xref: /linux/drivers/edac/amd64_edac.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /* Lookup table for all possible MC control instances */
19 struct amd64_pvt;
20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22 
23 /*
24  * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25  * later.
26  */
27 static int ddr2_dbam_revCG[] = {
28 			   [0]		= 32,
29 			   [1]		= 64,
30 			   [2]		= 128,
31 			   [3]		= 256,
32 			   [4]		= 512,
33 			   [5]		= 1024,
34 			   [6]		= 2048,
35 };
36 
37 static int ddr2_dbam_revD[] = {
38 			   [0]		= 32,
39 			   [1]		= 64,
40 			   [2 ... 3]	= 128,
41 			   [4]		= 256,
42 			   [5]		= 512,
43 			   [6]		= 256,
44 			   [7]		= 512,
45 			   [8 ... 9]	= 1024,
46 			   [10]		= 2048,
47 };
48 
49 static int ddr2_dbam[] = { [0]		= 128,
50 			   [1]		= 256,
51 			   [2 ... 4]	= 512,
52 			   [5 ... 6]	= 1024,
53 			   [7 ... 8]	= 2048,
54 			   [9 ... 10]	= 4096,
55 			   [11]		= 8192,
56 };
57 
58 static int ddr3_dbam[] = { [0]		= -1,
59 			   [1]		= 256,
60 			   [2]		= 512,
61 			   [3 ... 4]	= -1,
62 			   [5 ... 6]	= 1024,
63 			   [7 ... 8]	= 2048,
64 			   [9 ... 10]	= 4096,
65 			   [11]	= 8192,
66 };
67 
68 /*
69  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71  * or higher value'.
72  *
73  *FIXME: Produce a better mapping/linearisation.
74  */
75 
76 struct scrubrate scrubrates[] = {
77 	{ 0x01, 1600000000UL},
78 	{ 0x02, 800000000UL},
79 	{ 0x03, 400000000UL},
80 	{ 0x04, 200000000UL},
81 	{ 0x05, 100000000UL},
82 	{ 0x06, 50000000UL},
83 	{ 0x07, 25000000UL},
84 	{ 0x08, 12284069UL},
85 	{ 0x09, 6274509UL},
86 	{ 0x0A, 3121951UL},
87 	{ 0x0B, 1560975UL},
88 	{ 0x0C, 781440UL},
89 	{ 0x0D, 390720UL},
90 	{ 0x0E, 195300UL},
91 	{ 0x0F, 97650UL},
92 	{ 0x10, 48854UL},
93 	{ 0x11, 24427UL},
94 	{ 0x12, 12213UL},
95 	{ 0x13, 6101UL},
96 	{ 0x14, 3051UL},
97 	{ 0x15, 1523UL},
98 	{ 0x16, 761UL},
99 	{ 0x00, 0UL},        /* scrubbing off */
100 };
101 
102 /*
103  * Memory scrubber control interface. For K8, memory scrubbing is handled by
104  * hardware and can involve L2 cache, dcache as well as the main memory. With
105  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106  * functionality.
107  *
108  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110  * bytes/sec for the setting.
111  *
112  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113  * other archs, we might not have access to the caches directly.
114  */
115 
116 /*
117  * scan the scrub rate mapping table for a close or matching bandwidth value to
118  * issue. If requested is too big, then use last maximum value found.
119  */
120 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 				       u32 min_scrubrate)
122 {
123 	u32 scrubval;
124 	int i;
125 
126 	/*
127 	 * map the configured rate (new_bw) to a value specific to the AMD64
128 	 * memory controller and apply to register. Search for the first
129 	 * bandwidth entry that is greater or equal than the setting requested
130 	 * and program that. If at last entry, turn off DRAM scrubbing.
131 	 */
132 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 		/*
134 		 * skip scrub rates which aren't recommended
135 		 * (see F10 BKDG, F3x58)
136 		 */
137 		if (scrubrates[i].scrubval < min_scrubrate)
138 			continue;
139 
140 		if (scrubrates[i].bandwidth <= new_bw)
141 			break;
142 
143 		/*
144 		 * if no suitable bandwidth found, turn off DRAM scrubbing
145 		 * entirely by falling back to the last element in the
146 		 * scrubrates array.
147 		 */
148 	}
149 
150 	scrubval = scrubrates[i].scrubval;
151 	if (scrubval)
152 		edac_printk(KERN_DEBUG, EDAC_MC,
153 			    "Setting scrub rate bandwidth: %u\n",
154 			    scrubrates[i].bandwidth);
155 	else
156 		edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
157 
158 	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
159 
160 	return 0;
161 }
162 
163 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bandwidth)
164 {
165 	struct amd64_pvt *pvt = mci->pvt_info;
166 	u32 min_scrubrate = 0x0;
167 
168 	switch (boot_cpu_data.x86) {
169 	case 0xf:
170 		min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 		break;
172 	case 0x10:
173 		min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 		break;
175 	case 0x11:
176 		min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
177 		break;
178 
179 	default:
180 		amd64_printk(KERN_ERR, "Unsupported family!\n");
181 		return -EINVAL;
182 	}
183 	return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, bandwidth,
184 					   min_scrubrate);
185 }
186 
187 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
188 {
189 	struct amd64_pvt *pvt = mci->pvt_info;
190 	u32 scrubval = 0;
191 	int status = -1, i;
192 
193 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
194 
195 	scrubval = scrubval & 0x001F;
196 
197 	edac_printk(KERN_DEBUG, EDAC_MC,
198 		    "pci-read, sdram scrub control value: %d \n", scrubval);
199 
200 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
201 		if (scrubrates[i].scrubval == scrubval) {
202 			*bw = scrubrates[i].bandwidth;
203 			status = 0;
204 			break;
205 		}
206 	}
207 
208 	return status;
209 }
210 
211 /* Map from a CSROW entry to the mask entry that operates on it */
212 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
213 {
214 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
215 		return csrow;
216 	else
217 		return csrow >> 1;
218 }
219 
220 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
221 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
222 {
223 	if (dct == 0)
224 		return pvt->dcsb0[csrow];
225 	else
226 		return pvt->dcsb1[csrow];
227 }
228 
229 /*
230  * Return the 'mask' address the i'th CS entry. This function is needed because
231  * there number of DCSM registers on Rev E and prior vs Rev F and later is
232  * different.
233  */
234 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
235 {
236 	if (dct == 0)
237 		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
238 	else
239 		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
240 }
241 
242 
243 /*
244  * In *base and *limit, pass back the full 40-bit base and limit physical
245  * addresses for the node given by node_id.  This information is obtained from
246  * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
247  * base and limit addresses are of type SysAddr, as defined at the start of
248  * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
249  * in the address range they represent.
250  */
251 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
252 			       u64 *base, u64 *limit)
253 {
254 	*base = pvt->dram_base[node_id];
255 	*limit = pvt->dram_limit[node_id];
256 }
257 
258 /*
259  * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
260  * with node_id
261  */
262 static int amd64_base_limit_match(struct amd64_pvt *pvt,
263 					u64 sys_addr, int node_id)
264 {
265 	u64 base, limit, addr;
266 
267 	amd64_get_base_and_limit(pvt, node_id, &base, &limit);
268 
269 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
270 	 * all ones if the most significant implemented address bit is 1.
271 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
272 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
273 	 * Application Programming.
274 	 */
275 	addr = sys_addr & 0x000000ffffffffffull;
276 
277 	return (addr >= base) && (addr <= limit);
278 }
279 
280 /*
281  * Attempt to map a SysAddr to a node. On success, return a pointer to the
282  * mem_ctl_info structure for the node that the SysAddr maps to.
283  *
284  * On failure, return NULL.
285  */
286 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 						u64 sys_addr)
288 {
289 	struct amd64_pvt *pvt;
290 	int node_id;
291 	u32 intlv_en, bits;
292 
293 	/*
294 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
296 	 */
297 	pvt = mci->pvt_info;
298 
299 	/*
300 	 * The value of this field should be the same for all DRAM Base
301 	 * registers.  Therefore we arbitrarily choose to read it from the
302 	 * register for node 0.
303 	 */
304 	intlv_en = pvt->dram_IntlvEn[0];
305 
306 	if (intlv_en == 0) {
307 		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
308 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
309 				goto found;
310 		}
311 		goto err_no_match;
312 	}
313 
314 	if (unlikely((intlv_en != 0x01) &&
315 		     (intlv_en != 0x03) &&
316 		     (intlv_en != 0x07))) {
317 		amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
318 			     "IntlvEn field of DRAM Base Register for node 0: "
319 			     "this probably indicates a BIOS bug.\n", intlv_en);
320 		return NULL;
321 	}
322 
323 	bits = (((u32) sys_addr) >> 12) & intlv_en;
324 
325 	for (node_id = 0; ; ) {
326 		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
327 			break;	/* intlv_sel field matches */
328 
329 		if (++node_id >= DRAM_REG_COUNT)
330 			goto err_no_match;
331 	}
332 
333 	/* sanity test for sys_addr */
334 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
335 		amd64_printk(KERN_WARNING,
336 			     "%s(): sys_addr 0x%llx falls outside base/limit "
337 			     "address range for node %d with node interleaving "
338 			     "enabled.\n",
339 			     __func__, sys_addr, node_id);
340 		return NULL;
341 	}
342 
343 found:
344 	return edac_mc_find(node_id);
345 
346 err_no_match:
347 	debugf2("sys_addr 0x%lx doesn't match any node\n",
348 		(unsigned long)sys_addr);
349 
350 	return NULL;
351 }
352 
353 /*
354  * Extract the DRAM CS base address from selected csrow register.
355  */
356 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
357 {
358 	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
359 				pvt->dcs_shift;
360 }
361 
362 /*
363  * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
364  */
365 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
366 {
367 	u64 dcsm_bits, other_bits;
368 	u64 mask;
369 
370 	/* Extract bits from DRAM CS Mask. */
371 	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
372 
373 	other_bits = pvt->dcsm_mask;
374 	other_bits = ~(other_bits << pvt->dcs_shift);
375 
376 	/*
377 	 * The extracted bits from DCSM belong in the spaces represented by
378 	 * the cleared bits in other_bits.
379 	 */
380 	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
381 
382 	return mask;
383 }
384 
385 /*
386  * @input_addr is an InputAddr associated with the node given by mci. Return the
387  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
388  */
389 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
390 {
391 	struct amd64_pvt *pvt;
392 	int csrow;
393 	u64 base, mask;
394 
395 	pvt = mci->pvt_info;
396 
397 	/*
398 	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
399 	 * base/mask register pair, test the condition shown near the start of
400 	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
401 	 */
402 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
403 
404 		/* This DRAM chip select is disabled on this node */
405 		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
406 			continue;
407 
408 		base = base_from_dct_base(pvt, csrow);
409 		mask = ~mask_from_dct_mask(pvt, csrow);
410 
411 		if ((input_addr & mask) == (base & mask)) {
412 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
413 				(unsigned long)input_addr, csrow,
414 				pvt->mc_node_id);
415 
416 			return csrow;
417 		}
418 	}
419 
420 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
421 		(unsigned long)input_addr, pvt->mc_node_id);
422 
423 	return -1;
424 }
425 
426 /*
427  * Return the base value defined by the DRAM Base register for the node
428  * represented by mci.  This function returns the full 40-bit value despite the
429  * fact that the register only stores bits 39-24 of the value. See section
430  * 3.4.4.1 (BKDG #26094, K8, revA-E)
431  */
432 static inline u64 get_dram_base(struct mem_ctl_info *mci)
433 {
434 	struct amd64_pvt *pvt = mci->pvt_info;
435 
436 	return pvt->dram_base[pvt->mc_node_id];
437 }
438 
439 /*
440  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
441  * for the node represented by mci. Info is passed back in *hole_base,
442  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
443  * info is invalid. Info may be invalid for either of the following reasons:
444  *
445  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
446  *   Address Register does not exist.
447  *
448  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
449  *   indicating that its contents are not valid.
450  *
451  * The values passed back in *hole_base, *hole_offset, and *hole_size are
452  * complete 32-bit values despite the fact that the bitfields in the DHAR
453  * only represent bits 31-24 of the base and offset values.
454  */
455 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
456 			     u64 *hole_offset, u64 *hole_size)
457 {
458 	struct amd64_pvt *pvt = mci->pvt_info;
459 	u64 base;
460 
461 	/* only revE and later have the DRAM Hole Address Register */
462 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
463 		debugf1("  revision %d for node %d does not support DHAR\n",
464 			pvt->ext_model, pvt->mc_node_id);
465 		return 1;
466 	}
467 
468 	/* only valid for Fam10h */
469 	if (boot_cpu_data.x86 == 0x10 &&
470 	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
471 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
472 		return 1;
473 	}
474 
475 	if ((pvt->dhar & DHAR_VALID) == 0) {
476 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
477 			pvt->mc_node_id);
478 		return 1;
479 	}
480 
481 	/* This node has Memory Hoisting */
482 
483 	/* +------------------+--------------------+--------------------+-----
484 	 * | memory           | DRAM hole          | relocated          |
485 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
486 	 * |                  |                    | DRAM hole          |
487 	 * |                  |                    | [0x100000000,      |
488 	 * |                  |                    |  (0x100000000+     |
489 	 * |                  |                    |   (0xffffffff-x))] |
490 	 * +------------------+--------------------+--------------------+-----
491 	 *
492 	 * Above is a diagram of physical memory showing the DRAM hole and the
493 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
494 	 * starts at address x (the base address) and extends through address
495 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
496 	 * addresses in the hole so that they start at 0x100000000.
497 	 */
498 
499 	base = dhar_base(pvt->dhar);
500 
501 	*hole_base = base;
502 	*hole_size = (0x1ull << 32) - base;
503 
504 	if (boot_cpu_data.x86 > 0xf)
505 		*hole_offset = f10_dhar_offset(pvt->dhar);
506 	else
507 		*hole_offset = k8_dhar_offset(pvt->dhar);
508 
509 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
510 		pvt->mc_node_id, (unsigned long)*hole_base,
511 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
512 
513 	return 0;
514 }
515 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
516 
517 /*
518  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
519  * assumed that sys_addr maps to the node given by mci.
520  *
521  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
522  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
523  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
524  * then it is also involved in translating a SysAddr to a DramAddr. Sections
525  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
526  * These parts of the documentation are unclear. I interpret them as follows:
527  *
528  * When node n receives a SysAddr, it processes the SysAddr as follows:
529  *
530  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
531  *    Limit registers for node n. If the SysAddr is not within the range
532  *    specified by the base and limit values, then node n ignores the Sysaddr
533  *    (since it does not map to node n). Otherwise continue to step 2 below.
534  *
535  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
536  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
537  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
538  *    hole. If not, skip to step 3 below. Else get the value of the
539  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
540  *    offset defined by this value from the SysAddr.
541  *
542  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
543  *    Base register for node n. To obtain the DramAddr, subtract the base
544  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
545  */
546 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
547 {
548 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
549 	int ret = 0;
550 
551 	dram_base = get_dram_base(mci);
552 
553 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
554 				      &hole_size);
555 	if (!ret) {
556 		if ((sys_addr >= (1ull << 32)) &&
557 		    (sys_addr < ((1ull << 32) + hole_size))) {
558 			/* use DHAR to translate SysAddr to DramAddr */
559 			dram_addr = sys_addr - hole_offset;
560 
561 			debugf2("using DHAR to translate SysAddr 0x%lx to "
562 				"DramAddr 0x%lx\n",
563 				(unsigned long)sys_addr,
564 				(unsigned long)dram_addr);
565 
566 			return dram_addr;
567 		}
568 	}
569 
570 	/*
571 	 * Translate the SysAddr to a DramAddr as shown near the start of
572 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
573 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
574 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
575 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
576 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
577 	 * Programmer's Manual Volume 1 Application Programming.
578 	 */
579 	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
580 
581 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
582 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
583 		(unsigned long)dram_addr);
584 	return dram_addr;
585 }
586 
587 /*
588  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
589  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
590  * for node interleaving.
591  */
592 static int num_node_interleave_bits(unsigned intlv_en)
593 {
594 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
595 	int n;
596 
597 	BUG_ON(intlv_en > 7);
598 	n = intlv_shift_table[intlv_en];
599 	return n;
600 }
601 
602 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
603 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
604 {
605 	struct amd64_pvt *pvt;
606 	int intlv_shift;
607 	u64 input_addr;
608 
609 	pvt = mci->pvt_info;
610 
611 	/*
612 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
613 	 * concerning translating a DramAddr to an InputAddr.
614 	 */
615 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
616 	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
617 	    (dram_addr & 0xfff);
618 
619 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
620 		intlv_shift, (unsigned long)dram_addr,
621 		(unsigned long)input_addr);
622 
623 	return input_addr;
624 }
625 
626 /*
627  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
628  * assumed that @sys_addr maps to the node given by mci.
629  */
630 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
631 {
632 	u64 input_addr;
633 
634 	input_addr =
635 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
636 
637 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
638 		(unsigned long)sys_addr, (unsigned long)input_addr);
639 
640 	return input_addr;
641 }
642 
643 
644 /*
645  * @input_addr is an InputAddr associated with the node represented by mci.
646  * Translate @input_addr to a DramAddr and return the result.
647  */
648 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
649 {
650 	struct amd64_pvt *pvt;
651 	int node_id, intlv_shift;
652 	u64 bits, dram_addr;
653 	u32 intlv_sel;
654 
655 	/*
656 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
657 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
658 	 * this procedure. When translating from a DramAddr to an InputAddr, the
659 	 * bits used for node interleaving are discarded.  Here we recover these
660 	 * bits from the IntlvSel field of the DRAM Limit register (section
661 	 * 3.4.4.2) for the node that input_addr is associated with.
662 	 */
663 	pvt = mci->pvt_info;
664 	node_id = pvt->mc_node_id;
665 	BUG_ON((node_id < 0) || (node_id > 7));
666 
667 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
668 
669 	if (intlv_shift == 0) {
670 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
671 			"same value\n",	(unsigned long)input_addr);
672 
673 		return input_addr;
674 	}
675 
676 	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
677 	    (input_addr & 0xfff);
678 
679 	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
680 	dram_addr = bits + (intlv_sel << 12);
681 
682 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
683 		"(%d node interleave bits)\n", (unsigned long)input_addr,
684 		(unsigned long)dram_addr, intlv_shift);
685 
686 	return dram_addr;
687 }
688 
689 /*
690  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
691  * @dram_addr to a SysAddr.
692  */
693 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
694 {
695 	struct amd64_pvt *pvt = mci->pvt_info;
696 	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
697 	int ret = 0;
698 
699 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
700 				      &hole_size);
701 	if (!ret) {
702 		if ((dram_addr >= hole_base) &&
703 		    (dram_addr < (hole_base + hole_size))) {
704 			sys_addr = dram_addr + hole_offset;
705 
706 			debugf1("using DHAR to translate DramAddr 0x%lx to "
707 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
708 				(unsigned long)sys_addr);
709 
710 			return sys_addr;
711 		}
712 	}
713 
714 	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
715 	sys_addr = dram_addr + base;
716 
717 	/*
718 	 * The sys_addr we have computed up to this point is a 40-bit value
719 	 * because the k8 deals with 40-bit values.  However, the value we are
720 	 * supposed to return is a full 64-bit physical address.  The AMD
721 	 * x86-64 architecture specifies that the most significant implemented
722 	 * address bit through bit 63 of a physical address must be either all
723 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
724 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
725 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
726 	 * Programming.
727 	 */
728 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
729 
730 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
731 		pvt->mc_node_id, (unsigned long)dram_addr,
732 		(unsigned long)sys_addr);
733 
734 	return sys_addr;
735 }
736 
737 /*
738  * @input_addr is an InputAddr associated with the node given by mci. Translate
739  * @input_addr to a SysAddr.
740  */
741 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
742 					 u64 input_addr)
743 {
744 	return dram_addr_to_sys_addr(mci,
745 				     input_addr_to_dram_addr(mci, input_addr));
746 }
747 
748 /*
749  * Find the minimum and maximum InputAddr values that map to the given @csrow.
750  * Pass back these values in *input_addr_min and *input_addr_max.
751  */
752 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
753 			      u64 *input_addr_min, u64 *input_addr_max)
754 {
755 	struct amd64_pvt *pvt;
756 	u64 base, mask;
757 
758 	pvt = mci->pvt_info;
759 	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
760 
761 	base = base_from_dct_base(pvt, csrow);
762 	mask = mask_from_dct_mask(pvt, csrow);
763 
764 	*input_addr_min = base & ~mask;
765 	*input_addr_max = base | mask | pvt->dcs_mask_notused;
766 }
767 
768 /* Map the Error address to a PAGE and PAGE OFFSET. */
769 static inline void error_address_to_page_and_offset(u64 error_address,
770 						    u32 *page, u32 *offset)
771 {
772 	*page = (u32) (error_address >> PAGE_SHIFT);
773 	*offset = ((u32) error_address) & ~PAGE_MASK;
774 }
775 
776 /*
777  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
778  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
779  * of a node that detected an ECC memory error.  mci represents the node that
780  * the error address maps to (possibly different from the node that detected
781  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
782  * error.
783  */
784 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
785 {
786 	int csrow;
787 
788 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
789 
790 	if (csrow == -1)
791 		amd64_mc_printk(mci, KERN_ERR,
792 			     "Failed to translate InputAddr to csrow for "
793 			     "address 0x%lx\n", (unsigned long)sys_addr);
794 	return csrow;
795 }
796 
797 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
798 
799 static u16 extract_syndrome(struct err_regs *err)
800 {
801 	return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
802 }
803 
804 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
805 {
806 	if (boot_cpu_data.x86 == 0x11)
807 		edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
808 	else if (boot_cpu_data.x86 == 0x10)
809 		edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
810 	else if (boot_cpu_data.x86 == 0xf)
811 		edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
812 			(pvt->ext_model >= K8_REV_F) ?
813 			"Rev F or later" : "Rev E or earlier");
814 	else
815 		/* we'll hardly ever ever get here */
816 		edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
817 }
818 
819 /*
820  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
821  * are ECC capable.
822  */
823 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
824 {
825 	int bit;
826 	enum dev_type edac_cap = EDAC_FLAG_NONE;
827 
828 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
829 		? 19
830 		: 17;
831 
832 	if (pvt->dclr0 & BIT(bit))
833 		edac_cap = EDAC_FLAG_SECDED;
834 
835 	return edac_cap;
836 }
837 
838 
839 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
840 
841 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
842 {
843 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
844 
845 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
846 		(dclr & BIT(16)) ?  "un" : "",
847 		(dclr & BIT(19)) ? "yes" : "no");
848 
849 	debugf1("  PAR/ERR parity: %s\n",
850 		(dclr & BIT(8)) ?  "enabled" : "disabled");
851 
852 	debugf1("  DCT 128bit mode width: %s\n",
853 		(dclr & BIT(11)) ?  "128b" : "64b");
854 
855 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
856 		(dclr & BIT(12)) ?  "yes" : "no",
857 		(dclr & BIT(13)) ?  "yes" : "no",
858 		(dclr & BIT(14)) ?  "yes" : "no",
859 		(dclr & BIT(15)) ?  "yes" : "no");
860 }
861 
862 /* Display and decode various NB registers for debug purposes. */
863 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
864 {
865 	int ganged;
866 
867 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
868 
869 	debugf1("  NB two channel DRAM capable: %s\n",
870 		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
871 
872 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
873 		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
874 		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
875 
876 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
877 
878 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
879 
880 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
881 			"offset: 0x%08x\n",
882 			pvt->dhar,
883 			dhar_base(pvt->dhar),
884 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
885 						   : f10_dhar_offset(pvt->dhar));
886 
887 	debugf1("  DramHoleValid: %s\n",
888 		(pvt->dhar & DHAR_VALID) ? "yes" : "no");
889 
890 	/* everything below this point is Fam10h and above */
891 	if (boot_cpu_data.x86 == 0xf) {
892 		amd64_debug_display_dimm_sizes(0, pvt);
893 		return;
894 	}
895 
896 	amd64_printk(KERN_INFO, "using %s syndromes.\n",
897 		     ((pvt->syn_type == 8) ? "x8" : "x4"));
898 
899 	/* Only if NOT ganged does dclr1 have valid info */
900 	if (!dct_ganging_enabled(pvt))
901 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
902 
903 	/*
904 	 * Determine if ganged and then dump memory sizes for first controller,
905 	 * and if NOT ganged dump info for 2nd controller.
906 	 */
907 	ganged = dct_ganging_enabled(pvt);
908 
909 	amd64_debug_display_dimm_sizes(0, pvt);
910 
911 	if (!ganged)
912 		amd64_debug_display_dimm_sizes(1, pvt);
913 }
914 
915 /* Read in both of DBAM registers */
916 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
917 {
918 	amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
919 
920 	if (boot_cpu_data.x86 >= 0x10)
921 		amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
922 }
923 
924 /*
925  * NOTE: CPU Revision Dependent code: Rev E and Rev F
926  *
927  * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
928  * set the shift factor for the DCSB and DCSM values.
929  *
930  * ->dcs_mask_notused, RevE:
931  *
932  * To find the max InputAddr for the csrow, start with the base address and set
933  * all bits that are "don't care" bits in the test at the start of section
934  * 3.5.4 (p. 84).
935  *
936  * The "don't care" bits are all set bits in the mask and all bits in the gaps
937  * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
938  * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
939  * gaps.
940  *
941  * ->dcs_mask_notused, RevF and later:
942  *
943  * To find the max InputAddr for the csrow, start with the base address and set
944  * all bits that are "don't care" bits in the test at the start of NPT section
945  * 4.5.4 (p. 87).
946  *
947  * The "don't care" bits are all set bits in the mask and all bits in the gaps
948  * between bit ranges [36:27] and [21:13].
949  *
950  * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
951  * which are all bits in the above-mentioned gaps.
952  */
953 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
954 {
955 
956 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
957 		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
958 		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
959 		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
960 		pvt->dcs_shift		= REV_E_DCS_SHIFT;
961 		pvt->cs_count		= 8;
962 		pvt->num_dcsm		= 8;
963 	} else {
964 		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
965 		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
966 		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
967 		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
968 
969 		if (boot_cpu_data.x86 == 0x11) {
970 			pvt->cs_count = 4;
971 			pvt->num_dcsm = 2;
972 		} else {
973 			pvt->cs_count = 8;
974 			pvt->num_dcsm = 4;
975 		}
976 	}
977 }
978 
979 /*
980  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
981  */
982 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
983 {
984 	int cs, reg;
985 
986 	amd64_set_dct_base_and_mask(pvt);
987 
988 	for (cs = 0; cs < pvt->cs_count; cs++) {
989 		reg = K8_DCSB0 + (cs * 4);
990 		if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
991 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
992 				cs, pvt->dcsb0[cs], reg);
993 
994 		/* If DCT are NOT ganged, then read in DCT1's base */
995 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
996 			reg = F10_DCSB1 + (cs * 4);
997 			if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
998 						&pvt->dcsb1[cs]))
999 				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
1000 					cs, pvt->dcsb1[cs], reg);
1001 		} else {
1002 			pvt->dcsb1[cs] = 0;
1003 		}
1004 	}
1005 
1006 	for (cs = 0; cs < pvt->num_dcsm; cs++) {
1007 		reg = K8_DCSM0 + (cs * 4);
1008 		if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
1009 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
1010 				cs, pvt->dcsm0[cs], reg);
1011 
1012 		/* If DCT are NOT ganged, then read in DCT1's mask */
1013 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1014 			reg = F10_DCSM1 + (cs * 4);
1015 			if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1016 						&pvt->dcsm1[cs]))
1017 				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
1018 					cs, pvt->dcsm1[cs], reg);
1019 		} else {
1020 			pvt->dcsm1[cs] = 0;
1021 		}
1022 	}
1023 }
1024 
1025 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1026 {
1027 	enum mem_type type;
1028 
1029 	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1030 		if (pvt->dchr0 & DDR3_MODE)
1031 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
1032 		else
1033 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1034 	} else {
1035 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1036 	}
1037 
1038 	debugf1("  Memory type is: %s\n", edac_mem_types[type]);
1039 
1040 	return type;
1041 }
1042 
1043 /*
1044  * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1045  * and the later RevF memory controllers (DDR vs DDR2)
1046  *
1047  * Return:
1048  *      number of memory channels in operation
1049  * Pass back:
1050  *      contents of the DCL0_LOW register
1051  */
1052 static int k8_early_channel_count(struct amd64_pvt *pvt)
1053 {
1054 	int flag, err = 0;
1055 
1056 	err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1057 	if (err)
1058 		return err;
1059 
1060 	if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1061 		/* RevF (NPT) and later */
1062 		flag = pvt->dclr0 & F10_WIDTH_128;
1063 	} else {
1064 		/* RevE and earlier */
1065 		flag = pvt->dclr0 & REVE_WIDTH_128;
1066 	}
1067 
1068 	/* not used */
1069 	pvt->dclr1 = 0;
1070 
1071 	return (flag) ? 2 : 1;
1072 }
1073 
1074 /* extract the ERROR ADDRESS for the K8 CPUs */
1075 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1076 				struct err_regs *info)
1077 {
1078 	return (((u64) (info->nbeah & 0xff)) << 32) +
1079 			(info->nbeal & ~0x03);
1080 }
1081 
1082 /*
1083  * Read the Base and Limit registers for K8 based Memory controllers; extract
1084  * fields from the 'raw' reg into separate data fields
1085  *
1086  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1087  */
1088 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1089 {
1090 	u32 low;
1091 	u32 off = dram << 3;	/* 8 bytes between DRAM entries */
1092 
1093 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1094 
1095 	/* Extract parts into separate data entries */
1096 	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1097 	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1098 	pvt->dram_rw_en[dram] = (low & 0x3);
1099 
1100 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1101 
1102 	/*
1103 	 * Extract parts into separate data entries. Limit is the HIGHEST memory
1104 	 * location of the region, so lower 24 bits need to be all ones
1105 	 */
1106 	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1107 	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1108 	pvt->dram_DstNode[dram] = (low & 0x7);
1109 }
1110 
1111 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1112 				    struct err_regs *err_info, u64 sys_addr)
1113 {
1114 	struct mem_ctl_info *src_mci;
1115 	int channel, csrow;
1116 	u32 page, offset;
1117 	u16 syndrome;
1118 
1119 	syndrome = extract_syndrome(err_info);
1120 
1121 	/* CHIPKILL enabled */
1122 	if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1123 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1124 		if (channel < 0) {
1125 			/*
1126 			 * Syndrome didn't map, so we don't know which of the
1127 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1128 			 * as suspect.
1129 			 */
1130 			amd64_mc_printk(mci, KERN_WARNING,
1131 					"unknown syndrome 0x%04x - possible "
1132 					"error reporting race\n", syndrome);
1133 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1134 			return;
1135 		}
1136 	} else {
1137 		/*
1138 		 * non-chipkill ecc mode
1139 		 *
1140 		 * The k8 documentation is unclear about how to determine the
1141 		 * channel number when using non-chipkill memory.  This method
1142 		 * was obtained from email communication with someone at AMD.
1143 		 * (Wish the email was placed in this comment - norsk)
1144 		 */
1145 		channel = ((sys_addr & BIT(3)) != 0);
1146 	}
1147 
1148 	/*
1149 	 * Find out which node the error address belongs to. This may be
1150 	 * different from the node that detected the error.
1151 	 */
1152 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1153 	if (!src_mci) {
1154 		amd64_mc_printk(mci, KERN_ERR,
1155 			     "failed to map error address 0x%lx to a node\n",
1156 			     (unsigned long)sys_addr);
1157 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1158 		return;
1159 	}
1160 
1161 	/* Now map the sys_addr to a CSROW */
1162 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1163 	if (csrow < 0) {
1164 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1165 	} else {
1166 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1167 
1168 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1169 				  channel, EDAC_MOD_STR);
1170 	}
1171 }
1172 
1173 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1174 {
1175 	int *dbam_map;
1176 
1177 	if (pvt->ext_model >= K8_REV_F)
1178 		dbam_map = ddr2_dbam;
1179 	else if (pvt->ext_model >= K8_REV_D)
1180 		dbam_map = ddr2_dbam_revD;
1181 	else
1182 		dbam_map = ddr2_dbam_revCG;
1183 
1184 	return dbam_map[cs_mode];
1185 }
1186 
1187 /*
1188  * Get the number of DCT channels in use.
1189  *
1190  * Return:
1191  *	number of Memory Channels in operation
1192  * Pass back:
1193  *	contents of the DCL0_LOW register
1194  */
1195 static int f10_early_channel_count(struct amd64_pvt *pvt)
1196 {
1197 	int dbams[] = { DBAM0, DBAM1 };
1198 	int i, j, channels = 0;
1199 	u32 dbam;
1200 
1201 	/* If we are in 128 bit mode, then we are using 2 channels */
1202 	if (pvt->dclr0 & F10_WIDTH_128) {
1203 		channels = 2;
1204 		return channels;
1205 	}
1206 
1207 	/*
1208 	 * Need to check if in unganged mode: In such, there are 2 channels,
1209 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1210 	 * bit will be OFF.
1211 	 *
1212 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1213 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1214 	 */
1215 	debugf0("Data width is not 128 bits - need more decoding\n");
1216 
1217 	/*
1218 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1219 	 * is more than just one DIMM present in unganged mode. Need to check
1220 	 * both controllers since DIMMs can be placed in either one.
1221 	 */
1222 	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1223 		if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1224 			goto err_reg;
1225 
1226 		for (j = 0; j < 4; j++) {
1227 			if (DBAM_DIMM(j, dbam) > 0) {
1228 				channels++;
1229 				break;
1230 			}
1231 		}
1232 	}
1233 
1234 	if (channels > 2)
1235 		channels = 2;
1236 
1237 	debugf0("MCT channel count: %d\n", channels);
1238 
1239 	return channels;
1240 
1241 err_reg:
1242 	return -1;
1243 
1244 }
1245 
1246 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1247 {
1248 	int *dbam_map;
1249 
1250 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1251 		dbam_map = ddr3_dbam;
1252 	else
1253 		dbam_map = ddr2_dbam;
1254 
1255 	return dbam_map[cs_mode];
1256 }
1257 
1258 /* Enable extended configuration access via 0xCF8 feature */
1259 static void amd64_setup(struct amd64_pvt *pvt)
1260 {
1261 	u32 reg;
1262 
1263 	amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1264 
1265 	pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1266 	reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1267 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1268 }
1269 
1270 /* Restore the extended configuration access via 0xCF8 feature */
1271 static void amd64_teardown(struct amd64_pvt *pvt)
1272 {
1273 	u32 reg;
1274 
1275 	amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1276 
1277 	reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1278 	if (pvt->flags.cf8_extcfg)
1279 		reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1280 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1281 }
1282 
1283 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1284 			struct err_regs *info)
1285 {
1286 	return (((u64) (info->nbeah & 0xffff)) << 32) +
1287 			(info->nbeal & ~0x01);
1288 }
1289 
1290 /*
1291  * Read the Base and Limit registers for F10 based Memory controllers. Extract
1292  * fields from the 'raw' reg into separate data fields.
1293  *
1294  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1295  */
1296 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1297 {
1298 	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1299 
1300 	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1301 	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1302 
1303 	/* read the 'raw' DRAM BASE Address register */
1304 	amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1305 
1306 	/* Read from the ECS data register */
1307 	amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1308 
1309 	/* Extract parts into separate data entries */
1310 	pvt->dram_rw_en[dram] = (low_base & 0x3);
1311 
1312 	if (pvt->dram_rw_en[dram] == 0)
1313 		return;
1314 
1315 	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1316 
1317 	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1318 			       (((u64)low_base  & 0xFFFF0000) << 8);
1319 
1320 	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1321 	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1322 
1323 	/* read the 'raw' LIMIT registers */
1324 	amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1325 
1326 	/* Read from the ECS data register for the HIGH portion */
1327 	amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1328 
1329 	pvt->dram_DstNode[dram] = (low_limit & 0x7);
1330 	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1331 
1332 	/*
1333 	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1334 	 * memory location of the region, so low 24 bits need to be all ones.
1335 	 */
1336 	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1337 				(((u64) low_limit & 0xFFFF0000) << 8) |
1338 				0x00FFFFFF;
1339 }
1340 
1341 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1342 {
1343 
1344 	if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1345 				&pvt->dram_ctl_select_low)) {
1346 		debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1347 			"High range addresses at: 0x%x\n",
1348 			pvt->dram_ctl_select_low,
1349 			dct_sel_baseaddr(pvt));
1350 
1351 		debugf0("  DCT mode: %s, All DCTs on: %s\n",
1352 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1353 			(dct_dram_enabled(pvt) ? "yes"   : "no"));
1354 
1355 		if (!dct_ganging_enabled(pvt))
1356 			debugf0("  Address range split per DCT: %s\n",
1357 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1358 
1359 		debugf0("  DCT data interleave for ECC: %s, "
1360 			"DRAM cleared since last warm reset: %s\n",
1361 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1362 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1363 
1364 		debugf0("  DCT channel interleave: %s, "
1365 			"DCT interleave bits selector: 0x%x\n",
1366 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1367 			dct_sel_interleave_addr(pvt));
1368 	}
1369 
1370 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1371 			   &pvt->dram_ctl_select_high);
1372 }
1373 
1374 /*
1375  * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1376  * Interleaving Modes.
1377  */
1378 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1379 				int hi_range_sel, u32 intlv_en)
1380 {
1381 	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1382 
1383 	if (dct_ganging_enabled(pvt))
1384 		cs = 0;
1385 	else if (hi_range_sel)
1386 		cs = dct_sel_high;
1387 	else if (dct_interleave_enabled(pvt)) {
1388 		/*
1389 		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1390 		 */
1391 		if (dct_sel_interleave_addr(pvt) == 0)
1392 			cs = sys_addr >> 6 & 1;
1393 		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1394 			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1395 
1396 			if (dct_sel_interleave_addr(pvt) & 1)
1397 				cs = (sys_addr >> 9 & 1) ^ temp;
1398 			else
1399 				cs = (sys_addr >> 6 & 1) ^ temp;
1400 		} else if (intlv_en & 4)
1401 			cs = sys_addr >> 15 & 1;
1402 		else if (intlv_en & 2)
1403 			cs = sys_addr >> 14 & 1;
1404 		else if (intlv_en & 1)
1405 			cs = sys_addr >> 13 & 1;
1406 		else
1407 			cs = sys_addr >> 12 & 1;
1408 	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1409 		cs = ~dct_sel_high & 1;
1410 	else
1411 		cs = 0;
1412 
1413 	return cs;
1414 }
1415 
1416 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1417 {
1418 	if (intlv_en == 1)
1419 		return 1;
1420 	else if (intlv_en == 3)
1421 		return 2;
1422 	else if (intlv_en == 7)
1423 		return 3;
1424 
1425 	return 0;
1426 }
1427 
1428 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1429 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1430 						 u32 dct_sel_base_addr,
1431 						 u64 dct_sel_base_off,
1432 						 u32 hole_valid, u32 hole_off,
1433 						 u64 dram_base)
1434 {
1435 	u64 chan_off;
1436 
1437 	if (hi_range_sel) {
1438 		if (!(dct_sel_base_addr & 0xFFFF0000) &&
1439 		   hole_valid && (sys_addr >= 0x100000000ULL))
1440 			chan_off = hole_off << 16;
1441 		else
1442 			chan_off = dct_sel_base_off;
1443 	} else {
1444 		if (hole_valid && (sys_addr >= 0x100000000ULL))
1445 			chan_off = hole_off << 16;
1446 		else
1447 			chan_off = dram_base & 0xFFFFF8000000ULL;
1448 	}
1449 
1450 	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1451 			(chan_off & 0x0000FFFFFF800000ULL);
1452 }
1453 
1454 /* Hack for the time being - Can we get this from BIOS?? */
1455 #define	CH0SPARE_RANK	0
1456 #define	CH1SPARE_RANK	1
1457 
1458 /*
1459  * checks if the csrow passed in is marked as SPARED, if so returns the new
1460  * spare row
1461  */
1462 static inline int f10_process_possible_spare(int csrow,
1463 				u32 cs, struct amd64_pvt *pvt)
1464 {
1465 	u32 swap_done;
1466 	u32 bad_dram_cs;
1467 
1468 	/* Depending on channel, isolate respective SPARING info */
1469 	if (cs) {
1470 		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1471 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1472 		if (swap_done && (csrow == bad_dram_cs))
1473 			csrow = CH1SPARE_RANK;
1474 	} else {
1475 		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1476 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1477 		if (swap_done && (csrow == bad_dram_cs))
1478 			csrow = CH0SPARE_RANK;
1479 	}
1480 	return csrow;
1481 }
1482 
1483 /*
1484  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1485  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1486  *
1487  * Return:
1488  *	-EINVAL:  NOT FOUND
1489  *	0..csrow = Chip-Select Row
1490  */
1491 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1492 {
1493 	struct mem_ctl_info *mci;
1494 	struct amd64_pvt *pvt;
1495 	u32 cs_base, cs_mask;
1496 	int cs_found = -EINVAL;
1497 	int csrow;
1498 
1499 	mci = mci_lookup[nid];
1500 	if (!mci)
1501 		return cs_found;
1502 
1503 	pvt = mci->pvt_info;
1504 
1505 	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
1506 
1507 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1508 
1509 		cs_base = amd64_get_dct_base(pvt, cs, csrow);
1510 		if (!(cs_base & K8_DCSB_CS_ENABLE))
1511 			continue;
1512 
1513 		/*
1514 		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1515 		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1516 		 * of the actual address.
1517 		 */
1518 		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1519 
1520 		/*
1521 		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1522 		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1523 		 */
1524 		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1525 
1526 		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1527 				csrow, cs_base, cs_mask);
1528 
1529 		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1530 
1531 		debugf1("              Final CSMask=0x%x\n", cs_mask);
1532 		debugf1("    (InputAddr & ~CSMask)=0x%x "
1533 				"(CSBase & ~CSMask)=0x%x\n",
1534 				(in_addr & ~cs_mask), (cs_base & ~cs_mask));
1535 
1536 		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1537 			cs_found = f10_process_possible_spare(csrow, cs, pvt);
1538 
1539 			debugf1(" MATCH csrow=%d\n", cs_found);
1540 			break;
1541 		}
1542 	}
1543 	return cs_found;
1544 }
1545 
1546 /* For a given @dram_range, check if @sys_addr falls within it. */
1547 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1548 				  u64 sys_addr, int *nid, int *chan_sel)
1549 {
1550 	int node_id, cs_found = -EINVAL, high_range = 0;
1551 	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1552 	u32 hole_valid, tmp, dct_sel_base, channel;
1553 	u64 dram_base, chan_addr, dct_sel_base_off;
1554 
1555 	dram_base = pvt->dram_base[dram_range];
1556 	intlv_en = pvt->dram_IntlvEn[dram_range];
1557 
1558 	node_id = pvt->dram_DstNode[dram_range];
1559 	intlv_sel = pvt->dram_IntlvSel[dram_range];
1560 
1561 	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1562 		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1563 
1564 	/*
1565 	 * This assumes that one node's DHAR is the same as all the other
1566 	 * nodes' DHAR.
1567 	 */
1568 	hole_off = (pvt->dhar & 0x0000FF80);
1569 	hole_valid = (pvt->dhar & 0x1);
1570 	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1571 
1572 	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
1573 			hole_off, hole_valid, intlv_sel);
1574 
1575 	if (intlv_en ||
1576 	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1577 		return -EINVAL;
1578 
1579 	dct_sel_base = dct_sel_baseaddr(pvt);
1580 
1581 	/*
1582 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1583 	 * select between DCT0 and DCT1.
1584 	 */
1585 	if (dct_high_range_enabled(pvt) &&
1586 	   !dct_ganging_enabled(pvt) &&
1587 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1588 		high_range = 1;
1589 
1590 	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1591 
1592 	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1593 					     dct_sel_base_off, hole_valid,
1594 					     hole_off, dram_base);
1595 
1596 	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1597 
1598 	/* remove Node ID (in case of memory interleaving) */
1599 	tmp = chan_addr & 0xFC0;
1600 
1601 	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1602 
1603 	/* remove channel interleave and hash */
1604 	if (dct_interleave_enabled(pvt) &&
1605 	   !dct_high_range_enabled(pvt) &&
1606 	   !dct_ganging_enabled(pvt)) {
1607 		if (dct_sel_interleave_addr(pvt) != 1)
1608 			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1609 		else {
1610 			tmp = chan_addr & 0xFC0;
1611 			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1612 					| tmp;
1613 		}
1614 	}
1615 
1616 	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1617 		chan_addr, (u32)(chan_addr >> 8));
1618 
1619 	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1620 
1621 	if (cs_found >= 0) {
1622 		*nid = node_id;
1623 		*chan_sel = channel;
1624 	}
1625 	return cs_found;
1626 }
1627 
1628 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1629 				       int *node, int *chan_sel)
1630 {
1631 	int dram_range, cs_found = -EINVAL;
1632 	u64 dram_base, dram_limit;
1633 
1634 	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1635 
1636 		if (!pvt->dram_rw_en[dram_range])
1637 			continue;
1638 
1639 		dram_base = pvt->dram_base[dram_range];
1640 		dram_limit = pvt->dram_limit[dram_range];
1641 
1642 		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1643 
1644 			cs_found = f10_match_to_this_node(pvt, dram_range,
1645 							  sys_addr, node,
1646 							  chan_sel);
1647 			if (cs_found >= 0)
1648 				break;
1649 		}
1650 	}
1651 	return cs_found;
1652 }
1653 
1654 /*
1655  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1656  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1657  *
1658  * The @sys_addr is usually an error address received from the hardware
1659  * (MCX_ADDR).
1660  */
1661 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1662 				     struct err_regs *err_info,
1663 				     u64 sys_addr)
1664 {
1665 	struct amd64_pvt *pvt = mci->pvt_info;
1666 	u32 page, offset;
1667 	int nid, csrow, chan = 0;
1668 	u16 syndrome;
1669 
1670 	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1671 
1672 	if (csrow < 0) {
1673 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1674 		return;
1675 	}
1676 
1677 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1678 
1679 	syndrome = extract_syndrome(err_info);
1680 
1681 	/*
1682 	 * We need the syndromes for channel detection only when we're
1683 	 * ganged. Otherwise @chan should already contain the channel at
1684 	 * this point.
1685 	 */
1686 	if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1687 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1688 
1689 	if (chan >= 0)
1690 		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1691 				  EDAC_MOD_STR);
1692 	else
1693 		/*
1694 		 * Channel unknown, report all channels on this CSROW as failed.
1695 		 */
1696 		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1697 			edac_mc_handle_ce(mci, page, offset, syndrome,
1698 					  csrow, chan, EDAC_MOD_STR);
1699 }
1700 
1701 /*
1702  * debug routine to display the memory sizes of all logical DIMMs and its
1703  * CSROWs as well
1704  */
1705 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1706 {
1707 	int dimm, size0, size1, factor = 0;
1708 	u32 dbam;
1709 	u32 *dcsb;
1710 
1711 	if (boot_cpu_data.x86 == 0xf) {
1712 		if (pvt->dclr0 & F10_WIDTH_128)
1713 			factor = 1;
1714 
1715 		/* K8 families < revF not supported yet */
1716 	       if (pvt->ext_model < K8_REV_F)
1717 			return;
1718 	       else
1719 		       WARN_ON(ctrl != 0);
1720 	}
1721 
1722 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1723 		ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1724 
1725 	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1726 	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1727 
1728 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1729 
1730 	/* Dump memory sizes for DIMM and its CSROWs */
1731 	for (dimm = 0; dimm < 4; dimm++) {
1732 
1733 		size0 = 0;
1734 		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1735 			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1736 
1737 		size1 = 0;
1738 		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1739 			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1740 
1741 		edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1742 			    dimm * 2,     size0 << factor,
1743 			    dimm * 2 + 1, size1 << factor);
1744 	}
1745 }
1746 
1747 /*
1748  * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1749  * (as per PCI DEVICE_IDs):
1750  *
1751  * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1752  * DEVICE ID, even though there is differences between the different Revisions
1753  * (CG,D,E,F).
1754  *
1755  * Family F10h and F11h.
1756  *
1757  */
1758 static struct amd64_family_type amd64_family_types[] = {
1759 	[K8_CPUS] = {
1760 		.ctl_name = "RevF",
1761 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1762 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1763 		.ops = {
1764 			.early_channel_count	= k8_early_channel_count,
1765 			.get_error_address	= k8_get_error_address,
1766 			.read_dram_base_limit	= k8_read_dram_base_limit,
1767 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1768 			.dbam_to_cs		= k8_dbam_to_chip_select,
1769 		}
1770 	},
1771 	[F10_CPUS] = {
1772 		.ctl_name = "Family 10h",
1773 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1774 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1775 		.ops = {
1776 			.early_channel_count	= f10_early_channel_count,
1777 			.get_error_address	= f10_get_error_address,
1778 			.read_dram_base_limit	= f10_read_dram_base_limit,
1779 			.read_dram_ctl_register	= f10_read_dram_ctl_register,
1780 			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
1781 			.dbam_to_cs		= f10_dbam_to_chip_select,
1782 		}
1783 	},
1784 	[F11_CPUS] = {
1785 		.ctl_name = "Family 11h",
1786 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1787 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1788 		.ops = {
1789 			.early_channel_count	= f10_early_channel_count,
1790 			.get_error_address	= f10_get_error_address,
1791 			.read_dram_base_limit	= f10_read_dram_base_limit,
1792 			.read_dram_ctl_register	= f10_read_dram_ctl_register,
1793 			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
1794 			.dbam_to_cs		= f10_dbam_to_chip_select,
1795 		}
1796 	},
1797 };
1798 
1799 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1800 						unsigned int device,
1801 						struct pci_dev *related)
1802 {
1803 	struct pci_dev *dev = NULL;
1804 
1805 	dev = pci_get_device(vendor, device, dev);
1806 	while (dev) {
1807 		if ((dev->bus->number == related->bus->number) &&
1808 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1809 			break;
1810 		dev = pci_get_device(vendor, device, dev);
1811 	}
1812 
1813 	return dev;
1814 }
1815 
1816 /*
1817  * These are tables of eigenvectors (one per line) which can be used for the
1818  * construction of the syndrome tables. The modified syndrome search algorithm
1819  * uses those to find the symbol in error and thus the DIMM.
1820  *
1821  * Algorithm courtesy of Ross LaFetra from AMD.
1822  */
1823 static u16 x4_vectors[] = {
1824 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1825 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1826 	0x0001, 0x0002, 0x0004, 0x0008,
1827 	0x1013, 0x3032, 0x4044, 0x8088,
1828 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1829 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1830 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1831 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1832 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1833 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1834 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1835 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1836 	0x2b87, 0x164e, 0x642c, 0xdc18,
1837 	0x40b9, 0x80de, 0x1094, 0x20e8,
1838 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1839 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1840 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1841 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1842 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1843 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1844 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1845 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1846 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1847 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1848 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1849 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1850 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1851 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1852 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1853 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1854 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1855 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1856 	0x4807, 0xc40e, 0x130c, 0x3208,
1857 	0x1905, 0x2e0a, 0x5804, 0xac08,
1858 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1859 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1860 };
1861 
1862 static u16 x8_vectors[] = {
1863 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1864 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1865 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1866 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1867 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1868 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1869 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1870 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1871 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1872 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1873 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1874 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1875 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1876 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1877 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1878 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1879 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1880 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1881 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1882 };
1883 
1884 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1885 			   int v_dim)
1886 {
1887 	unsigned int i, err_sym;
1888 
1889 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1890 		u16 s = syndrome;
1891 		int v_idx =  err_sym * v_dim;
1892 		int v_end = (err_sym + 1) * v_dim;
1893 
1894 		/* walk over all 16 bits of the syndrome */
1895 		for (i = 1; i < (1U << 16); i <<= 1) {
1896 
1897 			/* if bit is set in that eigenvector... */
1898 			if (v_idx < v_end && vectors[v_idx] & i) {
1899 				u16 ev_comp = vectors[v_idx++];
1900 
1901 				/* ... and bit set in the modified syndrome, */
1902 				if (s & i) {
1903 					/* remove it. */
1904 					s ^= ev_comp;
1905 
1906 					if (!s)
1907 						return err_sym;
1908 				}
1909 
1910 			} else if (s & i)
1911 				/* can't get to zero, move to next symbol */
1912 				break;
1913 		}
1914 	}
1915 
1916 	debugf0("syndrome(%x) not found\n", syndrome);
1917 	return -1;
1918 }
1919 
1920 static int map_err_sym_to_channel(int err_sym, int sym_size)
1921 {
1922 	if (sym_size == 4)
1923 		switch (err_sym) {
1924 		case 0x20:
1925 		case 0x21:
1926 			return 0;
1927 			break;
1928 		case 0x22:
1929 		case 0x23:
1930 			return 1;
1931 			break;
1932 		default:
1933 			return err_sym >> 4;
1934 			break;
1935 		}
1936 	/* x8 symbols */
1937 	else
1938 		switch (err_sym) {
1939 		/* imaginary bits not in a DIMM */
1940 		case 0x10:
1941 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1942 					  err_sym);
1943 			return -1;
1944 			break;
1945 
1946 		case 0x11:
1947 			return 0;
1948 			break;
1949 		case 0x12:
1950 			return 1;
1951 			break;
1952 		default:
1953 			return err_sym >> 3;
1954 			break;
1955 		}
1956 	return -1;
1957 }
1958 
1959 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1960 {
1961 	struct amd64_pvt *pvt = mci->pvt_info;
1962 	int err_sym = -1;
1963 
1964 	if (pvt->syn_type == 8)
1965 		err_sym = decode_syndrome(syndrome, x8_vectors,
1966 					  ARRAY_SIZE(x8_vectors),
1967 					  pvt->syn_type);
1968 	else if (pvt->syn_type == 4)
1969 		err_sym = decode_syndrome(syndrome, x4_vectors,
1970 					  ARRAY_SIZE(x4_vectors),
1971 					  pvt->syn_type);
1972 	else {
1973 		amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
1974 					   __func__, pvt->syn_type);
1975 		return err_sym;
1976 	}
1977 
1978 	return map_err_sym_to_channel(err_sym, pvt->syn_type);
1979 }
1980 
1981 /*
1982  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1983  * ADDRESS and process.
1984  */
1985 static void amd64_handle_ce(struct mem_ctl_info *mci,
1986 			    struct err_regs *info)
1987 {
1988 	struct amd64_pvt *pvt = mci->pvt_info;
1989 	u64 sys_addr;
1990 
1991 	/* Ensure that the Error Address is VALID */
1992 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1993 		amd64_mc_printk(mci, KERN_ERR,
1994 			"HW has no ERROR_ADDRESS available\n");
1995 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1996 		return;
1997 	}
1998 
1999 	sys_addr = pvt->ops->get_error_address(mci, info);
2000 
2001 	amd64_mc_printk(mci, KERN_ERR,
2002 		"CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
2003 
2004 	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2005 }
2006 
2007 /* Handle any Un-correctable Errors (UEs) */
2008 static void amd64_handle_ue(struct mem_ctl_info *mci,
2009 			    struct err_regs *info)
2010 {
2011 	struct amd64_pvt *pvt = mci->pvt_info;
2012 	struct mem_ctl_info *log_mci, *src_mci = NULL;
2013 	int csrow;
2014 	u64 sys_addr;
2015 	u32 page, offset;
2016 
2017 	log_mci = mci;
2018 
2019 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2020 		amd64_mc_printk(mci, KERN_CRIT,
2021 			"HW has no ERROR_ADDRESS available\n");
2022 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2023 		return;
2024 	}
2025 
2026 	sys_addr = pvt->ops->get_error_address(mci, info);
2027 
2028 	/*
2029 	 * Find out which node the error address belongs to. This may be
2030 	 * different from the node that detected the error.
2031 	 */
2032 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
2033 	if (!src_mci) {
2034 		amd64_mc_printk(mci, KERN_CRIT,
2035 			"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2036 			(unsigned long)sys_addr);
2037 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2038 		return;
2039 	}
2040 
2041 	log_mci = src_mci;
2042 
2043 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
2044 	if (csrow < 0) {
2045 		amd64_mc_printk(mci, KERN_CRIT,
2046 			"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2047 			(unsigned long)sys_addr);
2048 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2049 	} else {
2050 		error_address_to_page_and_offset(sys_addr, &page, &offset);
2051 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2052 	}
2053 }
2054 
2055 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2056 					    struct err_regs *info)
2057 {
2058 	u32 ec  = ERROR_CODE(info->nbsl);
2059 	u32 xec = EXT_ERROR_CODE(info->nbsl);
2060 	int ecc_type = (info->nbsh >> 13) & 0x3;
2061 
2062 	/* Bail early out if this was an 'observed' error */
2063 	if (PP(ec) == K8_NBSL_PP_OBS)
2064 		return;
2065 
2066 	/* Do only ECC errors */
2067 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2068 		return;
2069 
2070 	if (ecc_type == 2)
2071 		amd64_handle_ce(mci, info);
2072 	else if (ecc_type == 1)
2073 		amd64_handle_ue(mci, info);
2074 
2075 	/*
2076 	 * If main error is CE then overflow must be CE.  If main error is UE
2077 	 * then overflow is unknown.  We'll call the overflow a CE - if
2078 	 * panic_on_ue is set then we're already panic'ed and won't arrive
2079 	 * here. Else, then apparently someone doesn't think that UE's are
2080 	 * catastrophic.
2081 	 */
2082 	if (info->nbsh & K8_NBSH_OVERFLOW)
2083 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR " Error Overflow");
2084 }
2085 
2086 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2087 {
2088 	struct mem_ctl_info *mci = mci_lookup[node_id];
2089 
2090 	__amd64_decode_bus_error(mci, regs);
2091 
2092 	/*
2093 	 * Check the UE bit of the NB status high register, if set generate some
2094 	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2095 	 * If it was a GART error, skip that process.
2096 	 *
2097 	 * FIXME: this should go somewhere else, if at all.
2098 	 */
2099 	if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2100 		edac_mc_handle_ue_no_info(mci, "UE bit is set");
2101 
2102 }
2103 
2104 /*
2105  * Input:
2106  *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2107  *	2) AMD Family index value
2108  *
2109  * Ouput:
2110  *	Upon return of 0, the following filled in:
2111  *
2112  *		struct pvt->addr_f1_ctl
2113  *		struct pvt->misc_f3_ctl
2114  *
2115  *	Filled in with related device funcitions of 'dram_f2_ctl'
2116  *	These devices are "reserved" via the pci_get_device()
2117  *
2118  *	Upon return of 1 (error status):
2119  *
2120  *		Nothing reserved
2121  */
2122 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2123 {
2124 	const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2125 
2126 	/* Reserve the ADDRESS MAP Device */
2127 	pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2128 						    amd64_dev->addr_f1_ctl,
2129 						    pvt->dram_f2_ctl);
2130 
2131 	if (!pvt->addr_f1_ctl) {
2132 		amd64_printk(KERN_ERR, "error address map device not found: "
2133 			     "vendor %x device 0x%x (broken BIOS?)\n",
2134 			     PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2135 		return 1;
2136 	}
2137 
2138 	/* Reserve the MISC Device */
2139 	pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2140 						    amd64_dev->misc_f3_ctl,
2141 						    pvt->dram_f2_ctl);
2142 
2143 	if (!pvt->misc_f3_ctl) {
2144 		pci_dev_put(pvt->addr_f1_ctl);
2145 		pvt->addr_f1_ctl = NULL;
2146 
2147 		amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2148 			     "vendor %x device 0x%x (broken BIOS?)\n",
2149 			     PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2150 		return 1;
2151 	}
2152 
2153 	debugf1("    Addr Map device PCI Bus ID:\t%s\n",
2154 		pci_name(pvt->addr_f1_ctl));
2155 	debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
2156 		pci_name(pvt->dram_f2_ctl));
2157 	debugf1("    Misc device PCI Bus ID:\t%s\n",
2158 		pci_name(pvt->misc_f3_ctl));
2159 
2160 	return 0;
2161 }
2162 
2163 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2164 {
2165 	pci_dev_put(pvt->addr_f1_ctl);
2166 	pci_dev_put(pvt->misc_f3_ctl);
2167 }
2168 
2169 /*
2170  * Retrieve the hardware registers of the memory controller (this includes the
2171  * 'Address Map' and 'Misc' device regs)
2172  */
2173 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2174 {
2175 	u64 msr_val;
2176 	u32 tmp;
2177 	int dram;
2178 
2179 	/*
2180 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2181 	 * those are Read-As-Zero
2182 	 */
2183 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2184 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2185 
2186 	/* check first whether TOP_MEM2 is enabled */
2187 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2188 	if (msr_val & (1U << 21)) {
2189 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2190 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2191 	} else
2192 		debugf0("  TOP_MEM2 disabled.\n");
2193 
2194 	amd64_cpu_display_info(pvt);
2195 
2196 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2197 
2198 	if (pvt->ops->read_dram_ctl_register)
2199 		pvt->ops->read_dram_ctl_register(pvt);
2200 
2201 	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2202 		/*
2203 		 * Call CPU specific READ function to get the DRAM Base and
2204 		 * Limit values from the DCT.
2205 		 */
2206 		pvt->ops->read_dram_base_limit(pvt, dram);
2207 
2208 		/*
2209 		 * Only print out debug info on rows with both R and W Enabled.
2210 		 * Normal processing, compiler should optimize this whole 'if'
2211 		 * debug output block away.
2212 		 */
2213 		if (pvt->dram_rw_en[dram] != 0) {
2214 			debugf1("  DRAM-BASE[%d]: 0x%016llx "
2215 				"DRAM-LIMIT:  0x%016llx\n",
2216 				dram,
2217 				pvt->dram_base[dram],
2218 				pvt->dram_limit[dram]);
2219 
2220 			debugf1("        IntlvEn=%s %s %s "
2221 				"IntlvSel=%d DstNode=%d\n",
2222 				pvt->dram_IntlvEn[dram] ?
2223 					"Enabled" : "Disabled",
2224 				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2225 				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2226 				pvt->dram_IntlvSel[dram],
2227 				pvt->dram_DstNode[dram]);
2228 		}
2229 	}
2230 
2231 	amd64_read_dct_base_mask(pvt);
2232 
2233 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2234 	amd64_read_dbam_reg(pvt);
2235 
2236 	amd64_read_pci_cfg(pvt->misc_f3_ctl,
2237 			   F10_ONLINE_SPARE, &pvt->online_spare);
2238 
2239 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2240 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2241 
2242 	if (boot_cpu_data.x86 >= 0x10) {
2243 		if (!dct_ganging_enabled(pvt)) {
2244 			amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2245 			amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2246 		}
2247 		amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
2248 	}
2249 
2250 	if (boot_cpu_data.x86 == 0x10 &&
2251 	    boot_cpu_data.x86_model > 7 &&
2252 	    /* F3x180[EccSymbolSize]=1 => x8 symbols */
2253 	    tmp & BIT(25))
2254 		pvt->syn_type = 8;
2255 	else
2256 		pvt->syn_type = 4;
2257 
2258 	amd64_dump_misc_regs(pvt);
2259 }
2260 
2261 /*
2262  * NOTE: CPU Revision Dependent code
2263  *
2264  * Input:
2265  *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2266  *	k8 private pointer to -->
2267  *			DRAM Bank Address mapping register
2268  *			node_id
2269  *			DCL register where dual_channel_active is
2270  *
2271  * The DBAM register consists of 4 sets of 4 bits each definitions:
2272  *
2273  * Bits:	CSROWs
2274  * 0-3		CSROWs 0 and 1
2275  * 4-7		CSROWs 2 and 3
2276  * 8-11		CSROWs 4 and 5
2277  * 12-15	CSROWs 6 and 7
2278  *
2279  * Values range from: 0 to 15
2280  * The meaning of the values depends on CPU revision and dual-channel state,
2281  * see relevant BKDG more info.
2282  *
2283  * The memory controller provides for total of only 8 CSROWs in its current
2284  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2285  * single channel or two (2) DIMMs in dual channel mode.
2286  *
2287  * The following code logic collapses the various tables for CSROW based on CPU
2288  * revision.
2289  *
2290  * Returns:
2291  *	The number of PAGE_SIZE pages on the specified CSROW number it
2292  *	encompasses
2293  *
2294  */
2295 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2296 {
2297 	u32 cs_mode, nr_pages;
2298 
2299 	/*
2300 	 * The math on this doesn't look right on the surface because x/2*4 can
2301 	 * be simplified to x*2 but this expression makes use of the fact that
2302 	 * it is integral math where 1/2=0. This intermediate value becomes the
2303 	 * number of bits to shift the DBAM register to extract the proper CSROW
2304 	 * field.
2305 	 */
2306 	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2307 
2308 	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2309 
2310 	/*
2311 	 * If dual channel then double the memory size of single channel.
2312 	 * Channel count is 1 or 2
2313 	 */
2314 	nr_pages <<= (pvt->channel_count - 1);
2315 
2316 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2317 	debugf0("    nr_pages= %u  channel-count = %d\n",
2318 		nr_pages, pvt->channel_count);
2319 
2320 	return nr_pages;
2321 }
2322 
2323 /*
2324  * Initialize the array of csrow attribute instances, based on the values
2325  * from pci config hardware registers.
2326  */
2327 static int amd64_init_csrows(struct mem_ctl_info *mci)
2328 {
2329 	struct csrow_info *csrow;
2330 	struct amd64_pvt *pvt;
2331 	u64 input_addr_min, input_addr_max, sys_addr;
2332 	int i, empty = 1;
2333 
2334 	pvt = mci->pvt_info;
2335 
2336 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2337 
2338 	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2339 		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2340 		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2341 		);
2342 
2343 	for (i = 0; i < pvt->cs_count; i++) {
2344 		csrow = &mci->csrows[i];
2345 
2346 		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2347 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2348 				pvt->mc_node_id);
2349 			continue;
2350 		}
2351 
2352 		debugf1("----CSROW %d VALID for MC node %d\n",
2353 			i, pvt->mc_node_id);
2354 
2355 		empty = 0;
2356 		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2357 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2358 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2359 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2360 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2361 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2362 		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2363 		/* 8 bytes of resolution */
2364 
2365 		csrow->mtype = amd64_determine_memory_type(pvt);
2366 
2367 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2368 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2369 			(unsigned long)input_addr_min,
2370 			(unsigned long)input_addr_max);
2371 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2372 			(unsigned long)sys_addr, csrow->page_mask);
2373 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2374 			"last_page: 0x%lx\n",
2375 			(unsigned)csrow->nr_pages,
2376 			csrow->first_page, csrow->last_page);
2377 
2378 		/*
2379 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2380 		 */
2381 		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2382 			csrow->edac_mode =
2383 			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2384 			    EDAC_S4ECD4ED : EDAC_SECDED;
2385 		else
2386 			csrow->edac_mode = EDAC_NONE;
2387 	}
2388 
2389 	return empty;
2390 }
2391 
2392 /* get all cores on this DCT */
2393 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2394 {
2395 	int cpu;
2396 
2397 	for_each_online_cpu(cpu)
2398 		if (amd_get_nb_id(cpu) == nid)
2399 			cpumask_set_cpu(cpu, mask);
2400 }
2401 
2402 /* check MCG_CTL on all the cpus on this node */
2403 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2404 {
2405 	cpumask_var_t mask;
2406 	int cpu, nbe;
2407 	bool ret = false;
2408 
2409 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2410 		amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2411 			     __func__);
2412 		return false;
2413 	}
2414 
2415 	get_cpus_on_this_dct_cpumask(mask, nid);
2416 
2417 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2418 
2419 	for_each_cpu(cpu, mask) {
2420 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2421 		nbe = reg->l & K8_MSR_MCGCTL_NBE;
2422 
2423 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2424 			cpu, reg->q,
2425 			(nbe ? "enabled" : "disabled"));
2426 
2427 		if (!nbe)
2428 			goto out;
2429 	}
2430 	ret = true;
2431 
2432 out:
2433 	free_cpumask_var(mask);
2434 	return ret;
2435 }
2436 
2437 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2438 {
2439 	cpumask_var_t cmask;
2440 	int cpu;
2441 
2442 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2443 		amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2444 			     __func__);
2445 		return false;
2446 	}
2447 
2448 	get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2449 
2450 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2451 
2452 	for_each_cpu(cpu, cmask) {
2453 
2454 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2455 
2456 		if (on) {
2457 			if (reg->l & K8_MSR_MCGCTL_NBE)
2458 				pvt->flags.nb_mce_enable = 1;
2459 
2460 			reg->l |= K8_MSR_MCGCTL_NBE;
2461 		} else {
2462 			/*
2463 			 * Turn off NB MCE reporting only when it was off before
2464 			 */
2465 			if (!pvt->flags.nb_mce_enable)
2466 				reg->l &= ~K8_MSR_MCGCTL_NBE;
2467 		}
2468 	}
2469 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2470 
2471 	free_cpumask_var(cmask);
2472 
2473 	return 0;
2474 }
2475 
2476 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2477 {
2478 	struct amd64_pvt *pvt = mci->pvt_info;
2479 	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2480 
2481 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2482 
2483 	/* turn on UECCn and CECCEn bits */
2484 	pvt->old_nbctl = value & mask;
2485 	pvt->nbctl_mcgctl_saved = 1;
2486 
2487 	value |= mask;
2488 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2489 
2490 	if (amd64_toggle_ecc_err_reporting(pvt, ON))
2491 		amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2492 					   "MCGCTL!\n");
2493 
2494 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2495 
2496 	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2497 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2498 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2499 
2500 	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2501 		amd64_printk(KERN_WARNING,
2502 			"This node reports that DRAM ECC is "
2503 			"currently Disabled; ENABLING now\n");
2504 
2505 		pvt->flags.nb_ecc_prev = 0;
2506 
2507 		/* Attempt to turn on DRAM ECC Enable */
2508 		value |= K8_NBCFG_ECC_ENABLE;
2509 		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2510 
2511 		amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2512 
2513 		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2514 			amd64_printk(KERN_WARNING,
2515 				"Hardware rejects Enabling DRAM ECC checking\n"
2516 				"Check memory DIMM configuration\n");
2517 		} else {
2518 			amd64_printk(KERN_DEBUG,
2519 				"Hardware accepted DRAM ECC Enable\n");
2520 		}
2521 	} else {
2522 		pvt->flags.nb_ecc_prev = 1;
2523 	}
2524 
2525 	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2526 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2527 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2528 
2529 	pvt->ctl_error_info.nbcfg = value;
2530 }
2531 
2532 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2533 {
2534 	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2535 
2536 	if (!pvt->nbctl_mcgctl_saved)
2537 		return;
2538 
2539 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2540 	value &= ~mask;
2541 	value |= pvt->old_nbctl;
2542 
2543 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2544 
2545 	/* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2546 	if (!pvt->flags.nb_ecc_prev) {
2547 		amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2548 		value &= ~K8_NBCFG_ECC_ENABLE;
2549 		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2550 	}
2551 
2552 	/* restore the NB Enable MCGCTL bit */
2553 	if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2554 		amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
2555 }
2556 
2557 /*
2558  * EDAC requires that the BIOS have ECC enabled before taking over the
2559  * processing of ECC errors. This is because the BIOS can properly initialize
2560  * the memory system completely. A command line option allows to force-enable
2561  * hardware ECC later in amd64_enable_ecc_error_reporting().
2562  */
2563 static const char *ecc_msg =
2564 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2565 	" Either enable ECC checking or force module loading by setting "
2566 	"'ecc_enable_override'.\n"
2567 	" (Note that use of the override may cause unknown side effects.)\n";
2568 
2569 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2570 {
2571 	u32 value;
2572 	u8 ecc_enabled = 0;
2573 	bool nb_mce_en = false;
2574 
2575 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2576 
2577 	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2578 	if (!ecc_enabled)
2579 		amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
2580 			     "is currently disabled, set F3x%x[22] (%s).\n",
2581 			     K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2582 	else
2583 		amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2584 
2585 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2586 	if (!nb_mce_en)
2587 		amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
2588 			     "0x%08x[4] on node %d to enable.\n",
2589 			     MSR_IA32_MCG_CTL, pvt->mc_node_id);
2590 
2591 	if (!ecc_enabled || !nb_mce_en) {
2592 		if (!ecc_enable_override) {
2593 			amd64_printk(KERN_NOTICE, "%s", ecc_msg);
2594 			return -ENODEV;
2595 		} else {
2596 			amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
2597 		}
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2604 					  ARRAY_SIZE(amd64_inj_attrs) +
2605 					  1];
2606 
2607 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2608 
2609 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2610 {
2611 	unsigned int i = 0, j = 0;
2612 
2613 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2614 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2615 
2616 	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2617 		sysfs_attrs[i] = amd64_inj_attrs[j];
2618 
2619 	sysfs_attrs[i] = terminator;
2620 
2621 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2622 }
2623 
2624 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2625 {
2626 	struct amd64_pvt *pvt = mci->pvt_info;
2627 
2628 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2629 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2630 
2631 	if (pvt->nbcap & K8_NBCAP_SECDED)
2632 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2633 
2634 	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2635 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2636 
2637 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2638 	mci->mod_name		= EDAC_MOD_STR;
2639 	mci->mod_ver		= EDAC_AMD64_VERSION;
2640 	mci->ctl_name		= get_amd_family_name(pvt->mc_type_index);
2641 	mci->dev_name		= pci_name(pvt->dram_f2_ctl);
2642 	mci->ctl_page_to_phys	= NULL;
2643 
2644 	/* memory scrubber interface */
2645 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2646 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2647 }
2648 
2649 /*
2650  * Init stuff for this DRAM Controller device.
2651  *
2652  * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2653  * Space feature MUST be enabled on ALL Processors prior to actually reading
2654  * from the ECS registers. Since the loading of the module can occur on any
2655  * 'core', and cores don't 'see' all the other processors ECS data when the
2656  * others are NOT enabled. Our solution is to first enable ECS access in this
2657  * routine on all processors, gather some data in a amd64_pvt structure and
2658  * later come back in a finish-setup function to perform that final
2659  * initialization. See also amd64_init_2nd_stage() for that.
2660  */
2661 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2662 				    int mc_type_index)
2663 {
2664 	struct amd64_pvt *pvt = NULL;
2665 	int err = 0, ret;
2666 
2667 	ret = -ENOMEM;
2668 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2669 	if (!pvt)
2670 		goto err_exit;
2671 
2672 	pvt->mc_node_id = get_node_id(dram_f2_ctl);
2673 
2674 	pvt->dram_f2_ctl	= dram_f2_ctl;
2675 	pvt->ext_model		= boot_cpu_data.x86_model >> 4;
2676 	pvt->mc_type_index	= mc_type_index;
2677 	pvt->ops		= family_ops(mc_type_index);
2678 
2679 	/*
2680 	 * We have the dram_f2_ctl device as an argument, now go reserve its
2681 	 * sibling devices from the PCI system.
2682 	 */
2683 	ret = -ENODEV;
2684 	err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2685 	if (err)
2686 		goto err_free;
2687 
2688 	ret = -EINVAL;
2689 	err = amd64_check_ecc_enabled(pvt);
2690 	if (err)
2691 		goto err_put;
2692 
2693 	/*
2694 	 * Key operation here: setup of HW prior to performing ops on it. Some
2695 	 * setup is required to access ECS data. After this is performed, the
2696 	 * 'teardown' function must be called upon error and normal exit paths.
2697 	 */
2698 	if (boot_cpu_data.x86 >= 0x10)
2699 		amd64_setup(pvt);
2700 
2701 	/*
2702 	 * Save the pointer to the private data for use in 2nd initialization
2703 	 * stage
2704 	 */
2705 	pvt_lookup[pvt->mc_node_id] = pvt;
2706 
2707 	return 0;
2708 
2709 err_put:
2710 	amd64_free_mc_sibling_devices(pvt);
2711 
2712 err_free:
2713 	kfree(pvt);
2714 
2715 err_exit:
2716 	return ret;
2717 }
2718 
2719 /*
2720  * This is the finishing stage of the init code. Needs to be performed after all
2721  * MCs' hardware have been prepped for accessing extended config space.
2722  */
2723 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2724 {
2725 	int node_id = pvt->mc_node_id;
2726 	struct mem_ctl_info *mci;
2727 	int ret = -ENODEV;
2728 
2729 	amd64_read_mc_registers(pvt);
2730 
2731 	/*
2732 	 * We need to determine how many memory channels there are. Then use
2733 	 * that information for calculating the size of the dynamic instance
2734 	 * tables in the 'mci' structure
2735 	 */
2736 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2737 	if (pvt->channel_count < 0)
2738 		goto err_exit;
2739 
2740 	ret = -ENOMEM;
2741 	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2742 	if (!mci)
2743 		goto err_exit;
2744 
2745 	mci->pvt_info = pvt;
2746 
2747 	mci->dev = &pvt->dram_f2_ctl->dev;
2748 	amd64_setup_mci_misc_attributes(mci);
2749 
2750 	if (amd64_init_csrows(mci))
2751 		mci->edac_cap = EDAC_FLAG_NONE;
2752 
2753 	amd64_enable_ecc_error_reporting(mci);
2754 	amd64_set_mc_sysfs_attributes(mci);
2755 
2756 	ret = -ENODEV;
2757 	if (edac_mc_add_mc(mci)) {
2758 		debugf1("failed edac_mc_add_mc()\n");
2759 		goto err_add_mc;
2760 	}
2761 
2762 	mci_lookup[node_id] = mci;
2763 	pvt_lookup[node_id] = NULL;
2764 
2765 	/* register stuff with EDAC MCE */
2766 	if (report_gart_errors)
2767 		amd_report_gart_errors(true);
2768 
2769 	amd_register_ecc_decoder(amd64_decode_bus_error);
2770 
2771 	return 0;
2772 
2773 err_add_mc:
2774 	edac_mc_free(mci);
2775 
2776 err_exit:
2777 	debugf0("failure to init 2nd stage: ret=%d\n", ret);
2778 
2779 	amd64_restore_ecc_error_reporting(pvt);
2780 
2781 	if (boot_cpu_data.x86 > 0xf)
2782 		amd64_teardown(pvt);
2783 
2784 	amd64_free_mc_sibling_devices(pvt);
2785 
2786 	kfree(pvt_lookup[pvt->mc_node_id]);
2787 	pvt_lookup[node_id] = NULL;
2788 
2789 	return ret;
2790 }
2791 
2792 
2793 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2794 				 const struct pci_device_id *mc_type)
2795 {
2796 	int ret = 0;
2797 
2798 	debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2799 		get_amd_family_name(mc_type->driver_data));
2800 
2801 	ret = pci_enable_device(pdev);
2802 	if (ret < 0)
2803 		ret = -EIO;
2804 	else
2805 		ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2806 
2807 	if (ret < 0)
2808 		debugf0("ret=%d\n", ret);
2809 
2810 	return ret;
2811 }
2812 
2813 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2814 {
2815 	struct mem_ctl_info *mci;
2816 	struct amd64_pvt *pvt;
2817 
2818 	/* Remove from EDAC CORE tracking list */
2819 	mci = edac_mc_del_mc(&pdev->dev);
2820 	if (!mci)
2821 		return;
2822 
2823 	pvt = mci->pvt_info;
2824 
2825 	amd64_restore_ecc_error_reporting(pvt);
2826 
2827 	if (boot_cpu_data.x86 > 0xf)
2828 		amd64_teardown(pvt);
2829 
2830 	amd64_free_mc_sibling_devices(pvt);
2831 
2832 	/* unregister from EDAC MCE */
2833 	amd_report_gart_errors(false);
2834 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2835 
2836 	/* Free the EDAC CORE resources */
2837 	mci->pvt_info = NULL;
2838 	mci_lookup[pvt->mc_node_id] = NULL;
2839 
2840 	kfree(pvt);
2841 	edac_mc_free(mci);
2842 }
2843 
2844 /*
2845  * This table is part of the interface for loading drivers for PCI devices. The
2846  * PCI core identifies what devices are on a system during boot, and then
2847  * inquiry this table to see if this driver is for a given device found.
2848  */
2849 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2850 	{
2851 		.vendor		= PCI_VENDOR_ID_AMD,
2852 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2853 		.subvendor	= PCI_ANY_ID,
2854 		.subdevice	= PCI_ANY_ID,
2855 		.class		= 0,
2856 		.class_mask	= 0,
2857 		.driver_data	= K8_CPUS
2858 	},
2859 	{
2860 		.vendor		= PCI_VENDOR_ID_AMD,
2861 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2862 		.subvendor	= PCI_ANY_ID,
2863 		.subdevice	= PCI_ANY_ID,
2864 		.class		= 0,
2865 		.class_mask	= 0,
2866 		.driver_data	= F10_CPUS
2867 	},
2868 	{
2869 		.vendor		= PCI_VENDOR_ID_AMD,
2870 		.device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2871 		.subvendor	= PCI_ANY_ID,
2872 		.subdevice	= PCI_ANY_ID,
2873 		.class		= 0,
2874 		.class_mask	= 0,
2875 		.driver_data	= F11_CPUS
2876 	},
2877 	{0, }
2878 };
2879 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2880 
2881 static struct pci_driver amd64_pci_driver = {
2882 	.name		= EDAC_MOD_STR,
2883 	.probe		= amd64_init_one_instance,
2884 	.remove		= __devexit_p(amd64_remove_one_instance),
2885 	.id_table	= amd64_pci_table,
2886 };
2887 
2888 static void amd64_setup_pci_device(void)
2889 {
2890 	struct mem_ctl_info *mci;
2891 	struct amd64_pvt *pvt;
2892 
2893 	if (amd64_ctl_pci)
2894 		return;
2895 
2896 	mci = mci_lookup[0];
2897 	if (mci) {
2898 
2899 		pvt = mci->pvt_info;
2900 		amd64_ctl_pci =
2901 			edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2902 						    EDAC_MOD_STR);
2903 
2904 		if (!amd64_ctl_pci) {
2905 			pr_warning("%s(): Unable to create PCI control\n",
2906 				   __func__);
2907 
2908 			pr_warning("%s(): PCI error report via EDAC not set\n",
2909 				   __func__);
2910 			}
2911 	}
2912 }
2913 
2914 static int __init amd64_edac_init(void)
2915 {
2916 	int nb, err = -ENODEV;
2917 	bool load_ok = false;
2918 
2919 	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2920 
2921 	opstate_init();
2922 
2923 	if (cache_k8_northbridges() < 0)
2924 		goto err_ret;
2925 
2926 	msrs = msrs_alloc();
2927 	if (!msrs)
2928 		goto err_ret;
2929 
2930 	err = pci_register_driver(&amd64_pci_driver);
2931 	if (err)
2932 		goto err_pci;
2933 
2934 	/*
2935 	 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2936 	 * amd64_pvt structs. These will be used in the 2nd stage init function
2937 	 * to finish initialization of the MC instances.
2938 	 */
2939 	err = -ENODEV;
2940 	for (nb = 0; nb < num_k8_northbridges; nb++) {
2941 		if (!pvt_lookup[nb])
2942 			continue;
2943 
2944 		err = amd64_init_2nd_stage(pvt_lookup[nb]);
2945 		if (err)
2946 			goto err_2nd_stage;
2947 
2948 		load_ok = true;
2949 	}
2950 
2951 	if (load_ok) {
2952 		amd64_setup_pci_device();
2953 		return 0;
2954 	}
2955 
2956 err_2nd_stage:
2957 	pci_unregister_driver(&amd64_pci_driver);
2958 err_pci:
2959 	msrs_free(msrs);
2960 	msrs = NULL;
2961 err_ret:
2962 	return err;
2963 }
2964 
2965 static void __exit amd64_edac_exit(void)
2966 {
2967 	if (amd64_ctl_pci)
2968 		edac_pci_release_generic_ctl(amd64_ctl_pci);
2969 
2970 	pci_unregister_driver(&amd64_pci_driver);
2971 
2972 	msrs_free(msrs);
2973 	msrs = NULL;
2974 }
2975 
2976 module_init(amd64_edac_init);
2977 module_exit(amd64_edac_exit);
2978 
2979 MODULE_LICENSE("GPL");
2980 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2981 		"Dave Peterson, Thayne Harbaugh");
2982 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2983 		EDAC_AMD64_VERSION);
2984 
2985 module_param(edac_op_state, int, 0444);
2986 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2987