xref: /linux/drivers/edac/amd64_edac.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /*
19  * count successfully initialized driver instances for setup_pci_device()
20  */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22 
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26 
27 /*
28  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30  * or higher value'.
31  *
32  *FIXME: Produce a better mapping/linearisation.
33  */
34 struct scrubrate {
35        u32 scrubval;           /* bit pattern for scrub rate */
36        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 	{ 0x01, 1600000000UL},
39 	{ 0x02, 800000000UL},
40 	{ 0x03, 400000000UL},
41 	{ 0x04, 200000000UL},
42 	{ 0x05, 100000000UL},
43 	{ 0x06, 50000000UL},
44 	{ 0x07, 25000000UL},
45 	{ 0x08, 12284069UL},
46 	{ 0x09, 6274509UL},
47 	{ 0x0A, 3121951UL},
48 	{ 0x0B, 1560975UL},
49 	{ 0x0C, 781440UL},
50 	{ 0x0D, 390720UL},
51 	{ 0x0E, 195300UL},
52 	{ 0x0F, 97650UL},
53 	{ 0x10, 48854UL},
54 	{ 0x11, 24427UL},
55 	{ 0x12, 12213UL},
56 	{ 0x13, 6101UL},
57 	{ 0x14, 3051UL},
58 	{ 0x15, 1523UL},
59 	{ 0x16, 761UL},
60 	{ 0x00, 0UL},        /* scrubbing off */
61 };
62 
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 				      u32 *val, const char *func)
65 {
66 	int err = 0;
67 
68 	err = pci_read_config_dword(pdev, offset, val);
69 	if (err)
70 		amd64_warn("%s: error reading F%dx%03x.\n",
71 			   func, PCI_FUNC(pdev->devfn), offset);
72 
73 	return err;
74 }
75 
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 				u32 val, const char *func)
78 {
79 	int err = 0;
80 
81 	err = pci_write_config_dword(pdev, offset, val);
82 	if (err)
83 		amd64_warn("%s: error writing to F%dx%03x.\n",
84 			   func, PCI_FUNC(pdev->devfn), offset);
85 
86 	return err;
87 }
88 
89 /*
90  *
91  * Depending on the family, F2 DCT reads need special handling:
92  *
93  * K8: has a single DCT only
94  *
95  * F10h: each DCT has its own set of regs
96  *	DCT0 -> F2x040..
97  *	DCT1 -> F2x140..
98  *
99  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100  *
101  */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 			       const char *func)
104 {
105 	if (addr >= 0x100)
106 		return -EINVAL;
107 
108 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110 
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 				 const char *func)
113 {
114 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116 
117 /*
118  * Select DCT to which PCI cfg accesses are routed
119  */
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 	u32 reg = 0;
123 
124 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 	reg &= 0xfffffffe;
126 	reg |= dct;
127 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129 
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 				 const char *func)
132 {
133 	u8 dct  = 0;
134 
135 	if (addr >= 0x140 && addr <= 0x1a0) {
136 		dct   = 1;
137 		addr -= 0x100;
138 	}
139 
140 	f15h_select_dct(pvt, dct);
141 
142 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144 
145 /*
146  * Memory scrubber control interface. For K8, memory scrubbing is handled by
147  * hardware and can involve L2 cache, dcache as well as the main memory. With
148  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149  * functionality.
150  *
151  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153  * bytes/sec for the setting.
154  *
155  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156  * other archs, we might not have access to the caches directly.
157  */
158 
159 /*
160  * scan the scrub rate mapping table for a close or matching bandwidth value to
161  * issue. If requested is too big, then use last maximum value found.
162  */
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 	u32 scrubval;
166 	int i;
167 
168 	/*
169 	 * map the configured rate (new_bw) to a value specific to the AMD64
170 	 * memory controller and apply to register. Search for the first
171 	 * bandwidth entry that is greater or equal than the setting requested
172 	 * and program that. If at last entry, turn off DRAM scrubbing.
173 	 */
174 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 		/*
176 		 * skip scrub rates which aren't recommended
177 		 * (see F10 BKDG, F3x58)
178 		 */
179 		if (scrubrates[i].scrubval < min_rate)
180 			continue;
181 
182 		if (scrubrates[i].bandwidth <= new_bw)
183 			break;
184 
185 		/*
186 		 * if no suitable bandwidth found, turn off DRAM scrubbing
187 		 * entirely by falling back to the last element in the
188 		 * scrubrates array.
189 		 */
190 	}
191 
192 	scrubval = scrubrates[i].scrubval;
193 
194 	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
195 
196 	if (scrubval)
197 		return scrubrates[i].bandwidth;
198 
199 	return 0;
200 }
201 
202 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
203 {
204 	struct amd64_pvt *pvt = mci->pvt_info;
205 	u32 min_scrubrate = 0x5;
206 
207 	if (boot_cpu_data.x86 == 0xf)
208 		min_scrubrate = 0x0;
209 
210 	/* F15h Erratum #505 */
211 	if (boot_cpu_data.x86 == 0x15)
212 		f15h_select_dct(pvt, 0);
213 
214 	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
215 }
216 
217 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
218 {
219 	struct amd64_pvt *pvt = mci->pvt_info;
220 	u32 scrubval = 0;
221 	int i, retval = -EINVAL;
222 
223 	/* F15h Erratum #505 */
224 	if (boot_cpu_data.x86 == 0x15)
225 		f15h_select_dct(pvt, 0);
226 
227 	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
228 
229 	scrubval = scrubval & 0x001F;
230 
231 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
232 		if (scrubrates[i].scrubval == scrubval) {
233 			retval = scrubrates[i].bandwidth;
234 			break;
235 		}
236 	}
237 	return retval;
238 }
239 
240 /*
241  * returns true if the SysAddr given by sys_addr matches the
242  * DRAM base/limit associated with node_id
243  */
244 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 				   unsigned nid)
246 {
247 	u64 addr;
248 
249 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
250 	 * all ones if the most significant implemented address bit is 1.
251 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
252 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 	 * Application Programming.
254 	 */
255 	addr = sys_addr & 0x000000ffffffffffull;
256 
257 	return ((addr >= get_dram_base(pvt, nid)) &&
258 		(addr <= get_dram_limit(pvt, nid)));
259 }
260 
261 /*
262  * Attempt to map a SysAddr to a node. On success, return a pointer to the
263  * mem_ctl_info structure for the node that the SysAddr maps to.
264  *
265  * On failure, return NULL.
266  */
267 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 						u64 sys_addr)
269 {
270 	struct amd64_pvt *pvt;
271 	unsigned node_id;
272 	u32 intlv_en, bits;
273 
274 	/*
275 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 	 */
278 	pvt = mci->pvt_info;
279 
280 	/*
281 	 * The value of this field should be the same for all DRAM Base
282 	 * registers.  Therefore we arbitrarily choose to read it from the
283 	 * register for node 0.
284 	 */
285 	intlv_en = dram_intlv_en(pvt, 0);
286 
287 	if (intlv_en == 0) {
288 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
289 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
290 				goto found;
291 		}
292 		goto err_no_match;
293 	}
294 
295 	if (unlikely((intlv_en != 0x01) &&
296 		     (intlv_en != 0x03) &&
297 		     (intlv_en != 0x07))) {
298 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
299 		return NULL;
300 	}
301 
302 	bits = (((u32) sys_addr) >> 12) & intlv_en;
303 
304 	for (node_id = 0; ; ) {
305 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
306 			break;	/* intlv_sel field matches */
307 
308 		if (++node_id >= DRAM_RANGES)
309 			goto err_no_match;
310 	}
311 
312 	/* sanity test for sys_addr */
313 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
314 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 			   "range for node %d with node interleaving enabled.\n",
316 			   __func__, sys_addr, node_id);
317 		return NULL;
318 	}
319 
320 found:
321 	return edac_mc_find((int)node_id);
322 
323 err_no_match:
324 	debugf2("sys_addr 0x%lx doesn't match any node\n",
325 		(unsigned long)sys_addr);
326 
327 	return NULL;
328 }
329 
330 /*
331  * compute the CS base address of the @csrow on the DRAM controller @dct.
332  * For details see F2x[5C:40] in the processor's BKDG
333  */
334 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 				 u64 *base, u64 *mask)
336 {
337 	u64 csbase, csmask, base_bits, mask_bits;
338 	u8 addr_shift;
339 
340 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 		csbase		= pvt->csels[dct].csbases[csrow];
342 		csmask		= pvt->csels[dct].csmasks[csrow];
343 		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
344 		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
345 		addr_shift	= 4;
346 	} else {
347 		csbase		= pvt->csels[dct].csbases[csrow];
348 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
349 		addr_shift	= 8;
350 
351 		if (boot_cpu_data.x86 == 0x15)
352 			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 		else
354 			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 	}
356 
357 	*base  = (csbase & base_bits) << addr_shift;
358 
359 	*mask  = ~0ULL;
360 	/* poke holes for the csmask */
361 	*mask &= ~(mask_bits << addr_shift);
362 	/* OR them in */
363 	*mask |= (csmask & mask_bits) << addr_shift;
364 }
365 
366 #define for_each_chip_select(i, dct, pvt) \
367 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368 
369 #define chip_select_base(i, dct, pvt) \
370 	pvt->csels[dct].csbases[i]
371 
372 #define for_each_chip_select_mask(i, dct, pvt) \
373 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374 
375 /*
376  * @input_addr is an InputAddr associated with the node given by mci. Return the
377  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378  */
379 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380 {
381 	struct amd64_pvt *pvt;
382 	int csrow;
383 	u64 base, mask;
384 
385 	pvt = mci->pvt_info;
386 
387 	for_each_chip_select(csrow, 0, pvt) {
388 		if (!csrow_enabled(csrow, 0, pvt))
389 			continue;
390 
391 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392 
393 		mask = ~mask;
394 
395 		if ((input_addr & mask) == (base & mask)) {
396 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
397 				(unsigned long)input_addr, csrow,
398 				pvt->mc_node_id);
399 
400 			return csrow;
401 		}
402 	}
403 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 		(unsigned long)input_addr, pvt->mc_node_id);
405 
406 	return -1;
407 }
408 
409 /*
410  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411  * for the node represented by mci. Info is passed back in *hole_base,
412  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
413  * info is invalid. Info may be invalid for either of the following reasons:
414  *
415  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
416  *   Address Register does not exist.
417  *
418  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419  *   indicating that its contents are not valid.
420  *
421  * The values passed back in *hole_base, *hole_offset, and *hole_size are
422  * complete 32-bit values despite the fact that the bitfields in the DHAR
423  * only represent bits 31-24 of the base and offset values.
424  */
425 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 			     u64 *hole_offset, u64 *hole_size)
427 {
428 	struct amd64_pvt *pvt = mci->pvt_info;
429 	u64 base;
430 
431 	/* only revE and later have the DRAM Hole Address Register */
432 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
433 		debugf1("  revision %d for node %d does not support DHAR\n",
434 			pvt->ext_model, pvt->mc_node_id);
435 		return 1;
436 	}
437 
438 	/* valid for Fam10h and above */
439 	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
440 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
441 		return 1;
442 	}
443 
444 	if (!dhar_valid(pvt)) {
445 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
446 			pvt->mc_node_id);
447 		return 1;
448 	}
449 
450 	/* This node has Memory Hoisting */
451 
452 	/* +------------------+--------------------+--------------------+-----
453 	 * | memory           | DRAM hole          | relocated          |
454 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
455 	 * |                  |                    | DRAM hole          |
456 	 * |                  |                    | [0x100000000,      |
457 	 * |                  |                    |  (0x100000000+     |
458 	 * |                  |                    |   (0xffffffff-x))] |
459 	 * +------------------+--------------------+--------------------+-----
460 	 *
461 	 * Above is a diagram of physical memory showing the DRAM hole and the
462 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
463 	 * starts at address x (the base address) and extends through address
464 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
465 	 * addresses in the hole so that they start at 0x100000000.
466 	 */
467 
468 	base = dhar_base(pvt);
469 
470 	*hole_base = base;
471 	*hole_size = (0x1ull << 32) - base;
472 
473 	if (boot_cpu_data.x86 > 0xf)
474 		*hole_offset = f10_dhar_offset(pvt);
475 	else
476 		*hole_offset = k8_dhar_offset(pvt);
477 
478 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 		pvt->mc_node_id, (unsigned long)*hole_base,
480 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485 
486 /*
487  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
488  * assumed that sys_addr maps to the node given by mci.
489  *
490  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493  * then it is also involved in translating a SysAddr to a DramAddr. Sections
494  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495  * These parts of the documentation are unclear. I interpret them as follows:
496  *
497  * When node n receives a SysAddr, it processes the SysAddr as follows:
498  *
499  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500  *    Limit registers for node n. If the SysAddr is not within the range
501  *    specified by the base and limit values, then node n ignores the Sysaddr
502  *    (since it does not map to node n). Otherwise continue to step 2 below.
503  *
504  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
507  *    hole. If not, skip to step 3 below. Else get the value of the
508  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509  *    offset defined by this value from the SysAddr.
510  *
511  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512  *    Base register for node n. To obtain the DramAddr, subtract the base
513  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514  */
515 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516 {
517 	struct amd64_pvt *pvt = mci->pvt_info;
518 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 	int ret = 0;
520 
521 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
522 
523 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 				      &hole_size);
525 	if (!ret) {
526 		if ((sys_addr >= (1ull << 32)) &&
527 		    (sys_addr < ((1ull << 32) + hole_size))) {
528 			/* use DHAR to translate SysAddr to DramAddr */
529 			dram_addr = sys_addr - hole_offset;
530 
531 			debugf2("using DHAR to translate SysAddr 0x%lx to "
532 				"DramAddr 0x%lx\n",
533 				(unsigned long)sys_addr,
534 				(unsigned long)dram_addr);
535 
536 			return dram_addr;
537 		}
538 	}
539 
540 	/*
541 	 * Translate the SysAddr to a DramAddr as shown near the start of
542 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
543 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
544 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
545 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
546 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
547 	 * Programmer's Manual Volume 1 Application Programming.
548 	 */
549 	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
550 
551 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
552 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
553 		(unsigned long)dram_addr);
554 	return dram_addr;
555 }
556 
557 /*
558  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
559  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
560  * for node interleaving.
561  */
562 static int num_node_interleave_bits(unsigned intlv_en)
563 {
564 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
565 	int n;
566 
567 	BUG_ON(intlv_en > 7);
568 	n = intlv_shift_table[intlv_en];
569 	return n;
570 }
571 
572 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
573 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
574 {
575 	struct amd64_pvt *pvt;
576 	int intlv_shift;
577 	u64 input_addr;
578 
579 	pvt = mci->pvt_info;
580 
581 	/*
582 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
583 	 * concerning translating a DramAddr to an InputAddr.
584 	 */
585 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
586 	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
587 		      (dram_addr & 0xfff);
588 
589 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
590 		intlv_shift, (unsigned long)dram_addr,
591 		(unsigned long)input_addr);
592 
593 	return input_addr;
594 }
595 
596 /*
597  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
598  * assumed that @sys_addr maps to the node given by mci.
599  */
600 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
601 {
602 	u64 input_addr;
603 
604 	input_addr =
605 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
606 
607 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
608 		(unsigned long)sys_addr, (unsigned long)input_addr);
609 
610 	return input_addr;
611 }
612 
613 
614 /*
615  * @input_addr is an InputAddr associated with the node represented by mci.
616  * Translate @input_addr to a DramAddr and return the result.
617  */
618 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
619 {
620 	struct amd64_pvt *pvt;
621 	unsigned node_id, intlv_shift;
622 	u64 bits, dram_addr;
623 	u32 intlv_sel;
624 
625 	/*
626 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
627 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
628 	 * this procedure. When translating from a DramAddr to an InputAddr, the
629 	 * bits used for node interleaving are discarded.  Here we recover these
630 	 * bits from the IntlvSel field of the DRAM Limit register (section
631 	 * 3.4.4.2) for the node that input_addr is associated with.
632 	 */
633 	pvt = mci->pvt_info;
634 	node_id = pvt->mc_node_id;
635 
636 	BUG_ON(node_id > 7);
637 
638 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
639 	if (intlv_shift == 0) {
640 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
641 			"same value\n",	(unsigned long)input_addr);
642 
643 		return input_addr;
644 	}
645 
646 	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
647 		(input_addr & 0xfff);
648 
649 	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
650 	dram_addr = bits + (intlv_sel << 12);
651 
652 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
653 		"(%d node interleave bits)\n", (unsigned long)input_addr,
654 		(unsigned long)dram_addr, intlv_shift);
655 
656 	return dram_addr;
657 }
658 
659 /*
660  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
661  * @dram_addr to a SysAddr.
662  */
663 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
664 {
665 	struct amd64_pvt *pvt = mci->pvt_info;
666 	u64 hole_base, hole_offset, hole_size, base, sys_addr;
667 	int ret = 0;
668 
669 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
670 				      &hole_size);
671 	if (!ret) {
672 		if ((dram_addr >= hole_base) &&
673 		    (dram_addr < (hole_base + hole_size))) {
674 			sys_addr = dram_addr + hole_offset;
675 
676 			debugf1("using DHAR to translate DramAddr 0x%lx to "
677 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
678 				(unsigned long)sys_addr);
679 
680 			return sys_addr;
681 		}
682 	}
683 
684 	base     = get_dram_base(pvt, pvt->mc_node_id);
685 	sys_addr = dram_addr + base;
686 
687 	/*
688 	 * The sys_addr we have computed up to this point is a 40-bit value
689 	 * because the k8 deals with 40-bit values.  However, the value we are
690 	 * supposed to return is a full 64-bit physical address.  The AMD
691 	 * x86-64 architecture specifies that the most significant implemented
692 	 * address bit through bit 63 of a physical address must be either all
693 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
694 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
695 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
696 	 * Programming.
697 	 */
698 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
699 
700 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
701 		pvt->mc_node_id, (unsigned long)dram_addr,
702 		(unsigned long)sys_addr);
703 
704 	return sys_addr;
705 }
706 
707 /*
708  * @input_addr is an InputAddr associated with the node given by mci. Translate
709  * @input_addr to a SysAddr.
710  */
711 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
712 					 u64 input_addr)
713 {
714 	return dram_addr_to_sys_addr(mci,
715 				     input_addr_to_dram_addr(mci, input_addr));
716 }
717 
718 /* Map the Error address to a PAGE and PAGE OFFSET. */
719 static inline void error_address_to_page_and_offset(u64 error_address,
720 						    u32 *page, u32 *offset)
721 {
722 	*page = (u32) (error_address >> PAGE_SHIFT);
723 	*offset = ((u32) error_address) & ~PAGE_MASK;
724 }
725 
726 /*
727  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
728  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
729  * of a node that detected an ECC memory error.  mci represents the node that
730  * the error address maps to (possibly different from the node that detected
731  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
732  * error.
733  */
734 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
735 {
736 	int csrow;
737 
738 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
739 
740 	if (csrow == -1)
741 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
742 				  "address 0x%lx\n", (unsigned long)sys_addr);
743 	return csrow;
744 }
745 
746 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
747 
748 /*
749  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
750  * are ECC capable.
751  */
752 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
753 {
754 	u8 bit;
755 	unsigned long edac_cap = EDAC_FLAG_NONE;
756 
757 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
758 		? 19
759 		: 17;
760 
761 	if (pvt->dclr0 & BIT(bit))
762 		edac_cap = EDAC_FLAG_SECDED;
763 
764 	return edac_cap;
765 }
766 
767 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
768 
769 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
770 {
771 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
772 
773 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
774 		(dclr & BIT(16)) ?  "un" : "",
775 		(dclr & BIT(19)) ? "yes" : "no");
776 
777 	debugf1("  PAR/ERR parity: %s\n",
778 		(dclr & BIT(8)) ?  "enabled" : "disabled");
779 
780 	if (boot_cpu_data.x86 == 0x10)
781 		debugf1("  DCT 128bit mode width: %s\n",
782 			(dclr & BIT(11)) ?  "128b" : "64b");
783 
784 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
785 		(dclr & BIT(12)) ?  "yes" : "no",
786 		(dclr & BIT(13)) ?  "yes" : "no",
787 		(dclr & BIT(14)) ?  "yes" : "no",
788 		(dclr & BIT(15)) ?  "yes" : "no");
789 }
790 
791 /* Display and decode various NB registers for debug purposes. */
792 static void dump_misc_regs(struct amd64_pvt *pvt)
793 {
794 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
795 
796 	debugf1("  NB two channel DRAM capable: %s\n",
797 		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
798 
799 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
800 		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
801 		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
802 
803 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
804 
805 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
806 
807 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
808 			"offset: 0x%08x\n",
809 			pvt->dhar, dhar_base(pvt),
810 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
811 						   : f10_dhar_offset(pvt));
812 
813 	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
814 
815 	amd64_debug_display_dimm_sizes(pvt, 0);
816 
817 	/* everything below this point is Fam10h and above */
818 	if (boot_cpu_data.x86 == 0xf)
819 		return;
820 
821 	amd64_debug_display_dimm_sizes(pvt, 1);
822 
823 	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
824 
825 	/* Only if NOT ganged does dclr1 have valid info */
826 	if (!dct_ganging_enabled(pvt))
827 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
828 }
829 
830 /*
831  * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
832  */
833 static void prep_chip_selects(struct amd64_pvt *pvt)
834 {
835 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
836 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
837 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
838 	} else {
839 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
840 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
841 	}
842 }
843 
844 /*
845  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
846  */
847 static void read_dct_base_mask(struct amd64_pvt *pvt)
848 {
849 	int cs;
850 
851 	prep_chip_selects(pvt);
852 
853 	for_each_chip_select(cs, 0, pvt) {
854 		int reg0   = DCSB0 + (cs * 4);
855 		int reg1   = DCSB1 + (cs * 4);
856 		u32 *base0 = &pvt->csels[0].csbases[cs];
857 		u32 *base1 = &pvt->csels[1].csbases[cs];
858 
859 		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
860 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
861 				cs, *base0, reg0);
862 
863 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
864 			continue;
865 
866 		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
867 			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
868 				cs, *base1, reg1);
869 	}
870 
871 	for_each_chip_select_mask(cs, 0, pvt) {
872 		int reg0   = DCSM0 + (cs * 4);
873 		int reg1   = DCSM1 + (cs * 4);
874 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
875 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
876 
877 		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
878 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
879 				cs, *mask0, reg0);
880 
881 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
882 			continue;
883 
884 		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
885 			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
886 				cs, *mask1, reg1);
887 	}
888 }
889 
890 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
891 {
892 	enum mem_type type;
893 
894 	/* F15h supports only DDR3 */
895 	if (boot_cpu_data.x86 >= 0x15)
896 		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
897 	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
898 		if (pvt->dchr0 & DDR3_MODE)
899 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
900 		else
901 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
902 	} else {
903 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
904 	}
905 
906 	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
907 
908 	return type;
909 }
910 
911 /* Get the number of DCT channels the memory controller is using. */
912 static int k8_early_channel_count(struct amd64_pvt *pvt)
913 {
914 	int flag;
915 
916 	if (pvt->ext_model >= K8_REV_F)
917 		/* RevF (NPT) and later */
918 		flag = pvt->dclr0 & WIDTH_128;
919 	else
920 		/* RevE and earlier */
921 		flag = pvt->dclr0 & REVE_WIDTH_128;
922 
923 	/* not used */
924 	pvt->dclr1 = 0;
925 
926 	return (flag) ? 2 : 1;
927 }
928 
929 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
930 static u64 get_error_address(struct mce *m)
931 {
932 	struct cpuinfo_x86 *c = &boot_cpu_data;
933 	u64 addr;
934 	u8 start_bit = 1;
935 	u8 end_bit   = 47;
936 
937 	if (c->x86 == 0xf) {
938 		start_bit = 3;
939 		end_bit   = 39;
940 	}
941 
942 	addr = m->addr & GENMASK(start_bit, end_bit);
943 
944 	/*
945 	 * Erratum 637 workaround
946 	 */
947 	if (c->x86 == 0x15) {
948 		struct amd64_pvt *pvt;
949 		u64 cc6_base, tmp_addr;
950 		u32 tmp;
951 		u8 mce_nid, intlv_en;
952 
953 		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
954 			return addr;
955 
956 		mce_nid	= amd_get_nb_id(m->extcpu);
957 		pvt	= mcis[mce_nid]->pvt_info;
958 
959 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
960 		intlv_en = tmp >> 21 & 0x7;
961 
962 		/* add [47:27] + 3 trailing bits */
963 		cc6_base  = (tmp & GENMASK(0, 20)) << 3;
964 
965 		/* reverse and add DramIntlvEn */
966 		cc6_base |= intlv_en ^ 0x7;
967 
968 		/* pin at [47:24] */
969 		cc6_base <<= 24;
970 
971 		if (!intlv_en)
972 			return cc6_base | (addr & GENMASK(0, 23));
973 
974 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
975 
976 							/* faster log2 */
977 		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
978 
979 		/* OR DramIntlvSel into bits [14:12] */
980 		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
981 
982 		/* add remaining [11:0] bits from original MC4_ADDR */
983 		tmp_addr |= addr & GENMASK(0, 11);
984 
985 		return cc6_base | tmp_addr;
986 	}
987 
988 	return addr;
989 }
990 
991 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
992 {
993 	struct cpuinfo_x86 *c = &boot_cpu_data;
994 	int off = range << 3;
995 
996 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
997 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
998 
999 	if (c->x86 == 0xf)
1000 		return;
1001 
1002 	if (!dram_rw(pvt, range))
1003 		return;
1004 
1005 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
1006 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1007 
1008 	/* Factor in CC6 save area by reading dst node's limit reg */
1009 	if (c->x86 == 0x15) {
1010 		struct pci_dev *f1 = NULL;
1011 		u8 nid = dram_dst_node(pvt, range);
1012 		u32 llim;
1013 
1014 		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1015 		if (WARN_ON(!f1))
1016 			return;
1017 
1018 		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1019 
1020 		pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1021 
1022 					    /* {[39:27],111b} */
1023 		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1024 
1025 		pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1026 
1027 					    /* [47:40] */
1028 		pvt->ranges[range].lim.hi |= llim >> 13;
1029 
1030 		pci_dev_put(f1);
1031 	}
1032 }
1033 
1034 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1035 				    u16 syndrome)
1036 {
1037 	struct mem_ctl_info *src_mci;
1038 	struct amd64_pvt *pvt = mci->pvt_info;
1039 	int channel, csrow;
1040 	u32 page, offset;
1041 
1042 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1043 
1044 	/*
1045 	 * Find out which node the error address belongs to. This may be
1046 	 * different from the node that detected the error.
1047 	 */
1048 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1049 	if (!src_mci) {
1050 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1051 			     (unsigned long)sys_addr);
1052 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1053 				     page, offset, syndrome,
1054 				     -1, -1, -1,
1055 				     EDAC_MOD_STR,
1056 				     "failed to map error addr to a node",
1057 				     NULL);
1058 		return;
1059 	}
1060 
1061 	/* Now map the sys_addr to a CSROW */
1062 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1063 	if (csrow < 0) {
1064 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1065 				     page, offset, syndrome,
1066 				     -1, -1, -1,
1067 				     EDAC_MOD_STR,
1068 				     "failed to map error addr to a csrow",
1069 				     NULL);
1070 		return;
1071 	}
1072 
1073 	/* CHIPKILL enabled */
1074 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1075 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1076 		if (channel < 0) {
1077 			/*
1078 			 * Syndrome didn't map, so we don't know which of the
1079 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 			 * as suspect.
1081 			 */
1082 			amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
1083 				      "possible error reporting race\n",
1084 				      syndrome);
1085 			edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1086 					     page, offset, syndrome,
1087 					     csrow, -1, -1,
1088 					     EDAC_MOD_STR,
1089 					     "unknown syndrome - possible error reporting race",
1090 					     NULL);
1091 			return;
1092 		}
1093 	} else {
1094 		/*
1095 		 * non-chipkill ecc mode
1096 		 *
1097 		 * The k8 documentation is unclear about how to determine the
1098 		 * channel number when using non-chipkill memory.  This method
1099 		 * was obtained from email communication with someone at AMD.
1100 		 * (Wish the email was placed in this comment - norsk)
1101 		 */
1102 		channel = ((sys_addr & BIT(3)) != 0);
1103 	}
1104 
1105 	edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci,
1106 			     page, offset, syndrome,
1107 			     csrow, channel, -1,
1108 			     EDAC_MOD_STR, "", NULL);
1109 }
1110 
1111 static int ddr2_cs_size(unsigned i, bool dct_width)
1112 {
1113 	unsigned shift = 0;
1114 
1115 	if (i <= 2)
1116 		shift = i;
1117 	else if (!(i & 0x1))
1118 		shift = i >> 1;
1119 	else
1120 		shift = (i + 1) >> 1;
1121 
1122 	return 128 << (shift + !!dct_width);
1123 }
1124 
1125 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1126 				  unsigned cs_mode)
1127 {
1128 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1129 
1130 	if (pvt->ext_model >= K8_REV_F) {
1131 		WARN_ON(cs_mode > 11);
1132 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1133 	}
1134 	else if (pvt->ext_model >= K8_REV_D) {
1135 		unsigned diff;
1136 		WARN_ON(cs_mode > 10);
1137 
1138 		/*
1139 		 * the below calculation, besides trying to win an obfuscated C
1140 		 * contest, maps cs_mode values to DIMM chip select sizes. The
1141 		 * mappings are:
1142 		 *
1143 		 * cs_mode	CS size (mb)
1144 		 * =======	============
1145 		 * 0		32
1146 		 * 1		64
1147 		 * 2		128
1148 		 * 3		128
1149 		 * 4		256
1150 		 * 5		512
1151 		 * 6		256
1152 		 * 7		512
1153 		 * 8		1024
1154 		 * 9		1024
1155 		 * 10		2048
1156 		 *
1157 		 * Basically, it calculates a value with which to shift the
1158 		 * smallest CS size of 32MB.
1159 		 *
1160 		 * ddr[23]_cs_size have a similar purpose.
1161 		 */
1162 		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1163 
1164 		return 32 << (cs_mode - diff);
1165 	}
1166 	else {
1167 		WARN_ON(cs_mode > 6);
1168 		return 32 << cs_mode;
1169 	}
1170 }
1171 
1172 /*
1173  * Get the number of DCT channels in use.
1174  *
1175  * Return:
1176  *	number of Memory Channels in operation
1177  * Pass back:
1178  *	contents of the DCL0_LOW register
1179  */
1180 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1181 {
1182 	int i, j, channels = 0;
1183 
1184 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1185 	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1186 		return 2;
1187 
1188 	/*
1189 	 * Need to check if in unganged mode: In such, there are 2 channels,
1190 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1191 	 * bit will be OFF.
1192 	 *
1193 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1194 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1195 	 */
1196 	debugf0("Data width is not 128 bits - need more decoding\n");
1197 
1198 	/*
1199 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1200 	 * is more than just one DIMM present in unganged mode. Need to check
1201 	 * both controllers since DIMMs can be placed in either one.
1202 	 */
1203 	for (i = 0; i < 2; i++) {
1204 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1205 
1206 		for (j = 0; j < 4; j++) {
1207 			if (DBAM_DIMM(j, dbam) > 0) {
1208 				channels++;
1209 				break;
1210 			}
1211 		}
1212 	}
1213 
1214 	if (channels > 2)
1215 		channels = 2;
1216 
1217 	amd64_info("MCT channel count: %d\n", channels);
1218 
1219 	return channels;
1220 }
1221 
1222 static int ddr3_cs_size(unsigned i, bool dct_width)
1223 {
1224 	unsigned shift = 0;
1225 	int cs_size = 0;
1226 
1227 	if (i == 0 || i == 3 || i == 4)
1228 		cs_size = -1;
1229 	else if (i <= 2)
1230 		shift = i;
1231 	else if (i == 12)
1232 		shift = 7;
1233 	else if (!(i & 0x1))
1234 		shift = i >> 1;
1235 	else
1236 		shift = (i + 1) >> 1;
1237 
1238 	if (cs_size != -1)
1239 		cs_size = (128 * (1 << !!dct_width)) << shift;
1240 
1241 	return cs_size;
1242 }
1243 
1244 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1245 				   unsigned cs_mode)
1246 {
1247 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1248 
1249 	WARN_ON(cs_mode > 11);
1250 
1251 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1252 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1253 	else
1254 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1255 }
1256 
1257 /*
1258  * F15h supports only 64bit DCT interfaces
1259  */
1260 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1261 				   unsigned cs_mode)
1262 {
1263 	WARN_ON(cs_mode > 12);
1264 
1265 	return ddr3_cs_size(cs_mode, false);
1266 }
1267 
1268 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1269 {
1270 
1271 	if (boot_cpu_data.x86 == 0xf)
1272 		return;
1273 
1274 	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1275 		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1276 			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1277 
1278 		debugf0("  DCTs operate in %s mode.\n",
1279 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1280 
1281 		if (!dct_ganging_enabled(pvt))
1282 			debugf0("  Address range split per DCT: %s\n",
1283 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1284 
1285 		debugf0("  data interleave for ECC: %s, "
1286 			"DRAM cleared since last warm reset: %s\n",
1287 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1288 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1289 
1290 		debugf0("  channel interleave: %s, "
1291 			"interleave bits selector: 0x%x\n",
1292 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1293 			dct_sel_interleave_addr(pvt));
1294 	}
1295 
1296 	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1297 }
1298 
1299 /*
1300  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1301  * Interleaving Modes.
1302  */
1303 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1304 				bool hi_range_sel, u8 intlv_en)
1305 {
1306 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1307 
1308 	if (dct_ganging_enabled(pvt))
1309 		return 0;
1310 
1311 	if (hi_range_sel)
1312 		return dct_sel_high;
1313 
1314 	/*
1315 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1316 	 */
1317 	if (dct_interleave_enabled(pvt)) {
1318 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1319 
1320 		/* return DCT select function: 0=DCT0, 1=DCT1 */
1321 		if (!intlv_addr)
1322 			return sys_addr >> 6 & 1;
1323 
1324 		if (intlv_addr & 0x2) {
1325 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1326 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1327 
1328 			return ((sys_addr >> shift) & 1) ^ temp;
1329 		}
1330 
1331 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1332 	}
1333 
1334 	if (dct_high_range_enabled(pvt))
1335 		return ~dct_sel_high & 1;
1336 
1337 	return 0;
1338 }
1339 
1340 /* Convert the sys_addr to the normalized DCT address */
1341 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1342 				 u64 sys_addr, bool hi_rng,
1343 				 u32 dct_sel_base_addr)
1344 {
1345 	u64 chan_off;
1346 	u64 dram_base		= get_dram_base(pvt, range);
1347 	u64 hole_off		= f10_dhar_offset(pvt);
1348 	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1349 
1350 	if (hi_rng) {
1351 		/*
1352 		 * if
1353 		 * base address of high range is below 4Gb
1354 		 * (bits [47:27] at [31:11])
1355 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
1356 		 * sys_addr > 4Gb
1357 		 *
1358 		 *	remove hole offset from sys_addr
1359 		 * else
1360 		 *	remove high range offset from sys_addr
1361 		 */
1362 		if ((!(dct_sel_base_addr >> 16) ||
1363 		     dct_sel_base_addr < dhar_base(pvt)) &&
1364 		    dhar_valid(pvt) &&
1365 		    (sys_addr >= BIT_64(32)))
1366 			chan_off = hole_off;
1367 		else
1368 			chan_off = dct_sel_base_off;
1369 	} else {
1370 		/*
1371 		 * if
1372 		 * we have a valid hole		&&
1373 		 * sys_addr > 4Gb
1374 		 *
1375 		 *	remove hole
1376 		 * else
1377 		 *	remove dram base to normalize to DCT address
1378 		 */
1379 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1380 			chan_off = hole_off;
1381 		else
1382 			chan_off = dram_base;
1383 	}
1384 
1385 	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1386 }
1387 
1388 /*
1389  * checks if the csrow passed in is marked as SPARED, if so returns the new
1390  * spare row
1391  */
1392 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1393 {
1394 	int tmp_cs;
1395 
1396 	if (online_spare_swap_done(pvt, dct) &&
1397 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
1398 
1399 		for_each_chip_select(tmp_cs, dct, pvt) {
1400 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1401 				csrow = tmp_cs;
1402 				break;
1403 			}
1404 		}
1405 	}
1406 	return csrow;
1407 }
1408 
1409 /*
1410  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1411  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1412  *
1413  * Return:
1414  *	-EINVAL:  NOT FOUND
1415  *	0..csrow = Chip-Select Row
1416  */
1417 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1418 {
1419 	struct mem_ctl_info *mci;
1420 	struct amd64_pvt *pvt;
1421 	u64 cs_base, cs_mask;
1422 	int cs_found = -EINVAL;
1423 	int csrow;
1424 
1425 	mci = mcis[nid];
1426 	if (!mci)
1427 		return cs_found;
1428 
1429 	pvt = mci->pvt_info;
1430 
1431 	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1432 
1433 	for_each_chip_select(csrow, dct, pvt) {
1434 		if (!csrow_enabled(csrow, dct, pvt))
1435 			continue;
1436 
1437 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1438 
1439 		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1440 			csrow, cs_base, cs_mask);
1441 
1442 		cs_mask = ~cs_mask;
1443 
1444 		debugf1("    (InputAddr & ~CSMask)=0x%llx "
1445 			"(CSBase & ~CSMask)=0x%llx\n",
1446 			(in_addr & cs_mask), (cs_base & cs_mask));
1447 
1448 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1449 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1450 
1451 			debugf1(" MATCH csrow=%d\n", cs_found);
1452 			break;
1453 		}
1454 	}
1455 	return cs_found;
1456 }
1457 
1458 /*
1459  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1460  * swapped with a region located at the bottom of memory so that the GPU can use
1461  * the interleaved region and thus two channels.
1462  */
1463 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1464 {
1465 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1466 
1467 	if (boot_cpu_data.x86 == 0x10) {
1468 		/* only revC3 and revE have that feature */
1469 		if (boot_cpu_data.x86_model < 4 ||
1470 		    (boot_cpu_data.x86_model < 0xa &&
1471 		     boot_cpu_data.x86_mask < 3))
1472 			return sys_addr;
1473 	}
1474 
1475 	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1476 
1477 	if (!(swap_reg & 0x1))
1478 		return sys_addr;
1479 
1480 	swap_base	= (swap_reg >> 3) & 0x7f;
1481 	swap_limit	= (swap_reg >> 11) & 0x7f;
1482 	rgn_size	= (swap_reg >> 20) & 0x7f;
1483 	tmp_addr	= sys_addr >> 27;
1484 
1485 	if (!(sys_addr >> 34) &&
1486 	    (((tmp_addr >= swap_base) &&
1487 	     (tmp_addr <= swap_limit)) ||
1488 	     (tmp_addr < rgn_size)))
1489 		return sys_addr ^ (u64)swap_base << 27;
1490 
1491 	return sys_addr;
1492 }
1493 
1494 /* For a given @dram_range, check if @sys_addr falls within it. */
1495 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1496 				  u64 sys_addr, int *nid, int *chan_sel)
1497 {
1498 	int cs_found = -EINVAL;
1499 	u64 chan_addr;
1500 	u32 dct_sel_base;
1501 	u8 channel;
1502 	bool high_range = false;
1503 
1504 	u8 node_id    = dram_dst_node(pvt, range);
1505 	u8 intlv_en   = dram_intlv_en(pvt, range);
1506 	u32 intlv_sel = dram_intlv_sel(pvt, range);
1507 
1508 	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1509 		range, sys_addr, get_dram_limit(pvt, range));
1510 
1511 	if (dhar_valid(pvt) &&
1512 	    dhar_base(pvt) <= sys_addr &&
1513 	    sys_addr < BIT_64(32)) {
1514 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1515 			    sys_addr);
1516 		return -EINVAL;
1517 	}
1518 
1519 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1520 		return -EINVAL;
1521 
1522 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1523 
1524 	dct_sel_base = dct_sel_baseaddr(pvt);
1525 
1526 	/*
1527 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1528 	 * select between DCT0 and DCT1.
1529 	 */
1530 	if (dct_high_range_enabled(pvt) &&
1531 	   !dct_ganging_enabled(pvt) &&
1532 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1533 		high_range = true;
1534 
1535 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1536 
1537 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1538 					  high_range, dct_sel_base);
1539 
1540 	/* Remove node interleaving, see F1x120 */
1541 	if (intlv_en)
1542 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1543 			    (chan_addr & 0xfff);
1544 
1545 	/* remove channel interleave */
1546 	if (dct_interleave_enabled(pvt) &&
1547 	   !dct_high_range_enabled(pvt) &&
1548 	   !dct_ganging_enabled(pvt)) {
1549 
1550 		if (dct_sel_interleave_addr(pvt) != 1) {
1551 			if (dct_sel_interleave_addr(pvt) == 0x3)
1552 				/* hash 9 */
1553 				chan_addr = ((chan_addr >> 10) << 9) |
1554 					     (chan_addr & 0x1ff);
1555 			else
1556 				/* A[6] or hash 6 */
1557 				chan_addr = ((chan_addr >> 7) << 6) |
1558 					     (chan_addr & 0x3f);
1559 		} else
1560 			/* A[12] */
1561 			chan_addr = ((chan_addr >> 13) << 12) |
1562 				     (chan_addr & 0xfff);
1563 	}
1564 
1565 	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1566 
1567 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1568 
1569 	if (cs_found >= 0) {
1570 		*nid = node_id;
1571 		*chan_sel = channel;
1572 	}
1573 	return cs_found;
1574 }
1575 
1576 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1577 				       int *node, int *chan_sel)
1578 {
1579 	int cs_found = -EINVAL;
1580 	unsigned range;
1581 
1582 	for (range = 0; range < DRAM_RANGES; range++) {
1583 
1584 		if (!dram_rw(pvt, range))
1585 			continue;
1586 
1587 		if ((get_dram_base(pvt, range)  <= sys_addr) &&
1588 		    (get_dram_limit(pvt, range) >= sys_addr)) {
1589 
1590 			cs_found = f1x_match_to_this_node(pvt, range,
1591 							  sys_addr, node,
1592 							  chan_sel);
1593 			if (cs_found >= 0)
1594 				break;
1595 		}
1596 	}
1597 	return cs_found;
1598 }
1599 
1600 /*
1601  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1602  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1603  *
1604  * The @sys_addr is usually an error address received from the hardware
1605  * (MCX_ADDR).
1606  */
1607 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1608 				     u16 syndrome)
1609 {
1610 	struct amd64_pvt *pvt = mci->pvt_info;
1611 	u32 page, offset;
1612 	int nid, csrow, chan = 0;
1613 
1614 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1615 
1616 	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1617 
1618 	if (csrow < 0) {
1619 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1620 				     page, offset, syndrome,
1621 				     -1, -1, -1,
1622 				     EDAC_MOD_STR,
1623 				     "failed to map error addr to a csrow",
1624 				     NULL);
1625 		return;
1626 	}
1627 
1628 	/*
1629 	 * We need the syndromes for channel detection only when we're
1630 	 * ganged. Otherwise @chan should already contain the channel at
1631 	 * this point.
1632 	 */
1633 	if (dct_ganging_enabled(pvt))
1634 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1635 
1636 	edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1637 			     page, offset, syndrome,
1638 			     csrow, chan, -1,
1639 			     EDAC_MOD_STR, "", NULL);
1640 }
1641 
1642 /*
1643  * debug routine to display the memory sizes of all logical DIMMs and its
1644  * CSROWs
1645  */
1646 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1647 {
1648 	int dimm, size0, size1, factor = 0;
1649 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1650 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1651 
1652 	if (boot_cpu_data.x86 == 0xf) {
1653 		if (pvt->dclr0 & WIDTH_128)
1654 			factor = 1;
1655 
1656 		/* K8 families < revF not supported yet */
1657 	       if (pvt->ext_model < K8_REV_F)
1658 			return;
1659 	       else
1660 		       WARN_ON(ctrl != 0);
1661 	}
1662 
1663 	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1664 	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1665 						   : pvt->csels[0].csbases;
1666 
1667 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1668 
1669 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1670 
1671 	/* Dump memory sizes for DIMM and its CSROWs */
1672 	for (dimm = 0; dimm < 4; dimm++) {
1673 
1674 		size0 = 0;
1675 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1676 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1677 						     DBAM_DIMM(dimm, dbam));
1678 
1679 		size1 = 0;
1680 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1681 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1682 						     DBAM_DIMM(dimm, dbam));
1683 
1684 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1685 				dimm * 2,     size0 << factor,
1686 				dimm * 2 + 1, size1 << factor);
1687 	}
1688 }
1689 
1690 static struct amd64_family_type amd64_family_types[] = {
1691 	[K8_CPUS] = {
1692 		.ctl_name = "K8",
1693 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1694 		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1695 		.ops = {
1696 			.early_channel_count	= k8_early_channel_count,
1697 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1698 			.dbam_to_cs		= k8_dbam_to_chip_select,
1699 			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1700 		}
1701 	},
1702 	[F10_CPUS] = {
1703 		.ctl_name = "F10h",
1704 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1705 		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1706 		.ops = {
1707 			.early_channel_count	= f1x_early_channel_count,
1708 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1709 			.dbam_to_cs		= f10_dbam_to_chip_select,
1710 			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
1711 		}
1712 	},
1713 	[F15_CPUS] = {
1714 		.ctl_name = "F15h",
1715 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1716 		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1717 		.ops = {
1718 			.early_channel_count	= f1x_early_channel_count,
1719 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1720 			.dbam_to_cs		= f15_dbam_to_chip_select,
1721 			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1722 		}
1723 	},
1724 };
1725 
1726 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1727 						unsigned int device,
1728 						struct pci_dev *related)
1729 {
1730 	struct pci_dev *dev = NULL;
1731 
1732 	dev = pci_get_device(vendor, device, dev);
1733 	while (dev) {
1734 		if ((dev->bus->number == related->bus->number) &&
1735 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1736 			break;
1737 		dev = pci_get_device(vendor, device, dev);
1738 	}
1739 
1740 	return dev;
1741 }
1742 
1743 /*
1744  * These are tables of eigenvectors (one per line) which can be used for the
1745  * construction of the syndrome tables. The modified syndrome search algorithm
1746  * uses those to find the symbol in error and thus the DIMM.
1747  *
1748  * Algorithm courtesy of Ross LaFetra from AMD.
1749  */
1750 static u16 x4_vectors[] = {
1751 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1752 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1753 	0x0001, 0x0002, 0x0004, 0x0008,
1754 	0x1013, 0x3032, 0x4044, 0x8088,
1755 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1756 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1757 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1758 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1759 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1760 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1761 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1762 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1763 	0x2b87, 0x164e, 0x642c, 0xdc18,
1764 	0x40b9, 0x80de, 0x1094, 0x20e8,
1765 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1766 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1767 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1768 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1769 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1770 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1771 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1772 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1773 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1774 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1775 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1776 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1777 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1778 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1779 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1780 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1781 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1782 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1783 	0x4807, 0xc40e, 0x130c, 0x3208,
1784 	0x1905, 0x2e0a, 0x5804, 0xac08,
1785 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1786 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1787 };
1788 
1789 static u16 x8_vectors[] = {
1790 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1791 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1792 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1793 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1794 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1795 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1796 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1797 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1798 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1799 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1800 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1801 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1802 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1803 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1804 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1805 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1806 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1807 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1808 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1809 };
1810 
1811 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1812 			   unsigned v_dim)
1813 {
1814 	unsigned int i, err_sym;
1815 
1816 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1817 		u16 s = syndrome;
1818 		unsigned v_idx =  err_sym * v_dim;
1819 		unsigned v_end = (err_sym + 1) * v_dim;
1820 
1821 		/* walk over all 16 bits of the syndrome */
1822 		for (i = 1; i < (1U << 16); i <<= 1) {
1823 
1824 			/* if bit is set in that eigenvector... */
1825 			if (v_idx < v_end && vectors[v_idx] & i) {
1826 				u16 ev_comp = vectors[v_idx++];
1827 
1828 				/* ... and bit set in the modified syndrome, */
1829 				if (s & i) {
1830 					/* remove it. */
1831 					s ^= ev_comp;
1832 
1833 					if (!s)
1834 						return err_sym;
1835 				}
1836 
1837 			} else if (s & i)
1838 				/* can't get to zero, move to next symbol */
1839 				break;
1840 		}
1841 	}
1842 
1843 	debugf0("syndrome(%x) not found\n", syndrome);
1844 	return -1;
1845 }
1846 
1847 static int map_err_sym_to_channel(int err_sym, int sym_size)
1848 {
1849 	if (sym_size == 4)
1850 		switch (err_sym) {
1851 		case 0x20:
1852 		case 0x21:
1853 			return 0;
1854 			break;
1855 		case 0x22:
1856 		case 0x23:
1857 			return 1;
1858 			break;
1859 		default:
1860 			return err_sym >> 4;
1861 			break;
1862 		}
1863 	/* x8 symbols */
1864 	else
1865 		switch (err_sym) {
1866 		/* imaginary bits not in a DIMM */
1867 		case 0x10:
1868 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1869 					  err_sym);
1870 			return -1;
1871 			break;
1872 
1873 		case 0x11:
1874 			return 0;
1875 			break;
1876 		case 0x12:
1877 			return 1;
1878 			break;
1879 		default:
1880 			return err_sym >> 3;
1881 			break;
1882 		}
1883 	return -1;
1884 }
1885 
1886 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1887 {
1888 	struct amd64_pvt *pvt = mci->pvt_info;
1889 	int err_sym = -1;
1890 
1891 	if (pvt->ecc_sym_sz == 8)
1892 		err_sym = decode_syndrome(syndrome, x8_vectors,
1893 					  ARRAY_SIZE(x8_vectors),
1894 					  pvt->ecc_sym_sz);
1895 	else if (pvt->ecc_sym_sz == 4)
1896 		err_sym = decode_syndrome(syndrome, x4_vectors,
1897 					  ARRAY_SIZE(x4_vectors),
1898 					  pvt->ecc_sym_sz);
1899 	else {
1900 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1901 		return err_sym;
1902 	}
1903 
1904 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1905 }
1906 
1907 /*
1908  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1909  * ADDRESS and process.
1910  */
1911 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1912 {
1913 	struct amd64_pvt *pvt = mci->pvt_info;
1914 	u64 sys_addr;
1915 	u16 syndrome;
1916 
1917 	/* Ensure that the Error Address is VALID */
1918 	if (!(m->status & MCI_STATUS_ADDRV)) {
1919 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1920 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1921 				     0, 0, 0,
1922 				     -1, -1, -1,
1923 				     EDAC_MOD_STR,
1924 				     "HW has no ERROR_ADDRESS available",
1925 				     NULL);
1926 		return;
1927 	}
1928 
1929 	sys_addr = get_error_address(m);
1930 	syndrome = extract_syndrome(m->status);
1931 
1932 	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1933 
1934 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1935 }
1936 
1937 /* Handle any Un-correctable Errors (UEs) */
1938 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1939 {
1940 	struct mem_ctl_info *log_mci, *src_mci = NULL;
1941 	int csrow;
1942 	u64 sys_addr;
1943 	u32 page, offset;
1944 
1945 	log_mci = mci;
1946 
1947 	if (!(m->status & MCI_STATUS_ADDRV)) {
1948 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1949 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1950 				     0, 0, 0,
1951 				     -1, -1, -1,
1952 				     EDAC_MOD_STR,
1953 				     "HW has no ERROR_ADDRESS available",
1954 				     NULL);
1955 		return;
1956 	}
1957 
1958 	sys_addr = get_error_address(m);
1959 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1960 
1961 	/*
1962 	 * Find out which node the error address belongs to. This may be
1963 	 * different from the node that detected the error.
1964 	 */
1965 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1966 	if (!src_mci) {
1967 		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1968 				  (unsigned long)sys_addr);
1969 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1970 				     page, offset, 0,
1971 				     -1, -1, -1,
1972 				     EDAC_MOD_STR,
1973 				     "ERROR ADDRESS NOT mapped to a MC", NULL);
1974 		return;
1975 	}
1976 
1977 	log_mci = src_mci;
1978 
1979 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1980 	if (csrow < 0) {
1981 		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1982 				  (unsigned long)sys_addr);
1983 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1984 				     page, offset, 0,
1985 				     -1, -1, -1,
1986 				     EDAC_MOD_STR,
1987 				     "ERROR ADDRESS NOT mapped to CS",
1988 				     NULL);
1989 	} else {
1990 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1991 				     page, offset, 0,
1992 				     csrow, -1, -1,
1993 				     EDAC_MOD_STR, "", NULL);
1994 	}
1995 }
1996 
1997 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1998 					    struct mce *m)
1999 {
2000 	u16 ec = EC(m->status);
2001 	u8 xec = XEC(m->status, 0x1f);
2002 	u8 ecc_type = (m->status >> 45) & 0x3;
2003 
2004 	/* Bail early out if this was an 'observed' error */
2005 	if (PP(ec) == NBSL_PP_OBS)
2006 		return;
2007 
2008 	/* Do only ECC errors */
2009 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2010 		return;
2011 
2012 	if (ecc_type == 2)
2013 		amd64_handle_ce(mci, m);
2014 	else if (ecc_type == 1)
2015 		amd64_handle_ue(mci, m);
2016 }
2017 
2018 void amd64_decode_bus_error(int node_id, struct mce *m)
2019 {
2020 	__amd64_decode_bus_error(mcis[node_id], m);
2021 }
2022 
2023 /*
2024  * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2025  * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2026  */
2027 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2028 {
2029 	/* Reserve the ADDRESS MAP Device */
2030 	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2031 	if (!pvt->F1) {
2032 		amd64_err("error address map device not found: "
2033 			  "vendor %x device 0x%x (broken BIOS?)\n",
2034 			  PCI_VENDOR_ID_AMD, f1_id);
2035 		return -ENODEV;
2036 	}
2037 
2038 	/* Reserve the MISC Device */
2039 	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2040 	if (!pvt->F3) {
2041 		pci_dev_put(pvt->F1);
2042 		pvt->F1 = NULL;
2043 
2044 		amd64_err("error F3 device not found: "
2045 			  "vendor %x device 0x%x (broken BIOS?)\n",
2046 			  PCI_VENDOR_ID_AMD, f3_id);
2047 
2048 		return -ENODEV;
2049 	}
2050 	debugf1("F1: %s\n", pci_name(pvt->F1));
2051 	debugf1("F2: %s\n", pci_name(pvt->F2));
2052 	debugf1("F3: %s\n", pci_name(pvt->F3));
2053 
2054 	return 0;
2055 }
2056 
2057 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2058 {
2059 	pci_dev_put(pvt->F1);
2060 	pci_dev_put(pvt->F3);
2061 }
2062 
2063 /*
2064  * Retrieve the hardware registers of the memory controller (this includes the
2065  * 'Address Map' and 'Misc' device regs)
2066  */
2067 static void read_mc_regs(struct amd64_pvt *pvt)
2068 {
2069 	struct cpuinfo_x86 *c = &boot_cpu_data;
2070 	u64 msr_val;
2071 	u32 tmp;
2072 	unsigned range;
2073 
2074 	/*
2075 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2076 	 * those are Read-As-Zero
2077 	 */
2078 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2079 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2080 
2081 	/* check first whether TOP_MEM2 is enabled */
2082 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2083 	if (msr_val & (1U << 21)) {
2084 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2085 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2086 	} else
2087 		debugf0("  TOP_MEM2 disabled.\n");
2088 
2089 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2090 
2091 	read_dram_ctl_register(pvt);
2092 
2093 	for (range = 0; range < DRAM_RANGES; range++) {
2094 		u8 rw;
2095 
2096 		/* read settings for this DRAM range */
2097 		read_dram_base_limit_regs(pvt, range);
2098 
2099 		rw = dram_rw(pvt, range);
2100 		if (!rw)
2101 			continue;
2102 
2103 		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2104 			range,
2105 			get_dram_base(pvt, range),
2106 			get_dram_limit(pvt, range));
2107 
2108 		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2109 			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2110 			(rw & 0x1) ? "R" : "-",
2111 			(rw & 0x2) ? "W" : "-",
2112 			dram_intlv_sel(pvt, range),
2113 			dram_dst_node(pvt, range));
2114 	}
2115 
2116 	read_dct_base_mask(pvt);
2117 
2118 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2119 	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2120 
2121 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2122 
2123 	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2124 	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2125 
2126 	if (!dct_ganging_enabled(pvt)) {
2127 		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2128 		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2129 	}
2130 
2131 	pvt->ecc_sym_sz = 4;
2132 
2133 	if (c->x86 >= 0x10) {
2134 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2135 		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2136 
2137 		/* F10h, revD and later can do x8 ECC too */
2138 		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2139 			pvt->ecc_sym_sz = 8;
2140 	}
2141 	dump_misc_regs(pvt);
2142 }
2143 
2144 /*
2145  * NOTE: CPU Revision Dependent code
2146  *
2147  * Input:
2148  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2149  *	k8 private pointer to -->
2150  *			DRAM Bank Address mapping register
2151  *			node_id
2152  *			DCL register where dual_channel_active is
2153  *
2154  * The DBAM register consists of 4 sets of 4 bits each definitions:
2155  *
2156  * Bits:	CSROWs
2157  * 0-3		CSROWs 0 and 1
2158  * 4-7		CSROWs 2 and 3
2159  * 8-11		CSROWs 4 and 5
2160  * 12-15	CSROWs 6 and 7
2161  *
2162  * Values range from: 0 to 15
2163  * The meaning of the values depends on CPU revision and dual-channel state,
2164  * see relevant BKDG more info.
2165  *
2166  * The memory controller provides for total of only 8 CSROWs in its current
2167  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2168  * single channel or two (2) DIMMs in dual channel mode.
2169  *
2170  * The following code logic collapses the various tables for CSROW based on CPU
2171  * revision.
2172  *
2173  * Returns:
2174  *	The number of PAGE_SIZE pages on the specified CSROW number it
2175  *	encompasses
2176  *
2177  */
2178 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2179 {
2180 	u32 cs_mode, nr_pages;
2181 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2182 
2183 	/*
2184 	 * The math on this doesn't look right on the surface because x/2*4 can
2185 	 * be simplified to x*2 but this expression makes use of the fact that
2186 	 * it is integral math where 1/2=0. This intermediate value becomes the
2187 	 * number of bits to shift the DBAM register to extract the proper CSROW
2188 	 * field.
2189 	 */
2190 	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2191 
2192 	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2193 
2194 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2195 	debugf0("    nr_pages/channel= %u  channel-count = %d\n",
2196 		nr_pages, pvt->channel_count);
2197 
2198 	return nr_pages;
2199 }
2200 
2201 /*
2202  * Initialize the array of csrow attribute instances, based on the values
2203  * from pci config hardware registers.
2204  */
2205 static int init_csrows(struct mem_ctl_info *mci)
2206 {
2207 	struct csrow_info *csrow;
2208 	struct amd64_pvt *pvt = mci->pvt_info;
2209 	u64 base, mask;
2210 	u32 val;
2211 	int i, j, empty = 1;
2212 	enum mem_type mtype;
2213 	enum edac_type edac_mode;
2214 	int nr_pages = 0;
2215 
2216 	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2217 
2218 	pvt->nbcfg = val;
2219 
2220 	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2221 		pvt->mc_node_id, val,
2222 		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2223 
2224 	for_each_chip_select(i, 0, pvt) {
2225 		csrow = &mci->csrows[i];
2226 
2227 		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2228 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2229 				pvt->mc_node_id);
2230 			continue;
2231 		}
2232 
2233 		debugf1("----CSROW %d VALID for MC node %d\n",
2234 			i, pvt->mc_node_id);
2235 
2236 		empty = 0;
2237 		if (csrow_enabled(i, 0, pvt))
2238 			nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2239 		if (csrow_enabled(i, 1, pvt))
2240 			nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2241 
2242 		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2243 		/* 8 bytes of resolution */
2244 
2245 		mtype = amd64_determine_memory_type(pvt, i);
2246 
2247 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2248 		debugf1("    nr_pages: %u\n", nr_pages * pvt->channel_count);
2249 
2250 		/*
2251 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2252 		 */
2253 		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2254 			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2255 				    EDAC_S4ECD4ED : EDAC_SECDED;
2256 		else
2257 			edac_mode = EDAC_NONE;
2258 
2259 		for (j = 0; j < pvt->channel_count; j++) {
2260 			csrow->channels[j].dimm->mtype = mtype;
2261 			csrow->channels[j].dimm->edac_mode = edac_mode;
2262 			csrow->channels[j].dimm->nr_pages = nr_pages;
2263 		}
2264 	}
2265 
2266 	return empty;
2267 }
2268 
2269 /* get all cores on this DCT */
2270 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2271 {
2272 	int cpu;
2273 
2274 	for_each_online_cpu(cpu)
2275 		if (amd_get_nb_id(cpu) == nid)
2276 			cpumask_set_cpu(cpu, mask);
2277 }
2278 
2279 /* check MCG_CTL on all the cpus on this node */
2280 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2281 {
2282 	cpumask_var_t mask;
2283 	int cpu, nbe;
2284 	bool ret = false;
2285 
2286 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2287 		amd64_warn("%s: Error allocating mask\n", __func__);
2288 		return false;
2289 	}
2290 
2291 	get_cpus_on_this_dct_cpumask(mask, nid);
2292 
2293 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2294 
2295 	for_each_cpu(cpu, mask) {
2296 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2297 		nbe = reg->l & MSR_MCGCTL_NBE;
2298 
2299 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2300 			cpu, reg->q,
2301 			(nbe ? "enabled" : "disabled"));
2302 
2303 		if (!nbe)
2304 			goto out;
2305 	}
2306 	ret = true;
2307 
2308 out:
2309 	free_cpumask_var(mask);
2310 	return ret;
2311 }
2312 
2313 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2314 {
2315 	cpumask_var_t cmask;
2316 	int cpu;
2317 
2318 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2319 		amd64_warn("%s: error allocating mask\n", __func__);
2320 		return false;
2321 	}
2322 
2323 	get_cpus_on_this_dct_cpumask(cmask, nid);
2324 
2325 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2326 
2327 	for_each_cpu(cpu, cmask) {
2328 
2329 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2330 
2331 		if (on) {
2332 			if (reg->l & MSR_MCGCTL_NBE)
2333 				s->flags.nb_mce_enable = 1;
2334 
2335 			reg->l |= MSR_MCGCTL_NBE;
2336 		} else {
2337 			/*
2338 			 * Turn off NB MCE reporting only when it was off before
2339 			 */
2340 			if (!s->flags.nb_mce_enable)
2341 				reg->l &= ~MSR_MCGCTL_NBE;
2342 		}
2343 	}
2344 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2345 
2346 	free_cpumask_var(cmask);
2347 
2348 	return 0;
2349 }
2350 
2351 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2352 				       struct pci_dev *F3)
2353 {
2354 	bool ret = true;
2355 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2356 
2357 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2358 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2359 		return false;
2360 	}
2361 
2362 	amd64_read_pci_cfg(F3, NBCTL, &value);
2363 
2364 	s->old_nbctl   = value & mask;
2365 	s->nbctl_valid = true;
2366 
2367 	value |= mask;
2368 	amd64_write_pci_cfg(F3, NBCTL, value);
2369 
2370 	amd64_read_pci_cfg(F3, NBCFG, &value);
2371 
2372 	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2373 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2374 
2375 	if (!(value & NBCFG_ECC_ENABLE)) {
2376 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2377 
2378 		s->flags.nb_ecc_prev = 0;
2379 
2380 		/* Attempt to turn on DRAM ECC Enable */
2381 		value |= NBCFG_ECC_ENABLE;
2382 		amd64_write_pci_cfg(F3, NBCFG, value);
2383 
2384 		amd64_read_pci_cfg(F3, NBCFG, &value);
2385 
2386 		if (!(value & NBCFG_ECC_ENABLE)) {
2387 			amd64_warn("Hardware rejected DRAM ECC enable,"
2388 				   "check memory DIMM configuration.\n");
2389 			ret = false;
2390 		} else {
2391 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2392 		}
2393 	} else {
2394 		s->flags.nb_ecc_prev = 1;
2395 	}
2396 
2397 	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2398 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2399 
2400 	return ret;
2401 }
2402 
2403 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2404 					struct pci_dev *F3)
2405 {
2406 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2407 
2408 
2409 	if (!s->nbctl_valid)
2410 		return;
2411 
2412 	amd64_read_pci_cfg(F3, NBCTL, &value);
2413 	value &= ~mask;
2414 	value |= s->old_nbctl;
2415 
2416 	amd64_write_pci_cfg(F3, NBCTL, value);
2417 
2418 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2419 	if (!s->flags.nb_ecc_prev) {
2420 		amd64_read_pci_cfg(F3, NBCFG, &value);
2421 		value &= ~NBCFG_ECC_ENABLE;
2422 		amd64_write_pci_cfg(F3, NBCFG, value);
2423 	}
2424 
2425 	/* restore the NB Enable MCGCTL bit */
2426 	if (toggle_ecc_err_reporting(s, nid, OFF))
2427 		amd64_warn("Error restoring NB MCGCTL settings!\n");
2428 }
2429 
2430 /*
2431  * EDAC requires that the BIOS have ECC enabled before
2432  * taking over the processing of ECC errors. A command line
2433  * option allows to force-enable hardware ECC later in
2434  * enable_ecc_error_reporting().
2435  */
2436 static const char *ecc_msg =
2437 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2438 	" Either enable ECC checking or force module loading by setting "
2439 	"'ecc_enable_override'.\n"
2440 	" (Note that use of the override may cause unknown side effects.)\n";
2441 
2442 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2443 {
2444 	u32 value;
2445 	u8 ecc_en = 0;
2446 	bool nb_mce_en = false;
2447 
2448 	amd64_read_pci_cfg(F3, NBCFG, &value);
2449 
2450 	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2451 	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2452 
2453 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2454 	if (!nb_mce_en)
2455 		amd64_notice("NB MCE bank disabled, set MSR "
2456 			     "0x%08x[4] on node %d to enable.\n",
2457 			     MSR_IA32_MCG_CTL, nid);
2458 
2459 	if (!ecc_en || !nb_mce_en) {
2460 		amd64_notice("%s", ecc_msg);
2461 		return false;
2462 	}
2463 	return true;
2464 }
2465 
2466 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2467 					  ARRAY_SIZE(amd64_inj_attrs) +
2468 					  1];
2469 
2470 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2471 
2472 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2473 {
2474 	unsigned int i = 0, j = 0;
2475 
2476 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2477 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2478 
2479 	if (boot_cpu_data.x86 >= 0x10)
2480 		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2481 			sysfs_attrs[i] = amd64_inj_attrs[j];
2482 
2483 	sysfs_attrs[i] = terminator;
2484 
2485 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2486 }
2487 
2488 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2489 				 struct amd64_family_type *fam)
2490 {
2491 	struct amd64_pvt *pvt = mci->pvt_info;
2492 
2493 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2494 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2495 
2496 	if (pvt->nbcap & NBCAP_SECDED)
2497 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2498 
2499 	if (pvt->nbcap & NBCAP_CHIPKILL)
2500 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2501 
2502 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2503 	mci->mod_name		= EDAC_MOD_STR;
2504 	mci->mod_ver		= EDAC_AMD64_VERSION;
2505 	mci->ctl_name		= fam->ctl_name;
2506 	mci->dev_name		= pci_name(pvt->F2);
2507 	mci->ctl_page_to_phys	= NULL;
2508 
2509 	/* memory scrubber interface */
2510 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2511 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2512 }
2513 
2514 /*
2515  * returns a pointer to the family descriptor on success, NULL otherwise.
2516  */
2517 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2518 {
2519 	u8 fam = boot_cpu_data.x86;
2520 	struct amd64_family_type *fam_type = NULL;
2521 
2522 	switch (fam) {
2523 	case 0xf:
2524 		fam_type		= &amd64_family_types[K8_CPUS];
2525 		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2526 		break;
2527 
2528 	case 0x10:
2529 		fam_type		= &amd64_family_types[F10_CPUS];
2530 		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2531 		break;
2532 
2533 	case 0x15:
2534 		fam_type		= &amd64_family_types[F15_CPUS];
2535 		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2536 		break;
2537 
2538 	default:
2539 		amd64_err("Unsupported family!\n");
2540 		return NULL;
2541 	}
2542 
2543 	pvt->ext_model = boot_cpu_data.x86_model >> 4;
2544 
2545 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2546 		     (fam == 0xf ?
2547 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
2548 							     : "revE or earlier ")
2549 				 : ""), pvt->mc_node_id);
2550 	return fam_type;
2551 }
2552 
2553 static int amd64_init_one_instance(struct pci_dev *F2)
2554 {
2555 	struct amd64_pvt *pvt = NULL;
2556 	struct amd64_family_type *fam_type = NULL;
2557 	struct mem_ctl_info *mci = NULL;
2558 	struct edac_mc_layer layers[2];
2559 	int err = 0, ret;
2560 	u8 nid = get_node_id(F2);
2561 
2562 	ret = -ENOMEM;
2563 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2564 	if (!pvt)
2565 		goto err_ret;
2566 
2567 	pvt->mc_node_id	= nid;
2568 	pvt->F2 = F2;
2569 
2570 	ret = -EINVAL;
2571 	fam_type = amd64_per_family_init(pvt);
2572 	if (!fam_type)
2573 		goto err_free;
2574 
2575 	ret = -ENODEV;
2576 	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2577 	if (err)
2578 		goto err_free;
2579 
2580 	read_mc_regs(pvt);
2581 
2582 	/*
2583 	 * We need to determine how many memory channels there are. Then use
2584 	 * that information for calculating the size of the dynamic instance
2585 	 * tables in the 'mci' structure.
2586 	 */
2587 	ret = -EINVAL;
2588 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2589 	if (pvt->channel_count < 0)
2590 		goto err_siblings;
2591 
2592 	ret = -ENOMEM;
2593 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2594 	layers[0].size = pvt->csels[0].b_cnt;
2595 	layers[0].is_virt_csrow = true;
2596 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
2597 	layers[1].size = pvt->channel_count;
2598 	layers[1].is_virt_csrow = false;
2599 	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2600 	if (!mci)
2601 		goto err_siblings;
2602 
2603 	mci->pvt_info = pvt;
2604 	mci->dev = &pvt->F2->dev;
2605 
2606 	setup_mci_misc_attrs(mci, fam_type);
2607 
2608 	if (init_csrows(mci))
2609 		mci->edac_cap = EDAC_FLAG_NONE;
2610 
2611 	set_mc_sysfs_attrs(mci);
2612 
2613 	ret = -ENODEV;
2614 	if (edac_mc_add_mc(mci)) {
2615 		debugf1("failed edac_mc_add_mc()\n");
2616 		goto err_add_mc;
2617 	}
2618 
2619 	/* register stuff with EDAC MCE */
2620 	if (report_gart_errors)
2621 		amd_report_gart_errors(true);
2622 
2623 	amd_register_ecc_decoder(amd64_decode_bus_error);
2624 
2625 	mcis[nid] = mci;
2626 
2627 	atomic_inc(&drv_instances);
2628 
2629 	return 0;
2630 
2631 err_add_mc:
2632 	edac_mc_free(mci);
2633 
2634 err_siblings:
2635 	free_mc_sibling_devs(pvt);
2636 
2637 err_free:
2638 	kfree(pvt);
2639 
2640 err_ret:
2641 	return ret;
2642 }
2643 
2644 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2645 					     const struct pci_device_id *mc_type)
2646 {
2647 	u8 nid = get_node_id(pdev);
2648 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2649 	struct ecc_settings *s;
2650 	int ret = 0;
2651 
2652 	ret = pci_enable_device(pdev);
2653 	if (ret < 0) {
2654 		debugf0("ret=%d\n", ret);
2655 		return -EIO;
2656 	}
2657 
2658 	ret = -ENOMEM;
2659 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2660 	if (!s)
2661 		goto err_out;
2662 
2663 	ecc_stngs[nid] = s;
2664 
2665 	if (!ecc_enabled(F3, nid)) {
2666 		ret = -ENODEV;
2667 
2668 		if (!ecc_enable_override)
2669 			goto err_enable;
2670 
2671 		amd64_warn("Forcing ECC on!\n");
2672 
2673 		if (!enable_ecc_error_reporting(s, nid, F3))
2674 			goto err_enable;
2675 	}
2676 
2677 	ret = amd64_init_one_instance(pdev);
2678 	if (ret < 0) {
2679 		amd64_err("Error probing instance: %d\n", nid);
2680 		restore_ecc_error_reporting(s, nid, F3);
2681 	}
2682 
2683 	return ret;
2684 
2685 err_enable:
2686 	kfree(s);
2687 	ecc_stngs[nid] = NULL;
2688 
2689 err_out:
2690 	return ret;
2691 }
2692 
2693 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2694 {
2695 	struct mem_ctl_info *mci;
2696 	struct amd64_pvt *pvt;
2697 	u8 nid = get_node_id(pdev);
2698 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2699 	struct ecc_settings *s = ecc_stngs[nid];
2700 
2701 	/* Remove from EDAC CORE tracking list */
2702 	mci = edac_mc_del_mc(&pdev->dev);
2703 	if (!mci)
2704 		return;
2705 
2706 	pvt = mci->pvt_info;
2707 
2708 	restore_ecc_error_reporting(s, nid, F3);
2709 
2710 	free_mc_sibling_devs(pvt);
2711 
2712 	/* unregister from EDAC MCE */
2713 	amd_report_gart_errors(false);
2714 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2715 
2716 	kfree(ecc_stngs[nid]);
2717 	ecc_stngs[nid] = NULL;
2718 
2719 	/* Free the EDAC CORE resources */
2720 	mci->pvt_info = NULL;
2721 	mcis[nid] = NULL;
2722 
2723 	kfree(pvt);
2724 	edac_mc_free(mci);
2725 }
2726 
2727 /*
2728  * This table is part of the interface for loading drivers for PCI devices. The
2729  * PCI core identifies what devices are on a system during boot, and then
2730  * inquiry this table to see if this driver is for a given device found.
2731  */
2732 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2733 	{
2734 		.vendor		= PCI_VENDOR_ID_AMD,
2735 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2736 		.subvendor	= PCI_ANY_ID,
2737 		.subdevice	= PCI_ANY_ID,
2738 		.class		= 0,
2739 		.class_mask	= 0,
2740 	},
2741 	{
2742 		.vendor		= PCI_VENDOR_ID_AMD,
2743 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2744 		.subvendor	= PCI_ANY_ID,
2745 		.subdevice	= PCI_ANY_ID,
2746 		.class		= 0,
2747 		.class_mask	= 0,
2748 	},
2749 	{
2750 		.vendor		= PCI_VENDOR_ID_AMD,
2751 		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
2752 		.subvendor	= PCI_ANY_ID,
2753 		.subdevice	= PCI_ANY_ID,
2754 		.class		= 0,
2755 		.class_mask	= 0,
2756 	},
2757 
2758 	{0, }
2759 };
2760 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2761 
2762 static struct pci_driver amd64_pci_driver = {
2763 	.name		= EDAC_MOD_STR,
2764 	.probe		= amd64_probe_one_instance,
2765 	.remove		= __devexit_p(amd64_remove_one_instance),
2766 	.id_table	= amd64_pci_table,
2767 };
2768 
2769 static void setup_pci_device(void)
2770 {
2771 	struct mem_ctl_info *mci;
2772 	struct amd64_pvt *pvt;
2773 
2774 	if (amd64_ctl_pci)
2775 		return;
2776 
2777 	mci = mcis[0];
2778 	if (mci) {
2779 
2780 		pvt = mci->pvt_info;
2781 		amd64_ctl_pci =
2782 			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2783 
2784 		if (!amd64_ctl_pci) {
2785 			pr_warning("%s(): Unable to create PCI control\n",
2786 				   __func__);
2787 
2788 			pr_warning("%s(): PCI error report via EDAC not set\n",
2789 				   __func__);
2790 			}
2791 	}
2792 }
2793 
2794 static int __init amd64_edac_init(void)
2795 {
2796 	int err = -ENODEV;
2797 
2798 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2799 
2800 	opstate_init();
2801 
2802 	if (amd_cache_northbridges() < 0)
2803 		goto err_ret;
2804 
2805 	err = -ENOMEM;
2806 	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2807 	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2808 	if (!(mcis && ecc_stngs))
2809 		goto err_free;
2810 
2811 	msrs = msrs_alloc();
2812 	if (!msrs)
2813 		goto err_free;
2814 
2815 	err = pci_register_driver(&amd64_pci_driver);
2816 	if (err)
2817 		goto err_pci;
2818 
2819 	err = -ENODEV;
2820 	if (!atomic_read(&drv_instances))
2821 		goto err_no_instances;
2822 
2823 	setup_pci_device();
2824 	return 0;
2825 
2826 err_no_instances:
2827 	pci_unregister_driver(&amd64_pci_driver);
2828 
2829 err_pci:
2830 	msrs_free(msrs);
2831 	msrs = NULL;
2832 
2833 err_free:
2834 	kfree(mcis);
2835 	mcis = NULL;
2836 
2837 	kfree(ecc_stngs);
2838 	ecc_stngs = NULL;
2839 
2840 err_ret:
2841 	return err;
2842 }
2843 
2844 static void __exit amd64_edac_exit(void)
2845 {
2846 	if (amd64_ctl_pci)
2847 		edac_pci_release_generic_ctl(amd64_ctl_pci);
2848 
2849 	pci_unregister_driver(&amd64_pci_driver);
2850 
2851 	kfree(ecc_stngs);
2852 	ecc_stngs = NULL;
2853 
2854 	kfree(mcis);
2855 	mcis = NULL;
2856 
2857 	msrs_free(msrs);
2858 	msrs = NULL;
2859 }
2860 
2861 module_init(amd64_edac_init);
2862 module_exit(amd64_edac_exit);
2863 
2864 MODULE_LICENSE("GPL");
2865 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2866 		"Dave Peterson, Thayne Harbaugh");
2867 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2868 		EDAC_AMD64_VERSION);
2869 
2870 module_param(edac_op_state, int, 0444);
2871 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2872