continue;
2057 
2058 		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2059 			range,
2060 			get_dram_base(pvt, range),
2061 			get_dram_limit(pvt, range));
2062 
2063 		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2064 			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2065 			(rw & 0x1) ? "R" : "-",
2066 			(rw & 0x2) ? "W" : "-",
2067 			dram_intlv_sel(pvt, range),
2068 			dram_dst_node(pvt, range));
2069 	}
2070 
2071 	read_dct_base_mask(pvt);
2072 
2073 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2074 	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2075 
2076 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2077 
2078 	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2079 	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2080 
2081 	if (!dct_ganging_enabled(pvt)) {
2082 		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2083 		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2084 	}
2085 
2086 	pvt->ecc_sym_sz = 4;
2087 
2088 	if (c->x86 >= 0x10) {
2089 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2090 		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2091 
2092 		/* F10h, revD and later can do x8 ECC too */
2093 		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2094 			pvt->ecc_sym_sz = 8;
2095 	}
2096 	dump_misc_regs(pvt);
2097 }
2098 
2099 /*
2100  * NOTE: CPU Revision Dependent code
2101  *
2102  * Input:
2103  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2104  *	k8 private pointer to -->
2105  *			DRAM Bank Address mapping register
2106  *			node_id
2107  *			DCL register where dual_channel_active is
2108  *
2109  * The DBAM register consists of 4 sets of 4 bits each definitions:
2110  *
2111  * Bits:	CSROWs
2112  * 0-3		CSROWs 0 and 1
2113  * 4-7		CSROWs 2 and 3
2114  * 8-11		CSROWs 4 and 5
2115  * 12-15	CSROWs 6 and 7
2116  *
2117  * Values range from: 0 to 15
2118  * The meaning of the values depends on CPU revision and dual-channel state,
2119  * see relevant BKDG more info.
2120  *
2121  * The memory controller provides for total of only 8 CSROWs in its current
2122  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2123  * single channel or two (2) DIMMs in dual channel mode.
2124  *
2125  * The following code logic collapses the various tables for CSROW based on CPU
2126  * revision.
2127  *
2128  * Returns:
2129  *	The number of PAGE_SIZE pages on the specified CSROW number it
2130  *	encompasses
2131  *
2132  */
2133 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2134 {
2135 	u32 cs_mode, nr_pages;
2136 
2137 	/*
2138 	 * The math on this doesn't look right on the surface because x/2*4 can
2139 	 * be simplified to x*2 but this expression makes use of the fact that
2140 	 * it is integral math where 1/2=0. This intermediate value becomes the
2141 	 * number of bits to shift the DBAM register to extract the proper CSROW
2142 	 * field.
2143 	 */
2144 	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2145 
2146 	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2147 
2148 	/*
2149 	 * If dual channel then double the memory size of single channel.
2150 	 * Channel count is 1 or 2
2151 	 */
2152 	nr_pages <<= (pvt->channel_count - 1);
2153 
2154 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2155 	debugf0("    nr_pages= %u  channel-count = %d\n",
2156 		nr_pages, pvt->channel_count);
2157 
2158 	return nr_pages;
2159 }
2160 
2161 /*
2162  * Initialize the array of csrow attribute instances, based on the values
2163  * from pci config hardware registers.
2164  */
2165 static int init_csrows(struct mem_ctl_info *mci)
2166 {
2167 	struct csrow_info *csrow;
2168 	struct amd64_pvt *pvt = mci->pvt_info;
2169 	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2170 	u32 val;
2171 	int i, empty = 1;
2172 
2173 	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2174 
2175 	pvt->nbcfg = val;
2176 
2177 	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2178 		pvt->mc_node_id, val,
2179 		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2180 
2181 	for_each_chip_select(i, 0, pvt) {
2182 		csrow = &mci->csrows[i];
2183 
2184 		if (!csrow_enabled(i, 0, pvt)) {
2185 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2186 				pvt->mc_node_id);
2187 			continue;
2188 		}
2189 
2190 		debugf1("----CSROW %d VALID for MC node %d\n",
2191 			i, pvt->mc_node_id);
2192 
2193 		empty = 0;
2194 		csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2195 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2196 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2197 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2198 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2199 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2200 
2201 		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2202 		csrow->page_mask = ~mask;
2203 		/* 8 bytes of resolution */
2204 
2205 		csrow->mtype = amd64_determine_memory_type(pvt, i);
2206 
2207 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2208 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2209 			(unsigned long)input_addr_min,
2210 			(unsigned long)input_addr_max);
2211 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2212 			(unsigned long)sys_addr, csrow->page_mask);
2213 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2214 			"last_page: 0x%lx\n",
2215 			(unsigned)csrow->nr_pages,
2216 			csrow->first_page, csrow->last_page);
2217 
2218 		/*
2219 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2220 		 */
2221 		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2222 			csrow->edac_mode =
2223 			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2224 			    EDAC_S4ECD4ED : EDAC_SECDED;
2225 		else
2226 			csrow->edac_mode = EDAC_NONE;
2227 	}
2228 
2229 	return empty;
2230 }
2231 
2232 /* get all cores on this DCT */
2233 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2234 {
2235 	int cpu;
2236 
2237 	for_each_online_cpu(cpu)
2238 		if (amd_get_nb_id(cpu) == nid)
2239 			cpumask_set_cpu(cpu, mask);
2240 }
2241 
2242 /* check MCG_CTL on all the cpus on this node */
2243 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2244 {
2245 	cpumask_var_t mask;
2246 	int cpu, nbe;
2247 	bool ret = false;
2248 
2249 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2250 		amd64_warn("%s: Error allocating mask\n", __func__);
2251 		return false;
2252 	}
2253 
2254 	get_cpus_on_this_dct_cpumask(mask, nid);
2255 
2256 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2257 
2258 	for_each_cpu(cpu, mask) {
2259 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2260 		nbe = reg->l & MSR_MCGCTL_NBE;
2261 
2262 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2263 			cpu, reg->q,
2264 			(nbe ? "enabled" : "disabled"));
2265 
2266 		if (!nbe)
2267 			goto out;
2268 	}
2269 	ret = true;
2270 
2271 out:
2272 	free_cpumask_var(mask);
2273 	return ret;
2274 }
2275 
2276 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2277 {
2278 	cpumask_var_t cmask;
2279 	int cpu;
2280 
2281 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2282 		amd64_warn("%s: error allocating mask\n", __func__);
2283 		return false;
2284 	}
2285 
2286 	get_cpus_on_this_dct_cpumask(cmask, nid);
2287 
2288 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2289 
2290 	for_each_cpu(cpu, cmask) {
2291 
2292 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2293 
2294 		if (on) {
2295 			if (reg->l & MSR_MCGCTL_NBE)
2296 				s->flags.nb_mce_enable = 1;
2297 
2298 			reg->l |= MSR_MCGCTL_NBE;
2299 		} else {
2300 			/*
2301 			 * Turn off NB MCE reporting only when it was off before
2302 			 */
2303 			if (!s->flags.nb_mce_enable)
2304 				reg->l &= ~MSR_MCGCTL_NBE;
2305 		}
2306 	}
2307 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2308 
2309 	free_cpumask_var(cmask);
2310 
2311 	return 0;
2312 }
2313 
2314 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2315 				       struct pci_dev *F3)
2316 {
2317 	bool ret = true;
2318 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2319 
2320 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2321 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2322 		return false;
2323 	}
2324 
2325 	amd64_read_pci_cfg(F3, NBCTL, &value);
2326 
2327 	s->old_nbctl   = value & mask;
2328 	s->nbctl_valid = true;
2329 
2330 	value |= mask;
2331 	amd64_write_pci_cfg(F3, NBCTL, value);
2332 
2333 	amd64_read_pci_cfg(F3, NBCFG, &value);
2334 
2335 	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2336 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2337 
2338 	if (!(value & NBCFG_ECC_ENABLE)) {
2339 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2340 
2341 		s->flags.nb_ecc_prev = 0;
2342 
2343 		/* Attempt to turn on DRAM ECC Enable */
2344 		value |= NBCFG_ECC_ENABLE;
2345 		amd64_write_pci_cfg(F3, NBCFG, value);
2346 
2347 		amd64_read_pci_cfg(F3, NBCFG, &value);
2348 
2349 		if (!(value & NBCFG_ECC_ENABLE)) {
2350 			amd64_warn("Hardware rejected DRAM ECC enable,"
2351 				   "check memory DIMM configuration.\n");
2352 			ret = false;
2353 		} else {
2354 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2355 		}
2356 	} else {
2357 		s->flags.nb_ecc_prev = 1;
2358 	}
2359 
2360 	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2361 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2362 
2363 	return ret;
2364 }
2365 
2366 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2367 					struct pci_dev *F3)
2368 {
2369 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2370 
2371 
2372 	if (!s->nbctl_valid)
2373 		return;
2374 
2375 	amd64_read_pci_cfg(F3, NBCTL, &value);
2376 	value &= ~mask;
2377 	value |= s->old_nbctl;
2378 
2379 	amd64_write_pci_cfg(F3, NBCTL, value);
2380 
2381 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2382 	if (!s->flags.nb_ecc_prev) {
2383 		amd64_read_pci_cfg(F3, NBCFG, &value);
2384 		value &= ~NBCFG_ECC_ENABLE;
2385 		amd64_write_pci_cfg(F3, NBCFG, value);
2386 	}
2387 
2388 	/* restore the NB Enable MCGCTL bit */
2389 	if (toggle_ecc_err_reporting(s, nid, OFF))
2390 		amd64_warn("Error restoring NB MCGCTL settings!\n");
2391 }
2392 
2393 /*
2394  * EDAC requires that the BIOS have ECC enabled before
2395  * taking over the processing of ECC errors. A command line
2396  * option allows to force-enable hardware ECC later in
2397  * enable_ecc_error_reporting().
2398  */
2399 static const char *ecc_msg =
2400 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2401 	" Either enable ECC checking or force module loading by setting "
2402 	"'ecc_enable_override'.\n"
2403 	" (Note that use of the override may cause unknown side effects.)\n";
2404 
2405 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2406 {
2407 	u32 value;
2408 	u8 ecc_en = 0;
2409 	bool nb_mce_en = false;
2410 
2411 	amd64_read_pci_cfg(F3, NBCFG, &value);
2412 
2413 	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2414 	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2415 
2416 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2417 	if (!nb_mce_en)
2418 		amd64_notice("NB MCE bank disabled, set MSR "
2419 			     "0x%08x[4] on node %d to enable.\n",
2420 			     MSR_IA32_MCG_CTL, nid);
2421 
2422 	if (!ecc_en || !nb_mce_en) {
2423 		amd64_notice("%s", ecc_msg);
2424 		return false;
2425 	}
2426 	return true;
2427 }
2428 
2429 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2430 					  ARRAY_SIZE(amd64_inj_attrs) +
2431 					  1];
2432 
2433 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2434 
2435 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2436 {
2437 	unsigned int i = 0, j = 0;
2438 
2439 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2440 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2441 
2442 	if (boot_cpu_data.x86 >= 0x10)
2443 		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2444 			sysfs_attrs[i] = amd64_inj_attrs[j];
2445 
2446 	sysfs_attrs[i] = terminator;
2447 
2448 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2449 }
2450 
2451 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2452 				 struct amd64_family_type *fam)
2453 {
2454 	struct amd64_pvt *pvt = mci->pvt_info;
2455 
2456 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2457 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2458 
2459 	if (pvt->nbcap & NBCAP_SECDED)
2460 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2461 
2462 	if (pvt->nbcap & NBCAP_CHIPKILL)
2463 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2464 
2465 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2466 	mci->mod_name		= EDAC_MOD_STR;
2467 	mci->mod_ver		= EDAC_AMD64_VERSION;
2468 	mci->ctl_name		= fam->ctl_name;
2469 	mci->dev_name		= pci_name(pvt->F2);
2470 	mci->ctl_page_to_phys	= NULL;
2471 
2472 	/* memory scrubber interface */
2473 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2474 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2475 }
2476 
2477 /*
2478  * returns a pointer to the family descriptor on success, NULL otherwise.
2479  */
2480 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2481 {
2482 	u8 fam = boot_cpu_data.x86;
2483 	struct amd64_family_type *fam_type = NULL;
2484 
2485 	switch (fam) {
2486 	case 0xf:
2487 		fam_type		= &amd64_family_types[K8_CPUS];
2488 		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2489 		break;
2490 
2491 	case 0x10:
2492 		fam_type		= &amd64_family_types[F10_CPUS];
2493 		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2494 		break;
2495 
2496 	case 0x15:
2497 		fam_type		= &amd64_family_types[F15_CPUS];
2498 		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2499 		break;
2500 
2501 	default:
2502 		amd64_err("Unsupported family!\n");
2503 		return NULL;
2504 	}
2505 
2506 	pvt->ext_model = boot_cpu_data.x86_model >> 4;
2507 
2508 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2509 		     (fam == 0xf ?
2510 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
2511 							     : "revE or earlier ")
2512 				 : ""), pvt->mc_node_id);
2513 	return fam_type;
2514 }
2515 
2516 static int amd64_init_one_instance(struct pci_dev *F2)
2517 {
2518 	struct amd64_pvt *pvt = NULL;
2519 	struct amd64_family_type *fam_type = NULL;
2520 	struct mem_ctl_info *mci = NULL;
2521 	int err = 0, ret;
2522 	u8 nid = get_node_id(F2);
2523 
2524 	ret = -ENOMEM;
2525 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2526 	if (!pvt)
2527 		goto err_ret;
2528 
2529 	pvt->mc_node_id	= nid;
2530 	pvt->F2 = F2;
2531 
2532 	ret = -EINVAL;
2533 	fam_type = amd64_per_family_init(pvt);
2534 	if (!fam_type)
2535 		goto err_free;
2536 
2537 	ret = -ENODEV;
2538 	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2539 	if (err)
2540 		goto err_free;
2541 
2542 	read_mc_regs(pvt);
2543 
2544 	/*
2545 	 * We need to determine how many memory channels there are. Then use
2546 	 * that information for calculating the size of the dynamic instance
2547 	 * tables in the 'mci' structure.
2548 	 */
2549 	ret = -EINVAL;
2550 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2551 	if (pvt->channel_count < 0)
2552 		goto err_siblings;
2553 
2554 	ret = -ENOMEM;
2555 	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2556 	if (!mci)
2557 		goto err_siblings;
2558 
2559 	mci->pvt_info = pvt;
2560 	mci->dev = &pvt->F2->dev;
2561 
2562 	setup_mci_misc_attrs(mci, fam_type);
2563 
2564 	if (init_csrows(mci))
2565 		mci->edac_cap = EDAC_FLAG_NONE;
2566 
2567 	set_mc_sysfs_attrs(mci);
2568 
2569 	ret = -ENODEV;
2570 	if (edac_mc_add_mc(mci)) {
2571 		debugf1("failed edac_mc_add_mc()\n");
2572 		goto err_add_mc;
2573 	}
2574 
2575 	/* register stuff with EDAC MCE */
2576 	if (report_gart_errors)
2577 		amd_report_gart_errors(true);
2578 
2579 	amd_register_ecc_decoder(amd64_decode_bus_error);
2580 
2581 	mcis[nid] = mci;
2582 
2583 	atomic_inc(&drv_instances);
2584 
2585 	return 0;
2586 
2587 err_add_mc:
2588 	edac_mc_free(mci);
2589 
2590 err_siblings:
2591 	free_mc_sibling_devs(pvt);
2592 
2593 err_free:
2594 	kfree(pvt);
2595 
2596 err_ret:
2597 	return ret;
2598 }
2599 
2600 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2601 					     const struct pci_device_id *mc_type)
2602 {
2603 	u8 nid = get_node_id(pdev);
2604 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2605 	struct ecc_settings *s;
2606 	int ret = 0;
2607 
2608 	ret = pci_enable_device(pdev);
2609 	if (ret < 0) {
2610 		debugf0("ret=%d\n", ret);
2611 		return -EIO;
2612 	}
2613 
2614 	ret = -ENOMEM;
2615 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2616 	if (!s)
2617 		goto err_out;
2618 
2619 	ecc_stngs[nid] = s;
2620 
2621 	if (!ecc_enabled(F3, nid)) {
2622 		ret = -ENODEV;
2623 
2624 		if (!ecc_enable_override)
2625 			goto err_enable;
2626 
2627 		amd64_warn("Forcing ECC on!\n");
2628 
2629 		if (!enable_ecc_error_reporting(s, nid, F3))
2630 			goto err_enable;
2631 	}
2632 
2633 	ret = amd64_init_one_instance(pdev);
2634 	if (ret < 0) {
2635 		amd64_err("Error probing instance: %d\n", nid);
2636 		restore_ecc_error_reporting(s, nid, F3);
2637 	}
2638 
2639 	return ret;
2640 
2641 err_enable:
2642 	kfree(s);
2643 	ecc_stngs[nid] = NULL;
2644 
2645 err_out:
2646 	return ret;
2647 }
2648 
2649 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2650 {
2651 	struct mem_ctl_info *mci;
2652 	struct amd64_pvt *pvt;
2653 	u8 nid = get_node_id(pdev);
2654 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2655 	struct ecc_settings *s = ecc_stngs[nid];
2656 
2657 	/* Remove from EDAC CORE tracking list */
2658 	mci = edac_mc_del_mc(&pdev->dev);
2659 	if (!mci)
2660 		return;
2661 
2662 	pvt = mci->pvt_info;
2663 
2664 	restore_ecc_error_reporting(s, nid, F3);
2665 
2666 	free_mc_sibling_devs(pvt);
2667 
2668 	/* unregister from EDAC MCE */
2669 	amd_report_gart_errors(false);
2670 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2671 
2672 	kfree(ecc_stngs[nid]);
2673 	ecc_stngs[nid] = NULL;
2674 
2675 	/* Free the EDAC CORE resources */
2676 	mci->pvt_info = NULL;
2677 	mcis[nid] = NULL;
2678 
2679 	kfree(pvt);
2680 	edac_mc_free(mci);
2681 }
2682 
2683 /*
2684  * This table is part of the interface for loading drivers for PCI devices. The
2685  * PCI core identifies what devices are on a system during boot, and then
2686  * inquiry this table to see if this driver is for a given device found.
2687  */
2688 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2689 	{
2690 		.vendor		= PCI_VENDOR_ID_AMD,
2691 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2692 		.subvendor	= PCI_ANY_ID,
2693 		.subdevice	= PCI_ANY_ID,
2694 		.class		= 0,
2695 		.class_mask	= 0,
2696 	},
2697 	{
2698 		.vendor		= PCI_VENDOR_ID_AMD,
2699 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2700 		.subvendor	= PCI_ANY_ID,
2701 		.subdevice	= PCI_ANY_ID,
2702 		.class		= 0,
2703 		.class_mask	= 0,
2704 	},
2705 	{
2706 		.vendor		= PCI_VENDOR_ID_AMD,
2707 		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
2708 		.subvendor	= PCI_ANY_ID,
2709 		.subdevice	= PCI_ANY_ID,
2710 		.class		= 0,
2711 		.class_mask	= 0,
2712 	},
2713 
2714 	{0, }
2715 };
2716 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2717 
2718 static struct pci_driver amd64_pci_driver = {
2719 	.name		= EDAC_MOD_STR,
2720 	.probe		= amd64_probe_one_instance,
2721 	.remove		= __devexit_p(amd64_remove_one_instance),
2722 	.id_table	= amd64_pci_table,
2723 };
2724 
2725 static void setup_pci_device(void)
2726 {
2727 	struct mem_ctl_info *mci;
2728 	struct amd64_pvt *pvt;
2729 
2730 	if (amd64_ctl_pci)
2731 		return;
2732 
2733 	mci = mcis[0];
2734 	if (mci) {
2735 
2736 		pvt = mci->pvt_info;
2737 		amd64_ctl_pci =
2738 			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2739 
2740 		if (!amd64_ctl_pci) {
2741 			pr_warning("%s(): Unable to create PCI control\n",
2742 				   __func__);
2743 
2744 			pr_warning("%s(): PCI error report via EDAC not set\n",
2745 				   __func__);
2746 			}
2747 	}
2748 }
2749 
2750 static int __init amd64_edac_init(void)
2751 {
2752 	int err = -ENODEV;
2753 
2754 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2755 
2756 	opstate_init();
2757 
2758 	if (amd_cache_northbridges() < 0)
2759 		goto err_ret;
2760 
2761 	err = -ENOMEM;
2762 	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2763 	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2764 	if (!(mcis && ecc_stngs))
2765 		goto err_free;
2766 
2767 	msrs = msrs_alloc();
2768 	if (!msrs)
2769 		goto err_free;
2770 
2771 	err = pci_register_driver(&amd64_pci_driver);
2772 	if (err)
2773 		goto err_pci;
2774 
2775 	err = -ENODEV;
2776 	if (!atomic_read(&drv_instances))
2777 		goto err_no_instances;
2778 
2779 	setup_pci_device();
2780 	return 0;
2781 
2782 err_no_instances:
2783 	pci_unregister_driver(&amd64_pci_driver);
2784 
2785 err_pci:
2786 	msrs_free(msrs);
2787 	msrs = NULL;
2788 
2789 err_free:
2790 	kfree(mcis);
2791 	mcis = NULL;
2792 
2793 	kfree(ecc_stngs);
2794 	ecc_stngs = NULL;
2795 
2796 err_ret:
2797 	return err;
2798 }
2799 
2800 static void __exit amd64_edac_exit(void)
2801 {
2802 	if (amd64_ctl_pci)
2803 		edac_pci_release_generic_ctl(amd64_ctl_pci);
2804 
2805 	pci_unregister_driver(&amd64_pci_driver);
2806 
2807 	kfree(ecc_stngs);
2808 	ecc_stngs = NULL;
2809 
2810 	kfree(mcis);
2811 	mcis = NULL;
2812 
2813 	msrs_free(msrs);
2814 	msrs = NULL;
2815 }
2816 
2817 module_init(amd64_edac_init);
2818 module_exit(amd64_edac_exit);
2819 
2820 MODULE_LICENSE("GPL");
2821 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2822 		"Dave Peterson, Thayne Harbaugh");
2823 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2824 		EDAC_AMD64_VERSION);
2825 
2826 module_param(edac_op_state, int, 0444);
2827 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2828