1 #include "amd64_edac.h" 2 #include <asm/k8.h> 3 4 static struct edac_pci_ctl_info *amd64_ctl_pci; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr *msrs; 17 18 /* Lookup table for all possible MC control instances */ 19 struct amd64_pvt; 20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES]; 21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES]; 22 23 /* 24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and 25 * later. 26 */ 27 static int ddr2_dbam_revCG[] = { 28 [0] = 32, 29 [1] = 64, 30 [2] = 128, 31 [3] = 256, 32 [4] = 512, 33 [5] = 1024, 34 [6] = 2048, 35 }; 36 37 static int ddr2_dbam_revD[] = { 38 [0] = 32, 39 [1] = 64, 40 [2 ... 3] = 128, 41 [4] = 256, 42 [5] = 512, 43 [6] = 256, 44 [7] = 512, 45 [8 ... 9] = 1024, 46 [10] = 2048, 47 }; 48 49 static int ddr2_dbam[] = { [0] = 128, 50 [1] = 256, 51 [2 ... 4] = 512, 52 [5 ... 6] = 1024, 53 [7 ... 8] = 2048, 54 [9 ... 10] = 4096, 55 [11] = 8192, 56 }; 57 58 static int ddr3_dbam[] = { [0] = -1, 59 [1] = 256, 60 [2] = 512, 61 [3 ... 4] = -1, 62 [5 ... 6] = 1024, 63 [7 ... 8] = 2048, 64 [9 ... 10] = 4096, 65 [11] = 8192, 66 }; 67 68 /* 69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 71 * or higher value'. 72 * 73 *FIXME: Produce a better mapping/linearisation. 74 */ 75 76 struct scrubrate scrubrates[] = { 77 { 0x01, 1600000000UL}, 78 { 0x02, 800000000UL}, 79 { 0x03, 400000000UL}, 80 { 0x04, 200000000UL}, 81 { 0x05, 100000000UL}, 82 { 0x06, 50000000UL}, 83 { 0x07, 25000000UL}, 84 { 0x08, 12284069UL}, 85 { 0x09, 6274509UL}, 86 { 0x0A, 3121951UL}, 87 { 0x0B, 1560975UL}, 88 { 0x0C, 781440UL}, 89 { 0x0D, 390720UL}, 90 { 0x0E, 195300UL}, 91 { 0x0F, 97650UL}, 92 { 0x10, 48854UL}, 93 { 0x11, 24427UL}, 94 { 0x12, 12213UL}, 95 { 0x13, 6101UL}, 96 { 0x14, 3051UL}, 97 { 0x15, 1523UL}, 98 { 0x16, 761UL}, 99 { 0x00, 0UL}, /* scrubbing off */ 100 }; 101 102 /* 103 * Memory scrubber control interface. For K8, memory scrubbing is handled by 104 * hardware and can involve L2 cache, dcache as well as the main memory. With 105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 106 * functionality. 107 * 108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 110 * bytes/sec for the setting. 111 * 112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 113 * other archs, we might not have access to the caches directly. 114 */ 115 116 /* 117 * scan the scrub rate mapping table for a close or matching bandwidth value to 118 * issue. If requested is too big, then use last maximum value found. 119 */ 120 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, 121 u32 min_scrubrate) 122 { 123 u32 scrubval; 124 int i; 125 126 /* 127 * map the configured rate (new_bw) to a value specific to the AMD64 128 * memory controller and apply to register. Search for the first 129 * bandwidth entry that is greater or equal than the setting requested 130 * and program that. If at last entry, turn off DRAM scrubbing. 131 */ 132 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 133 /* 134 * skip scrub rates which aren't recommended 135 * (see F10 BKDG, F3x58) 136 */ 137 if (scrubrates[i].scrubval < min_scrubrate) 138 continue; 139 140 if (scrubrates[i].bandwidth <= new_bw) 141 break; 142 143 /* 144 * if no suitable bandwidth found, turn off DRAM scrubbing 145 * entirely by falling back to the last element in the 146 * scrubrates array. 147 */ 148 } 149 150 scrubval = scrubrates[i].scrubval; 151 if (scrubval) 152 edac_printk(KERN_DEBUG, EDAC_MC, 153 "Setting scrub rate bandwidth: %u\n", 154 scrubrates[i].bandwidth); 155 else 156 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n"); 157 158 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F); 159 160 return 0; 161 } 162 163 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth) 164 { 165 struct amd64_pvt *pvt = mci->pvt_info; 166 u32 min_scrubrate = 0x0; 167 168 switch (boot_cpu_data.x86) { 169 case 0xf: 170 min_scrubrate = K8_MIN_SCRUB_RATE_BITS; 171 break; 172 case 0x10: 173 min_scrubrate = F10_MIN_SCRUB_RATE_BITS; 174 break; 175 case 0x11: 176 min_scrubrate = F11_MIN_SCRUB_RATE_BITS; 177 break; 178 179 default: 180 amd64_printk(KERN_ERR, "Unsupported family!\n"); 181 break; 182 } 183 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth, 184 min_scrubrate); 185 } 186 187 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw) 188 { 189 struct amd64_pvt *pvt = mci->pvt_info; 190 u32 scrubval = 0; 191 int status = -1, i; 192 193 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval); 194 195 scrubval = scrubval & 0x001F; 196 197 edac_printk(KERN_DEBUG, EDAC_MC, 198 "pci-read, sdram scrub control value: %d \n", scrubval); 199 200 for (i = 0; ARRAY_SIZE(scrubrates); i++) { 201 if (scrubrates[i].scrubval == scrubval) { 202 *bw = scrubrates[i].bandwidth; 203 status = 0; 204 break; 205 } 206 } 207 208 return status; 209 } 210 211 /* Map from a CSROW entry to the mask entry that operates on it */ 212 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow) 213 { 214 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) 215 return csrow; 216 else 217 return csrow >> 1; 218 } 219 220 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */ 221 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow) 222 { 223 if (dct == 0) 224 return pvt->dcsb0[csrow]; 225 else 226 return pvt->dcsb1[csrow]; 227 } 228 229 /* 230 * Return the 'mask' address the i'th CS entry. This function is needed because 231 * there number of DCSM registers on Rev E and prior vs Rev F and later is 232 * different. 233 */ 234 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow) 235 { 236 if (dct == 0) 237 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)]; 238 else 239 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)]; 240 } 241 242 243 /* 244 * In *base and *limit, pass back the full 40-bit base and limit physical 245 * addresses for the node given by node_id. This information is obtained from 246 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The 247 * base and limit addresses are of type SysAddr, as defined at the start of 248 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses 249 * in the address range they represent. 250 */ 251 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id, 252 u64 *base, u64 *limit) 253 { 254 *base = pvt->dram_base[node_id]; 255 *limit = pvt->dram_limit[node_id]; 256 } 257 258 /* 259 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated 260 * with node_id 261 */ 262 static int amd64_base_limit_match(struct amd64_pvt *pvt, 263 u64 sys_addr, int node_id) 264 { 265 u64 base, limit, addr; 266 267 amd64_get_base_and_limit(pvt, node_id, &base, &limit); 268 269 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 270 * all ones if the most significant implemented address bit is 1. 271 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 272 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 273 * Application Programming. 274 */ 275 addr = sys_addr & 0x000000ffffffffffull; 276 277 return (addr >= base) && (addr <= limit); 278 } 279 280 /* 281 * Attempt to map a SysAddr to a node. On success, return a pointer to the 282 * mem_ctl_info structure for the node that the SysAddr maps to. 283 * 284 * On failure, return NULL. 285 */ 286 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 287 u64 sys_addr) 288 { 289 struct amd64_pvt *pvt; 290 int node_id; 291 u32 intlv_en, bits; 292 293 /* 294 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 295 * 3.4.4.2) registers to map the SysAddr to a node ID. 296 */ 297 pvt = mci->pvt_info; 298 299 /* 300 * The value of this field should be the same for all DRAM Base 301 * registers. Therefore we arbitrarily choose to read it from the 302 * register for node 0. 303 */ 304 intlv_en = pvt->dram_IntlvEn[0]; 305 306 if (intlv_en == 0) { 307 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) { 308 if (amd64_base_limit_match(pvt, sys_addr, node_id)) 309 goto found; 310 } 311 goto err_no_match; 312 } 313 314 if (unlikely((intlv_en != 0x01) && 315 (intlv_en != 0x03) && 316 (intlv_en != 0x07))) { 317 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from " 318 "IntlvEn field of DRAM Base Register for node 0: " 319 "this probably indicates a BIOS bug.\n", intlv_en); 320 return NULL; 321 } 322 323 bits = (((u32) sys_addr) >> 12) & intlv_en; 324 325 for (node_id = 0; ; ) { 326 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits) 327 break; /* intlv_sel field matches */ 328 329 if (++node_id >= DRAM_REG_COUNT) 330 goto err_no_match; 331 } 332 333 /* sanity test for sys_addr */ 334 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { 335 amd64_printk(KERN_WARNING, 336 "%s(): sys_addr 0x%llx falls outside base/limit " 337 "address range for node %d with node interleaving " 338 "enabled.\n", 339 __func__, sys_addr, node_id); 340 return NULL; 341 } 342 343 found: 344 return edac_mc_find(node_id); 345 346 err_no_match: 347 debugf2("sys_addr 0x%lx doesn't match any node\n", 348 (unsigned long)sys_addr); 349 350 return NULL; 351 } 352 353 /* 354 * Extract the DRAM CS base address from selected csrow register. 355 */ 356 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow) 357 { 358 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) << 359 pvt->dcs_shift; 360 } 361 362 /* 363 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way. 364 */ 365 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow) 366 { 367 u64 dcsm_bits, other_bits; 368 u64 mask; 369 370 /* Extract bits from DRAM CS Mask. */ 371 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask; 372 373 other_bits = pvt->dcsm_mask; 374 other_bits = ~(other_bits << pvt->dcs_shift); 375 376 /* 377 * The extracted bits from DCSM belong in the spaces represented by 378 * the cleared bits in other_bits. 379 */ 380 mask = (dcsm_bits << pvt->dcs_shift) | other_bits; 381 382 return mask; 383 } 384 385 /* 386 * @input_addr is an InputAddr associated with the node given by mci. Return the 387 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 388 */ 389 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 390 { 391 struct amd64_pvt *pvt; 392 int csrow; 393 u64 base, mask; 394 395 pvt = mci->pvt_info; 396 397 /* 398 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS 399 * base/mask register pair, test the condition shown near the start of 400 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E). 401 */ 402 for (csrow = 0; csrow < pvt->cs_count; csrow++) { 403 404 /* This DRAM chip select is disabled on this node */ 405 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0) 406 continue; 407 408 base = base_from_dct_base(pvt, csrow); 409 mask = ~mask_from_dct_mask(pvt, csrow); 410 411 if ((input_addr & mask) == (base & mask)) { 412 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", 413 (unsigned long)input_addr, csrow, 414 pvt->mc_node_id); 415 416 return csrow; 417 } 418 } 419 420 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", 421 (unsigned long)input_addr, pvt->mc_node_id); 422 423 return -1; 424 } 425 426 /* 427 * Return the base value defined by the DRAM Base register for the node 428 * represented by mci. This function returns the full 40-bit value despite the 429 * fact that the register only stores bits 39-24 of the value. See section 430 * 3.4.4.1 (BKDG #26094, K8, revA-E) 431 */ 432 static inline u64 get_dram_base(struct mem_ctl_info *mci) 433 { 434 struct amd64_pvt *pvt = mci->pvt_info; 435 436 return pvt->dram_base[pvt->mc_node_id]; 437 } 438 439 /* 440 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 441 * for the node represented by mci. Info is passed back in *hole_base, 442 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 443 * info is invalid. Info may be invalid for either of the following reasons: 444 * 445 * - The revision of the node is not E or greater. In this case, the DRAM Hole 446 * Address Register does not exist. 447 * 448 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 449 * indicating that its contents are not valid. 450 * 451 * The values passed back in *hole_base, *hole_offset, and *hole_size are 452 * complete 32-bit values despite the fact that the bitfields in the DHAR 453 * only represent bits 31-24 of the base and offset values. 454 */ 455 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 456 u64 *hole_offset, u64 *hole_size) 457 { 458 struct amd64_pvt *pvt = mci->pvt_info; 459 u64 base; 460 461 /* only revE and later have the DRAM Hole Address Register */ 462 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { 463 debugf1(" revision %d for node %d does not support DHAR\n", 464 pvt->ext_model, pvt->mc_node_id); 465 return 1; 466 } 467 468 /* only valid for Fam10h */ 469 if (boot_cpu_data.x86 == 0x10 && 470 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) { 471 debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); 472 return 1; 473 } 474 475 if ((pvt->dhar & DHAR_VALID) == 0) { 476 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", 477 pvt->mc_node_id); 478 return 1; 479 } 480 481 /* This node has Memory Hoisting */ 482 483 /* +------------------+--------------------+--------------------+----- 484 * | memory | DRAM hole | relocated | 485 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 486 * | | | DRAM hole | 487 * | | | [0x100000000, | 488 * | | | (0x100000000+ | 489 * | | | (0xffffffff-x))] | 490 * +------------------+--------------------+--------------------+----- 491 * 492 * Above is a diagram of physical memory showing the DRAM hole and the 493 * relocated addresses from the DRAM hole. As shown, the DRAM hole 494 * starts at address x (the base address) and extends through address 495 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 496 * addresses in the hole so that they start at 0x100000000. 497 */ 498 499 base = dhar_base(pvt->dhar); 500 501 *hole_base = base; 502 *hole_size = (0x1ull << 32) - base; 503 504 if (boot_cpu_data.x86 > 0xf) 505 *hole_offset = f10_dhar_offset(pvt->dhar); 506 else 507 *hole_offset = k8_dhar_offset(pvt->dhar); 508 509 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 510 pvt->mc_node_id, (unsigned long)*hole_base, 511 (unsigned long)*hole_offset, (unsigned long)*hole_size); 512 513 return 0; 514 } 515 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 516 517 /* 518 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 519 * assumed that sys_addr maps to the node given by mci. 520 * 521 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 522 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 523 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 524 * then it is also involved in translating a SysAddr to a DramAddr. Sections 525 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 526 * These parts of the documentation are unclear. I interpret them as follows: 527 * 528 * When node n receives a SysAddr, it processes the SysAddr as follows: 529 * 530 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 531 * Limit registers for node n. If the SysAddr is not within the range 532 * specified by the base and limit values, then node n ignores the Sysaddr 533 * (since it does not map to node n). Otherwise continue to step 2 below. 534 * 535 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 536 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 537 * the range of relocated addresses (starting at 0x100000000) from the DRAM 538 * hole. If not, skip to step 3 below. Else get the value of the 539 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 540 * offset defined by this value from the SysAddr. 541 * 542 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 543 * Base register for node n. To obtain the DramAddr, subtract the base 544 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 545 */ 546 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 547 { 548 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 549 int ret = 0; 550 551 dram_base = get_dram_base(mci); 552 553 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 554 &hole_size); 555 if (!ret) { 556 if ((sys_addr >= (1ull << 32)) && 557 (sys_addr < ((1ull << 32) + hole_size))) { 558 /* use DHAR to translate SysAddr to DramAddr */ 559 dram_addr = sys_addr - hole_offset; 560 561 debugf2("using DHAR to translate SysAddr 0x%lx to " 562 "DramAddr 0x%lx\n", 563 (unsigned long)sys_addr, 564 (unsigned long)dram_addr); 565 566 return dram_addr; 567 } 568 } 569 570 /* 571 * Translate the SysAddr to a DramAddr as shown near the start of 572 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 573 * only deals with 40-bit values. Therefore we discard bits 63-40 of 574 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 575 * discard are all 1s. Otherwise the bits we discard are all 0s. See 576 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 577 * Programmer's Manual Volume 1 Application Programming. 578 */ 579 dram_addr = (sys_addr & 0xffffffffffull) - dram_base; 580 581 debugf2("using DRAM Base register to translate SysAddr 0x%lx to " 582 "DramAddr 0x%lx\n", (unsigned long)sys_addr, 583 (unsigned long)dram_addr); 584 return dram_addr; 585 } 586 587 /* 588 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 589 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 590 * for node interleaving. 591 */ 592 static int num_node_interleave_bits(unsigned intlv_en) 593 { 594 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 595 int n; 596 597 BUG_ON(intlv_en > 7); 598 n = intlv_shift_table[intlv_en]; 599 return n; 600 } 601 602 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 603 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 604 { 605 struct amd64_pvt *pvt; 606 int intlv_shift; 607 u64 input_addr; 608 609 pvt = mci->pvt_info; 610 611 /* 612 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 613 * concerning translating a DramAddr to an InputAddr. 614 */ 615 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); 616 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) + 617 (dram_addr & 0xfff); 618 619 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 620 intlv_shift, (unsigned long)dram_addr, 621 (unsigned long)input_addr); 622 623 return input_addr; 624 } 625 626 /* 627 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 628 * assumed that @sys_addr maps to the node given by mci. 629 */ 630 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 631 { 632 u64 input_addr; 633 634 input_addr = 635 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 636 637 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 638 (unsigned long)sys_addr, (unsigned long)input_addr); 639 640 return input_addr; 641 } 642 643 644 /* 645 * @input_addr is an InputAddr associated with the node represented by mci. 646 * Translate @input_addr to a DramAddr and return the result. 647 */ 648 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) 649 { 650 struct amd64_pvt *pvt; 651 int node_id, intlv_shift; 652 u64 bits, dram_addr; 653 u32 intlv_sel; 654 655 /* 656 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 657 * shows how to translate a DramAddr to an InputAddr. Here we reverse 658 * this procedure. When translating from a DramAddr to an InputAddr, the 659 * bits used for node interleaving are discarded. Here we recover these 660 * bits from the IntlvSel field of the DRAM Limit register (section 661 * 3.4.4.2) for the node that input_addr is associated with. 662 */ 663 pvt = mci->pvt_info; 664 node_id = pvt->mc_node_id; 665 BUG_ON((node_id < 0) || (node_id > 7)); 666 667 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); 668 669 if (intlv_shift == 0) { 670 debugf1(" InputAddr 0x%lx translates to DramAddr of " 671 "same value\n", (unsigned long)input_addr); 672 673 return input_addr; 674 } 675 676 bits = ((input_addr & 0xffffff000ull) << intlv_shift) + 677 (input_addr & 0xfff); 678 679 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1); 680 dram_addr = bits + (intlv_sel << 12); 681 682 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " 683 "(%d node interleave bits)\n", (unsigned long)input_addr, 684 (unsigned long)dram_addr, intlv_shift); 685 686 return dram_addr; 687 } 688 689 /* 690 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert 691 * @dram_addr to a SysAddr. 692 */ 693 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) 694 { 695 struct amd64_pvt *pvt = mci->pvt_info; 696 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr; 697 int ret = 0; 698 699 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 700 &hole_size); 701 if (!ret) { 702 if ((dram_addr >= hole_base) && 703 (dram_addr < (hole_base + hole_size))) { 704 sys_addr = dram_addr + hole_offset; 705 706 debugf1("using DHAR to translate DramAddr 0x%lx to " 707 "SysAddr 0x%lx\n", (unsigned long)dram_addr, 708 (unsigned long)sys_addr); 709 710 return sys_addr; 711 } 712 } 713 714 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit); 715 sys_addr = dram_addr + base; 716 717 /* 718 * The sys_addr we have computed up to this point is a 40-bit value 719 * because the k8 deals with 40-bit values. However, the value we are 720 * supposed to return is a full 64-bit physical address. The AMD 721 * x86-64 architecture specifies that the most significant implemented 722 * address bit through bit 63 of a physical address must be either all 723 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a 724 * 64-bit value below. See section 3.4.2 of AMD publication 24592: 725 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application 726 * Programming. 727 */ 728 sys_addr |= ~((sys_addr & (1ull << 39)) - 1); 729 730 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", 731 pvt->mc_node_id, (unsigned long)dram_addr, 732 (unsigned long)sys_addr); 733 734 return sys_addr; 735 } 736 737 /* 738 * @input_addr is an InputAddr associated with the node given by mci. Translate 739 * @input_addr to a SysAddr. 740 */ 741 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, 742 u64 input_addr) 743 { 744 return dram_addr_to_sys_addr(mci, 745 input_addr_to_dram_addr(mci, input_addr)); 746 } 747 748 /* 749 * Find the minimum and maximum InputAddr values that map to the given @csrow. 750 * Pass back these values in *input_addr_min and *input_addr_max. 751 */ 752 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, 753 u64 *input_addr_min, u64 *input_addr_max) 754 { 755 struct amd64_pvt *pvt; 756 u64 base, mask; 757 758 pvt = mci->pvt_info; 759 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count)); 760 761 base = base_from_dct_base(pvt, csrow); 762 mask = mask_from_dct_mask(pvt, csrow); 763 764 *input_addr_min = base & ~mask; 765 *input_addr_max = base | mask | pvt->dcs_mask_notused; 766 } 767 768 /* Map the Error address to a PAGE and PAGE OFFSET. */ 769 static inline void error_address_to_page_and_offset(u64 error_address, 770 u32 *page, u32 *offset) 771 { 772 *page = (u32) (error_address >> PAGE_SHIFT); 773 *offset = ((u32) error_address) & ~PAGE_MASK; 774 } 775 776 /* 777 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 778 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 779 * of a node that detected an ECC memory error. mci represents the node that 780 * the error address maps to (possibly different from the node that detected 781 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 782 * error. 783 */ 784 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 785 { 786 int csrow; 787 788 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 789 790 if (csrow == -1) 791 amd64_mc_printk(mci, KERN_ERR, 792 "Failed to translate InputAddr to csrow for " 793 "address 0x%lx\n", (unsigned long)sys_addr); 794 return csrow; 795 } 796 797 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 798 799 static void amd64_cpu_display_info(struct amd64_pvt *pvt) 800 { 801 if (boot_cpu_data.x86 == 0x11) 802 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n"); 803 else if (boot_cpu_data.x86 == 0x10) 804 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n"); 805 else if (boot_cpu_data.x86 == 0xf) 806 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n", 807 (pvt->ext_model >= K8_REV_F) ? 808 "Rev F or later" : "Rev E or earlier"); 809 else 810 /* we'll hardly ever ever get here */ 811 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n"); 812 } 813 814 /* 815 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 816 * are ECC capable. 817 */ 818 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) 819 { 820 int bit; 821 enum dev_type edac_cap = EDAC_FLAG_NONE; 822 823 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) 824 ? 19 825 : 17; 826 827 if (pvt->dclr0 & BIT(bit)) 828 edac_cap = EDAC_FLAG_SECDED; 829 830 return edac_cap; 831 } 832 833 834 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt); 835 836 static void amd64_dump_dramcfg_low(u32 dclr, int chan) 837 { 838 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 839 840 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n", 841 (dclr & BIT(16)) ? "un" : "", 842 (dclr & BIT(19)) ? "yes" : "no"); 843 844 debugf1(" PAR/ERR parity: %s\n", 845 (dclr & BIT(8)) ? "enabled" : "disabled"); 846 847 debugf1(" DCT 128bit mode width: %s\n", 848 (dclr & BIT(11)) ? "128b" : "64b"); 849 850 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 851 (dclr & BIT(12)) ? "yes" : "no", 852 (dclr & BIT(13)) ? "yes" : "no", 853 (dclr & BIT(14)) ? "yes" : "no", 854 (dclr & BIT(15)) ? "yes" : "no"); 855 } 856 857 /* Display and decode various NB registers for debug purposes. */ 858 static void amd64_dump_misc_regs(struct amd64_pvt *pvt) 859 { 860 int ganged; 861 862 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 863 864 debugf1(" NB two channel DRAM capable: %s\n", 865 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no"); 866 867 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n", 868 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no", 869 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no"); 870 871 amd64_dump_dramcfg_low(pvt->dclr0, 0); 872 873 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 874 875 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " 876 "offset: 0x%08x\n", 877 pvt->dhar, 878 dhar_base(pvt->dhar), 879 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar) 880 : f10_dhar_offset(pvt->dhar)); 881 882 debugf1(" DramHoleValid: %s\n", 883 (pvt->dhar & DHAR_VALID) ? "yes" : "no"); 884 885 /* everything below this point is Fam10h and above */ 886 if (boot_cpu_data.x86 == 0xf) { 887 amd64_debug_display_dimm_sizes(0, pvt); 888 return; 889 } 890 891 /* Only if NOT ganged does dclr1 have valid info */ 892 if (!dct_ganging_enabled(pvt)) 893 amd64_dump_dramcfg_low(pvt->dclr1, 1); 894 895 /* 896 * Determine if ganged and then dump memory sizes for first controller, 897 * and if NOT ganged dump info for 2nd controller. 898 */ 899 ganged = dct_ganging_enabled(pvt); 900 901 amd64_debug_display_dimm_sizes(0, pvt); 902 903 if (!ganged) 904 amd64_debug_display_dimm_sizes(1, pvt); 905 } 906 907 /* Read in both of DBAM registers */ 908 static void amd64_read_dbam_reg(struct amd64_pvt *pvt) 909 { 910 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0); 911 912 if (boot_cpu_data.x86 >= 0x10) 913 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1); 914 } 915 916 /* 917 * NOTE: CPU Revision Dependent code: Rev E and Rev F 918 * 919 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also 920 * set the shift factor for the DCSB and DCSM values. 921 * 922 * ->dcs_mask_notused, RevE: 923 * 924 * To find the max InputAddr for the csrow, start with the base address and set 925 * all bits that are "don't care" bits in the test at the start of section 926 * 3.5.4 (p. 84). 927 * 928 * The "don't care" bits are all set bits in the mask and all bits in the gaps 929 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS 930 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned 931 * gaps. 932 * 933 * ->dcs_mask_notused, RevF and later: 934 * 935 * To find the max InputAddr for the csrow, start with the base address and set 936 * all bits that are "don't care" bits in the test at the start of NPT section 937 * 4.5.4 (p. 87). 938 * 939 * The "don't care" bits are all set bits in the mask and all bits in the gaps 940 * between bit ranges [36:27] and [21:13]. 941 * 942 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0], 943 * which are all bits in the above-mentioned gaps. 944 */ 945 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt) 946 { 947 948 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { 949 pvt->dcsb_base = REV_E_DCSB_BASE_BITS; 950 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS; 951 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS; 952 pvt->dcs_shift = REV_E_DCS_SHIFT; 953 pvt->cs_count = 8; 954 pvt->num_dcsm = 8; 955 } else { 956 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS; 957 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS; 958 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS; 959 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT; 960 961 if (boot_cpu_data.x86 == 0x11) { 962 pvt->cs_count = 4; 963 pvt->num_dcsm = 2; 964 } else { 965 pvt->cs_count = 8; 966 pvt->num_dcsm = 4; 967 } 968 } 969 } 970 971 /* 972 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers 973 */ 974 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt) 975 { 976 int cs, reg; 977 978 amd64_set_dct_base_and_mask(pvt); 979 980 for (cs = 0; cs < pvt->cs_count; cs++) { 981 reg = K8_DCSB0 + (cs * 4); 982 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs])) 983 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", 984 cs, pvt->dcsb0[cs], reg); 985 986 /* If DCT are NOT ganged, then read in DCT1's base */ 987 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { 988 reg = F10_DCSB1 + (cs * 4); 989 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, 990 &pvt->dcsb1[cs])) 991 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", 992 cs, pvt->dcsb1[cs], reg); 993 } else { 994 pvt->dcsb1[cs] = 0; 995 } 996 } 997 998 for (cs = 0; cs < pvt->num_dcsm; cs++) { 999 reg = K8_DCSM0 + (cs * 4); 1000 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs])) 1001 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", 1002 cs, pvt->dcsm0[cs], reg); 1003 1004 /* If DCT are NOT ganged, then read in DCT1's mask */ 1005 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { 1006 reg = F10_DCSM1 + (cs * 4); 1007 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, 1008 &pvt->dcsm1[cs])) 1009 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", 1010 cs, pvt->dcsm1[cs], reg); 1011 } else { 1012 pvt->dcsm1[cs] = 0; 1013 } 1014 } 1015 } 1016 1017 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt) 1018 { 1019 enum mem_type type; 1020 1021 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) { 1022 if (pvt->dchr0 & DDR3_MODE) 1023 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 1024 else 1025 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 1026 } else { 1027 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 1028 } 1029 1030 debugf1(" Memory type is: %s\n", edac_mem_types[type]); 1031 1032 return type; 1033 } 1034 1035 /* 1036 * Read the DRAM Configuration Low register. It differs between CG, D & E revs 1037 * and the later RevF memory controllers (DDR vs DDR2) 1038 * 1039 * Return: 1040 * number of memory channels in operation 1041 * Pass back: 1042 * contents of the DCL0_LOW register 1043 */ 1044 static int k8_early_channel_count(struct amd64_pvt *pvt) 1045 { 1046 int flag, err = 0; 1047 1048 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); 1049 if (err) 1050 return err; 1051 1052 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) { 1053 /* RevF (NPT) and later */ 1054 flag = pvt->dclr0 & F10_WIDTH_128; 1055 } else { 1056 /* RevE and earlier */ 1057 flag = pvt->dclr0 & REVE_WIDTH_128; 1058 } 1059 1060 /* not used */ 1061 pvt->dclr1 = 0; 1062 1063 return (flag) ? 2 : 1; 1064 } 1065 1066 /* extract the ERROR ADDRESS for the K8 CPUs */ 1067 static u64 k8_get_error_address(struct mem_ctl_info *mci, 1068 struct err_regs *info) 1069 { 1070 return (((u64) (info->nbeah & 0xff)) << 32) + 1071 (info->nbeal & ~0x03); 1072 } 1073 1074 /* 1075 * Read the Base and Limit registers for K8 based Memory controllers; extract 1076 * fields from the 'raw' reg into separate data fields 1077 * 1078 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN 1079 */ 1080 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram) 1081 { 1082 u32 low; 1083 u32 off = dram << 3; /* 8 bytes between DRAM entries */ 1084 1085 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low); 1086 1087 /* Extract parts into separate data entries */ 1088 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8; 1089 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7; 1090 pvt->dram_rw_en[dram] = (low & 0x3); 1091 1092 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low); 1093 1094 /* 1095 * Extract parts into separate data entries. Limit is the HIGHEST memory 1096 * location of the region, so lower 24 bits need to be all ones 1097 */ 1098 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF; 1099 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7; 1100 pvt->dram_DstNode[dram] = (low & 0x7); 1101 } 1102 1103 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, 1104 struct err_regs *info, 1105 u64 sys_addr) 1106 { 1107 struct mem_ctl_info *src_mci; 1108 unsigned short syndrome; 1109 int channel, csrow; 1110 u32 page, offset; 1111 1112 /* Extract the syndrome parts and form a 16-bit syndrome */ 1113 syndrome = HIGH_SYNDROME(info->nbsl) << 8; 1114 syndrome |= LOW_SYNDROME(info->nbsh); 1115 1116 /* CHIPKILL enabled */ 1117 if (info->nbcfg & K8_NBCFG_CHIPKILL) { 1118 channel = get_channel_from_ecc_syndrome(mci, syndrome); 1119 if (channel < 0) { 1120 /* 1121 * Syndrome didn't map, so we don't know which of the 1122 * 2 DIMMs is in error. So we need to ID 'both' of them 1123 * as suspect. 1124 */ 1125 amd64_mc_printk(mci, KERN_WARNING, 1126 "unknown syndrome 0x%x - possible error " 1127 "reporting race\n", syndrome); 1128 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1129 return; 1130 } 1131 } else { 1132 /* 1133 * non-chipkill ecc mode 1134 * 1135 * The k8 documentation is unclear about how to determine the 1136 * channel number when using non-chipkill memory. This method 1137 * was obtained from email communication with someone at AMD. 1138 * (Wish the email was placed in this comment - norsk) 1139 */ 1140 channel = ((sys_addr & BIT(3)) != 0); 1141 } 1142 1143 /* 1144 * Find out which node the error address belongs to. This may be 1145 * different from the node that detected the error. 1146 */ 1147 src_mci = find_mc_by_sys_addr(mci, sys_addr); 1148 if (!src_mci) { 1149 amd64_mc_printk(mci, KERN_ERR, 1150 "failed to map error address 0x%lx to a node\n", 1151 (unsigned long)sys_addr); 1152 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1153 return; 1154 } 1155 1156 /* Now map the sys_addr to a CSROW */ 1157 csrow = sys_addr_to_csrow(src_mci, sys_addr); 1158 if (csrow < 0) { 1159 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); 1160 } else { 1161 error_address_to_page_and_offset(sys_addr, &page, &offset); 1162 1163 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, 1164 channel, EDAC_MOD_STR); 1165 } 1166 } 1167 1168 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) 1169 { 1170 int *dbam_map; 1171 1172 if (pvt->ext_model >= K8_REV_F) 1173 dbam_map = ddr2_dbam; 1174 else if (pvt->ext_model >= K8_REV_D) 1175 dbam_map = ddr2_dbam_revD; 1176 else 1177 dbam_map = ddr2_dbam_revCG; 1178 1179 return dbam_map[cs_mode]; 1180 } 1181 1182 /* 1183 * Get the number of DCT channels in use. 1184 * 1185 * Return: 1186 * number of Memory Channels in operation 1187 * Pass back: 1188 * contents of the DCL0_LOW register 1189 */ 1190 static int f10_early_channel_count(struct amd64_pvt *pvt) 1191 { 1192 int dbams[] = { DBAM0, DBAM1 }; 1193 int i, j, channels = 0; 1194 u32 dbam; 1195 1196 /* If we are in 128 bit mode, then we are using 2 channels */ 1197 if (pvt->dclr0 & F10_WIDTH_128) { 1198 channels = 2; 1199 return channels; 1200 } 1201 1202 /* 1203 * Need to check if in unganged mode: In such, there are 2 channels, 1204 * but they are not in 128 bit mode and thus the above 'dclr0' status 1205 * bit will be OFF. 1206 * 1207 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1208 * their CSEnable bit on. If so, then SINGLE DIMM case. 1209 */ 1210 debugf0("Data width is not 128 bits - need more decoding\n"); 1211 1212 /* 1213 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1214 * is more than just one DIMM present in unganged mode. Need to check 1215 * both controllers since DIMMs can be placed in either one. 1216 */ 1217 for (i = 0; i < ARRAY_SIZE(dbams); i++) { 1218 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam)) 1219 goto err_reg; 1220 1221 for (j = 0; j < 4; j++) { 1222 if (DBAM_DIMM(j, dbam) > 0) { 1223 channels++; 1224 break; 1225 } 1226 } 1227 } 1228 1229 if (channels > 2) 1230 channels = 2; 1231 1232 debugf0("MCT channel count: %d\n", channels); 1233 1234 return channels; 1235 1236 err_reg: 1237 return -1; 1238 1239 } 1240 1241 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) 1242 { 1243 int *dbam_map; 1244 1245 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1246 dbam_map = ddr3_dbam; 1247 else 1248 dbam_map = ddr2_dbam; 1249 1250 return dbam_map[cs_mode]; 1251 } 1252 1253 /* Enable extended configuration access via 0xCF8 feature */ 1254 static void amd64_setup(struct amd64_pvt *pvt) 1255 { 1256 u32 reg; 1257 1258 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); 1259 1260 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG); 1261 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; 1262 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); 1263 } 1264 1265 /* Restore the extended configuration access via 0xCF8 feature */ 1266 static void amd64_teardown(struct amd64_pvt *pvt) 1267 { 1268 u32 reg; 1269 1270 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®); 1271 1272 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG; 1273 if (pvt->flags.cf8_extcfg) 1274 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG; 1275 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg); 1276 } 1277 1278 static u64 f10_get_error_address(struct mem_ctl_info *mci, 1279 struct err_regs *info) 1280 { 1281 return (((u64) (info->nbeah & 0xffff)) << 32) + 1282 (info->nbeal & ~0x01); 1283 } 1284 1285 /* 1286 * Read the Base and Limit registers for F10 based Memory controllers. Extract 1287 * fields from the 'raw' reg into separate data fields. 1288 * 1289 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN. 1290 */ 1291 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram) 1292 { 1293 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit; 1294 1295 low_offset = K8_DRAM_BASE_LOW + (dram << 3); 1296 high_offset = F10_DRAM_BASE_HIGH + (dram << 3); 1297 1298 /* read the 'raw' DRAM BASE Address register */ 1299 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base); 1300 1301 /* Read from the ECS data register */ 1302 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base); 1303 1304 /* Extract parts into separate data entries */ 1305 pvt->dram_rw_en[dram] = (low_base & 0x3); 1306 1307 if (pvt->dram_rw_en[dram] == 0) 1308 return; 1309 1310 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7; 1311 1312 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) | 1313 (((u64)low_base & 0xFFFF0000) << 8); 1314 1315 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3); 1316 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3); 1317 1318 /* read the 'raw' LIMIT registers */ 1319 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit); 1320 1321 /* Read from the ECS data register for the HIGH portion */ 1322 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit); 1323 1324 pvt->dram_DstNode[dram] = (low_limit & 0x7); 1325 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7; 1326 1327 /* 1328 * Extract address values and form a LIMIT address. Limit is the HIGHEST 1329 * memory location of the region, so low 24 bits need to be all ones. 1330 */ 1331 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) | 1332 (((u64) low_limit & 0xFFFF0000) << 8) | 1333 0x00FFFFFF; 1334 } 1335 1336 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt) 1337 { 1338 1339 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW, 1340 &pvt->dram_ctl_select_low)) { 1341 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, " 1342 "High range addresses at: 0x%x\n", 1343 pvt->dram_ctl_select_low, 1344 dct_sel_baseaddr(pvt)); 1345 1346 debugf0(" DCT mode: %s, All DCTs on: %s\n", 1347 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"), 1348 (dct_dram_enabled(pvt) ? "yes" : "no")); 1349 1350 if (!dct_ganging_enabled(pvt)) 1351 debugf0(" Address range split per DCT: %s\n", 1352 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1353 1354 debugf0(" DCT data interleave for ECC: %s, " 1355 "DRAM cleared since last warm reset: %s\n", 1356 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1357 (dct_memory_cleared(pvt) ? "yes" : "no")); 1358 1359 debugf0(" DCT channel interleave: %s, " 1360 "DCT interleave bits selector: 0x%x\n", 1361 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1362 dct_sel_interleave_addr(pvt)); 1363 } 1364 1365 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH, 1366 &pvt->dram_ctl_select_high); 1367 } 1368 1369 /* 1370 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1371 * Interleaving Modes. 1372 */ 1373 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1374 int hi_range_sel, u32 intlv_en) 1375 { 1376 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1; 1377 1378 if (dct_ganging_enabled(pvt)) 1379 cs = 0; 1380 else if (hi_range_sel) 1381 cs = dct_sel_high; 1382 else if (dct_interleave_enabled(pvt)) { 1383 /* 1384 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1385 */ 1386 if (dct_sel_interleave_addr(pvt) == 0) 1387 cs = sys_addr >> 6 & 1; 1388 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) { 1389 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1390 1391 if (dct_sel_interleave_addr(pvt) & 1) 1392 cs = (sys_addr >> 9 & 1) ^ temp; 1393 else 1394 cs = (sys_addr >> 6 & 1) ^ temp; 1395 } else if (intlv_en & 4) 1396 cs = sys_addr >> 15 & 1; 1397 else if (intlv_en & 2) 1398 cs = sys_addr >> 14 & 1; 1399 else if (intlv_en & 1) 1400 cs = sys_addr >> 13 & 1; 1401 else 1402 cs = sys_addr >> 12 & 1; 1403 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt)) 1404 cs = ~dct_sel_high & 1; 1405 else 1406 cs = 0; 1407 1408 return cs; 1409 } 1410 1411 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en) 1412 { 1413 if (intlv_en == 1) 1414 return 1; 1415 else if (intlv_en == 3) 1416 return 2; 1417 else if (intlv_en == 7) 1418 return 3; 1419 1420 return 0; 1421 } 1422 1423 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */ 1424 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel, 1425 u32 dct_sel_base_addr, 1426 u64 dct_sel_base_off, 1427 u32 hole_valid, u32 hole_off, 1428 u64 dram_base) 1429 { 1430 u64 chan_off; 1431 1432 if (hi_range_sel) { 1433 if (!(dct_sel_base_addr & 0xFFFFF800) && 1434 hole_valid && (sys_addr >= 0x100000000ULL)) 1435 chan_off = hole_off << 16; 1436 else 1437 chan_off = dct_sel_base_off; 1438 } else { 1439 if (hole_valid && (sys_addr >= 0x100000000ULL)) 1440 chan_off = hole_off << 16; 1441 else 1442 chan_off = dram_base & 0xFFFFF8000000ULL; 1443 } 1444 1445 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) - 1446 (chan_off & 0x0000FFFFFF800000ULL); 1447 } 1448 1449 /* Hack for the time being - Can we get this from BIOS?? */ 1450 #define CH0SPARE_RANK 0 1451 #define CH1SPARE_RANK 1 1452 1453 /* 1454 * checks if the csrow passed in is marked as SPARED, if so returns the new 1455 * spare row 1456 */ 1457 static inline int f10_process_possible_spare(int csrow, 1458 u32 cs, struct amd64_pvt *pvt) 1459 { 1460 u32 swap_done; 1461 u32 bad_dram_cs; 1462 1463 /* Depending on channel, isolate respective SPARING info */ 1464 if (cs) { 1465 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare); 1466 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare); 1467 if (swap_done && (csrow == bad_dram_cs)) 1468 csrow = CH1SPARE_RANK; 1469 } else { 1470 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare); 1471 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare); 1472 if (swap_done && (csrow == bad_dram_cs)) 1473 csrow = CH0SPARE_RANK; 1474 } 1475 return csrow; 1476 } 1477 1478 /* 1479 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1480 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1481 * 1482 * Return: 1483 * -EINVAL: NOT FOUND 1484 * 0..csrow = Chip-Select Row 1485 */ 1486 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs) 1487 { 1488 struct mem_ctl_info *mci; 1489 struct amd64_pvt *pvt; 1490 u32 cs_base, cs_mask; 1491 int cs_found = -EINVAL; 1492 int csrow; 1493 1494 mci = mci_lookup[nid]; 1495 if (!mci) 1496 return cs_found; 1497 1498 pvt = mci->pvt_info; 1499 1500 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs); 1501 1502 for (csrow = 0; csrow < pvt->cs_count; csrow++) { 1503 1504 cs_base = amd64_get_dct_base(pvt, cs, csrow); 1505 if (!(cs_base & K8_DCSB_CS_ENABLE)) 1506 continue; 1507 1508 /* 1509 * We have an ENABLED CSROW, Isolate just the MASK bits of the 1510 * target: [28:19] and [13:5], which map to [36:27] and [21:13] 1511 * of the actual address. 1512 */ 1513 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS; 1514 1515 /* 1516 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and 1517 * [4:0] to become ON. Then mask off bits [28:0] ([36:8]) 1518 */ 1519 cs_mask = amd64_get_dct_mask(pvt, cs, csrow); 1520 1521 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n", 1522 csrow, cs_base, cs_mask); 1523 1524 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF; 1525 1526 debugf1(" Final CSMask=0x%x\n", cs_mask); 1527 debugf1(" (InputAddr & ~CSMask)=0x%x " 1528 "(CSBase & ~CSMask)=0x%x\n", 1529 (in_addr & ~cs_mask), (cs_base & ~cs_mask)); 1530 1531 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) { 1532 cs_found = f10_process_possible_spare(csrow, cs, pvt); 1533 1534 debugf1(" MATCH csrow=%d\n", cs_found); 1535 break; 1536 } 1537 } 1538 return cs_found; 1539 } 1540 1541 /* For a given @dram_range, check if @sys_addr falls within it. */ 1542 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range, 1543 u64 sys_addr, int *nid, int *chan_sel) 1544 { 1545 int node_id, cs_found = -EINVAL, high_range = 0; 1546 u32 intlv_en, intlv_sel, intlv_shift, hole_off; 1547 u32 hole_valid, tmp, dct_sel_base, channel; 1548 u64 dram_base, chan_addr, dct_sel_base_off; 1549 1550 dram_base = pvt->dram_base[dram_range]; 1551 intlv_en = pvt->dram_IntlvEn[dram_range]; 1552 1553 node_id = pvt->dram_DstNode[dram_range]; 1554 intlv_sel = pvt->dram_IntlvSel[dram_range]; 1555 1556 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n", 1557 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]); 1558 1559 /* 1560 * This assumes that one node's DHAR is the same as all the other 1561 * nodes' DHAR. 1562 */ 1563 hole_off = (pvt->dhar & 0x0000FF80); 1564 hole_valid = (pvt->dhar & 0x1); 1565 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16; 1566 1567 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n", 1568 hole_off, hole_valid, intlv_sel); 1569 1570 if (intlv_en || 1571 (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1572 return -EINVAL; 1573 1574 dct_sel_base = dct_sel_baseaddr(pvt); 1575 1576 /* 1577 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1578 * select between DCT0 and DCT1. 1579 */ 1580 if (dct_high_range_enabled(pvt) && 1581 !dct_ganging_enabled(pvt) && 1582 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1583 high_range = 1; 1584 1585 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en); 1586 1587 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base, 1588 dct_sel_base_off, hole_valid, 1589 hole_off, dram_base); 1590 1591 intlv_shift = f10_map_intlv_en_to_shift(intlv_en); 1592 1593 /* remove Node ID (in case of memory interleaving) */ 1594 tmp = chan_addr & 0xFC0; 1595 1596 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp; 1597 1598 /* remove channel interleave and hash */ 1599 if (dct_interleave_enabled(pvt) && 1600 !dct_high_range_enabled(pvt) && 1601 !dct_ganging_enabled(pvt)) { 1602 if (dct_sel_interleave_addr(pvt) != 1) 1603 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL; 1604 else { 1605 tmp = chan_addr & 0xFC0; 1606 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1) 1607 | tmp; 1608 } 1609 } 1610 1611 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n", 1612 chan_addr, (u32)(chan_addr >> 8)); 1613 1614 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel); 1615 1616 if (cs_found >= 0) { 1617 *nid = node_id; 1618 *chan_sel = channel; 1619 } 1620 return cs_found; 1621 } 1622 1623 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, 1624 int *node, int *chan_sel) 1625 { 1626 int dram_range, cs_found = -EINVAL; 1627 u64 dram_base, dram_limit; 1628 1629 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) { 1630 1631 if (!pvt->dram_rw_en[dram_range]) 1632 continue; 1633 1634 dram_base = pvt->dram_base[dram_range]; 1635 dram_limit = pvt->dram_limit[dram_range]; 1636 1637 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) { 1638 1639 cs_found = f10_match_to_this_node(pvt, dram_range, 1640 sys_addr, node, 1641 chan_sel); 1642 if (cs_found >= 0) 1643 break; 1644 } 1645 } 1646 return cs_found; 1647 } 1648 1649 /* 1650 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1651 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1652 * 1653 * The @sys_addr is usually an error address received from the hardware 1654 * (MCX_ADDR). 1655 */ 1656 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, 1657 struct err_regs *info, 1658 u64 sys_addr) 1659 { 1660 struct amd64_pvt *pvt = mci->pvt_info; 1661 u32 page, offset; 1662 unsigned short syndrome; 1663 int nid, csrow, chan = 0; 1664 1665 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); 1666 1667 if (csrow < 0) { 1668 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1669 return; 1670 } 1671 1672 error_address_to_page_and_offset(sys_addr, &page, &offset); 1673 1674 syndrome = HIGH_SYNDROME(info->nbsl) << 8; 1675 syndrome |= LOW_SYNDROME(info->nbsh); 1676 1677 /* 1678 * We need the syndromes for channel detection only when we're 1679 * ganged. Otherwise @chan should already contain the channel at 1680 * this point. 1681 */ 1682 if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL) 1683 chan = get_channel_from_ecc_syndrome(mci, syndrome); 1684 1685 if (chan >= 0) 1686 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, 1687 EDAC_MOD_STR); 1688 else 1689 /* 1690 * Channel unknown, report all channels on this CSROW as failed. 1691 */ 1692 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++) 1693 edac_mc_handle_ce(mci, page, offset, syndrome, 1694 csrow, chan, EDAC_MOD_STR); 1695 } 1696 1697 /* 1698 * debug routine to display the memory sizes of all logical DIMMs and its 1699 * CSROWs as well 1700 */ 1701 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt) 1702 { 1703 int dimm, size0, size1; 1704 u32 dbam; 1705 u32 *dcsb; 1706 1707 if (boot_cpu_data.x86 == 0xf) { 1708 /* K8 families < revF not supported yet */ 1709 if (pvt->ext_model < K8_REV_F) 1710 return; 1711 else 1712 WARN_ON(ctrl != 0); 1713 } 1714 1715 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 1716 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0); 1717 1718 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1719 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0; 1720 1721 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1722 1723 /* Dump memory sizes for DIMM and its CSROWs */ 1724 for (dimm = 0; dimm < 4; dimm++) { 1725 1726 size0 = 0; 1727 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE) 1728 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); 1729 1730 size1 = 0; 1731 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE) 1732 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); 1733 1734 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n", 1735 dimm * 2, size0, dimm * 2 + 1, size1); 1736 } 1737 } 1738 1739 /* 1740 * There currently are 3 types type of MC devices for AMD Athlon/Opterons 1741 * (as per PCI DEVICE_IDs): 1742 * 1743 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI 1744 * DEVICE ID, even though there is differences between the different Revisions 1745 * (CG,D,E,F). 1746 * 1747 * Family F10h and F11h. 1748 * 1749 */ 1750 static struct amd64_family_type amd64_family_types[] = { 1751 [K8_CPUS] = { 1752 .ctl_name = "RevF", 1753 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1754 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1755 .ops = { 1756 .early_channel_count = k8_early_channel_count, 1757 .get_error_address = k8_get_error_address, 1758 .read_dram_base_limit = k8_read_dram_base_limit, 1759 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1760 .dbam_to_cs = k8_dbam_to_chip_select, 1761 } 1762 }, 1763 [F10_CPUS] = { 1764 .ctl_name = "Family 10h", 1765 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1766 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1767 .ops = { 1768 .early_channel_count = f10_early_channel_count, 1769 .get_error_address = f10_get_error_address, 1770 .read_dram_base_limit = f10_read_dram_base_limit, 1771 .read_dram_ctl_register = f10_read_dram_ctl_register, 1772 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, 1773 .dbam_to_cs = f10_dbam_to_chip_select, 1774 } 1775 }, 1776 [F11_CPUS] = { 1777 .ctl_name = "Family 11h", 1778 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP, 1779 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC, 1780 .ops = { 1781 .early_channel_count = f10_early_channel_count, 1782 .get_error_address = f10_get_error_address, 1783 .read_dram_base_limit = f10_read_dram_base_limit, 1784 .read_dram_ctl_register = f10_read_dram_ctl_register, 1785 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, 1786 .dbam_to_cs = f10_dbam_to_chip_select, 1787 } 1788 }, 1789 }; 1790 1791 static struct pci_dev *pci_get_related_function(unsigned int vendor, 1792 unsigned int device, 1793 struct pci_dev *related) 1794 { 1795 struct pci_dev *dev = NULL; 1796 1797 dev = pci_get_device(vendor, device, dev); 1798 while (dev) { 1799 if ((dev->bus->number == related->bus->number) && 1800 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 1801 break; 1802 dev = pci_get_device(vendor, device, dev); 1803 } 1804 1805 return dev; 1806 } 1807 1808 /* 1809 * These are tables of eigenvectors (one per line) which can be used for the 1810 * construction of the syndrome tables. The modified syndrome search algorithm 1811 * uses those to find the symbol in error and thus the DIMM. 1812 * 1813 * Algorithm courtesy of Ross LaFetra from AMD. 1814 */ 1815 static u16 x4_vectors[] = { 1816 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1817 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1818 0x0001, 0x0002, 0x0004, 0x0008, 1819 0x1013, 0x3032, 0x4044, 0x8088, 1820 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1821 0x4857, 0xc4fe, 0x13cc, 0x3288, 1822 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1823 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1824 0x15c1, 0x2a42, 0x89ac, 0x4758, 1825 0x2b03, 0x1602, 0x4f0c, 0xca08, 1826 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1827 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1828 0x2b87, 0x164e, 0x642c, 0xdc18, 1829 0x40b9, 0x80de, 0x1094, 0x20e8, 1830 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1831 0x11c1, 0x2242, 0x84ac, 0x4c58, 1832 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1833 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1834 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1835 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 1836 0x16b3, 0x3d62, 0x4f34, 0x8518, 1837 0x1e2f, 0x391a, 0x5cac, 0xf858, 1838 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 1839 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 1840 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 1841 0x4397, 0xc27e, 0x17fc, 0x3ea8, 1842 0x1617, 0x3d3e, 0x6464, 0xb8b8, 1843 0x23ff, 0x12aa, 0xab6c, 0x56d8, 1844 0x2dfb, 0x1ba6, 0x913c, 0x7328, 1845 0x185d, 0x2ca6, 0x7914, 0x9e28, 1846 0x171b, 0x3e36, 0x7d7c, 0xebe8, 1847 0x4199, 0x82ee, 0x19f4, 0x2e58, 1848 0x4807, 0xc40e, 0x130c, 0x3208, 1849 0x1905, 0x2e0a, 0x5804, 0xac08, 1850 0x213f, 0x132a, 0xadfc, 0x5ba8, 1851 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 1852 }; 1853 1854 static u16 x8_vectors[] = { 1855 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 1856 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 1857 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 1858 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 1859 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 1860 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 1861 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 1862 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 1863 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 1864 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 1865 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 1866 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 1867 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 1868 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 1869 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 1870 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 1871 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 1872 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1873 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 1874 }; 1875 1876 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs, 1877 int v_dim) 1878 { 1879 unsigned int i, err_sym; 1880 1881 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 1882 u16 s = syndrome; 1883 int v_idx = err_sym * v_dim; 1884 int v_end = (err_sym + 1) * v_dim; 1885 1886 /* walk over all 16 bits of the syndrome */ 1887 for (i = 1; i < (1U << 16); i <<= 1) { 1888 1889 /* if bit is set in that eigenvector... */ 1890 if (v_idx < v_end && vectors[v_idx] & i) { 1891 u16 ev_comp = vectors[v_idx++]; 1892 1893 /* ... and bit set in the modified syndrome, */ 1894 if (s & i) { 1895 /* remove it. */ 1896 s ^= ev_comp; 1897 1898 if (!s) 1899 return err_sym; 1900 } 1901 1902 } else if (s & i) 1903 /* can't get to zero, move to next symbol */ 1904 break; 1905 } 1906 } 1907 1908 debugf0("syndrome(%x) not found\n", syndrome); 1909 return -1; 1910 } 1911 1912 static int map_err_sym_to_channel(int err_sym, int sym_size) 1913 { 1914 if (sym_size == 4) 1915 switch (err_sym) { 1916 case 0x20: 1917 case 0x21: 1918 return 0; 1919 break; 1920 case 0x22: 1921 case 0x23: 1922 return 1; 1923 break; 1924 default: 1925 return err_sym >> 4; 1926 break; 1927 } 1928 /* x8 symbols */ 1929 else 1930 switch (err_sym) { 1931 /* imaginary bits not in a DIMM */ 1932 case 0x10: 1933 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 1934 err_sym); 1935 return -1; 1936 break; 1937 1938 case 0x11: 1939 return 0; 1940 break; 1941 case 0x12: 1942 return 1; 1943 break; 1944 default: 1945 return err_sym >> 3; 1946 break; 1947 } 1948 return -1; 1949 } 1950 1951 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 1952 { 1953 struct amd64_pvt *pvt = mci->pvt_info; 1954 u32 value = 0; 1955 int err_sym = 0; 1956 1957 amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value); 1958 1959 /* F3x180[EccSymbolSize]=1, x8 symbols */ 1960 if (boot_cpu_data.x86 == 0x10 && 1961 boot_cpu_data.x86_model > 7 && 1962 value & BIT(25)) { 1963 err_sym = decode_syndrome(syndrome, x8_vectors, 1964 ARRAY_SIZE(x8_vectors), 8); 1965 return map_err_sym_to_channel(err_sym, 8); 1966 } else { 1967 err_sym = decode_syndrome(syndrome, x4_vectors, 1968 ARRAY_SIZE(x4_vectors), 4); 1969 return map_err_sym_to_channel(err_sym, 4); 1970 } 1971 } 1972 1973 /* 1974 * Check for valid error in the NB Status High register. If so, proceed to read 1975 * NB Status Low, NB Address Low and NB Address High registers and store data 1976 * into error structure. 1977 * 1978 * Returns: 1979 * - 1: if hardware regs contains valid error info 1980 * - 0: if no valid error is indicated 1981 */ 1982 static int amd64_get_error_info_regs(struct mem_ctl_info *mci, 1983 struct err_regs *regs) 1984 { 1985 struct amd64_pvt *pvt; 1986 struct pci_dev *misc_f3_ctl; 1987 1988 pvt = mci->pvt_info; 1989 misc_f3_ctl = pvt->misc_f3_ctl; 1990 1991 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, ®s->nbsh)) 1992 return 0; 1993 1994 if (!(regs->nbsh & K8_NBSH_VALID_BIT)) 1995 return 0; 1996 1997 /* valid error, read remaining error information registers */ 1998 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, ®s->nbsl) || 1999 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, ®s->nbeal) || 2000 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, ®s->nbeah) || 2001 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, ®s->nbcfg)) 2002 return 0; 2003 2004 return 1; 2005 } 2006 2007 /* 2008 * This function is called to retrieve the error data from hardware and store it 2009 * in the info structure. 2010 * 2011 * Returns: 2012 * - 1: if a valid error is found 2013 * - 0: if no error is found 2014 */ 2015 static int amd64_get_error_info(struct mem_ctl_info *mci, 2016 struct err_regs *info) 2017 { 2018 struct amd64_pvt *pvt; 2019 struct err_regs regs; 2020 2021 pvt = mci->pvt_info; 2022 2023 if (!amd64_get_error_info_regs(mci, info)) 2024 return 0; 2025 2026 /* 2027 * Here's the problem with the K8's EDAC reporting: There are four 2028 * registers which report pieces of error information. They are shared 2029 * between CEs and UEs. Furthermore, contrary to what is stated in the 2030 * BKDG, the overflow bit is never used! Every error always updates the 2031 * reporting registers. 2032 * 2033 * Can you see the race condition? All four error reporting registers 2034 * must be read before a new error updates them! There is no way to read 2035 * all four registers atomically. The best than can be done is to detect 2036 * that a race has occured and then report the error without any kind of 2037 * precision. 2038 * 2039 * What is still positive is that errors are still reported and thus 2040 * problems can still be detected - just not localized because the 2041 * syndrome and address are spread out across registers. 2042 * 2043 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev. 2044 * UEs and CEs should have separate register sets with proper overflow 2045 * bits that are used! At very least the problem can be fixed by 2046 * honoring the ErrValid bit in 'nbsh' and not updating registers - just 2047 * set the overflow bit - unless the current error is CE and the new 2048 * error is UE which would be the only situation for overwriting the 2049 * current values. 2050 */ 2051 2052 regs = *info; 2053 2054 /* Use info from the second read - most current */ 2055 if (unlikely(!amd64_get_error_info_regs(mci, info))) 2056 return 0; 2057 2058 /* clear the error bits in hardware */ 2059 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT); 2060 2061 /* Check for the possible race condition */ 2062 if ((regs.nbsh != info->nbsh) || 2063 (regs.nbsl != info->nbsl) || 2064 (regs.nbeah != info->nbeah) || 2065 (regs.nbeal != info->nbeal)) { 2066 amd64_mc_printk(mci, KERN_WARNING, 2067 "hardware STATUS read access race condition " 2068 "detected!\n"); 2069 return 0; 2070 } 2071 return 1; 2072 } 2073 2074 /* 2075 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR 2076 * ADDRESS and process. 2077 */ 2078 static void amd64_handle_ce(struct mem_ctl_info *mci, 2079 struct err_regs *info) 2080 { 2081 struct amd64_pvt *pvt = mci->pvt_info; 2082 u64 sys_addr; 2083 2084 /* Ensure that the Error Address is VALID */ 2085 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { 2086 amd64_mc_printk(mci, KERN_ERR, 2087 "HW has no ERROR_ADDRESS available\n"); 2088 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 2089 return; 2090 } 2091 2092 sys_addr = pvt->ops->get_error_address(mci, info); 2093 2094 amd64_mc_printk(mci, KERN_ERR, 2095 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); 2096 2097 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr); 2098 } 2099 2100 /* Handle any Un-correctable Errors (UEs) */ 2101 static void amd64_handle_ue(struct mem_ctl_info *mci, 2102 struct err_regs *info) 2103 { 2104 struct amd64_pvt *pvt = mci->pvt_info; 2105 struct mem_ctl_info *log_mci, *src_mci = NULL; 2106 int csrow; 2107 u64 sys_addr; 2108 u32 page, offset; 2109 2110 log_mci = mci; 2111 2112 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) { 2113 amd64_mc_printk(mci, KERN_CRIT, 2114 "HW has no ERROR_ADDRESS available\n"); 2115 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 2116 return; 2117 } 2118 2119 sys_addr = pvt->ops->get_error_address(mci, info); 2120 2121 /* 2122 * Find out which node the error address belongs to. This may be 2123 * different from the node that detected the error. 2124 */ 2125 src_mci = find_mc_by_sys_addr(mci, sys_addr); 2126 if (!src_mci) { 2127 amd64_mc_printk(mci, KERN_CRIT, 2128 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n", 2129 (unsigned long)sys_addr); 2130 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 2131 return; 2132 } 2133 2134 log_mci = src_mci; 2135 2136 csrow = sys_addr_to_csrow(log_mci, sys_addr); 2137 if (csrow < 0) { 2138 amd64_mc_printk(mci, KERN_CRIT, 2139 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n", 2140 (unsigned long)sys_addr); 2141 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 2142 } else { 2143 error_address_to_page_and_offset(sys_addr, &page, &offset); 2144 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); 2145 } 2146 } 2147 2148 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, 2149 struct err_regs *info) 2150 { 2151 u32 ec = ERROR_CODE(info->nbsl); 2152 u32 xec = EXT_ERROR_CODE(info->nbsl); 2153 int ecc_type = (info->nbsh >> 13) & 0x3; 2154 2155 /* Bail early out if this was an 'observed' error */ 2156 if (PP(ec) == K8_NBSL_PP_OBS) 2157 return; 2158 2159 /* Do only ECC errors */ 2160 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 2161 return; 2162 2163 if (ecc_type == 2) 2164 amd64_handle_ce(mci, info); 2165 else if (ecc_type == 1) 2166 amd64_handle_ue(mci, info); 2167 2168 /* 2169 * If main error is CE then overflow must be CE. If main error is UE 2170 * then overflow is unknown. We'll call the overflow a CE - if 2171 * panic_on_ue is set then we're already panic'ed and won't arrive 2172 * here. Else, then apparently someone doesn't think that UE's are 2173 * catastrophic. 2174 */ 2175 if (info->nbsh & K8_NBSH_OVERFLOW) 2176 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow"); 2177 } 2178 2179 void amd64_decode_bus_error(int node_id, struct err_regs *regs) 2180 { 2181 struct mem_ctl_info *mci = mci_lookup[node_id]; 2182 2183 __amd64_decode_bus_error(mci, regs); 2184 2185 /* 2186 * Check the UE bit of the NB status high register, if set generate some 2187 * logs. If NOT a GART error, then process the event as a NO-INFO event. 2188 * If it was a GART error, skip that process. 2189 * 2190 * FIXME: this should go somewhere else, if at all. 2191 */ 2192 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors) 2193 edac_mc_handle_ue_no_info(mci, "UE bit is set"); 2194 2195 } 2196 2197 /* 2198 * The main polling 'check' function, called FROM the edac core to perform the 2199 * error checking and if an error is encountered, error processing. 2200 */ 2201 static void amd64_check(struct mem_ctl_info *mci) 2202 { 2203 struct err_regs regs; 2204 2205 if (amd64_get_error_info(mci, ®s)) { 2206 struct amd64_pvt *pvt = mci->pvt_info; 2207 amd_decode_nb_mce(pvt->mc_node_id, ®s, 1); 2208 } 2209 } 2210 2211 /* 2212 * Input: 2213 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer 2214 * 2) AMD Family index value 2215 * 2216 * Ouput: 2217 * Upon return of 0, the following filled in: 2218 * 2219 * struct pvt->addr_f1_ctl 2220 * struct pvt->misc_f3_ctl 2221 * 2222 * Filled in with related device funcitions of 'dram_f2_ctl' 2223 * These devices are "reserved" via the pci_get_device() 2224 * 2225 * Upon return of 1 (error status): 2226 * 2227 * Nothing reserved 2228 */ 2229 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx) 2230 { 2231 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx]; 2232 2233 /* Reserve the ADDRESS MAP Device */ 2234 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, 2235 amd64_dev->addr_f1_ctl, 2236 pvt->dram_f2_ctl); 2237 2238 if (!pvt->addr_f1_ctl) { 2239 amd64_printk(KERN_ERR, "error address map device not found: " 2240 "vendor %x device 0x%x (broken BIOS?)\n", 2241 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl); 2242 return 1; 2243 } 2244 2245 /* Reserve the MISC Device */ 2246 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor, 2247 amd64_dev->misc_f3_ctl, 2248 pvt->dram_f2_ctl); 2249 2250 if (!pvt->misc_f3_ctl) { 2251 pci_dev_put(pvt->addr_f1_ctl); 2252 pvt->addr_f1_ctl = NULL; 2253 2254 amd64_printk(KERN_ERR, "error miscellaneous device not found: " 2255 "vendor %x device 0x%x (broken BIOS?)\n", 2256 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl); 2257 return 1; 2258 } 2259 2260 debugf1(" Addr Map device PCI Bus ID:\t%s\n", 2261 pci_name(pvt->addr_f1_ctl)); 2262 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n", 2263 pci_name(pvt->dram_f2_ctl)); 2264 debugf1(" Misc device PCI Bus ID:\t%s\n", 2265 pci_name(pvt->misc_f3_ctl)); 2266 2267 return 0; 2268 } 2269 2270 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt) 2271 { 2272 pci_dev_put(pvt->addr_f1_ctl); 2273 pci_dev_put(pvt->misc_f3_ctl); 2274 } 2275 2276 /* 2277 * Retrieve the hardware registers of the memory controller (this includes the 2278 * 'Address Map' and 'Misc' device regs) 2279 */ 2280 static void amd64_read_mc_registers(struct amd64_pvt *pvt) 2281 { 2282 u64 msr_val; 2283 int dram; 2284 2285 /* 2286 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2287 * those are Read-As-Zero 2288 */ 2289 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2290 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem); 2291 2292 /* check first whether TOP_MEM2 is enabled */ 2293 rdmsrl(MSR_K8_SYSCFG, msr_val); 2294 if (msr_val & (1U << 21)) { 2295 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2296 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2297 } else 2298 debugf0(" TOP_MEM2 disabled.\n"); 2299 2300 amd64_cpu_display_info(pvt); 2301 2302 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap); 2303 2304 if (pvt->ops->read_dram_ctl_register) 2305 pvt->ops->read_dram_ctl_register(pvt); 2306 2307 for (dram = 0; dram < DRAM_REG_COUNT; dram++) { 2308 /* 2309 * Call CPU specific READ function to get the DRAM Base and 2310 * Limit values from the DCT. 2311 */ 2312 pvt->ops->read_dram_base_limit(pvt, dram); 2313 2314 /* 2315 * Only print out debug info on rows with both R and W Enabled. 2316 * Normal processing, compiler should optimize this whole 'if' 2317 * debug output block away. 2318 */ 2319 if (pvt->dram_rw_en[dram] != 0) { 2320 debugf1(" DRAM-BASE[%d]: 0x%016llx " 2321 "DRAM-LIMIT: 0x%016llx\n", 2322 dram, 2323 pvt->dram_base[dram], 2324 pvt->dram_limit[dram]); 2325 2326 debugf1(" IntlvEn=%s %s %s " 2327 "IntlvSel=%d DstNode=%d\n", 2328 pvt->dram_IntlvEn[dram] ? 2329 "Enabled" : "Disabled", 2330 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W", 2331 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R", 2332 pvt->dram_IntlvSel[dram], 2333 pvt->dram_DstNode[dram]); 2334 } 2335 } 2336 2337 amd64_read_dct_base_mask(pvt); 2338 2339 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar); 2340 amd64_read_dbam_reg(pvt); 2341 2342 amd64_read_pci_cfg(pvt->misc_f3_ctl, 2343 F10_ONLINE_SPARE, &pvt->online_spare); 2344 2345 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0); 2346 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0); 2347 2348 if (!dct_ganging_enabled(pvt)) { 2349 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1); 2350 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1); 2351 } 2352 amd64_dump_misc_regs(pvt); 2353 } 2354 2355 /* 2356 * NOTE: CPU Revision Dependent code 2357 * 2358 * Input: 2359 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1) 2360 * k8 private pointer to --> 2361 * DRAM Bank Address mapping register 2362 * node_id 2363 * DCL register where dual_channel_active is 2364 * 2365 * The DBAM register consists of 4 sets of 4 bits each definitions: 2366 * 2367 * Bits: CSROWs 2368 * 0-3 CSROWs 0 and 1 2369 * 4-7 CSROWs 2 and 3 2370 * 8-11 CSROWs 4 and 5 2371 * 12-15 CSROWs 6 and 7 2372 * 2373 * Values range from: 0 to 15 2374 * The meaning of the values depends on CPU revision and dual-channel state, 2375 * see relevant BKDG more info. 2376 * 2377 * The memory controller provides for total of only 8 CSROWs in its current 2378 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2379 * single channel or two (2) DIMMs in dual channel mode. 2380 * 2381 * The following code logic collapses the various tables for CSROW based on CPU 2382 * revision. 2383 * 2384 * Returns: 2385 * The number of PAGE_SIZE pages on the specified CSROW number it 2386 * encompasses 2387 * 2388 */ 2389 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt) 2390 { 2391 u32 cs_mode, nr_pages; 2392 2393 /* 2394 * The math on this doesn't look right on the surface because x/2*4 can 2395 * be simplified to x*2 but this expression makes use of the fact that 2396 * it is integral math where 1/2=0. This intermediate value becomes the 2397 * number of bits to shift the DBAM register to extract the proper CSROW 2398 * field. 2399 */ 2400 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; 2401 2402 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT); 2403 2404 /* 2405 * If dual channel then double the memory size of single channel. 2406 * Channel count is 1 or 2 2407 */ 2408 nr_pages <<= (pvt->channel_count - 1); 2409 2410 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); 2411 debugf0(" nr_pages= %u channel-count = %d\n", 2412 nr_pages, pvt->channel_count); 2413 2414 return nr_pages; 2415 } 2416 2417 /* 2418 * Initialize the array of csrow attribute instances, based on the values 2419 * from pci config hardware registers. 2420 */ 2421 static int amd64_init_csrows(struct mem_ctl_info *mci) 2422 { 2423 struct csrow_info *csrow; 2424 struct amd64_pvt *pvt; 2425 u64 input_addr_min, input_addr_max, sys_addr; 2426 int i, empty = 1; 2427 2428 pvt = mci->pvt_info; 2429 2430 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg); 2431 2432 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg, 2433 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", 2434 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled" 2435 ); 2436 2437 for (i = 0; i < pvt->cs_count; i++) { 2438 csrow = &mci->csrows[i]; 2439 2440 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) { 2441 debugf1("----CSROW %d EMPTY for node %d\n", i, 2442 pvt->mc_node_id); 2443 continue; 2444 } 2445 2446 debugf1("----CSROW %d VALID for MC node %d\n", 2447 i, pvt->mc_node_id); 2448 2449 empty = 0; 2450 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt); 2451 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); 2452 sys_addr = input_addr_to_sys_addr(mci, input_addr_min); 2453 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); 2454 sys_addr = input_addr_to_sys_addr(mci, input_addr_max); 2455 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); 2456 csrow->page_mask = ~mask_from_dct_mask(pvt, i); 2457 /* 8 bytes of resolution */ 2458 2459 csrow->mtype = amd64_determine_memory_type(pvt); 2460 2461 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); 2462 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", 2463 (unsigned long)input_addr_min, 2464 (unsigned long)input_addr_max); 2465 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", 2466 (unsigned long)sys_addr, csrow->page_mask); 2467 debugf1(" nr_pages: %u first_page: 0x%lx " 2468 "last_page: 0x%lx\n", 2469 (unsigned)csrow->nr_pages, 2470 csrow->first_page, csrow->last_page); 2471 2472 /* 2473 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2474 */ 2475 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) 2476 csrow->edac_mode = 2477 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? 2478 EDAC_S4ECD4ED : EDAC_SECDED; 2479 else 2480 csrow->edac_mode = EDAC_NONE; 2481 } 2482 2483 return empty; 2484 } 2485 2486 /* get all cores on this DCT */ 2487 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid) 2488 { 2489 int cpu; 2490 2491 for_each_online_cpu(cpu) 2492 if (amd_get_nb_id(cpu) == nid) 2493 cpumask_set_cpu(cpu, mask); 2494 } 2495 2496 /* check MCG_CTL on all the cpus on this node */ 2497 static bool amd64_nb_mce_bank_enabled_on_node(int nid) 2498 { 2499 cpumask_var_t mask; 2500 int cpu, nbe; 2501 bool ret = false; 2502 2503 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2504 amd64_printk(KERN_WARNING, "%s: error allocating mask\n", 2505 __func__); 2506 return false; 2507 } 2508 2509 get_cpus_on_this_dct_cpumask(mask, nid); 2510 2511 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2512 2513 for_each_cpu(cpu, mask) { 2514 struct msr *reg = per_cpu_ptr(msrs, cpu); 2515 nbe = reg->l & K8_MSR_MCGCTL_NBE; 2516 2517 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2518 cpu, reg->q, 2519 (nbe ? "enabled" : "disabled")); 2520 2521 if (!nbe) 2522 goto out; 2523 } 2524 ret = true; 2525 2526 out: 2527 free_cpumask_var(mask); 2528 return ret; 2529 } 2530 2531 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on) 2532 { 2533 cpumask_var_t cmask; 2534 int cpu; 2535 2536 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2537 amd64_printk(KERN_WARNING, "%s: error allocating mask\n", 2538 __func__); 2539 return false; 2540 } 2541 2542 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id); 2543 2544 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2545 2546 for_each_cpu(cpu, cmask) { 2547 2548 struct msr *reg = per_cpu_ptr(msrs, cpu); 2549 2550 if (on) { 2551 if (reg->l & K8_MSR_MCGCTL_NBE) 2552 pvt->flags.ecc_report = 1; 2553 2554 reg->l |= K8_MSR_MCGCTL_NBE; 2555 } else { 2556 /* 2557 * Turn off ECC reporting only when it was off before 2558 */ 2559 if (!pvt->flags.ecc_report) 2560 reg->l &= ~K8_MSR_MCGCTL_NBE; 2561 } 2562 } 2563 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2564 2565 free_cpumask_var(cmask); 2566 2567 return 0; 2568 } 2569 2570 /* 2571 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we" 2572 * enable it. 2573 */ 2574 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci) 2575 { 2576 struct amd64_pvt *pvt = mci->pvt_info; 2577 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; 2578 2579 if (!ecc_enable_override) 2580 return; 2581 2582 amd64_printk(KERN_WARNING, 2583 "'ecc_enable_override' parameter is active, " 2584 "Enabling AMD ECC hardware now: CAUTION\n"); 2585 2586 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value); 2587 2588 /* turn on UECCn and CECCEn bits */ 2589 pvt->old_nbctl = value & mask; 2590 pvt->nbctl_mcgctl_saved = 1; 2591 2592 value |= mask; 2593 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); 2594 2595 if (amd64_toggle_ecc_err_reporting(pvt, ON)) 2596 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over " 2597 "MCGCTL!\n"); 2598 2599 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); 2600 2601 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value, 2602 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", 2603 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); 2604 2605 if (!(value & K8_NBCFG_ECC_ENABLE)) { 2606 amd64_printk(KERN_WARNING, 2607 "This node reports that DRAM ECC is " 2608 "currently Disabled; ENABLING now\n"); 2609 2610 /* Attempt to turn on DRAM ECC Enable */ 2611 value |= K8_NBCFG_ECC_ENABLE; 2612 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value); 2613 2614 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); 2615 2616 if (!(value & K8_NBCFG_ECC_ENABLE)) { 2617 amd64_printk(KERN_WARNING, 2618 "Hardware rejects Enabling DRAM ECC checking\n" 2619 "Check memory DIMM configuration\n"); 2620 } else { 2621 amd64_printk(KERN_DEBUG, 2622 "Hardware accepted DRAM ECC Enable\n"); 2623 } 2624 } 2625 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value, 2626 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled", 2627 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"); 2628 2629 pvt->ctl_error_info.nbcfg = value; 2630 } 2631 2632 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt) 2633 { 2634 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; 2635 2636 if (!pvt->nbctl_mcgctl_saved) 2637 return; 2638 2639 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value); 2640 value &= ~mask; 2641 value |= pvt->old_nbctl; 2642 2643 /* restore the NB Enable MCGCTL bit */ 2644 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value); 2645 2646 if (amd64_toggle_ecc_err_reporting(pvt, OFF)) 2647 amd64_printk(KERN_WARNING, "Error restoring ECC reporting over " 2648 "MCGCTL!\n"); 2649 } 2650 2651 /* 2652 * EDAC requires that the BIOS have ECC enabled before taking over the 2653 * processing of ECC errors. This is because the BIOS can properly initialize 2654 * the memory system completely. A command line option allows to force-enable 2655 * hardware ECC later in amd64_enable_ecc_error_reporting(). 2656 */ 2657 static const char *ecc_warning = 2658 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n" 2659 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n" 2660 " Also, use of the override can cause unknown side effects.\n"; 2661 2662 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt) 2663 { 2664 u32 value; 2665 u8 ecc_enabled = 0; 2666 bool nb_mce_en = false; 2667 2668 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value); 2669 2670 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE); 2671 if (!ecc_enabled) 2672 amd64_printk(KERN_WARNING, "This node reports that Memory ECC " 2673 "is currently disabled, set F3x%x[22] (%s).\n", 2674 K8_NBCFG, pci_name(pvt->misc_f3_ctl)); 2675 else 2676 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n"); 2677 2678 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id); 2679 if (!nb_mce_en) 2680 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR " 2681 "0x%08x[4] on node %d to enable.\n", 2682 MSR_IA32_MCG_CTL, pvt->mc_node_id); 2683 2684 if (!ecc_enabled || !nb_mce_en) { 2685 if (!ecc_enable_override) { 2686 amd64_printk(KERN_WARNING, "%s", ecc_warning); 2687 return -ENODEV; 2688 } 2689 } else 2690 /* CLEAR the override, since BIOS controlled it */ 2691 ecc_enable_override = 0; 2692 2693 return 0; 2694 } 2695 2696 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + 2697 ARRAY_SIZE(amd64_inj_attrs) + 2698 1]; 2699 2700 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; 2701 2702 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci) 2703 { 2704 unsigned int i = 0, j = 0; 2705 2706 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) 2707 sysfs_attrs[i] = amd64_dbg_attrs[i]; 2708 2709 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) 2710 sysfs_attrs[i] = amd64_inj_attrs[j]; 2711 2712 sysfs_attrs[i] = terminator; 2713 2714 mci->mc_driver_sysfs_attributes = sysfs_attrs; 2715 } 2716 2717 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci) 2718 { 2719 struct amd64_pvt *pvt = mci->pvt_info; 2720 2721 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2722 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2723 2724 if (pvt->nbcap & K8_NBCAP_SECDED) 2725 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2726 2727 if (pvt->nbcap & K8_NBCAP_CHIPKILL) 2728 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2729 2730 mci->edac_cap = amd64_determine_edac_cap(pvt); 2731 mci->mod_name = EDAC_MOD_STR; 2732 mci->mod_ver = EDAC_AMD64_VERSION; 2733 mci->ctl_name = get_amd_family_name(pvt->mc_type_index); 2734 mci->dev_name = pci_name(pvt->dram_f2_ctl); 2735 mci->ctl_page_to_phys = NULL; 2736 2737 /* IMPORTANT: Set the polling 'check' function in this module */ 2738 mci->edac_check = amd64_check; 2739 2740 /* memory scrubber interface */ 2741 mci->set_sdram_scrub_rate = amd64_set_scrub_rate; 2742 mci->get_sdram_scrub_rate = amd64_get_scrub_rate; 2743 } 2744 2745 /* 2746 * Init stuff for this DRAM Controller device. 2747 * 2748 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration 2749 * Space feature MUST be enabled on ALL Processors prior to actually reading 2750 * from the ECS registers. Since the loading of the module can occur on any 2751 * 'core', and cores don't 'see' all the other processors ECS data when the 2752 * others are NOT enabled. Our solution is to first enable ECS access in this 2753 * routine on all processors, gather some data in a amd64_pvt structure and 2754 * later come back in a finish-setup function to perform that final 2755 * initialization. See also amd64_init_2nd_stage() for that. 2756 */ 2757 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl, 2758 int mc_type_index) 2759 { 2760 struct amd64_pvt *pvt = NULL; 2761 int err = 0, ret; 2762 2763 ret = -ENOMEM; 2764 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2765 if (!pvt) 2766 goto err_exit; 2767 2768 pvt->mc_node_id = get_node_id(dram_f2_ctl); 2769 2770 pvt->dram_f2_ctl = dram_f2_ctl; 2771 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2772 pvt->mc_type_index = mc_type_index; 2773 pvt->ops = family_ops(mc_type_index); 2774 2775 /* 2776 * We have the dram_f2_ctl device as an argument, now go reserve its 2777 * sibling devices from the PCI system. 2778 */ 2779 ret = -ENODEV; 2780 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index); 2781 if (err) 2782 goto err_free; 2783 2784 ret = -EINVAL; 2785 err = amd64_check_ecc_enabled(pvt); 2786 if (err) 2787 goto err_put; 2788 2789 /* 2790 * Key operation here: setup of HW prior to performing ops on it. Some 2791 * setup is required to access ECS data. After this is performed, the 2792 * 'teardown' function must be called upon error and normal exit paths. 2793 */ 2794 if (boot_cpu_data.x86 >= 0x10) 2795 amd64_setup(pvt); 2796 2797 /* 2798 * Save the pointer to the private data for use in 2nd initialization 2799 * stage 2800 */ 2801 pvt_lookup[pvt->mc_node_id] = pvt; 2802 2803 return 0; 2804 2805 err_put: 2806 amd64_free_mc_sibling_devices(pvt); 2807 2808 err_free: 2809 kfree(pvt); 2810 2811 err_exit: 2812 return ret; 2813 } 2814 2815 /* 2816 * This is the finishing stage of the init code. Needs to be performed after all 2817 * MCs' hardware have been prepped for accessing extended config space. 2818 */ 2819 static int amd64_init_2nd_stage(struct amd64_pvt *pvt) 2820 { 2821 int node_id = pvt->mc_node_id; 2822 struct mem_ctl_info *mci; 2823 int ret = -ENODEV; 2824 2825 amd64_read_mc_registers(pvt); 2826 2827 /* 2828 * We need to determine how many memory channels there are. Then use 2829 * that information for calculating the size of the dynamic instance 2830 * tables in the 'mci' structure 2831 */ 2832 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2833 if (pvt->channel_count < 0) 2834 goto err_exit; 2835 2836 ret = -ENOMEM; 2837 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id); 2838 if (!mci) 2839 goto err_exit; 2840 2841 mci->pvt_info = pvt; 2842 2843 mci->dev = &pvt->dram_f2_ctl->dev; 2844 amd64_setup_mci_misc_attributes(mci); 2845 2846 if (amd64_init_csrows(mci)) 2847 mci->edac_cap = EDAC_FLAG_NONE; 2848 2849 amd64_enable_ecc_error_reporting(mci); 2850 amd64_set_mc_sysfs_attributes(mci); 2851 2852 ret = -ENODEV; 2853 if (edac_mc_add_mc(mci)) { 2854 debugf1("failed edac_mc_add_mc()\n"); 2855 goto err_add_mc; 2856 } 2857 2858 mci_lookup[node_id] = mci; 2859 pvt_lookup[node_id] = NULL; 2860 2861 /* register stuff with EDAC MCE */ 2862 if (report_gart_errors) 2863 amd_report_gart_errors(true); 2864 2865 amd_register_ecc_decoder(amd64_decode_bus_error); 2866 2867 return 0; 2868 2869 err_add_mc: 2870 edac_mc_free(mci); 2871 2872 err_exit: 2873 debugf0("failure to init 2nd stage: ret=%d\n", ret); 2874 2875 amd64_restore_ecc_error_reporting(pvt); 2876 2877 if (boot_cpu_data.x86 > 0xf) 2878 amd64_teardown(pvt); 2879 2880 amd64_free_mc_sibling_devices(pvt); 2881 2882 kfree(pvt_lookup[pvt->mc_node_id]); 2883 pvt_lookup[node_id] = NULL; 2884 2885 return ret; 2886 } 2887 2888 2889 static int __devinit amd64_init_one_instance(struct pci_dev *pdev, 2890 const struct pci_device_id *mc_type) 2891 { 2892 int ret = 0; 2893 2894 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev), 2895 get_amd_family_name(mc_type->driver_data)); 2896 2897 ret = pci_enable_device(pdev); 2898 if (ret < 0) 2899 ret = -EIO; 2900 else 2901 ret = amd64_probe_one_instance(pdev, mc_type->driver_data); 2902 2903 if (ret < 0) 2904 debugf0("ret=%d\n", ret); 2905 2906 return ret; 2907 } 2908 2909 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) 2910 { 2911 struct mem_ctl_info *mci; 2912 struct amd64_pvt *pvt; 2913 2914 /* Remove from EDAC CORE tracking list */ 2915 mci = edac_mc_del_mc(&pdev->dev); 2916 if (!mci) 2917 return; 2918 2919 pvt = mci->pvt_info; 2920 2921 amd64_restore_ecc_error_reporting(pvt); 2922 2923 if (boot_cpu_data.x86 > 0xf) 2924 amd64_teardown(pvt); 2925 2926 amd64_free_mc_sibling_devices(pvt); 2927 2928 kfree(pvt); 2929 mci->pvt_info = NULL; 2930 2931 mci_lookup[pvt->mc_node_id] = NULL; 2932 2933 /* unregister from EDAC MCE */ 2934 amd_report_gart_errors(false); 2935 amd_unregister_ecc_decoder(amd64_decode_bus_error); 2936 2937 /* Free the EDAC CORE resources */ 2938 edac_mc_free(mci); 2939 } 2940 2941 /* 2942 * This table is part of the interface for loading drivers for PCI devices. The 2943 * PCI core identifies what devices are on a system during boot, and then 2944 * inquiry this table to see if this driver is for a given device found. 2945 */ 2946 static const struct pci_device_id amd64_pci_table[] __devinitdata = { 2947 { 2948 .vendor = PCI_VENDOR_ID_AMD, 2949 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2950 .subvendor = PCI_ANY_ID, 2951 .subdevice = PCI_ANY_ID, 2952 .class = 0, 2953 .class_mask = 0, 2954 .driver_data = K8_CPUS 2955 }, 2956 { 2957 .vendor = PCI_VENDOR_ID_AMD, 2958 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2959 .subvendor = PCI_ANY_ID, 2960 .subdevice = PCI_ANY_ID, 2961 .class = 0, 2962 .class_mask = 0, 2963 .driver_data = F10_CPUS 2964 }, 2965 { 2966 .vendor = PCI_VENDOR_ID_AMD, 2967 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM, 2968 .subvendor = PCI_ANY_ID, 2969 .subdevice = PCI_ANY_ID, 2970 .class = 0, 2971 .class_mask = 0, 2972 .driver_data = F11_CPUS 2973 }, 2974 {0, } 2975 }; 2976 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2977 2978 static struct pci_driver amd64_pci_driver = { 2979 .name = EDAC_MOD_STR, 2980 .probe = amd64_init_one_instance, 2981 .remove = __devexit_p(amd64_remove_one_instance), 2982 .id_table = amd64_pci_table, 2983 }; 2984 2985 static void amd64_setup_pci_device(void) 2986 { 2987 struct mem_ctl_info *mci; 2988 struct amd64_pvt *pvt; 2989 2990 if (amd64_ctl_pci) 2991 return; 2992 2993 mci = mci_lookup[0]; 2994 if (mci) { 2995 2996 pvt = mci->pvt_info; 2997 amd64_ctl_pci = 2998 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev, 2999 EDAC_MOD_STR); 3000 3001 if (!amd64_ctl_pci) { 3002 pr_warning("%s(): Unable to create PCI control\n", 3003 __func__); 3004 3005 pr_warning("%s(): PCI error report via EDAC not set\n", 3006 __func__); 3007 } 3008 } 3009 } 3010 3011 static int __init amd64_edac_init(void) 3012 { 3013 int nb, err = -ENODEV; 3014 3015 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n"); 3016 3017 opstate_init(); 3018 3019 if (cache_k8_northbridges() < 0) 3020 return err; 3021 3022 msrs = msrs_alloc(); 3023 3024 err = pci_register_driver(&amd64_pci_driver); 3025 if (err) 3026 return err; 3027 3028 /* 3029 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd 3030 * amd64_pvt structs. These will be used in the 2nd stage init function 3031 * to finish initialization of the MC instances. 3032 */ 3033 for (nb = 0; nb < num_k8_northbridges; nb++) { 3034 if (!pvt_lookup[nb]) 3035 continue; 3036 3037 err = amd64_init_2nd_stage(pvt_lookup[nb]); 3038 if (err) 3039 goto err_2nd_stage; 3040 } 3041 3042 amd64_setup_pci_device(); 3043 3044 return 0; 3045 3046 err_2nd_stage: 3047 debugf0("2nd stage failed\n"); 3048 pci_unregister_driver(&amd64_pci_driver); 3049 3050 return err; 3051 } 3052 3053 static void __exit amd64_edac_exit(void) 3054 { 3055 if (amd64_ctl_pci) 3056 edac_pci_release_generic_ctl(amd64_ctl_pci); 3057 3058 pci_unregister_driver(&amd64_pci_driver); 3059 3060 msrs_free(msrs); 3061 msrs = NULL; 3062 } 3063 3064 module_init(amd64_edac_init); 3065 module_exit(amd64_edac_exit); 3066 3067 MODULE_LICENSE("GPL"); 3068 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 3069 "Dave Peterson, Thayne Harbaugh"); 3070 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 3071 EDAC_AMD64_VERSION); 3072 3073 module_param(edac_op_state, int, 0444); 3074 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 3075