xref: /linux/drivers/edac/amd64_edac.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 /* Lookup table for all possible MC control instances */
17 struct amd64_pvt;
18 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
20 
21 /*
22  * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
23  * for DDR2 DRAM mapping.
24  */
25 u32 revf_quad_ddr2_shift[] = {
26 	0,	/* 0000b NULL DIMM (128mb) */
27 	28,	/* 0001b 256mb */
28 	29,	/* 0010b 512mb */
29 	29,	/* 0011b 512mb */
30 	29,	/* 0100b 512mb */
31 	30,	/* 0101b 1gb */
32 	30,	/* 0110b 1gb */
33 	31,	/* 0111b 2gb */
34 	31,	/* 1000b 2gb */
35 	32,	/* 1001b 4gb */
36 	32,	/* 1010b 4gb */
37 	33,	/* 1011b 8gb */
38 	0,	/* 1100b future */
39 	0,	/* 1101b future */
40 	0,	/* 1110b future */
41 	0	/* 1111b future */
42 };
43 
44 /*
45  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
46  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
47  * or higher value'.
48  *
49  *FIXME: Produce a better mapping/linearisation.
50  */
51 
52 struct scrubrate scrubrates[] = {
53 	{ 0x01, 1600000000UL},
54 	{ 0x02, 800000000UL},
55 	{ 0x03, 400000000UL},
56 	{ 0x04, 200000000UL},
57 	{ 0x05, 100000000UL},
58 	{ 0x06, 50000000UL},
59 	{ 0x07, 25000000UL},
60 	{ 0x08, 12284069UL},
61 	{ 0x09, 6274509UL},
62 	{ 0x0A, 3121951UL},
63 	{ 0x0B, 1560975UL},
64 	{ 0x0C, 781440UL},
65 	{ 0x0D, 390720UL},
66 	{ 0x0E, 195300UL},
67 	{ 0x0F, 97650UL},
68 	{ 0x10, 48854UL},
69 	{ 0x11, 24427UL},
70 	{ 0x12, 12213UL},
71 	{ 0x13, 6101UL},
72 	{ 0x14, 3051UL},
73 	{ 0x15, 1523UL},
74 	{ 0x16, 761UL},
75 	{ 0x00, 0UL},        /* scrubbing off */
76 };
77 
78 /*
79  * Memory scrubber control interface. For K8, memory scrubbing is handled by
80  * hardware and can involve L2 cache, dcache as well as the main memory. With
81  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
82  * functionality.
83  *
84  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
85  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
86  * bytes/sec for the setting.
87  *
88  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
89  * other archs, we might not have access to the caches directly.
90  */
91 
92 /*
93  * scan the scrub rate mapping table for a close or matching bandwidth value to
94  * issue. If requested is too big, then use last maximum value found.
95  */
96 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
97 				       u32 min_scrubrate)
98 {
99 	u32 scrubval;
100 	int i;
101 
102 	/*
103 	 * map the configured rate (new_bw) to a value specific to the AMD64
104 	 * memory controller and apply to register. Search for the first
105 	 * bandwidth entry that is greater or equal than the setting requested
106 	 * and program that. If at last entry, turn off DRAM scrubbing.
107 	 */
108 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
109 		/*
110 		 * skip scrub rates which aren't recommended
111 		 * (see F10 BKDG, F3x58)
112 		 */
113 		if (scrubrates[i].scrubval < min_scrubrate)
114 			continue;
115 
116 		if (scrubrates[i].bandwidth <= new_bw)
117 			break;
118 
119 		/*
120 		 * if no suitable bandwidth found, turn off DRAM scrubbing
121 		 * entirely by falling back to the last element in the
122 		 * scrubrates array.
123 		 */
124 	}
125 
126 	scrubval = scrubrates[i].scrubval;
127 	if (scrubval)
128 		edac_printk(KERN_DEBUG, EDAC_MC,
129 			    "Setting scrub rate bandwidth: %u\n",
130 			    scrubrates[i].bandwidth);
131 	else
132 		edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
133 
134 	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
135 
136 	return 0;
137 }
138 
139 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
140 {
141 	struct amd64_pvt *pvt = mci->pvt_info;
142 	u32 min_scrubrate = 0x0;
143 
144 	switch (boot_cpu_data.x86) {
145 	case 0xf:
146 		min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
147 		break;
148 	case 0x10:
149 		min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
150 		break;
151 	case 0x11:
152 		min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
153 		break;
154 
155 	default:
156 		amd64_printk(KERN_ERR, "Unsupported family!\n");
157 		break;
158 	}
159 	return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
160 			min_scrubrate);
161 }
162 
163 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
164 {
165 	struct amd64_pvt *pvt = mci->pvt_info;
166 	u32 scrubval = 0;
167 	int status = -1, i, ret = 0;
168 
169 	ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
170 	if (ret)
171 		debugf0("Reading K8_SCRCTRL failed\n");
172 
173 	scrubval = scrubval & 0x001F;
174 
175 	edac_printk(KERN_DEBUG, EDAC_MC,
176 		    "pci-read, sdram scrub control value: %d \n", scrubval);
177 
178 	for (i = 0; ARRAY_SIZE(scrubrates); i++) {
179 		if (scrubrates[i].scrubval == scrubval) {
180 			*bw = scrubrates[i].bandwidth;
181 			status = 0;
182 			break;
183 		}
184 	}
185 
186 	return status;
187 }
188 
189 /* Map from a CSROW entry to the mask entry that operates on it */
190 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
191 {
192 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
193 		return csrow;
194 	else
195 		return csrow >> 1;
196 }
197 
198 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
199 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
200 {
201 	if (dct == 0)
202 		return pvt->dcsb0[csrow];
203 	else
204 		return pvt->dcsb1[csrow];
205 }
206 
207 /*
208  * Return the 'mask' address the i'th CS entry. This function is needed because
209  * there number of DCSM registers on Rev E and prior vs Rev F and later is
210  * different.
211  */
212 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
213 {
214 	if (dct == 0)
215 		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
216 	else
217 		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
218 }
219 
220 
221 /*
222  * In *base and *limit, pass back the full 40-bit base and limit physical
223  * addresses for the node given by node_id.  This information is obtained from
224  * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
225  * base and limit addresses are of type SysAddr, as defined at the start of
226  * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
227  * in the address range they represent.
228  */
229 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
230 			       u64 *base, u64 *limit)
231 {
232 	*base = pvt->dram_base[node_id];
233 	*limit = pvt->dram_limit[node_id];
234 }
235 
236 /*
237  * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
238  * with node_id
239  */
240 static int amd64_base_limit_match(struct amd64_pvt *pvt,
241 					u64 sys_addr, int node_id)
242 {
243 	u64 base, limit, addr;
244 
245 	amd64_get_base_and_limit(pvt, node_id, &base, &limit);
246 
247 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
248 	 * all ones if the most significant implemented address bit is 1.
249 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
250 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 	 * Application Programming.
252 	 */
253 	addr = sys_addr & 0x000000ffffffffffull;
254 
255 	return (addr >= base) && (addr <= limit);
256 }
257 
258 /*
259  * Attempt to map a SysAddr to a node. On success, return a pointer to the
260  * mem_ctl_info structure for the node that the SysAddr maps to.
261  *
262  * On failure, return NULL.
263  */
264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 						u64 sys_addr)
266 {
267 	struct amd64_pvt *pvt;
268 	int node_id;
269 	u32 intlv_en, bits;
270 
271 	/*
272 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 	 */
275 	pvt = mci->pvt_info;
276 
277 	/*
278 	 * The value of this field should be the same for all DRAM Base
279 	 * registers.  Therefore we arbitrarily choose to read it from the
280 	 * register for node 0.
281 	 */
282 	intlv_en = pvt->dram_IntlvEn[0];
283 
284 	if (intlv_en == 0) {
285 		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
286 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 				goto found;
288 		}
289 		goto err_no_match;
290 	}
291 
292 	if (unlikely((intlv_en != 0x01) &&
293 		     (intlv_en != 0x03) &&
294 		     (intlv_en != 0x07))) {
295 		amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
296 			     "IntlvEn field of DRAM Base Register for node 0: "
297 			     "this probably indicates a BIOS bug.\n", intlv_en);
298 		return NULL;
299 	}
300 
301 	bits = (((u32) sys_addr) >> 12) & intlv_en;
302 
303 	for (node_id = 0; ; ) {
304 		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
305 			break;	/* intlv_sel field matches */
306 
307 		if (++node_id >= DRAM_REG_COUNT)
308 			goto err_no_match;
309 	}
310 
311 	/* sanity test for sys_addr */
312 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
313 		amd64_printk(KERN_WARNING,
314 			     "%s(): sys_addr 0x%llx falls outside base/limit "
315 			     "address range for node %d with node interleaving "
316 			     "enabled.\n",
317 			     __func__, sys_addr, node_id);
318 		return NULL;
319 	}
320 
321 found:
322 	return edac_mc_find(node_id);
323 
324 err_no_match:
325 	debugf2("sys_addr 0x%lx doesn't match any node\n",
326 		(unsigned long)sys_addr);
327 
328 	return NULL;
329 }
330 
331 /*
332  * Extract the DRAM CS base address from selected csrow register.
333  */
334 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
335 {
336 	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
337 				pvt->dcs_shift;
338 }
339 
340 /*
341  * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
342  */
343 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
344 {
345 	u64 dcsm_bits, other_bits;
346 	u64 mask;
347 
348 	/* Extract bits from DRAM CS Mask. */
349 	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
350 
351 	other_bits = pvt->dcsm_mask;
352 	other_bits = ~(other_bits << pvt->dcs_shift);
353 
354 	/*
355 	 * The extracted bits from DCSM belong in the spaces represented by
356 	 * the cleared bits in other_bits.
357 	 */
358 	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
359 
360 	return mask;
361 }
362 
363 /*
364  * @input_addr is an InputAddr associated with the node given by mci. Return the
365  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
366  */
367 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
368 {
369 	struct amd64_pvt *pvt;
370 	int csrow;
371 	u64 base, mask;
372 
373 	pvt = mci->pvt_info;
374 
375 	/*
376 	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
377 	 * base/mask register pair, test the condition shown near the start of
378 	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
379 	 */
380 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
381 
382 		/* This DRAM chip select is disabled on this node */
383 		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
384 			continue;
385 
386 		base = base_from_dct_base(pvt, csrow);
387 		mask = ~mask_from_dct_mask(pvt, csrow);
388 
389 		if ((input_addr & mask) == (base & mask)) {
390 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
391 				(unsigned long)input_addr, csrow,
392 				pvt->mc_node_id);
393 
394 			return csrow;
395 		}
396 	}
397 
398 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
399 		(unsigned long)input_addr, pvt->mc_node_id);
400 
401 	return -1;
402 }
403 
404 /*
405  * Return the base value defined by the DRAM Base register for the node
406  * represented by mci.  This function returns the full 40-bit value despite the
407  * fact that the register only stores bits 39-24 of the value. See section
408  * 3.4.4.1 (BKDG #26094, K8, revA-E)
409  */
410 static inline u64 get_dram_base(struct mem_ctl_info *mci)
411 {
412 	struct amd64_pvt *pvt = mci->pvt_info;
413 
414 	return pvt->dram_base[pvt->mc_node_id];
415 }
416 
417 /*
418  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
419  * for the node represented by mci. Info is passed back in *hole_base,
420  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
421  * info is invalid. Info may be invalid for either of the following reasons:
422  *
423  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
424  *   Address Register does not exist.
425  *
426  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
427  *   indicating that its contents are not valid.
428  *
429  * The values passed back in *hole_base, *hole_offset, and *hole_size are
430  * complete 32-bit values despite the fact that the bitfields in the DHAR
431  * only represent bits 31-24 of the base and offset values.
432  */
433 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
434 			     u64 *hole_offset, u64 *hole_size)
435 {
436 	struct amd64_pvt *pvt = mci->pvt_info;
437 	u64 base;
438 
439 	/* only revE and later have the DRAM Hole Address Register */
440 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
441 		debugf1("  revision %d for node %d does not support DHAR\n",
442 			pvt->ext_model, pvt->mc_node_id);
443 		return 1;
444 	}
445 
446 	/* only valid for Fam10h */
447 	if (boot_cpu_data.x86 == 0x10 &&
448 	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
449 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
450 		return 1;
451 	}
452 
453 	if ((pvt->dhar & DHAR_VALID) == 0) {
454 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
455 			pvt->mc_node_id);
456 		return 1;
457 	}
458 
459 	/* This node has Memory Hoisting */
460 
461 	/* +------------------+--------------------+--------------------+-----
462 	 * | memory           | DRAM hole          | relocated          |
463 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
464 	 * |                  |                    | DRAM hole          |
465 	 * |                  |                    | [0x100000000,      |
466 	 * |                  |                    |  (0x100000000+     |
467 	 * |                  |                    |   (0xffffffff-x))] |
468 	 * +------------------+--------------------+--------------------+-----
469 	 *
470 	 * Above is a diagram of physical memory showing the DRAM hole and the
471 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
472 	 * starts at address x (the base address) and extends through address
473 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
474 	 * addresses in the hole so that they start at 0x100000000.
475 	 */
476 
477 	base = dhar_base(pvt->dhar);
478 
479 	*hole_base = base;
480 	*hole_size = (0x1ull << 32) - base;
481 
482 	if (boot_cpu_data.x86 > 0xf)
483 		*hole_offset = f10_dhar_offset(pvt->dhar);
484 	else
485 		*hole_offset = k8_dhar_offset(pvt->dhar);
486 
487 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
488 		pvt->mc_node_id, (unsigned long)*hole_base,
489 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
490 
491 	return 0;
492 }
493 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
494 
495 /*
496  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
497  * assumed that sys_addr maps to the node given by mci.
498  *
499  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
500  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
501  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
502  * then it is also involved in translating a SysAddr to a DramAddr. Sections
503  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
504  * These parts of the documentation are unclear. I interpret them as follows:
505  *
506  * When node n receives a SysAddr, it processes the SysAddr as follows:
507  *
508  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
509  *    Limit registers for node n. If the SysAddr is not within the range
510  *    specified by the base and limit values, then node n ignores the Sysaddr
511  *    (since it does not map to node n). Otherwise continue to step 2 below.
512  *
513  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
514  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
515  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
516  *    hole. If not, skip to step 3 below. Else get the value of the
517  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
518  *    offset defined by this value from the SysAddr.
519  *
520  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
521  *    Base register for node n. To obtain the DramAddr, subtract the base
522  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
523  */
524 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
525 {
526 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
527 	int ret = 0;
528 
529 	dram_base = get_dram_base(mci);
530 
531 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
532 				      &hole_size);
533 	if (!ret) {
534 		if ((sys_addr >= (1ull << 32)) &&
535 		    (sys_addr < ((1ull << 32) + hole_size))) {
536 			/* use DHAR to translate SysAddr to DramAddr */
537 			dram_addr = sys_addr - hole_offset;
538 
539 			debugf2("using DHAR to translate SysAddr 0x%lx to "
540 				"DramAddr 0x%lx\n",
541 				(unsigned long)sys_addr,
542 				(unsigned long)dram_addr);
543 
544 			return dram_addr;
545 		}
546 	}
547 
548 	/*
549 	 * Translate the SysAddr to a DramAddr as shown near the start of
550 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
551 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
552 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
553 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
554 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
555 	 * Programmer's Manual Volume 1 Application Programming.
556 	 */
557 	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
558 
559 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
560 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
561 		(unsigned long)dram_addr);
562 	return dram_addr;
563 }
564 
565 /*
566  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
567  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
568  * for node interleaving.
569  */
570 static int num_node_interleave_bits(unsigned intlv_en)
571 {
572 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
573 	int n;
574 
575 	BUG_ON(intlv_en > 7);
576 	n = intlv_shift_table[intlv_en];
577 	return n;
578 }
579 
580 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
581 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
582 {
583 	struct amd64_pvt *pvt;
584 	int intlv_shift;
585 	u64 input_addr;
586 
587 	pvt = mci->pvt_info;
588 
589 	/*
590 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
591 	 * concerning translating a DramAddr to an InputAddr.
592 	 */
593 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
594 	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
595 	    (dram_addr & 0xfff);
596 
597 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
598 		intlv_shift, (unsigned long)dram_addr,
599 		(unsigned long)input_addr);
600 
601 	return input_addr;
602 }
603 
604 /*
605  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
606  * assumed that @sys_addr maps to the node given by mci.
607  */
608 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
609 {
610 	u64 input_addr;
611 
612 	input_addr =
613 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
614 
615 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
616 		(unsigned long)sys_addr, (unsigned long)input_addr);
617 
618 	return input_addr;
619 }
620 
621 
622 /*
623  * @input_addr is an InputAddr associated with the node represented by mci.
624  * Translate @input_addr to a DramAddr and return the result.
625  */
626 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
627 {
628 	struct amd64_pvt *pvt;
629 	int node_id, intlv_shift;
630 	u64 bits, dram_addr;
631 	u32 intlv_sel;
632 
633 	/*
634 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
635 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
636 	 * this procedure. When translating from a DramAddr to an InputAddr, the
637 	 * bits used for node interleaving are discarded.  Here we recover these
638 	 * bits from the IntlvSel field of the DRAM Limit register (section
639 	 * 3.4.4.2) for the node that input_addr is associated with.
640 	 */
641 	pvt = mci->pvt_info;
642 	node_id = pvt->mc_node_id;
643 	BUG_ON((node_id < 0) || (node_id > 7));
644 
645 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
646 
647 	if (intlv_shift == 0) {
648 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
649 			"same value\n",	(unsigned long)input_addr);
650 
651 		return input_addr;
652 	}
653 
654 	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
655 	    (input_addr & 0xfff);
656 
657 	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
658 	dram_addr = bits + (intlv_sel << 12);
659 
660 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
661 		"(%d node interleave bits)\n", (unsigned long)input_addr,
662 		(unsigned long)dram_addr, intlv_shift);
663 
664 	return dram_addr;
665 }
666 
667 /*
668  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
669  * @dram_addr to a SysAddr.
670  */
671 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
672 {
673 	struct amd64_pvt *pvt = mci->pvt_info;
674 	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
675 	int ret = 0;
676 
677 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
678 				      &hole_size);
679 	if (!ret) {
680 		if ((dram_addr >= hole_base) &&
681 		    (dram_addr < (hole_base + hole_size))) {
682 			sys_addr = dram_addr + hole_offset;
683 
684 			debugf1("using DHAR to translate DramAddr 0x%lx to "
685 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
686 				(unsigned long)sys_addr);
687 
688 			return sys_addr;
689 		}
690 	}
691 
692 	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
693 	sys_addr = dram_addr + base;
694 
695 	/*
696 	 * The sys_addr we have computed up to this point is a 40-bit value
697 	 * because the k8 deals with 40-bit values.  However, the value we are
698 	 * supposed to return is a full 64-bit physical address.  The AMD
699 	 * x86-64 architecture specifies that the most significant implemented
700 	 * address bit through bit 63 of a physical address must be either all
701 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
702 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
703 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
704 	 * Programming.
705 	 */
706 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
707 
708 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
709 		pvt->mc_node_id, (unsigned long)dram_addr,
710 		(unsigned long)sys_addr);
711 
712 	return sys_addr;
713 }
714 
715 /*
716  * @input_addr is an InputAddr associated with the node given by mci. Translate
717  * @input_addr to a SysAddr.
718  */
719 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
720 					 u64 input_addr)
721 {
722 	return dram_addr_to_sys_addr(mci,
723 				     input_addr_to_dram_addr(mci, input_addr));
724 }
725 
726 /*
727  * Find the minimum and maximum InputAddr values that map to the given @csrow.
728  * Pass back these values in *input_addr_min and *input_addr_max.
729  */
730 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
731 			      u64 *input_addr_min, u64 *input_addr_max)
732 {
733 	struct amd64_pvt *pvt;
734 	u64 base, mask;
735 
736 	pvt = mci->pvt_info;
737 	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
738 
739 	base = base_from_dct_base(pvt, csrow);
740 	mask = mask_from_dct_mask(pvt, csrow);
741 
742 	*input_addr_min = base & ~mask;
743 	*input_addr_max = base | mask | pvt->dcs_mask_notused;
744 }
745 
746 /*
747  * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
748  * Address High (section 3.6.4.6) register values and return the result. Address
749  * is located in the info structure (nbeah and nbeal), the encoding is device
750  * specific.
751  */
752 static u64 extract_error_address(struct mem_ctl_info *mci,
753 				 struct err_regs *info)
754 {
755 	struct amd64_pvt *pvt = mci->pvt_info;
756 
757 	return pvt->ops->get_error_address(mci, info);
758 }
759 
760 
761 /* Map the Error address to a PAGE and PAGE OFFSET. */
762 static inline void error_address_to_page_and_offset(u64 error_address,
763 						    u32 *page, u32 *offset)
764 {
765 	*page = (u32) (error_address >> PAGE_SHIFT);
766 	*offset = ((u32) error_address) & ~PAGE_MASK;
767 }
768 
769 /*
770  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
771  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
772  * of a node that detected an ECC memory error.  mci represents the node that
773  * the error address maps to (possibly different from the node that detected
774  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
775  * error.
776  */
777 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
778 {
779 	int csrow;
780 
781 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
782 
783 	if (csrow == -1)
784 		amd64_mc_printk(mci, KERN_ERR,
785 			     "Failed to translate InputAddr to csrow for "
786 			     "address 0x%lx\n", (unsigned long)sys_addr);
787 	return csrow;
788 }
789 
790 static int get_channel_from_ecc_syndrome(unsigned short syndrome);
791 
792 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
793 {
794 	if (boot_cpu_data.x86 == 0x11)
795 		edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
796 	else if (boot_cpu_data.x86 == 0x10)
797 		edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
798 	else if (boot_cpu_data.x86 == 0xf)
799 		edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
800 			(pvt->ext_model >= OPTERON_CPU_REV_F) ?
801 			"Rev F or later" : "Rev E or earlier");
802 	else
803 		/* we'll hardly ever ever get here */
804 		edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
805 }
806 
807 /*
808  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
809  * are ECC capable.
810  */
811 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
812 {
813 	int bit;
814 	enum dev_type edac_cap = EDAC_FLAG_NONE;
815 
816 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
817 		? 19
818 		: 17;
819 
820 	if (pvt->dclr0 & BIT(bit))
821 		edac_cap = EDAC_FLAG_SECDED;
822 
823 	return edac_cap;
824 }
825 
826 
827 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
828 					 int ganged);
829 
830 /* Display and decode various NB registers for debug purposes. */
831 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
832 {
833 	int ganged;
834 
835 	debugf1("  nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
836 		pvt->nbcap,
837 		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
838 		(pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
839 		(pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
840 	debugf1("    ECC Capable=%s   ChipKill Capable=%s\n",
841 		(pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
842 		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
843 	debugf1("  DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
844 		pvt->dclr0,
845 		(pvt->dclr0 & BIT(19)) ?  "Enabled" : "Disabled",
846 		(pvt->dclr0 & BIT(8)) ?  "Enabled" : "Disabled",
847 		(pvt->dclr0 & BIT(11)) ?  "128b" : "64b");
848 	debugf1("    DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s  DIMM Type=%s\n",
849 		(pvt->dclr0 & BIT(12)) ?  "Y" : "N",
850 		(pvt->dclr0 & BIT(13)) ?  "Y" : "N",
851 		(pvt->dclr0 & BIT(14)) ?  "Y" : "N",
852 		(pvt->dclr0 & BIT(15)) ?  "Y" : "N",
853 		(pvt->dclr0 & BIT(16)) ?  "UN-Buffered" : "Buffered");
854 
855 
856 	debugf1("  online-spare: 0x%8.08x\n", pvt->online_spare);
857 
858 	if (boot_cpu_data.x86 == 0xf) {
859 		debugf1("  dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
860 			pvt->dhar, dhar_base(pvt->dhar),
861 			k8_dhar_offset(pvt->dhar));
862 		debugf1("      DramHoleValid=%s\n",
863 			(pvt->dhar & DHAR_VALID) ?  "True" : "False");
864 
865 		debugf1("  dbam-dkt: 0x%8.08x\n", pvt->dbam0);
866 
867 		/* everything below this point is Fam10h and above */
868 		return;
869 
870 	} else {
871 		debugf1("  dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
872 			pvt->dhar, dhar_base(pvt->dhar),
873 			f10_dhar_offset(pvt->dhar));
874 		debugf1("    DramMemHoistValid=%s DramHoleValid=%s\n",
875 			(pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
876 			"True" : "False",
877 			(pvt->dhar & DHAR_VALID) ?
878 			"True" : "False");
879 	}
880 
881 	/* Only if NOT ganged does dcl1 have valid info */
882 	if (!dct_ganging_enabled(pvt)) {
883 		debugf1("  DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
884 			"Width=%s\n", pvt->dclr1,
885 			(pvt->dclr1 & BIT(19)) ?  "Enabled" : "Disabled",
886 			(pvt->dclr1 & BIT(8)) ?  "Enabled" : "Disabled",
887 			(pvt->dclr1 & BIT(11)) ?  "128b" : "64b");
888 		debugf1("    DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s  "
889 			"DIMM Type=%s\n",
890 			(pvt->dclr1 & BIT(12)) ?  "Y" : "N",
891 			(pvt->dclr1 & BIT(13)) ?  "Y" : "N",
892 			(pvt->dclr1 & BIT(14)) ?  "Y" : "N",
893 			(pvt->dclr1 & BIT(15)) ?  "Y" : "N",
894 			(pvt->dclr1 & BIT(16)) ?  "UN-Buffered" : "Buffered");
895 	}
896 
897 	/*
898 	 * Determine if ganged and then dump memory sizes for first controller,
899 	 * and if NOT ganged dump info for 2nd controller.
900 	 */
901 	ganged = dct_ganging_enabled(pvt);
902 
903 	f10_debug_display_dimm_sizes(0, pvt, ganged);
904 
905 	if (!ganged)
906 		f10_debug_display_dimm_sizes(1, pvt, ganged);
907 }
908 
909 /* Read in both of DBAM registers */
910 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
911 {
912 	int err = 0;
913 	unsigned int reg;
914 
915 	reg = DBAM0;
916 	err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
917 	if (err)
918 		goto err_reg;
919 
920 	if (boot_cpu_data.x86 >= 0x10) {
921 		reg = DBAM1;
922 		err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
923 
924 		if (err)
925 			goto err_reg;
926 	}
927 
928 	return;
929 
930 err_reg:
931 	debugf0("Error reading F2x%03x.\n", reg);
932 }
933 
934 /*
935  * NOTE: CPU Revision Dependent code: Rev E and Rev F
936  *
937  * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
938  * set the shift factor for the DCSB and DCSM values.
939  *
940  * ->dcs_mask_notused, RevE:
941  *
942  * To find the max InputAddr for the csrow, start with the base address and set
943  * all bits that are "don't care" bits in the test at the start of section
944  * 3.5.4 (p. 84).
945  *
946  * The "don't care" bits are all set bits in the mask and all bits in the gaps
947  * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
948  * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
949  * gaps.
950  *
951  * ->dcs_mask_notused, RevF and later:
952  *
953  * To find the max InputAddr for the csrow, start with the base address and set
954  * all bits that are "don't care" bits in the test at the start of NPT section
955  * 4.5.4 (p. 87).
956  *
957  * The "don't care" bits are all set bits in the mask and all bits in the gaps
958  * between bit ranges [36:27] and [21:13].
959  *
960  * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
961  * which are all bits in the above-mentioned gaps.
962  */
963 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
964 {
965 
966 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
967 		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
968 		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
969 		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
970 		pvt->dcs_shift		= REV_E_DCS_SHIFT;
971 		pvt->cs_count		= 8;
972 		pvt->num_dcsm		= 8;
973 	} else {
974 		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
975 		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
976 		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
977 		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
978 
979 		if (boot_cpu_data.x86 == 0x11) {
980 			pvt->cs_count = 4;
981 			pvt->num_dcsm = 2;
982 		} else {
983 			pvt->cs_count = 8;
984 			pvt->num_dcsm = 4;
985 		}
986 	}
987 }
988 
989 /*
990  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
991  */
992 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
993 {
994 	int cs, reg, err = 0;
995 
996 	amd64_set_dct_base_and_mask(pvt);
997 
998 	for (cs = 0; cs < pvt->cs_count; cs++) {
999 		reg = K8_DCSB0 + (cs * 4);
1000 		err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1001 						&pvt->dcsb0[cs]);
1002 		if (unlikely(err))
1003 			debugf0("Reading K8_DCSB0[%d] failed\n", cs);
1004 		else
1005 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
1006 				cs, pvt->dcsb0[cs], reg);
1007 
1008 		/* If DCT are NOT ganged, then read in DCT1's base */
1009 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1010 			reg = F10_DCSB1 + (cs * 4);
1011 			err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1012 							&pvt->dcsb1[cs]);
1013 			if (unlikely(err))
1014 				debugf0("Reading F10_DCSB1[%d] failed\n", cs);
1015 			else
1016 				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
1017 					cs, pvt->dcsb1[cs], reg);
1018 		} else {
1019 			pvt->dcsb1[cs] = 0;
1020 		}
1021 	}
1022 
1023 	for (cs = 0; cs < pvt->num_dcsm; cs++) {
1024 		reg = K8_DCSM0 + (cs * 4);
1025 		err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1026 					&pvt->dcsm0[cs]);
1027 		if (unlikely(err))
1028 			debugf0("Reading K8_DCSM0 failed\n");
1029 		else
1030 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
1031 				cs, pvt->dcsm0[cs], reg);
1032 
1033 		/* If DCT are NOT ganged, then read in DCT1's mask */
1034 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1035 			reg = F10_DCSM1 + (cs * 4);
1036 			err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
1037 					&pvt->dcsm1[cs]);
1038 			if (unlikely(err))
1039 				debugf0("Reading F10_DCSM1[%d] failed\n", cs);
1040 			else
1041 				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
1042 					cs, pvt->dcsm1[cs], reg);
1043 		} else
1044 			pvt->dcsm1[cs] = 0;
1045 	}
1046 }
1047 
1048 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1049 {
1050 	enum mem_type type;
1051 
1052 	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1053 		/* Rev F and later */
1054 		type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1055 	} else {
1056 		/* Rev E and earlier */
1057 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1058 	}
1059 
1060 	debugf1("  Memory type is: %s\n",
1061 		(type == MEM_DDR2) ? "MEM_DDR2" :
1062 		(type == MEM_RDDR2) ? "MEM_RDDR2" :
1063 		(type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1064 
1065 	return type;
1066 }
1067 
1068 /*
1069  * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1070  * and the later RevF memory controllers (DDR vs DDR2)
1071  *
1072  * Return:
1073  *      number of memory channels in operation
1074  * Pass back:
1075  *      contents of the DCL0_LOW register
1076  */
1077 static int k8_early_channel_count(struct amd64_pvt *pvt)
1078 {
1079 	int flag, err = 0;
1080 
1081 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1082 	if (err)
1083 		return err;
1084 
1085 	if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1086 		/* RevF (NPT) and later */
1087 		flag = pvt->dclr0 & F10_WIDTH_128;
1088 	} else {
1089 		/* RevE and earlier */
1090 		flag = pvt->dclr0 & REVE_WIDTH_128;
1091 	}
1092 
1093 	/* not used */
1094 	pvt->dclr1 = 0;
1095 
1096 	return (flag) ? 2 : 1;
1097 }
1098 
1099 /* extract the ERROR ADDRESS for the K8 CPUs */
1100 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1101 				struct err_regs *info)
1102 {
1103 	return (((u64) (info->nbeah & 0xff)) << 32) +
1104 			(info->nbeal & ~0x03);
1105 }
1106 
1107 /*
1108  * Read the Base and Limit registers for K8 based Memory controllers; extract
1109  * fields from the 'raw' reg into separate data fields
1110  *
1111  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1112  */
1113 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1114 {
1115 	u32 low;
1116 	u32 off = dram << 3;	/* 8 bytes between DRAM entries */
1117 	int err;
1118 
1119 	err = pci_read_config_dword(pvt->addr_f1_ctl,
1120 				    K8_DRAM_BASE_LOW + off, &low);
1121 	if (err)
1122 		debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1123 
1124 	/* Extract parts into separate data entries */
1125 	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1126 	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1127 	pvt->dram_rw_en[dram] = (low & 0x3);
1128 
1129 	err = pci_read_config_dword(pvt->addr_f1_ctl,
1130 				    K8_DRAM_LIMIT_LOW + off, &low);
1131 	if (err)
1132 		debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1133 
1134 	/*
1135 	 * Extract parts into separate data entries. Limit is the HIGHEST memory
1136 	 * location of the region, so lower 24 bits need to be all ones
1137 	 */
1138 	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1139 	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1140 	pvt->dram_DstNode[dram] = (low & 0x7);
1141 }
1142 
1143 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1144 					struct err_regs *info,
1145 					u64 SystemAddress)
1146 {
1147 	struct mem_ctl_info *src_mci;
1148 	unsigned short syndrome;
1149 	int channel, csrow;
1150 	u32 page, offset;
1151 
1152 	/* Extract the syndrome parts and form a 16-bit syndrome */
1153 	syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
1154 	syndrome |= LOW_SYNDROME(info->nbsh);
1155 
1156 	/* CHIPKILL enabled */
1157 	if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1158 		channel = get_channel_from_ecc_syndrome(syndrome);
1159 		if (channel < 0) {
1160 			/*
1161 			 * Syndrome didn't map, so we don't know which of the
1162 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1163 			 * as suspect.
1164 			 */
1165 			amd64_mc_printk(mci, KERN_WARNING,
1166 				       "unknown syndrome 0x%x - possible error "
1167 				       "reporting race\n", syndrome);
1168 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1169 			return;
1170 		}
1171 	} else {
1172 		/*
1173 		 * non-chipkill ecc mode
1174 		 *
1175 		 * The k8 documentation is unclear about how to determine the
1176 		 * channel number when using non-chipkill memory.  This method
1177 		 * was obtained from email communication with someone at AMD.
1178 		 * (Wish the email was placed in this comment - norsk)
1179 		 */
1180 		channel = ((SystemAddress & BIT(3)) != 0);
1181 	}
1182 
1183 	/*
1184 	 * Find out which node the error address belongs to. This may be
1185 	 * different from the node that detected the error.
1186 	 */
1187 	src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1188 	if (!src_mci) {
1189 		amd64_mc_printk(mci, KERN_ERR,
1190 			     "failed to map error address 0x%lx to a node\n",
1191 			     (unsigned long)SystemAddress);
1192 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1193 		return;
1194 	}
1195 
1196 	/* Now map the SystemAddress to a CSROW */
1197 	csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1198 	if (csrow < 0) {
1199 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1200 	} else {
1201 		error_address_to_page_and_offset(SystemAddress, &page, &offset);
1202 
1203 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1204 				  channel, EDAC_MOD_STR);
1205 	}
1206 }
1207 
1208 /*
1209  * determrine the number of PAGES in for this DIMM's size based on its DRAM
1210  * Address Mapping.
1211  *
1212  * First step is to calc the number of bits to shift a value of 1 left to
1213  * indicate show many pages. Start with the DBAM value as the starting bits,
1214  * then proceed to adjust those shift bits, based on CPU rev and the table.
1215  * See BKDG on the DBAM
1216  */
1217 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1218 {
1219 	int nr_pages;
1220 
1221 	if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1222 		nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1223 	} else {
1224 		/*
1225 		 * RevE and less section; this line is tricky. It collapses the
1226 		 * table used by RevD and later to one that matches revisions CG
1227 		 * and earlier.
1228 		 */
1229 		dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1230 				(dram_map > 8 ? 4 : (dram_map > 5 ?
1231 				3 : (dram_map > 2 ? 1 : 0))) : 0;
1232 
1233 		/* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1234 		nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1235 	}
1236 
1237 	return nr_pages;
1238 }
1239 
1240 /*
1241  * Get the number of DCT channels in use.
1242  *
1243  * Return:
1244  *	number of Memory Channels in operation
1245  * Pass back:
1246  *	contents of the DCL0_LOW register
1247  */
1248 static int f10_early_channel_count(struct amd64_pvt *pvt)
1249 {
1250 	int dbams[] = { DBAM0, DBAM1 };
1251 	int err = 0, channels = 0;
1252 	int i, j;
1253 	u32 dbam;
1254 
1255 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1256 	if (err)
1257 		goto err_reg;
1258 
1259 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1260 	if (err)
1261 		goto err_reg;
1262 
1263 	/* If we are in 128 bit mode, then we are using 2 channels */
1264 	if (pvt->dclr0 & F10_WIDTH_128) {
1265 		debugf0("Data WIDTH is 128 bits - 2 channels\n");
1266 		channels = 2;
1267 		return channels;
1268 	}
1269 
1270 	/*
1271 	 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1272 	 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1273 	 * will be OFF.
1274 	 *
1275 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1276 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1277 	 */
1278 	debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1279 
1280 	/*
1281 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1282 	 * is more than just one DIMM present in unganged mode. Need to check
1283 	 * both controllers since DIMMs can be placed in either one.
1284 	 */
1285 	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1286 		err = pci_read_config_dword(pvt->dram_f2_ctl, dbams[i], &dbam);
1287 		if (err)
1288 			goto err_reg;
1289 
1290 		for (j = 0; j < 4; j++) {
1291 			if (DBAM_DIMM(j, dbam) > 0) {
1292 				channels++;
1293 				break;
1294 			}
1295 		}
1296 	}
1297 
1298 	debugf0("MCT channel count: %d\n", channels);
1299 
1300 	return channels;
1301 
1302 err_reg:
1303 	return -1;
1304 
1305 }
1306 
1307 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1308 {
1309 	return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1310 }
1311 
1312 /* Enable extended configuration access via 0xCF8 feature */
1313 static void amd64_setup(struct amd64_pvt *pvt)
1314 {
1315 	u32 reg;
1316 
1317 	pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1318 
1319 	pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1320 	reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1321 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1322 }
1323 
1324 /* Restore the extended configuration access via 0xCF8 feature */
1325 static void amd64_teardown(struct amd64_pvt *pvt)
1326 {
1327 	u32 reg;
1328 
1329 	pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1330 
1331 	reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1332 	if (pvt->flags.cf8_extcfg)
1333 		reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1334 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1335 }
1336 
1337 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1338 			struct err_regs *info)
1339 {
1340 	return (((u64) (info->nbeah & 0xffff)) << 32) +
1341 			(info->nbeal & ~0x01);
1342 }
1343 
1344 /*
1345  * Read the Base and Limit registers for F10 based Memory controllers. Extract
1346  * fields from the 'raw' reg into separate data fields.
1347  *
1348  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1349  */
1350 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1351 {
1352 	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1353 
1354 	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1355 	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1356 
1357 	/* read the 'raw' DRAM BASE Address register */
1358 	pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1359 
1360 	/* Read from the ECS data register */
1361 	pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1362 
1363 	/* Extract parts into separate data entries */
1364 	pvt->dram_rw_en[dram] = (low_base & 0x3);
1365 
1366 	if (pvt->dram_rw_en[dram] == 0)
1367 		return;
1368 
1369 	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1370 
1371 	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1372 			       (((u64)low_base  & 0xFFFF0000) << 8);
1373 
1374 	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1375 	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1376 
1377 	/* read the 'raw' LIMIT registers */
1378 	pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1379 
1380 	/* Read from the ECS data register for the HIGH portion */
1381 	pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1382 
1383 	debugf0("  HW Regs: BASE=0x%08x-%08x      LIMIT=  0x%08x-%08x\n",
1384 		high_base, low_base, high_limit, low_limit);
1385 
1386 	pvt->dram_DstNode[dram] = (low_limit & 0x7);
1387 	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1388 
1389 	/*
1390 	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1391 	 * memory location of the region, so low 24 bits need to be all ones.
1392 	 */
1393 	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1394 				(((u64) low_limit & 0xFFFF0000) << 8) |
1395 				0x00FFFFFF;
1396 }
1397 
1398 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1399 {
1400 	int err = 0;
1401 
1402 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1403 				    &pvt->dram_ctl_select_low);
1404 	if (err) {
1405 		debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1406 	} else {
1407 		debugf0("DRAM_DCTL_SEL_LOW=0x%x  DctSelBaseAddr=0x%x\n",
1408 			pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1409 
1410 		debugf0("  DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1411 				"sel-hi-range=%s\n",
1412 			(dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1413 			(dct_dram_enabled(pvt) ? "Enabled"   : "Disabled"),
1414 			(dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1415 
1416 		debugf0("  DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1417 			(dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1418 			(dct_memory_cleared(pvt) ? "True " : "False "),
1419 			dct_sel_interleave_addr(pvt));
1420 	}
1421 
1422 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1423 				    &pvt->dram_ctl_select_high);
1424 	if (err)
1425 		debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1426 }
1427 
1428 /*
1429  * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1430  * Interleaving Modes.
1431  */
1432 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1433 				int hi_range_sel, u32 intlv_en)
1434 {
1435 	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1436 
1437 	if (dct_ganging_enabled(pvt))
1438 		cs = 0;
1439 	else if (hi_range_sel)
1440 		cs = dct_sel_high;
1441 	else if (dct_interleave_enabled(pvt)) {
1442 		/*
1443 		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1444 		 */
1445 		if (dct_sel_interleave_addr(pvt) == 0)
1446 			cs = sys_addr >> 6 & 1;
1447 		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1448 			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1449 
1450 			if (dct_sel_interleave_addr(pvt) & 1)
1451 				cs = (sys_addr >> 9 & 1) ^ temp;
1452 			else
1453 				cs = (sys_addr >> 6 & 1) ^ temp;
1454 		} else if (intlv_en & 4)
1455 			cs = sys_addr >> 15 & 1;
1456 		else if (intlv_en & 2)
1457 			cs = sys_addr >> 14 & 1;
1458 		else if (intlv_en & 1)
1459 			cs = sys_addr >> 13 & 1;
1460 		else
1461 			cs = sys_addr >> 12 & 1;
1462 	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1463 		cs = ~dct_sel_high & 1;
1464 	else
1465 		cs = 0;
1466 
1467 	return cs;
1468 }
1469 
1470 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1471 {
1472 	if (intlv_en == 1)
1473 		return 1;
1474 	else if (intlv_en == 3)
1475 		return 2;
1476 	else if (intlv_en == 7)
1477 		return 3;
1478 
1479 	return 0;
1480 }
1481 
1482 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1483 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1484 						 u32 dct_sel_base_addr,
1485 						 u64 dct_sel_base_off,
1486 						 u32 hole_valid, u32 hole_off,
1487 						 u64 dram_base)
1488 {
1489 	u64 chan_off;
1490 
1491 	if (hi_range_sel) {
1492 		if (!(dct_sel_base_addr & 0xFFFFF800) &&
1493 		   hole_valid && (sys_addr >= 0x100000000ULL))
1494 			chan_off = hole_off << 16;
1495 		else
1496 			chan_off = dct_sel_base_off;
1497 	} else {
1498 		if (hole_valid && (sys_addr >= 0x100000000ULL))
1499 			chan_off = hole_off << 16;
1500 		else
1501 			chan_off = dram_base & 0xFFFFF8000000ULL;
1502 	}
1503 
1504 	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1505 			(chan_off & 0x0000FFFFFF800000ULL);
1506 }
1507 
1508 /* Hack for the time being - Can we get this from BIOS?? */
1509 #define	CH0SPARE_RANK	0
1510 #define	CH1SPARE_RANK	1
1511 
1512 /*
1513  * checks if the csrow passed in is marked as SPARED, if so returns the new
1514  * spare row
1515  */
1516 static inline int f10_process_possible_spare(int csrow,
1517 				u32 cs, struct amd64_pvt *pvt)
1518 {
1519 	u32 swap_done;
1520 	u32 bad_dram_cs;
1521 
1522 	/* Depending on channel, isolate respective SPARING info */
1523 	if (cs) {
1524 		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1525 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1526 		if (swap_done && (csrow == bad_dram_cs))
1527 			csrow = CH1SPARE_RANK;
1528 	} else {
1529 		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1530 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1531 		if (swap_done && (csrow == bad_dram_cs))
1532 			csrow = CH0SPARE_RANK;
1533 	}
1534 	return csrow;
1535 }
1536 
1537 /*
1538  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1539  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1540  *
1541  * Return:
1542  *	-EINVAL:  NOT FOUND
1543  *	0..csrow = Chip-Select Row
1544  */
1545 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1546 {
1547 	struct mem_ctl_info *mci;
1548 	struct amd64_pvt *pvt;
1549 	u32 cs_base, cs_mask;
1550 	int cs_found = -EINVAL;
1551 	int csrow;
1552 
1553 	mci = mci_lookup[nid];
1554 	if (!mci)
1555 		return cs_found;
1556 
1557 	pvt = mci->pvt_info;
1558 
1559 	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
1560 
1561 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1562 
1563 		cs_base = amd64_get_dct_base(pvt, cs, csrow);
1564 		if (!(cs_base & K8_DCSB_CS_ENABLE))
1565 			continue;
1566 
1567 		/*
1568 		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1569 		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1570 		 * of the actual address.
1571 		 */
1572 		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1573 
1574 		/*
1575 		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1576 		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1577 		 */
1578 		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1579 
1580 		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1581 				csrow, cs_base, cs_mask);
1582 
1583 		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1584 
1585 		debugf1("              Final CSMask=0x%x\n", cs_mask);
1586 		debugf1("    (InputAddr & ~CSMask)=0x%x "
1587 				"(CSBase & ~CSMask)=0x%x\n",
1588 				(in_addr & ~cs_mask), (cs_base & ~cs_mask));
1589 
1590 		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1591 			cs_found = f10_process_possible_spare(csrow, cs, pvt);
1592 
1593 			debugf1(" MATCH csrow=%d\n", cs_found);
1594 			break;
1595 		}
1596 	}
1597 	return cs_found;
1598 }
1599 
1600 /* For a given @dram_range, check if @sys_addr falls within it. */
1601 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1602 				  u64 sys_addr, int *nid, int *chan_sel)
1603 {
1604 	int node_id, cs_found = -EINVAL, high_range = 0;
1605 	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1606 	u32 hole_valid, tmp, dct_sel_base, channel;
1607 	u64 dram_base, chan_addr, dct_sel_base_off;
1608 
1609 	dram_base = pvt->dram_base[dram_range];
1610 	intlv_en = pvt->dram_IntlvEn[dram_range];
1611 
1612 	node_id = pvt->dram_DstNode[dram_range];
1613 	intlv_sel = pvt->dram_IntlvSel[dram_range];
1614 
1615 	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1616 		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1617 
1618 	/*
1619 	 * This assumes that one node's DHAR is the same as all the other
1620 	 * nodes' DHAR.
1621 	 */
1622 	hole_off = (pvt->dhar & 0x0000FF80);
1623 	hole_valid = (pvt->dhar & 0x1);
1624 	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1625 
1626 	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
1627 			hole_off, hole_valid, intlv_sel);
1628 
1629 	if (intlv_en ||
1630 	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1631 		return -EINVAL;
1632 
1633 	dct_sel_base = dct_sel_baseaddr(pvt);
1634 
1635 	/*
1636 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1637 	 * select between DCT0 and DCT1.
1638 	 */
1639 	if (dct_high_range_enabled(pvt) &&
1640 	   !dct_ganging_enabled(pvt) &&
1641 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1642 		high_range = 1;
1643 
1644 	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1645 
1646 	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1647 					     dct_sel_base_off, hole_valid,
1648 					     hole_off, dram_base);
1649 
1650 	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1651 
1652 	/* remove Node ID (in case of memory interleaving) */
1653 	tmp = chan_addr & 0xFC0;
1654 
1655 	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1656 
1657 	/* remove channel interleave and hash */
1658 	if (dct_interleave_enabled(pvt) &&
1659 	   !dct_high_range_enabled(pvt) &&
1660 	   !dct_ganging_enabled(pvt)) {
1661 		if (dct_sel_interleave_addr(pvt) != 1)
1662 			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1663 		else {
1664 			tmp = chan_addr & 0xFC0;
1665 			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1666 					| tmp;
1667 		}
1668 	}
1669 
1670 	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1671 		chan_addr, (u32)(chan_addr >> 8));
1672 
1673 	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1674 
1675 	if (cs_found >= 0) {
1676 		*nid = node_id;
1677 		*chan_sel = channel;
1678 	}
1679 	return cs_found;
1680 }
1681 
1682 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1683 				       int *node, int *chan_sel)
1684 {
1685 	int dram_range, cs_found = -EINVAL;
1686 	u64 dram_base, dram_limit;
1687 
1688 	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1689 
1690 		if (!pvt->dram_rw_en[dram_range])
1691 			continue;
1692 
1693 		dram_base = pvt->dram_base[dram_range];
1694 		dram_limit = pvt->dram_limit[dram_range];
1695 
1696 		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1697 
1698 			cs_found = f10_match_to_this_node(pvt, dram_range,
1699 							  sys_addr, node,
1700 							  chan_sel);
1701 			if (cs_found >= 0)
1702 				break;
1703 		}
1704 	}
1705 	return cs_found;
1706 }
1707 
1708 /*
1709  * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1710  * CSROW, Channel.
1711  *
1712  * The @sys_addr is usually an error address received from the hardware.
1713  */
1714 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1715 				     struct err_regs *info,
1716 				     u64 sys_addr)
1717 {
1718 	struct amd64_pvt *pvt = mci->pvt_info;
1719 	u32 page, offset;
1720 	unsigned short syndrome;
1721 	int nid, csrow, chan = 0;
1722 
1723 	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1724 
1725 	if (csrow >= 0) {
1726 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1727 
1728 		syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
1729 		syndrome |= LOW_SYNDROME(info->nbsh);
1730 
1731 		/*
1732 		 * Is CHIPKILL on? If so, then we can attempt to use the
1733 		 * syndrome to isolate which channel the error was on.
1734 		 */
1735 		if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1736 			chan = get_channel_from_ecc_syndrome(syndrome);
1737 
1738 		if (chan >= 0) {
1739 			edac_mc_handle_ce(mci, page, offset, syndrome,
1740 					csrow, chan, EDAC_MOD_STR);
1741 		} else {
1742 			/*
1743 			 * Channel unknown, report all channels on this
1744 			 * CSROW as failed.
1745 			 */
1746 			for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1747 								chan++) {
1748 					edac_mc_handle_ce(mci, page, offset,
1749 							syndrome,
1750 							csrow, chan,
1751 							EDAC_MOD_STR);
1752 			}
1753 		}
1754 
1755 	} else {
1756 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1757 	}
1758 }
1759 
1760 /*
1761  * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1762  * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1763  * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1764  *
1765  * Normalize to 128MB by subracting 27 bit shift.
1766  */
1767 static int map_dbam_to_csrow_size(int index)
1768 {
1769 	int mega_bytes = 0;
1770 
1771 	if (index > 0 && index <= DBAM_MAX_VALUE)
1772 		mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1773 
1774 	return mega_bytes;
1775 }
1776 
1777 /*
1778  * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1779  * CSROWs as well
1780  */
1781 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1782 					 int ganged)
1783 {
1784 	int dimm, size0, size1;
1785 	u32 dbam;
1786 	u32 *dcsb;
1787 
1788 	debugf1("  dbam%d: 0x%8.08x  CSROW is %s\n", ctrl,
1789 			ctrl ? pvt->dbam1 : pvt->dbam0,
1790 			ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1791 
1792 	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1793 	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1794 
1795 	/* Dump memory sizes for DIMM and its CSROWs */
1796 	for (dimm = 0; dimm < 4; dimm++) {
1797 
1798 		size0 = 0;
1799 		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1800 			size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1801 
1802 		size1 = 0;
1803 		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1804 			size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1805 
1806 		debugf1("     CTRL-%d DIMM-%d=%5dMB   CSROW-%d=%5dMB "
1807 				"CSROW-%d=%5dMB\n",
1808 				ctrl,
1809 				dimm,
1810 				size0 + size1,
1811 				dimm * 2,
1812 				size0,
1813 				dimm * 2 + 1,
1814 				size1);
1815 	}
1816 }
1817 
1818 /*
1819  * Very early hardware probe on pci_probe thread to determine if this module
1820  * supports the hardware.
1821  *
1822  * Return:
1823  *      0 for OK
1824  *      1 for error
1825  */
1826 static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1827 {
1828 	int ret = 0;
1829 
1830 	/*
1831 	 * If we are on a DDR3 machine, we don't know yet if
1832 	 * we support that properly at this time
1833 	 */
1834 	if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1835 	    (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1836 
1837 		amd64_printk(KERN_WARNING,
1838 			"%s() This machine is running with DDR3 memory. "
1839 			"This is not currently supported. "
1840 			"DCHR0=0x%x DCHR1=0x%x\n",
1841 			__func__, pvt->dchr0, pvt->dchr1);
1842 
1843 		amd64_printk(KERN_WARNING,
1844 			"   Contact '%s' module MAINTAINER to help add"
1845 			" support.\n",
1846 			EDAC_MOD_STR);
1847 
1848 		ret = 1;
1849 
1850 	}
1851 	return ret;
1852 }
1853 
1854 /*
1855  * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1856  * (as per PCI DEVICE_IDs):
1857  *
1858  * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1859  * DEVICE ID, even though there is differences between the different Revisions
1860  * (CG,D,E,F).
1861  *
1862  * Family F10h and F11h.
1863  *
1864  */
1865 static struct amd64_family_type amd64_family_types[] = {
1866 	[K8_CPUS] = {
1867 		.ctl_name = "RevF",
1868 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1869 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1870 		.ops = {
1871 			.early_channel_count = k8_early_channel_count,
1872 			.get_error_address = k8_get_error_address,
1873 			.read_dram_base_limit = k8_read_dram_base_limit,
1874 			.map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1875 			.dbam_map_to_pages = k8_dbam_map_to_pages,
1876 		}
1877 	},
1878 	[F10_CPUS] = {
1879 		.ctl_name = "Family 10h",
1880 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1881 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1882 		.ops = {
1883 			.probe_valid_hardware = f10_probe_valid_hardware,
1884 			.early_channel_count = f10_early_channel_count,
1885 			.get_error_address = f10_get_error_address,
1886 			.read_dram_base_limit = f10_read_dram_base_limit,
1887 			.read_dram_ctl_register = f10_read_dram_ctl_register,
1888 			.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1889 			.dbam_map_to_pages = f10_dbam_map_to_pages,
1890 		}
1891 	},
1892 	[F11_CPUS] = {
1893 		.ctl_name = "Family 11h",
1894 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1895 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1896 		.ops = {
1897 			.probe_valid_hardware = f10_probe_valid_hardware,
1898 			.early_channel_count = f10_early_channel_count,
1899 			.get_error_address = f10_get_error_address,
1900 			.read_dram_base_limit = f10_read_dram_base_limit,
1901 			.read_dram_ctl_register = f10_read_dram_ctl_register,
1902 			.map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1903 			.dbam_map_to_pages = f10_dbam_map_to_pages,
1904 		}
1905 	},
1906 };
1907 
1908 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1909 						unsigned int device,
1910 						struct pci_dev *related)
1911 {
1912 	struct pci_dev *dev = NULL;
1913 
1914 	dev = pci_get_device(vendor, device, dev);
1915 	while (dev) {
1916 		if ((dev->bus->number == related->bus->number) &&
1917 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1918 			break;
1919 		dev = pci_get_device(vendor, device, dev);
1920 	}
1921 
1922 	return dev;
1923 }
1924 
1925 /*
1926  * syndrome mapping table for ECC ChipKill devices
1927  *
1928  * The comment in each row is the token (nibble) number that is in error.
1929  * The least significant nibble of the syndrome is the mask for the bits
1930  * that are in error (need to be toggled) for the particular nibble.
1931  *
1932  * Each row contains 16 entries.
1933  * The first entry (0th) is the channel number for that row of syndromes.
1934  * The remaining 15 entries are the syndromes for the respective Error
1935  * bit mask index.
1936  *
1937  * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1938  * bit in error.
1939  * The 2nd index entry is 0x0010 that the second bit is damaged.
1940  * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1941  * are damaged.
1942  * Thus so on until index 15, 0x1111, whose entry has the syndrome
1943  * indicating that all 4 bits are damaged.
1944  *
1945  * A search is performed on this table looking for a given syndrome.
1946  *
1947  * See the AMD documentation for ECC syndromes. This ECC table is valid
1948  * across all the versions of the AMD64 processors.
1949  *
1950  * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1951  * COLUMN index, then search all ROWS of that column, looking for a match
1952  * with the input syndrome. The ROW value will be the token number.
1953  *
1954  * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1955  * error.
1956  */
1957 #define NUMBER_ECC_ROWS  36
1958 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1959 	/* Channel 0 syndromes */
1960 	{/*0*/  0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1961 	   0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1962 	{/*1*/  0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1963 	   0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1964 	{/*2*/  0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1965 	   0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1966 	{/*3*/  0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1967 	   0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1968 	{/*4*/  0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1969 	   0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1970 	{/*5*/  0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1971 	   0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1972 	{/*6*/  0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1973 	   0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1974 	{/*7*/  0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1975 	   0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1976 	{/*8*/  0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1977 	   0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1978 	{/*9*/  0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1979 	   0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1980 	{/*a*/  0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1981 	   0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1982 	{/*b*/  0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1983 	   0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1984 	{/*c*/  0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1985 	   0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1986 	{/*d*/  0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1987 	   0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1988 	{/*e*/  0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1989 	   0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1990 	{/*f*/  0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1991 	   0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
1992 
1993 	/* Channel 1 syndromes */
1994 	{/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1995 	   0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1996 	{/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1997 	   0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
1998 	{/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
1999 	   0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
2000 	{/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
2001 	   0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
2002 	{/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
2003 	   0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
2004 	{/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
2005 	   0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
2006 	{/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
2007 	   0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
2008 	{/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
2009 	   0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
2010 	{/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
2011 	   0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
2012 	{/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
2013 	   0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
2014 	{/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
2015 	   0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
2016 	{/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
2017 	   0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
2018 	{/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
2019 	   0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
2020 	{/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
2021 	   0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
2022 	{/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
2023 	   0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
2024 	{/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
2025 	   0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2026 
2027 	/* ECC bits are also in the set of tokens and they too can go bad
2028 	 * first 2 cover channel 0, while the second 2 cover channel 1
2029 	 */
2030 	{/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2031 	   0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2032 	{/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2033 	   0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2034 	{/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2035 	   0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2036 	{/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2037 	   0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2038 };
2039 
2040 /*
2041  * Given the syndrome argument, scan each of the channel tables for a syndrome
2042  * match. Depending on which table it is found, return the channel number.
2043  */
2044 static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2045 {
2046 	int row;
2047 	int column;
2048 
2049 	/* Determine column to scan */
2050 	column = syndrome & 0xF;
2051 
2052 	/* Scan all rows, looking for syndrome, or end of table */
2053 	for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2054 		if (ecc_chipkill_syndromes[row][column] == syndrome)
2055 			return ecc_chipkill_syndromes[row][0];
2056 	}
2057 
2058 	debugf0("syndrome(%x) not found\n", syndrome);
2059 	return -1;
2060 }
2061 
2062 /*
2063  * Check for valid error in the NB Status High register. If so, proceed to read
2064  * NB Status Low, NB Address Low and NB Address High registers and store data
2065  * into error structure.
2066  *
2067  * Returns:
2068  *	- 1: if hardware regs contains valid error info
2069  *	- 0: if no valid error is indicated
2070  */
2071 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2072 				     struct err_regs *regs)
2073 {
2074 	struct amd64_pvt *pvt;
2075 	struct pci_dev *misc_f3_ctl;
2076 	int err = 0;
2077 
2078 	pvt = mci->pvt_info;
2079 	misc_f3_ctl = pvt->misc_f3_ctl;
2080 
2081 	err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
2082 	if (err)
2083 		goto err_reg;
2084 
2085 	if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2086 		return 0;
2087 
2088 	/* valid error, read remaining error information registers */
2089 	err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
2090 	if (err)
2091 		goto err_reg;
2092 
2093 	err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
2094 	if (err)
2095 		goto err_reg;
2096 
2097 	err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
2098 	if (err)
2099 		goto err_reg;
2100 
2101 	err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
2102 	if (err)
2103 		goto err_reg;
2104 
2105 	return 1;
2106 
2107 err_reg:
2108 	debugf0("Reading error info register failed\n");
2109 	return 0;
2110 }
2111 
2112 /*
2113  * This function is called to retrieve the error data from hardware and store it
2114  * in the info structure.
2115  *
2116  * Returns:
2117  *	- 1: if a valid error is found
2118  *	- 0: if no error is found
2119  */
2120 static int amd64_get_error_info(struct mem_ctl_info *mci,
2121 				struct err_regs *info)
2122 {
2123 	struct amd64_pvt *pvt;
2124 	struct err_regs regs;
2125 
2126 	pvt = mci->pvt_info;
2127 
2128 	if (!amd64_get_error_info_regs(mci, info))
2129 		return 0;
2130 
2131 	/*
2132 	 * Here's the problem with the K8's EDAC reporting: There are four
2133 	 * registers which report pieces of error information. They are shared
2134 	 * between CEs and UEs. Furthermore, contrary to what is stated in the
2135 	 * BKDG, the overflow bit is never used! Every error always updates the
2136 	 * reporting registers.
2137 	 *
2138 	 * Can you see the race condition? All four error reporting registers
2139 	 * must be read before a new error updates them! There is no way to read
2140 	 * all four registers atomically. The best than can be done is to detect
2141 	 * that a race has occured and then report the error without any kind of
2142 	 * precision.
2143 	 *
2144 	 * What is still positive is that errors are still reported and thus
2145 	 * problems can still be detected - just not localized because the
2146 	 * syndrome and address are spread out across registers.
2147 	 *
2148 	 * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
2149 	 * UEs and CEs should have separate register sets with proper overflow
2150 	 * bits that are used! At very least the problem can be fixed by
2151 	 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2152 	 * set the overflow bit - unless the current error is CE and the new
2153 	 * error is UE which would be the only situation for overwriting the
2154 	 * current values.
2155 	 */
2156 
2157 	regs = *info;
2158 
2159 	/* Use info from the second read - most current */
2160 	if (unlikely(!amd64_get_error_info_regs(mci, info)))
2161 		return 0;
2162 
2163 	/* clear the error bits in hardware */
2164 	pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2165 
2166 	/* Check for the possible race condition */
2167 	if ((regs.nbsh != info->nbsh) ||
2168 	     (regs.nbsl != info->nbsl) ||
2169 	     (regs.nbeah != info->nbeah) ||
2170 	     (regs.nbeal != info->nbeal)) {
2171 		amd64_mc_printk(mci, KERN_WARNING,
2172 				"hardware STATUS read access race condition "
2173 				"detected!\n");
2174 		return 0;
2175 	}
2176 	return 1;
2177 }
2178 
2179 /*
2180  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2181  * ADDRESS and process.
2182  */
2183 static void amd64_handle_ce(struct mem_ctl_info *mci,
2184 			    struct err_regs *info)
2185 {
2186 	struct amd64_pvt *pvt = mci->pvt_info;
2187 	u64 SystemAddress;
2188 
2189 	/* Ensure that the Error Address is VALID */
2190 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2191 		amd64_mc_printk(mci, KERN_ERR,
2192 			"HW has no ERROR_ADDRESS available\n");
2193 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2194 		return;
2195 	}
2196 
2197 	SystemAddress = extract_error_address(mci, info);
2198 
2199 	amd64_mc_printk(mci, KERN_ERR,
2200 		"CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2201 
2202 	pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2203 }
2204 
2205 /* Handle any Un-correctable Errors (UEs) */
2206 static void amd64_handle_ue(struct mem_ctl_info *mci,
2207 			    struct err_regs *info)
2208 {
2209 	int csrow;
2210 	u64 SystemAddress;
2211 	u32 page, offset;
2212 	struct mem_ctl_info *log_mci, *src_mci = NULL;
2213 
2214 	log_mci = mci;
2215 
2216 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2217 		amd64_mc_printk(mci, KERN_CRIT,
2218 			"HW has no ERROR_ADDRESS available\n");
2219 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2220 		return;
2221 	}
2222 
2223 	SystemAddress = extract_error_address(mci, info);
2224 
2225 	/*
2226 	 * Find out which node the error address belongs to. This may be
2227 	 * different from the node that detected the error.
2228 	 */
2229 	src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2230 	if (!src_mci) {
2231 		amd64_mc_printk(mci, KERN_CRIT,
2232 			"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2233 			(unsigned long)SystemAddress);
2234 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2235 		return;
2236 	}
2237 
2238 	log_mci = src_mci;
2239 
2240 	csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2241 	if (csrow < 0) {
2242 		amd64_mc_printk(mci, KERN_CRIT,
2243 			"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2244 			(unsigned long)SystemAddress);
2245 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2246 	} else {
2247 		error_address_to_page_and_offset(SystemAddress, &page, &offset);
2248 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2249 	}
2250 }
2251 
2252 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2253 					    struct err_regs *info)
2254 {
2255 	u32 ec  = ERROR_CODE(info->nbsl);
2256 	u32 xec = EXT_ERROR_CODE(info->nbsl);
2257 	int ecc_type = (info->nbsh >> 13) & 0x3;
2258 
2259 	/* Bail early out if this was an 'observed' error */
2260 	if (PP(ec) == K8_NBSL_PP_OBS)
2261 		return;
2262 
2263 	/* Do only ECC errors */
2264 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2265 		return;
2266 
2267 	if (ecc_type == 2)
2268 		amd64_handle_ce(mci, info);
2269 	else if (ecc_type == 1)
2270 		amd64_handle_ue(mci, info);
2271 
2272 	/*
2273 	 * If main error is CE then overflow must be CE.  If main error is UE
2274 	 * then overflow is unknown.  We'll call the overflow a CE - if
2275 	 * panic_on_ue is set then we're already panic'ed and won't arrive
2276 	 * here. Else, then apparently someone doesn't think that UE's are
2277 	 * catastrophic.
2278 	 */
2279 	if (info->nbsh & K8_NBSH_OVERFLOW)
2280 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2281 }
2282 
2283 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2284 {
2285 	struct mem_ctl_info *mci = mci_lookup[node_id];
2286 
2287 	__amd64_decode_bus_error(mci, regs);
2288 
2289 	/*
2290 	 * Check the UE bit of the NB status high register, if set generate some
2291 	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2292 	 * If it was a GART error, skip that process.
2293 	 *
2294 	 * FIXME: this should go somewhere else, if at all.
2295 	 */
2296 	if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2297 		edac_mc_handle_ue_no_info(mci, "UE bit is set");
2298 
2299 }
2300 
2301 /*
2302  * The main polling 'check' function, called FROM the edac core to perform the
2303  * error checking and if an error is encountered, error processing.
2304  */
2305 static void amd64_check(struct mem_ctl_info *mci)
2306 {
2307 	struct err_regs regs;
2308 
2309 	if (amd64_get_error_info(mci, &regs)) {
2310 		struct amd64_pvt *pvt = mci->pvt_info;
2311 		amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2312 	}
2313 }
2314 
2315 /*
2316  * Input:
2317  *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2318  *	2) AMD Family index value
2319  *
2320  * Ouput:
2321  *	Upon return of 0, the following filled in:
2322  *
2323  *		struct pvt->addr_f1_ctl
2324  *		struct pvt->misc_f3_ctl
2325  *
2326  *	Filled in with related device funcitions of 'dram_f2_ctl'
2327  *	These devices are "reserved" via the pci_get_device()
2328  *
2329  *	Upon return of 1 (error status):
2330  *
2331  *		Nothing reserved
2332  */
2333 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2334 {
2335 	const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2336 
2337 	/* Reserve the ADDRESS MAP Device */
2338 	pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2339 						    amd64_dev->addr_f1_ctl,
2340 						    pvt->dram_f2_ctl);
2341 
2342 	if (!pvt->addr_f1_ctl) {
2343 		amd64_printk(KERN_ERR, "error address map device not found: "
2344 			     "vendor %x device 0x%x (broken BIOS?)\n",
2345 			     PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2346 		return 1;
2347 	}
2348 
2349 	/* Reserve the MISC Device */
2350 	pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2351 						    amd64_dev->misc_f3_ctl,
2352 						    pvt->dram_f2_ctl);
2353 
2354 	if (!pvt->misc_f3_ctl) {
2355 		pci_dev_put(pvt->addr_f1_ctl);
2356 		pvt->addr_f1_ctl = NULL;
2357 
2358 		amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2359 			     "vendor %x device 0x%x (broken BIOS?)\n",
2360 			     PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2361 		return 1;
2362 	}
2363 
2364 	debugf1("    Addr Map device PCI Bus ID:\t%s\n",
2365 		pci_name(pvt->addr_f1_ctl));
2366 	debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
2367 		pci_name(pvt->dram_f2_ctl));
2368 	debugf1("    Misc device PCI Bus ID:\t%s\n",
2369 		pci_name(pvt->misc_f3_ctl));
2370 
2371 	return 0;
2372 }
2373 
2374 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2375 {
2376 	pci_dev_put(pvt->addr_f1_ctl);
2377 	pci_dev_put(pvt->misc_f3_ctl);
2378 }
2379 
2380 /*
2381  * Retrieve the hardware registers of the memory controller (this includes the
2382  * 'Address Map' and 'Misc' device regs)
2383  */
2384 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2385 {
2386 	u64 msr_val;
2387 	int dram, err = 0;
2388 
2389 	/*
2390 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2391 	 * those are Read-As-Zero
2392 	 */
2393 	rdmsrl(MSR_K8_TOP_MEM1, msr_val);
2394 	pvt->top_mem = msr_val >> 23;
2395 	debugf0("  TOP_MEM=0x%08llx\n", pvt->top_mem);
2396 
2397 	/* check first whether TOP_MEM2 is enabled */
2398 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2399 	if (msr_val & (1U << 21)) {
2400 		rdmsrl(MSR_K8_TOP_MEM2, msr_val);
2401 		pvt->top_mem2 = msr_val >> 23;
2402 		debugf0("  TOP_MEM2=0x%08llx\n", pvt->top_mem2);
2403 	} else
2404 		debugf0("  TOP_MEM2 disabled.\n");
2405 
2406 	amd64_cpu_display_info(pvt);
2407 
2408 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2409 	if (err)
2410 		goto err_reg;
2411 
2412 	if (pvt->ops->read_dram_ctl_register)
2413 		pvt->ops->read_dram_ctl_register(pvt);
2414 
2415 	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2416 		/*
2417 		 * Call CPU specific READ function to get the DRAM Base and
2418 		 * Limit values from the DCT.
2419 		 */
2420 		pvt->ops->read_dram_base_limit(pvt, dram);
2421 
2422 		/*
2423 		 * Only print out debug info on rows with both R and W Enabled.
2424 		 * Normal processing, compiler should optimize this whole 'if'
2425 		 * debug output block away.
2426 		 */
2427 		if (pvt->dram_rw_en[dram] != 0) {
2428 			debugf1("  DRAM_BASE[%d]: 0x%8.08x-%8.08x "
2429 				"DRAM_LIMIT:  0x%8.08x-%8.08x\n",
2430 				dram,
2431 				(u32)(pvt->dram_base[dram] >> 32),
2432 				(u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
2433 				(u32)(pvt->dram_limit[dram] >> 32),
2434 				(u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
2435 			debugf1("        IntlvEn=%s %s %s "
2436 				"IntlvSel=%d DstNode=%d\n",
2437 				pvt->dram_IntlvEn[dram] ?
2438 					"Enabled" : "Disabled",
2439 				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2440 				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2441 				pvt->dram_IntlvSel[dram],
2442 				pvt->dram_DstNode[dram]);
2443 		}
2444 	}
2445 
2446 	amd64_read_dct_base_mask(pvt);
2447 
2448 	err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2449 	if (err)
2450 		goto err_reg;
2451 
2452 	amd64_read_dbam_reg(pvt);
2453 
2454 	err = pci_read_config_dword(pvt->misc_f3_ctl,
2455 				F10_ONLINE_SPARE, &pvt->online_spare);
2456 	if (err)
2457 		goto err_reg;
2458 
2459 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2460 	if (err)
2461 		goto err_reg;
2462 
2463 	err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2464 	if (err)
2465 		goto err_reg;
2466 
2467 	if (!dct_ganging_enabled(pvt)) {
2468 		err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
2469 						&pvt->dclr1);
2470 		if (err)
2471 			goto err_reg;
2472 
2473 		err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
2474 						&pvt->dchr1);
2475 		if (err)
2476 			goto err_reg;
2477 	}
2478 
2479 	amd64_dump_misc_regs(pvt);
2480 
2481 	return;
2482 
2483 err_reg:
2484 	debugf0("Reading an MC register failed\n");
2485 
2486 }
2487 
2488 /*
2489  * NOTE: CPU Revision Dependent code
2490  *
2491  * Input:
2492  *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2493  *	k8 private pointer to -->
2494  *			DRAM Bank Address mapping register
2495  *			node_id
2496  *			DCL register where dual_channel_active is
2497  *
2498  * The DBAM register consists of 4 sets of 4 bits each definitions:
2499  *
2500  * Bits:	CSROWs
2501  * 0-3		CSROWs 0 and 1
2502  * 4-7		CSROWs 2 and 3
2503  * 8-11		CSROWs 4 and 5
2504  * 12-15	CSROWs 6 and 7
2505  *
2506  * Values range from: 0 to 15
2507  * The meaning of the values depends on CPU revision and dual-channel state,
2508  * see relevant BKDG more info.
2509  *
2510  * The memory controller provides for total of only 8 CSROWs in its current
2511  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2512  * single channel or two (2) DIMMs in dual channel mode.
2513  *
2514  * The following code logic collapses the various tables for CSROW based on CPU
2515  * revision.
2516  *
2517  * Returns:
2518  *	The number of PAGE_SIZE pages on the specified CSROW number it
2519  *	encompasses
2520  *
2521  */
2522 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2523 {
2524 	u32 dram_map, nr_pages;
2525 
2526 	/*
2527 	 * The math on this doesn't look right on the surface because x/2*4 can
2528 	 * be simplified to x*2 but this expression makes use of the fact that
2529 	 * it is integral math where 1/2=0. This intermediate value becomes the
2530 	 * number of bits to shift the DBAM register to extract the proper CSROW
2531 	 * field.
2532 	 */
2533 	dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2534 
2535 	nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2536 
2537 	/*
2538 	 * If dual channel then double the memory size of single channel.
2539 	 * Channel count is 1 or 2
2540 	 */
2541 	nr_pages <<= (pvt->channel_count - 1);
2542 
2543 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2544 	debugf0("    nr_pages= %u  channel-count = %d\n",
2545 		nr_pages, pvt->channel_count);
2546 
2547 	return nr_pages;
2548 }
2549 
2550 /*
2551  * Initialize the array of csrow attribute instances, based on the values
2552  * from pci config hardware registers.
2553  */
2554 static int amd64_init_csrows(struct mem_ctl_info *mci)
2555 {
2556 	struct csrow_info *csrow;
2557 	struct amd64_pvt *pvt;
2558 	u64 input_addr_min, input_addr_max, sys_addr;
2559 	int i, err = 0, empty = 1;
2560 
2561 	pvt = mci->pvt_info;
2562 
2563 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2564 	if (err)
2565 		debugf0("Reading K8_NBCFG failed\n");
2566 
2567 	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2568 		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2569 		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2570 		);
2571 
2572 	for (i = 0; i < pvt->cs_count; i++) {
2573 		csrow = &mci->csrows[i];
2574 
2575 		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2576 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2577 				pvt->mc_node_id);
2578 			continue;
2579 		}
2580 
2581 		debugf1("----CSROW %d VALID for MC node %d\n",
2582 			i, pvt->mc_node_id);
2583 
2584 		empty = 0;
2585 		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2586 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2587 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2588 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2589 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2590 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2591 		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2592 		/* 8 bytes of resolution */
2593 
2594 		csrow->mtype = amd64_determine_memory_type(pvt);
2595 
2596 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2597 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2598 			(unsigned long)input_addr_min,
2599 			(unsigned long)input_addr_max);
2600 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2601 			(unsigned long)sys_addr, csrow->page_mask);
2602 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2603 			"last_page: 0x%lx\n",
2604 			(unsigned)csrow->nr_pages,
2605 			csrow->first_page, csrow->last_page);
2606 
2607 		/*
2608 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2609 		 */
2610 		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2611 			csrow->edac_mode =
2612 			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2613 			    EDAC_S4ECD4ED : EDAC_SECDED;
2614 		else
2615 			csrow->edac_mode = EDAC_NONE;
2616 	}
2617 
2618 	return empty;
2619 }
2620 
2621 /*
2622  * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2623  * enable it.
2624  */
2625 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2626 {
2627 	struct amd64_pvt *pvt = mci->pvt_info;
2628 	const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2629 	int cpu, idx = 0, err = 0;
2630 	struct msr msrs[cpumask_weight(cpumask)];
2631 	u32 value;
2632 	u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2633 
2634 	if (!ecc_enable_override)
2635 		return;
2636 
2637 	memset(msrs, 0, sizeof(msrs));
2638 
2639 	amd64_printk(KERN_WARNING,
2640 		"'ecc_enable_override' parameter is active, "
2641 		"Enabling AMD ECC hardware now: CAUTION\n");
2642 
2643 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2644 	if (err)
2645 		debugf0("Reading K8_NBCTL failed\n");
2646 
2647 	/* turn on UECCn and CECCEn bits */
2648 	pvt->old_nbctl = value & mask;
2649 	pvt->nbctl_mcgctl_saved = 1;
2650 
2651 	value |= mask;
2652 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2653 
2654 	rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2655 
2656 	for_each_cpu(cpu, cpumask) {
2657 		if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2658 			set_bit(idx, &pvt->old_mcgctl);
2659 
2660 		msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2661 		idx++;
2662 	}
2663 	wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2664 
2665 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2666 	if (err)
2667 		debugf0("Reading K8_NBCFG failed\n");
2668 
2669 	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2670 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2671 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2672 
2673 	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2674 		amd64_printk(KERN_WARNING,
2675 			"This node reports that DRAM ECC is "
2676 			"currently Disabled; ENABLING now\n");
2677 
2678 		/* Attempt to turn on DRAM ECC Enable */
2679 		value |= K8_NBCFG_ECC_ENABLE;
2680 		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2681 
2682 		err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2683 		if (err)
2684 			debugf0("Reading K8_NBCFG failed\n");
2685 
2686 		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2687 			amd64_printk(KERN_WARNING,
2688 				"Hardware rejects Enabling DRAM ECC checking\n"
2689 				"Check memory DIMM configuration\n");
2690 		} else {
2691 			amd64_printk(KERN_DEBUG,
2692 				"Hardware accepted DRAM ECC Enable\n");
2693 		}
2694 	}
2695 	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2696 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2697 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2698 
2699 	pvt->ctl_error_info.nbcfg = value;
2700 }
2701 
2702 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2703 {
2704 	const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
2705 	int cpu, idx = 0, err = 0;
2706 	struct msr msrs[cpumask_weight(cpumask)];
2707 	u32 value;
2708 	u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2709 
2710 	if (!pvt->nbctl_mcgctl_saved)
2711 		return;
2712 
2713 	memset(msrs, 0, sizeof(msrs));
2714 
2715 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
2716 	if (err)
2717 		debugf0("Reading K8_NBCTL failed\n");
2718 	value &= ~mask;
2719 	value |= pvt->old_nbctl;
2720 
2721 	/* restore the NB Enable MCGCTL bit */
2722 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2723 
2724 	rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2725 
2726 	for_each_cpu(cpu, cpumask) {
2727 		msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2728 		msrs[idx].l |=
2729 			test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
2730 		idx++;
2731 	}
2732 
2733 	wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
2734 }
2735 
2736 /* get all cores on this DCT */
2737 static void get_cpus_on_this_dct_cpumask(cpumask_t *mask, int nid)
2738 {
2739 	int cpu;
2740 
2741 	for_each_online_cpu(cpu)
2742 		if (amd_get_nb_id(cpu) == nid)
2743 			cpumask_set_cpu(cpu, mask);
2744 }
2745 
2746 /* check MCG_CTL on all the cpus on this node */
2747 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2748 {
2749 	cpumask_t mask;
2750 	struct msr *msrs;
2751 	int cpu, nbe, idx = 0;
2752 	bool ret = false;
2753 
2754 	cpumask_clear(&mask);
2755 
2756 	get_cpus_on_this_dct_cpumask(&mask, nid);
2757 
2758 	msrs = kzalloc(sizeof(struct msr) * cpumask_weight(&mask), GFP_KERNEL);
2759 	if (!msrs) {
2760 		amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2761 			      __func__);
2762 		 return false;
2763 	}
2764 
2765 	rdmsr_on_cpus(&mask, MSR_IA32_MCG_CTL, msrs);
2766 
2767 	for_each_cpu(cpu, &mask) {
2768 		nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2769 
2770 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2771 			cpu, msrs[idx].q,
2772 			(nbe ? "enabled" : "disabled"));
2773 
2774 		if (!nbe)
2775 			goto out;
2776 
2777 		idx++;
2778 	}
2779 	ret = true;
2780 
2781 out:
2782 	kfree(msrs);
2783 	return ret;
2784 }
2785 
2786 /*
2787  * EDAC requires that the BIOS have ECC enabled before taking over the
2788  * processing of ECC errors. This is because the BIOS can properly initialize
2789  * the memory system completely. A command line option allows to force-enable
2790  * hardware ECC later in amd64_enable_ecc_error_reporting().
2791  */
2792 static const char *ecc_warning =
2793 	"WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2794 	" Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2795 	" Also, use of the override can cause unknown side effects.\n";
2796 
2797 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2798 {
2799 	u32 value;
2800 	int err = 0;
2801 	u8 ecc_enabled = 0;
2802 	bool nb_mce_en = false;
2803 
2804 	err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
2805 	if (err)
2806 		debugf0("Reading K8_NBCTL failed\n");
2807 
2808 	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2809 	if (!ecc_enabled)
2810 		amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2811 			     "is currently disabled, set F3x%x[22] (%s).\n",
2812 			     K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2813 	else
2814 		amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2815 
2816 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2817 	if (!nb_mce_en)
2818 		amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2819 			     "0x%08x[4] on node %d to enable.\n",
2820 			     MSR_IA32_MCG_CTL, pvt->mc_node_id);
2821 
2822 	if (!ecc_enabled || !nb_mce_en) {
2823 		if (!ecc_enable_override) {
2824 			amd64_printk(KERN_WARNING, "%s", ecc_warning);
2825 			return -ENODEV;
2826 		}
2827 	} else
2828 		/* CLEAR the override, since BIOS controlled it */
2829 		ecc_enable_override = 0;
2830 
2831 	return 0;
2832 }
2833 
2834 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2835 					  ARRAY_SIZE(amd64_inj_attrs) +
2836 					  1];
2837 
2838 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2839 
2840 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2841 {
2842 	unsigned int i = 0, j = 0;
2843 
2844 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2845 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2846 
2847 	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2848 		sysfs_attrs[i] = amd64_inj_attrs[j];
2849 
2850 	sysfs_attrs[i] = terminator;
2851 
2852 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2853 }
2854 
2855 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2856 {
2857 	struct amd64_pvt *pvt = mci->pvt_info;
2858 
2859 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2860 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2861 
2862 	if (pvt->nbcap & K8_NBCAP_SECDED)
2863 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2864 
2865 	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2866 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2867 
2868 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2869 	mci->mod_name		= EDAC_MOD_STR;
2870 	mci->mod_ver		= EDAC_AMD64_VERSION;
2871 	mci->ctl_name		= get_amd_family_name(pvt->mc_type_index);
2872 	mci->dev_name		= pci_name(pvt->dram_f2_ctl);
2873 	mci->ctl_page_to_phys	= NULL;
2874 
2875 	/* IMPORTANT: Set the polling 'check' function in this module */
2876 	mci->edac_check		= amd64_check;
2877 
2878 	/* memory scrubber interface */
2879 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2880 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2881 }
2882 
2883 /*
2884  * Init stuff for this DRAM Controller device.
2885  *
2886  * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2887  * Space feature MUST be enabled on ALL Processors prior to actually reading
2888  * from the ECS registers. Since the loading of the module can occur on any
2889  * 'core', and cores don't 'see' all the other processors ECS data when the
2890  * others are NOT enabled. Our solution is to first enable ECS access in this
2891  * routine on all processors, gather some data in a amd64_pvt structure and
2892  * later come back in a finish-setup function to perform that final
2893  * initialization. See also amd64_init_2nd_stage() for that.
2894  */
2895 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2896 				    int mc_type_index)
2897 {
2898 	struct amd64_pvt *pvt = NULL;
2899 	int err = 0, ret;
2900 
2901 	ret = -ENOMEM;
2902 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2903 	if (!pvt)
2904 		goto err_exit;
2905 
2906 	pvt->mc_node_id = get_node_id(dram_f2_ctl);
2907 
2908 	pvt->dram_f2_ctl	= dram_f2_ctl;
2909 	pvt->ext_model		= boot_cpu_data.x86_model >> 4;
2910 	pvt->mc_type_index	= mc_type_index;
2911 	pvt->ops		= family_ops(mc_type_index);
2912 	pvt->old_mcgctl		= 0;
2913 
2914 	/*
2915 	 * We have the dram_f2_ctl device as an argument, now go reserve its
2916 	 * sibling devices from the PCI system.
2917 	 */
2918 	ret = -ENODEV;
2919 	err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2920 	if (err)
2921 		goto err_free;
2922 
2923 	ret = -EINVAL;
2924 	err = amd64_check_ecc_enabled(pvt);
2925 	if (err)
2926 		goto err_put;
2927 
2928 	/*
2929 	 * Key operation here: setup of HW prior to performing ops on it. Some
2930 	 * setup is required to access ECS data. After this is performed, the
2931 	 * 'teardown' function must be called upon error and normal exit paths.
2932 	 */
2933 	if (boot_cpu_data.x86 >= 0x10)
2934 		amd64_setup(pvt);
2935 
2936 	/*
2937 	 * Save the pointer to the private data for use in 2nd initialization
2938 	 * stage
2939 	 */
2940 	pvt_lookup[pvt->mc_node_id] = pvt;
2941 
2942 	return 0;
2943 
2944 err_put:
2945 	amd64_free_mc_sibling_devices(pvt);
2946 
2947 err_free:
2948 	kfree(pvt);
2949 
2950 err_exit:
2951 	return ret;
2952 }
2953 
2954 /*
2955  * This is the finishing stage of the init code. Needs to be performed after all
2956  * MCs' hardware have been prepped for accessing extended config space.
2957  */
2958 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2959 {
2960 	int node_id = pvt->mc_node_id;
2961 	struct mem_ctl_info *mci;
2962 	int ret, err = 0;
2963 
2964 	amd64_read_mc_registers(pvt);
2965 
2966 	ret = -ENODEV;
2967 	if (pvt->ops->probe_valid_hardware) {
2968 		err = pvt->ops->probe_valid_hardware(pvt);
2969 		if (err)
2970 			goto err_exit;
2971 	}
2972 
2973 	/*
2974 	 * We need to determine how many memory channels there are. Then use
2975 	 * that information for calculating the size of the dynamic instance
2976 	 * tables in the 'mci' structure
2977 	 */
2978 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2979 	if (pvt->channel_count < 0)
2980 		goto err_exit;
2981 
2982 	ret = -ENOMEM;
2983 	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2984 	if (!mci)
2985 		goto err_exit;
2986 
2987 	mci->pvt_info = pvt;
2988 
2989 	mci->dev = &pvt->dram_f2_ctl->dev;
2990 	amd64_setup_mci_misc_attributes(mci);
2991 
2992 	if (amd64_init_csrows(mci))
2993 		mci->edac_cap = EDAC_FLAG_NONE;
2994 
2995 	amd64_enable_ecc_error_reporting(mci);
2996 	amd64_set_mc_sysfs_attributes(mci);
2997 
2998 	ret = -ENODEV;
2999 	if (edac_mc_add_mc(mci)) {
3000 		debugf1("failed edac_mc_add_mc()\n");
3001 		goto err_add_mc;
3002 	}
3003 
3004 	mci_lookup[node_id] = mci;
3005 	pvt_lookup[node_id] = NULL;
3006 
3007 	/* register stuff with EDAC MCE */
3008 	if (report_gart_errors)
3009 		amd_report_gart_errors(true);
3010 
3011 	amd_register_ecc_decoder(amd64_decode_bus_error);
3012 
3013 	return 0;
3014 
3015 err_add_mc:
3016 	edac_mc_free(mci);
3017 
3018 err_exit:
3019 	debugf0("failure to init 2nd stage: ret=%d\n", ret);
3020 
3021 	amd64_restore_ecc_error_reporting(pvt);
3022 
3023 	if (boot_cpu_data.x86 > 0xf)
3024 		amd64_teardown(pvt);
3025 
3026 	amd64_free_mc_sibling_devices(pvt);
3027 
3028 	kfree(pvt_lookup[pvt->mc_node_id]);
3029 	pvt_lookup[node_id] = NULL;
3030 
3031 	return ret;
3032 }
3033 
3034 
3035 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
3036 				 const struct pci_device_id *mc_type)
3037 {
3038 	int ret = 0;
3039 
3040 	debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
3041 		get_amd_family_name(mc_type->driver_data));
3042 
3043 	ret = pci_enable_device(pdev);
3044 	if (ret < 0)
3045 		ret = -EIO;
3046 	else
3047 		ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
3048 
3049 	if (ret < 0)
3050 		debugf0("ret=%d\n", ret);
3051 
3052 	return ret;
3053 }
3054 
3055 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
3056 {
3057 	struct mem_ctl_info *mci;
3058 	struct amd64_pvt *pvt;
3059 
3060 	/* Remove from EDAC CORE tracking list */
3061 	mci = edac_mc_del_mc(&pdev->dev);
3062 	if (!mci)
3063 		return;
3064 
3065 	pvt = mci->pvt_info;
3066 
3067 	amd64_restore_ecc_error_reporting(pvt);
3068 
3069 	if (boot_cpu_data.x86 > 0xf)
3070 		amd64_teardown(pvt);
3071 
3072 	amd64_free_mc_sibling_devices(pvt);
3073 
3074 	kfree(pvt);
3075 	mci->pvt_info = NULL;
3076 
3077 	mci_lookup[pvt->mc_node_id] = NULL;
3078 
3079 	/* unregister from EDAC MCE */
3080 	amd_report_gart_errors(false);
3081 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
3082 
3083 	/* Free the EDAC CORE resources */
3084 	edac_mc_free(mci);
3085 }
3086 
3087 /*
3088  * This table is part of the interface for loading drivers for PCI devices. The
3089  * PCI core identifies what devices are on a system during boot, and then
3090  * inquiry this table to see if this driver is for a given device found.
3091  */
3092 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
3093 	{
3094 		.vendor		= PCI_VENDOR_ID_AMD,
3095 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
3096 		.subvendor	= PCI_ANY_ID,
3097 		.subdevice	= PCI_ANY_ID,
3098 		.class		= 0,
3099 		.class_mask	= 0,
3100 		.driver_data	= K8_CPUS
3101 	},
3102 	{
3103 		.vendor		= PCI_VENDOR_ID_AMD,
3104 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
3105 		.subvendor	= PCI_ANY_ID,
3106 		.subdevice	= PCI_ANY_ID,
3107 		.class		= 0,
3108 		.class_mask	= 0,
3109 		.driver_data	= F10_CPUS
3110 	},
3111 	{
3112 		.vendor		= PCI_VENDOR_ID_AMD,
3113 		.device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM,
3114 		.subvendor	= PCI_ANY_ID,
3115 		.subdevice	= PCI_ANY_ID,
3116 		.class		= 0,
3117 		.class_mask	= 0,
3118 		.driver_data	= F11_CPUS
3119 	},
3120 	{0, }
3121 };
3122 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
3123 
3124 static struct pci_driver amd64_pci_driver = {
3125 	.name		= EDAC_MOD_STR,
3126 	.probe		= amd64_init_one_instance,
3127 	.remove		= __devexit_p(amd64_remove_one_instance),
3128 	.id_table	= amd64_pci_table,
3129 };
3130 
3131 static void amd64_setup_pci_device(void)
3132 {
3133 	struct mem_ctl_info *mci;
3134 	struct amd64_pvt *pvt;
3135 
3136 	if (amd64_ctl_pci)
3137 		return;
3138 
3139 	mci = mci_lookup[0];
3140 	if (mci) {
3141 
3142 		pvt = mci->pvt_info;
3143 		amd64_ctl_pci =
3144 			edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3145 						    EDAC_MOD_STR);
3146 
3147 		if (!amd64_ctl_pci) {
3148 			pr_warning("%s(): Unable to create PCI control\n",
3149 				   __func__);
3150 
3151 			pr_warning("%s(): PCI error report via EDAC not set\n",
3152 				   __func__);
3153 			}
3154 	}
3155 }
3156 
3157 static int __init amd64_edac_init(void)
3158 {
3159 	int nb, err = -ENODEV;
3160 
3161 	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3162 
3163 	opstate_init();
3164 
3165 	if (cache_k8_northbridges() < 0)
3166 		return err;
3167 
3168 	err = pci_register_driver(&amd64_pci_driver);
3169 	if (err)
3170 		return err;
3171 
3172 	/*
3173 	 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3174 	 * amd64_pvt structs. These will be used in the 2nd stage init function
3175 	 * to finish initialization of the MC instances.
3176 	 */
3177 	for (nb = 0; nb < num_k8_northbridges; nb++) {
3178 		if (!pvt_lookup[nb])
3179 			continue;
3180 
3181 		err = amd64_init_2nd_stage(pvt_lookup[nb]);
3182 		if (err)
3183 			goto err_2nd_stage;
3184 	}
3185 
3186 	amd64_setup_pci_device();
3187 
3188 	return 0;
3189 
3190 err_2nd_stage:
3191 	debugf0("2nd stage failed\n");
3192 	pci_unregister_driver(&amd64_pci_driver);
3193 
3194 	return err;
3195 }
3196 
3197 static void __exit amd64_edac_exit(void)
3198 {
3199 	if (amd64_ctl_pci)
3200 		edac_pci_release_generic_ctl(amd64_ctl_pci);
3201 
3202 	pci_unregister_driver(&amd64_pci_driver);
3203 }
3204 
3205 module_init(amd64_edac_init);
3206 module_exit(amd64_edac_exit);
3207 
3208 MODULE_LICENSE("GPL");
3209 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3210 		"Dave Peterson, Thayne Harbaugh");
3211 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3212 		EDAC_AMD64_VERSION);
3213 
3214 module_param(edac_op_state, int, 0444);
3215 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3216