xref: /linux/drivers/edac/amd64_edac.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /*
19  * count successfully initialized driver instances for setup_pci_device()
20  */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22 
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26 
27 /*
28  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30  * or higher value'.
31  *
32  *FIXME: Produce a better mapping/linearisation.
33  */
34 struct scrubrate {
35        u32 scrubval;           /* bit pattern for scrub rate */
36        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 	{ 0x01, 1600000000UL},
39 	{ 0x02, 800000000UL},
40 	{ 0x03, 400000000UL},
41 	{ 0x04, 200000000UL},
42 	{ 0x05, 100000000UL},
43 	{ 0x06, 50000000UL},
44 	{ 0x07, 25000000UL},
45 	{ 0x08, 12284069UL},
46 	{ 0x09, 6274509UL},
47 	{ 0x0A, 3121951UL},
48 	{ 0x0B, 1560975UL},
49 	{ 0x0C, 781440UL},
50 	{ 0x0D, 390720UL},
51 	{ 0x0E, 195300UL},
52 	{ 0x0F, 97650UL},
53 	{ 0x10, 48854UL},
54 	{ 0x11, 24427UL},
55 	{ 0x12, 12213UL},
56 	{ 0x13, 6101UL},
57 	{ 0x14, 3051UL},
58 	{ 0x15, 1523UL},
59 	{ 0x16, 761UL},
60 	{ 0x00, 0UL},        /* scrubbing off */
61 };
62 
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 				      u32 *val, const char *func)
65 {
66 	int err = 0;
67 
68 	err = pci_read_config_dword(pdev, offset, val);
69 	if (err)
70 		amd64_warn("%s: error reading F%dx%03x.\n",
71 			   func, PCI_FUNC(pdev->devfn), offset);
72 
73 	return err;
74 }
75 
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 				u32 val, const char *func)
78 {
79 	int err = 0;
80 
81 	err = pci_write_config_dword(pdev, offset, val);
82 	if (err)
83 		amd64_warn("%s: error writing to F%dx%03x.\n",
84 			   func, PCI_FUNC(pdev->devfn), offset);
85 
86 	return err;
87 }
88 
89 /*
90  *
91  * Depending on the family, F2 DCT reads need special handling:
92  *
93  * K8: has a single DCT only
94  *
95  * F10h: each DCT has its own set of regs
96  *	DCT0 -> F2x040..
97  *	DCT1 -> F2x140..
98  *
99  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100  *
101  */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 			       const char *func)
104 {
105 	if (addr >= 0x100)
106 		return -EINVAL;
107 
108 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110 
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 				 const char *func)
113 {
114 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116 
117 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 				 const char *func)
119 {
120 	u32 reg = 0;
121 	u8 dct  = 0;
122 
123 	if (addr >= 0x140 && addr <= 0x1a0) {
124 		dct   = 1;
125 		addr -= 0x100;
126 	}
127 
128 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 	reg &= 0xfffffffe;
130 	reg |= dct;
131 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
132 
133 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
134 }
135 
136 /*
137  * Memory scrubber control interface. For K8, memory scrubbing is handled by
138  * hardware and can involve L2 cache, dcache as well as the main memory. With
139  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140  * functionality.
141  *
142  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144  * bytes/sec for the setting.
145  *
146  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147  * other archs, we might not have access to the caches directly.
148  */
149 
150 /*
151  * scan the scrub rate mapping table for a close or matching bandwidth value to
152  * issue. If requested is too big, then use last maximum value found.
153  */
154 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
155 {
156 	u32 scrubval;
157 	int i;
158 
159 	/*
160 	 * map the configured rate (new_bw) to a value specific to the AMD64
161 	 * memory controller and apply to register. Search for the first
162 	 * bandwidth entry that is greater or equal than the setting requested
163 	 * and program that. If at last entry, turn off DRAM scrubbing.
164 	 */
165 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
166 		/*
167 		 * skip scrub rates which aren't recommended
168 		 * (see F10 BKDG, F3x58)
169 		 */
170 		if (scrubrates[i].scrubval < min_rate)
171 			continue;
172 
173 		if (scrubrates[i].bandwidth <= new_bw)
174 			break;
175 
176 		/*
177 		 * if no suitable bandwidth found, turn off DRAM scrubbing
178 		 * entirely by falling back to the last element in the
179 		 * scrubrates array.
180 		 */
181 	}
182 
183 	scrubval = scrubrates[i].scrubval;
184 
185 	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
186 
187 	if (scrubval)
188 		return scrubrates[i].bandwidth;
189 
190 	return 0;
191 }
192 
193 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
194 {
195 	struct amd64_pvt *pvt = mci->pvt_info;
196 	u32 min_scrubrate = 0x5;
197 
198 	if (boot_cpu_data.x86 == 0xf)
199 		min_scrubrate = 0x0;
200 
201 	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
202 }
203 
204 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
205 {
206 	struct amd64_pvt *pvt = mci->pvt_info;
207 	u32 scrubval = 0;
208 	int i, retval = -EINVAL;
209 
210 	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
211 
212 	scrubval = scrubval & 0x001F;
213 
214 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
215 		if (scrubrates[i].scrubval == scrubval) {
216 			retval = scrubrates[i].bandwidth;
217 			break;
218 		}
219 	}
220 	return retval;
221 }
222 
223 /*
224  * returns true if the SysAddr given by sys_addr matches the
225  * DRAM base/limit associated with node_id
226  */
227 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
228 				   unsigned nid)
229 {
230 	u64 addr;
231 
232 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
233 	 * all ones if the most significant implemented address bit is 1.
234 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
235 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
236 	 * Application Programming.
237 	 */
238 	addr = sys_addr & 0x000000ffffffffffull;
239 
240 	return ((addr >= get_dram_base(pvt, nid)) &&
241 		(addr <= get_dram_limit(pvt, nid)));
242 }
243 
244 /*
245  * Attempt to map a SysAddr to a node. On success, return a pointer to the
246  * mem_ctl_info structure for the node that the SysAddr maps to.
247  *
248  * On failure, return NULL.
249  */
250 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
251 						u64 sys_addr)
252 {
253 	struct amd64_pvt *pvt;
254 	unsigned node_id;
255 	u32 intlv_en, bits;
256 
257 	/*
258 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
259 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
260 	 */
261 	pvt = mci->pvt_info;
262 
263 	/*
264 	 * The value of this field should be the same for all DRAM Base
265 	 * registers.  Therefore we arbitrarily choose to read it from the
266 	 * register for node 0.
267 	 */
268 	intlv_en = dram_intlv_en(pvt, 0);
269 
270 	if (intlv_en == 0) {
271 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
272 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
273 				goto found;
274 		}
275 		goto err_no_match;
276 	}
277 
278 	if (unlikely((intlv_en != 0x01) &&
279 		     (intlv_en != 0x03) &&
280 		     (intlv_en != 0x07))) {
281 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
282 		return NULL;
283 	}
284 
285 	bits = (((u32) sys_addr) >> 12) & intlv_en;
286 
287 	for (node_id = 0; ; ) {
288 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
289 			break;	/* intlv_sel field matches */
290 
291 		if (++node_id >= DRAM_RANGES)
292 			goto err_no_match;
293 	}
294 
295 	/* sanity test for sys_addr */
296 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
297 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
298 			   "range for node %d with node interleaving enabled.\n",
299 			   __func__, sys_addr, node_id);
300 		return NULL;
301 	}
302 
303 found:
304 	return edac_mc_find((int)node_id);
305 
306 err_no_match:
307 	debugf2("sys_addr 0x%lx doesn't match any node\n",
308 		(unsigned long)sys_addr);
309 
310 	return NULL;
311 }
312 
313 /*
314  * compute the CS base address of the @csrow on the DRAM controller @dct.
315  * For details see F2x[5C:40] in the processor's BKDG
316  */
317 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
318 				 u64 *base, u64 *mask)
319 {
320 	u64 csbase, csmask, base_bits, mask_bits;
321 	u8 addr_shift;
322 
323 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
324 		csbase		= pvt->csels[dct].csbases[csrow];
325 		csmask		= pvt->csels[dct].csmasks[csrow];
326 		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
327 		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
328 		addr_shift	= 4;
329 	} else {
330 		csbase		= pvt->csels[dct].csbases[csrow];
331 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
332 		addr_shift	= 8;
333 
334 		if (boot_cpu_data.x86 == 0x15)
335 			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
336 		else
337 			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
338 	}
339 
340 	*base  = (csbase & base_bits) << addr_shift;
341 
342 	*mask  = ~0ULL;
343 	/* poke holes for the csmask */
344 	*mask &= ~(mask_bits << addr_shift);
345 	/* OR them in */
346 	*mask |= (csmask & mask_bits) << addr_shift;
347 }
348 
349 #define for_each_chip_select(i, dct, pvt) \
350 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
351 
352 #define chip_select_base(i, dct, pvt) \
353 	pvt->csels[dct].csbases[i]
354 
355 #define for_each_chip_select_mask(i, dct, pvt) \
356 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
357 
358 /*
359  * @input_addr is an InputAddr associated with the node given by mci. Return the
360  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
361  */
362 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
363 {
364 	struct amd64_pvt *pvt;
365 	int csrow;
366 	u64 base, mask;
367 
368 	pvt = mci->pvt_info;
369 
370 	for_each_chip_select(csrow, 0, pvt) {
371 		if (!csrow_enabled(csrow, 0, pvt))
372 			continue;
373 
374 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
375 
376 		mask = ~mask;
377 
378 		if ((input_addr & mask) == (base & mask)) {
379 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
380 				(unsigned long)input_addr, csrow,
381 				pvt->mc_node_id);
382 
383 			return csrow;
384 		}
385 	}
386 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
387 		(unsigned long)input_addr, pvt->mc_node_id);
388 
389 	return -1;
390 }
391 
392 /*
393  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
394  * for the node represented by mci. Info is passed back in *hole_base,
395  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
396  * info is invalid. Info may be invalid for either of the following reasons:
397  *
398  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
399  *   Address Register does not exist.
400  *
401  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
402  *   indicating that its contents are not valid.
403  *
404  * The values passed back in *hole_base, *hole_offset, and *hole_size are
405  * complete 32-bit values despite the fact that the bitfields in the DHAR
406  * only represent bits 31-24 of the base and offset values.
407  */
408 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
409 			     u64 *hole_offset, u64 *hole_size)
410 {
411 	struct amd64_pvt *pvt = mci->pvt_info;
412 	u64 base;
413 
414 	/* only revE and later have the DRAM Hole Address Register */
415 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
416 		debugf1("  revision %d for node %d does not support DHAR\n",
417 			pvt->ext_model, pvt->mc_node_id);
418 		return 1;
419 	}
420 
421 	/* valid for Fam10h and above */
422 	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
423 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
424 		return 1;
425 	}
426 
427 	if (!dhar_valid(pvt)) {
428 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
429 			pvt->mc_node_id);
430 		return 1;
431 	}
432 
433 	/* This node has Memory Hoisting */
434 
435 	/* +------------------+--------------------+--------------------+-----
436 	 * | memory           | DRAM hole          | relocated          |
437 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
438 	 * |                  |                    | DRAM hole          |
439 	 * |                  |                    | [0x100000000,      |
440 	 * |                  |                    |  (0x100000000+     |
441 	 * |                  |                    |   (0xffffffff-x))] |
442 	 * +------------------+--------------------+--------------------+-----
443 	 *
444 	 * Above is a diagram of physical memory showing the DRAM hole and the
445 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
446 	 * starts at address x (the base address) and extends through address
447 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
448 	 * addresses in the hole so that they start at 0x100000000.
449 	 */
450 
451 	base = dhar_base(pvt);
452 
453 	*hole_base = base;
454 	*hole_size = (0x1ull << 32) - base;
455 
456 	if (boot_cpu_data.x86 > 0xf)
457 		*hole_offset = f10_dhar_offset(pvt);
458 	else
459 		*hole_offset = k8_dhar_offset(pvt);
460 
461 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
462 		pvt->mc_node_id, (unsigned long)*hole_base,
463 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
464 
465 	return 0;
466 }
467 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
468 
469 /*
470  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
471  * assumed that sys_addr maps to the node given by mci.
472  *
473  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
474  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
475  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
476  * then it is also involved in translating a SysAddr to a DramAddr. Sections
477  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
478  * These parts of the documentation are unclear. I interpret them as follows:
479  *
480  * When node n receives a SysAddr, it processes the SysAddr as follows:
481  *
482  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
483  *    Limit registers for node n. If the SysAddr is not within the range
484  *    specified by the base and limit values, then node n ignores the Sysaddr
485  *    (since it does not map to node n). Otherwise continue to step 2 below.
486  *
487  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
488  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
489  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
490  *    hole. If not, skip to step 3 below. Else get the value of the
491  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
492  *    offset defined by this value from the SysAddr.
493  *
494  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
495  *    Base register for node n. To obtain the DramAddr, subtract the base
496  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
497  */
498 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
499 {
500 	struct amd64_pvt *pvt = mci->pvt_info;
501 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
502 	int ret = 0;
503 
504 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
505 
506 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
507 				      &hole_size);
508 	if (!ret) {
509 		if ((sys_addr >= (1ull << 32)) &&
510 		    (sys_addr < ((1ull << 32) + hole_size))) {
511 			/* use DHAR to translate SysAddr to DramAddr */
512 			dram_addr = sys_addr - hole_offset;
513 
514 			debugf2("using DHAR to translate SysAddr 0x%lx to "
515 				"DramAddr 0x%lx\n",
516 				(unsigned long)sys_addr,
517 				(unsigned long)dram_addr);
518 
519 			return dram_addr;
520 		}
521 	}
522 
523 	/*
524 	 * Translate the SysAddr to a DramAddr as shown near the start of
525 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
526 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
527 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
528 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
529 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
530 	 * Programmer's Manual Volume 1 Application Programming.
531 	 */
532 	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
533 
534 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
535 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
536 		(unsigned long)dram_addr);
537 	return dram_addr;
538 }
539 
540 /*
541  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
542  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
543  * for node interleaving.
544  */
545 static int num_node_interleave_bits(unsigned intlv_en)
546 {
547 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
548 	int n;
549 
550 	BUG_ON(intlv_en > 7);
551 	n = intlv_shift_table[intlv_en];
552 	return n;
553 }
554 
555 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
556 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
557 {
558 	struct amd64_pvt *pvt;
559 	int intlv_shift;
560 	u64 input_addr;
561 
562 	pvt = mci->pvt_info;
563 
564 	/*
565 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
566 	 * concerning translating a DramAddr to an InputAddr.
567 	 */
568 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
569 	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
570 		      (dram_addr & 0xfff);
571 
572 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
573 		intlv_shift, (unsigned long)dram_addr,
574 		(unsigned long)input_addr);
575 
576 	return input_addr;
577 }
578 
579 /*
580  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
581  * assumed that @sys_addr maps to the node given by mci.
582  */
583 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
584 {
585 	u64 input_addr;
586 
587 	input_addr =
588 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
589 
590 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
591 		(unsigned long)sys_addr, (unsigned long)input_addr);
592 
593 	return input_addr;
594 }
595 
596 
597 /*
598  * @input_addr is an InputAddr associated with the node represented by mci.
599  * Translate @input_addr to a DramAddr and return the result.
600  */
601 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
602 {
603 	struct amd64_pvt *pvt;
604 	unsigned node_id, intlv_shift;
605 	u64 bits, dram_addr;
606 	u32 intlv_sel;
607 
608 	/*
609 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
610 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
611 	 * this procedure. When translating from a DramAddr to an InputAddr, the
612 	 * bits used for node interleaving are discarded.  Here we recover these
613 	 * bits from the IntlvSel field of the DRAM Limit register (section
614 	 * 3.4.4.2) for the node that input_addr is associated with.
615 	 */
616 	pvt = mci->pvt_info;
617 	node_id = pvt->mc_node_id;
618 
619 	BUG_ON(node_id > 7);
620 
621 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622 	if (intlv_shift == 0) {
623 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
624 			"same value\n",	(unsigned long)input_addr);
625 
626 		return input_addr;
627 	}
628 
629 	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
630 		(input_addr & 0xfff);
631 
632 	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
633 	dram_addr = bits + (intlv_sel << 12);
634 
635 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
636 		"(%d node interleave bits)\n", (unsigned long)input_addr,
637 		(unsigned long)dram_addr, intlv_shift);
638 
639 	return dram_addr;
640 }
641 
642 /*
643  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
644  * @dram_addr to a SysAddr.
645  */
646 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
647 {
648 	struct amd64_pvt *pvt = mci->pvt_info;
649 	u64 hole_base, hole_offset, hole_size, base, sys_addr;
650 	int ret = 0;
651 
652 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
653 				      &hole_size);
654 	if (!ret) {
655 		if ((dram_addr >= hole_base) &&
656 		    (dram_addr < (hole_base + hole_size))) {
657 			sys_addr = dram_addr + hole_offset;
658 
659 			debugf1("using DHAR to translate DramAddr 0x%lx to "
660 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
661 				(unsigned long)sys_addr);
662 
663 			return sys_addr;
664 		}
665 	}
666 
667 	base     = get_dram_base(pvt, pvt->mc_node_id);
668 	sys_addr = dram_addr + base;
669 
670 	/*
671 	 * The sys_addr we have computed up to this point is a 40-bit value
672 	 * because the k8 deals with 40-bit values.  However, the value we are
673 	 * supposed to return is a full 64-bit physical address.  The AMD
674 	 * x86-64 architecture specifies that the most significant implemented
675 	 * address bit through bit 63 of a physical address must be either all
676 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
677 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
678 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
679 	 * Programming.
680 	 */
681 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
682 
683 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
684 		pvt->mc_node_id, (unsigned long)dram_addr,
685 		(unsigned long)sys_addr);
686 
687 	return sys_addr;
688 }
689 
690 /*
691  * @input_addr is an InputAddr associated with the node given by mci. Translate
692  * @input_addr to a SysAddr.
693  */
694 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
695 					 u64 input_addr)
696 {
697 	return dram_addr_to_sys_addr(mci,
698 				     input_addr_to_dram_addr(mci, input_addr));
699 }
700 
701 /*
702  * Find the minimum and maximum InputAddr values that map to the given @csrow.
703  * Pass back these values in *input_addr_min and *input_addr_max.
704  */
705 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
706 			      u64 *input_addr_min, u64 *input_addr_max)
707 {
708 	struct amd64_pvt *pvt;
709 	u64 base, mask;
710 
711 	pvt = mci->pvt_info;
712 	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
713 
714 	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
715 
716 	*input_addr_min = base & ~mask;
717 	*input_addr_max = base | mask;
718 }
719 
720 /* Map the Error address to a PAGE and PAGE OFFSET. */
721 static inline void error_address_to_page_and_offset(u64 error_address,
722 						    u32 *page, u32 *offset)
723 {
724 	*page = (u32) (error_address >> PAGE_SHIFT);
725 	*offset = ((u32) error_address) & ~PAGE_MASK;
726 }
727 
728 /*
729  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
730  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
731  * of a node that detected an ECC memory error.  mci represents the node that
732  * the error address maps to (possibly different from the node that detected
733  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
734  * error.
735  */
736 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
737 {
738 	int csrow;
739 
740 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
741 
742 	if (csrow == -1)
743 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
744 				  "address 0x%lx\n", (unsigned long)sys_addr);
745 	return csrow;
746 }
747 
748 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
749 
750 /*
751  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
752  * are ECC capable.
753  */
754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
755 {
756 	u8 bit;
757 	enum dev_type edac_cap = EDAC_FLAG_NONE;
758 
759 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
760 		? 19
761 		: 17;
762 
763 	if (pvt->dclr0 & BIT(bit))
764 		edac_cap = EDAC_FLAG_SECDED;
765 
766 	return edac_cap;
767 }
768 
769 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
770 
771 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
772 {
773 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
774 
775 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
776 		(dclr & BIT(16)) ?  "un" : "",
777 		(dclr & BIT(19)) ? "yes" : "no");
778 
779 	debugf1("  PAR/ERR parity: %s\n",
780 		(dclr & BIT(8)) ?  "enabled" : "disabled");
781 
782 	if (boot_cpu_data.x86 == 0x10)
783 		debugf1("  DCT 128bit mode width: %s\n",
784 			(dclr & BIT(11)) ?  "128b" : "64b");
785 
786 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 		(dclr & BIT(12)) ?  "yes" : "no",
788 		(dclr & BIT(13)) ?  "yes" : "no",
789 		(dclr & BIT(14)) ?  "yes" : "no",
790 		(dclr & BIT(15)) ?  "yes" : "no");
791 }
792 
793 /* Display and decode various NB registers for debug purposes. */
794 static void dump_misc_regs(struct amd64_pvt *pvt)
795 {
796 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
797 
798 	debugf1("  NB two channel DRAM capable: %s\n",
799 		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
800 
801 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
802 		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
803 		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
804 
805 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
806 
807 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
808 
809 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
810 			"offset: 0x%08x\n",
811 			pvt->dhar, dhar_base(pvt),
812 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
813 						   : f10_dhar_offset(pvt));
814 
815 	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
816 
817 	amd64_debug_display_dimm_sizes(pvt, 0);
818 
819 	/* everything below this point is Fam10h and above */
820 	if (boot_cpu_data.x86 == 0xf)
821 		return;
822 
823 	amd64_debug_display_dimm_sizes(pvt, 1);
824 
825 	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
826 
827 	/* Only if NOT ganged does dclr1 have valid info */
828 	if (!dct_ganging_enabled(pvt))
829 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
830 }
831 
832 /*
833  * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
834  */
835 static void prep_chip_selects(struct amd64_pvt *pvt)
836 {
837 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
838 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
839 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
840 	} else {
841 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
842 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
843 	}
844 }
845 
846 /*
847  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
848  */
849 static void read_dct_base_mask(struct amd64_pvt *pvt)
850 {
851 	int cs;
852 
853 	prep_chip_selects(pvt);
854 
855 	for_each_chip_select(cs, 0, pvt) {
856 		int reg0   = DCSB0 + (cs * 4);
857 		int reg1   = DCSB1 + (cs * 4);
858 		u32 *base0 = &pvt->csels[0].csbases[cs];
859 		u32 *base1 = &pvt->csels[1].csbases[cs];
860 
861 		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
862 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
863 				cs, *base0, reg0);
864 
865 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
866 			continue;
867 
868 		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
869 			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
870 				cs, *base1, reg1);
871 	}
872 
873 	for_each_chip_select_mask(cs, 0, pvt) {
874 		int reg0   = DCSM0 + (cs * 4);
875 		int reg1   = DCSM1 + (cs * 4);
876 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
877 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
878 
879 		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
880 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
881 				cs, *mask0, reg0);
882 
883 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
884 			continue;
885 
886 		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
887 			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
888 				cs, *mask1, reg1);
889 	}
890 }
891 
892 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
893 {
894 	enum mem_type type;
895 
896 	/* F15h supports only DDR3 */
897 	if (boot_cpu_data.x86 >= 0x15)
898 		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
899 	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
900 		if (pvt->dchr0 & DDR3_MODE)
901 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
902 		else
903 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
904 	} else {
905 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
906 	}
907 
908 	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
909 
910 	return type;
911 }
912 
913 /* Get the number of DCT channels the memory controller is using. */
914 static int k8_early_channel_count(struct amd64_pvt *pvt)
915 {
916 	int flag;
917 
918 	if (pvt->ext_model >= K8_REV_F)
919 		/* RevF (NPT) and later */
920 		flag = pvt->dclr0 & WIDTH_128;
921 	else
922 		/* RevE and earlier */
923 		flag = pvt->dclr0 & REVE_WIDTH_128;
924 
925 	/* not used */
926 	pvt->dclr1 = 0;
927 
928 	return (flag) ? 2 : 1;
929 }
930 
931 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
932 static u64 get_error_address(struct mce *m)
933 {
934 	struct cpuinfo_x86 *c = &boot_cpu_data;
935 	u64 addr;
936 	u8 start_bit = 1;
937 	u8 end_bit   = 47;
938 
939 	if (c->x86 == 0xf) {
940 		start_bit = 3;
941 		end_bit   = 39;
942 	}
943 
944 	addr = m->addr & GENMASK(start_bit, end_bit);
945 
946 	/*
947 	 * Erratum 637 workaround
948 	 */
949 	if (c->x86 == 0x15) {
950 		struct amd64_pvt *pvt;
951 		u64 cc6_base, tmp_addr;
952 		u32 tmp;
953 		u8 mce_nid, intlv_en;
954 
955 		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
956 			return addr;
957 
958 		mce_nid	= amd_get_nb_id(m->extcpu);
959 		pvt	= mcis[mce_nid]->pvt_info;
960 
961 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
962 		intlv_en = tmp >> 21 & 0x7;
963 
964 		/* add [47:27] + 3 trailing bits */
965 		cc6_base  = (tmp & GENMASK(0, 20)) << 3;
966 
967 		/* reverse and add DramIntlvEn */
968 		cc6_base |= intlv_en ^ 0x7;
969 
970 		/* pin at [47:24] */
971 		cc6_base <<= 24;
972 
973 		if (!intlv_en)
974 			return cc6_base | (addr & GENMASK(0, 23));
975 
976 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
977 
978 							/* faster log2 */
979 		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
980 
981 		/* OR DramIntlvSel into bits [14:12] */
982 		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
983 
984 		/* add remaining [11:0] bits from original MC4_ADDR */
985 		tmp_addr |= addr & GENMASK(0, 11);
986 
987 		return cc6_base | tmp_addr;
988 	}
989 
990 	return addr;
991 }
992 
993 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
994 {
995 	struct cpuinfo_x86 *c = &boot_cpu_data;
996 	int off = range << 3;
997 
998 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
999 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1000 
1001 	if (c->x86 == 0xf)
1002 		return;
1003 
1004 	if (!dram_rw(pvt, range))
1005 		return;
1006 
1007 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
1008 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1009 
1010 	/* Factor in CC6 save area by reading dst node's limit reg */
1011 	if (c->x86 == 0x15) {
1012 		struct pci_dev *f1 = NULL;
1013 		u8 nid = dram_dst_node(pvt, range);
1014 		u32 llim;
1015 
1016 		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1017 		if (WARN_ON(!f1))
1018 			return;
1019 
1020 		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1021 
1022 		pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1023 
1024 					    /* {[39:27],111b} */
1025 		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1026 
1027 		pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1028 
1029 					    /* [47:40] */
1030 		pvt->ranges[range].lim.hi |= llim >> 13;
1031 
1032 		pci_dev_put(f1);
1033 	}
1034 }
1035 
1036 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1037 				    u16 syndrome)
1038 {
1039 	struct mem_ctl_info *src_mci;
1040 	struct amd64_pvt *pvt = mci->pvt_info;
1041 	int channel, csrow;
1042 	u32 page, offset;
1043 
1044 	/* CHIPKILL enabled */
1045 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1046 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1047 		if (channel < 0) {
1048 			/*
1049 			 * Syndrome didn't map, so we don't know which of the
1050 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1051 			 * as suspect.
1052 			 */
1053 			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1054 					   "error reporting race\n", syndrome);
1055 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1056 			return;
1057 		}
1058 	} else {
1059 		/*
1060 		 * non-chipkill ecc mode
1061 		 *
1062 		 * The k8 documentation is unclear about how to determine the
1063 		 * channel number when using non-chipkill memory.  This method
1064 		 * was obtained from email communication with someone at AMD.
1065 		 * (Wish the email was placed in this comment - norsk)
1066 		 */
1067 		channel = ((sys_addr & BIT(3)) != 0);
1068 	}
1069 
1070 	/*
1071 	 * Find out which node the error address belongs to. This may be
1072 	 * different from the node that detected the error.
1073 	 */
1074 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1075 	if (!src_mci) {
1076 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1077 			     (unsigned long)sys_addr);
1078 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1079 		return;
1080 	}
1081 
1082 	/* Now map the sys_addr to a CSROW */
1083 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1084 	if (csrow < 0) {
1085 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1086 	} else {
1087 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1088 
1089 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1090 				  channel, EDAC_MOD_STR);
1091 	}
1092 }
1093 
1094 static int ddr2_cs_size(unsigned i, bool dct_width)
1095 {
1096 	unsigned shift = 0;
1097 
1098 	if (i <= 2)
1099 		shift = i;
1100 	else if (!(i & 0x1))
1101 		shift = i >> 1;
1102 	else
1103 		shift = (i + 1) >> 1;
1104 
1105 	return 128 << (shift + !!dct_width);
1106 }
1107 
1108 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1109 				  unsigned cs_mode)
1110 {
1111 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1112 
1113 	if (pvt->ext_model >= K8_REV_F) {
1114 		WARN_ON(cs_mode > 11);
1115 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1116 	}
1117 	else if (pvt->ext_model >= K8_REV_D) {
1118 		WARN_ON(cs_mode > 10);
1119 
1120 		if (cs_mode == 3 || cs_mode == 8)
1121 			return 32 << (cs_mode - 1);
1122 		else
1123 			return 32 << cs_mode;
1124 	}
1125 	else {
1126 		WARN_ON(cs_mode > 6);
1127 		return 32 << cs_mode;
1128 	}
1129 }
1130 
1131 /*
1132  * Get the number of DCT channels in use.
1133  *
1134  * Return:
1135  *	number of Memory Channels in operation
1136  * Pass back:
1137  *	contents of the DCL0_LOW register
1138  */
1139 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1140 {
1141 	int i, j, channels = 0;
1142 
1143 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1144 	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1145 		return 2;
1146 
1147 	/*
1148 	 * Need to check if in unganged mode: In such, there are 2 channels,
1149 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1150 	 * bit will be OFF.
1151 	 *
1152 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1153 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1154 	 */
1155 	debugf0("Data width is not 128 bits - need more decoding\n");
1156 
1157 	/*
1158 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1159 	 * is more than just one DIMM present in unganged mode. Need to check
1160 	 * both controllers since DIMMs can be placed in either one.
1161 	 */
1162 	for (i = 0; i < 2; i++) {
1163 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1164 
1165 		for (j = 0; j < 4; j++) {
1166 			if (DBAM_DIMM(j, dbam) > 0) {
1167 				channels++;
1168 				break;
1169 			}
1170 		}
1171 	}
1172 
1173 	if (channels > 2)
1174 		channels = 2;
1175 
1176 	amd64_info("MCT channel count: %d\n", channels);
1177 
1178 	return channels;
1179 }
1180 
1181 static int ddr3_cs_size(unsigned i, bool dct_width)
1182 {
1183 	unsigned shift = 0;
1184 	int cs_size = 0;
1185 
1186 	if (i == 0 || i == 3 || i == 4)
1187 		cs_size = -1;
1188 	else if (i <= 2)
1189 		shift = i;
1190 	else if (i == 12)
1191 		shift = 7;
1192 	else if (!(i & 0x1))
1193 		shift = i >> 1;
1194 	else
1195 		shift = (i + 1) >> 1;
1196 
1197 	if (cs_size != -1)
1198 		cs_size = (128 * (1 << !!dct_width)) << shift;
1199 
1200 	return cs_size;
1201 }
1202 
1203 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1204 				   unsigned cs_mode)
1205 {
1206 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1207 
1208 	WARN_ON(cs_mode > 11);
1209 
1210 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1211 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1212 	else
1213 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1214 }
1215 
1216 /*
1217  * F15h supports only 64bit DCT interfaces
1218  */
1219 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1220 				   unsigned cs_mode)
1221 {
1222 	WARN_ON(cs_mode > 12);
1223 
1224 	return ddr3_cs_size(cs_mode, false);
1225 }
1226 
1227 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1228 {
1229 
1230 	if (boot_cpu_data.x86 == 0xf)
1231 		return;
1232 
1233 	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1234 		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1235 			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1236 
1237 		debugf0("  DCTs operate in %s mode.\n",
1238 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1239 
1240 		if (!dct_ganging_enabled(pvt))
1241 			debugf0("  Address range split per DCT: %s\n",
1242 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1243 
1244 		debugf0("  data interleave for ECC: %s, "
1245 			"DRAM cleared since last warm reset: %s\n",
1246 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1247 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1248 
1249 		debugf0("  channel interleave: %s, "
1250 			"interleave bits selector: 0x%x\n",
1251 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1252 			dct_sel_interleave_addr(pvt));
1253 	}
1254 
1255 	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1256 }
1257 
1258 /*
1259  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1260  * Interleaving Modes.
1261  */
1262 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1263 				bool hi_range_sel, u8 intlv_en)
1264 {
1265 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1266 
1267 	if (dct_ganging_enabled(pvt))
1268 		return 0;
1269 
1270 	if (hi_range_sel)
1271 		return dct_sel_high;
1272 
1273 	/*
1274 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1275 	 */
1276 	if (dct_interleave_enabled(pvt)) {
1277 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1278 
1279 		/* return DCT select function: 0=DCT0, 1=DCT1 */
1280 		if (!intlv_addr)
1281 			return sys_addr >> 6 & 1;
1282 
1283 		if (intlv_addr & 0x2) {
1284 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1285 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1286 
1287 			return ((sys_addr >> shift) & 1) ^ temp;
1288 		}
1289 
1290 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1291 	}
1292 
1293 	if (dct_high_range_enabled(pvt))
1294 		return ~dct_sel_high & 1;
1295 
1296 	return 0;
1297 }
1298 
1299 /* Convert the sys_addr to the normalized DCT address */
1300 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1301 				 u64 sys_addr, bool hi_rng,
1302 				 u32 dct_sel_base_addr)
1303 {
1304 	u64 chan_off;
1305 	u64 dram_base		= get_dram_base(pvt, range);
1306 	u64 hole_off		= f10_dhar_offset(pvt);
1307 	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1308 
1309 	if (hi_rng) {
1310 		/*
1311 		 * if
1312 		 * base address of high range is below 4Gb
1313 		 * (bits [47:27] at [31:11])
1314 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
1315 		 * sys_addr > 4Gb
1316 		 *
1317 		 *	remove hole offset from sys_addr
1318 		 * else
1319 		 *	remove high range offset from sys_addr
1320 		 */
1321 		if ((!(dct_sel_base_addr >> 16) ||
1322 		     dct_sel_base_addr < dhar_base(pvt)) &&
1323 		    dhar_valid(pvt) &&
1324 		    (sys_addr >= BIT_64(32)))
1325 			chan_off = hole_off;
1326 		else
1327 			chan_off = dct_sel_base_off;
1328 	} else {
1329 		/*
1330 		 * if
1331 		 * we have a valid hole		&&
1332 		 * sys_addr > 4Gb
1333 		 *
1334 		 *	remove hole
1335 		 * else
1336 		 *	remove dram base to normalize to DCT address
1337 		 */
1338 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1339 			chan_off = hole_off;
1340 		else
1341 			chan_off = dram_base;
1342 	}
1343 
1344 	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1345 }
1346 
1347 /*
1348  * checks if the csrow passed in is marked as SPARED, if so returns the new
1349  * spare row
1350  */
1351 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1352 {
1353 	int tmp_cs;
1354 
1355 	if (online_spare_swap_done(pvt, dct) &&
1356 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
1357 
1358 		for_each_chip_select(tmp_cs, dct, pvt) {
1359 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1360 				csrow = tmp_cs;
1361 				break;
1362 			}
1363 		}
1364 	}
1365 	return csrow;
1366 }
1367 
1368 /*
1369  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1370  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1371  *
1372  * Return:
1373  *	-EINVAL:  NOT FOUND
1374  *	0..csrow = Chip-Select Row
1375  */
1376 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1377 {
1378 	struct mem_ctl_info *mci;
1379 	struct amd64_pvt *pvt;
1380 	u64 cs_base, cs_mask;
1381 	int cs_found = -EINVAL;
1382 	int csrow;
1383 
1384 	mci = mcis[nid];
1385 	if (!mci)
1386 		return cs_found;
1387 
1388 	pvt = mci->pvt_info;
1389 
1390 	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1391 
1392 	for_each_chip_select(csrow, dct, pvt) {
1393 		if (!csrow_enabled(csrow, dct, pvt))
1394 			continue;
1395 
1396 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1397 
1398 		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1399 			csrow, cs_base, cs_mask);
1400 
1401 		cs_mask = ~cs_mask;
1402 
1403 		debugf1("    (InputAddr & ~CSMask)=0x%llx "
1404 			"(CSBase & ~CSMask)=0x%llx\n",
1405 			(in_addr & cs_mask), (cs_base & cs_mask));
1406 
1407 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1408 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1409 
1410 			debugf1(" MATCH csrow=%d\n", cs_found);
1411 			break;
1412 		}
1413 	}
1414 	return cs_found;
1415 }
1416 
1417 /*
1418  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1419  * swapped with a region located at the bottom of memory so that the GPU can use
1420  * the interleaved region and thus two channels.
1421  */
1422 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1423 {
1424 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1425 
1426 	if (boot_cpu_data.x86 == 0x10) {
1427 		/* only revC3 and revE have that feature */
1428 		if (boot_cpu_data.x86_model < 4 ||
1429 		    (boot_cpu_data.x86_model < 0xa &&
1430 		     boot_cpu_data.x86_mask < 3))
1431 			return sys_addr;
1432 	}
1433 
1434 	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1435 
1436 	if (!(swap_reg & 0x1))
1437 		return sys_addr;
1438 
1439 	swap_base	= (swap_reg >> 3) & 0x7f;
1440 	swap_limit	= (swap_reg >> 11) & 0x7f;
1441 	rgn_size	= (swap_reg >> 20) & 0x7f;
1442 	tmp_addr	= sys_addr >> 27;
1443 
1444 	if (!(sys_addr >> 34) &&
1445 	    (((tmp_addr >= swap_base) &&
1446 	     (tmp_addr <= swap_limit)) ||
1447 	     (tmp_addr < rgn_size)))
1448 		return sys_addr ^ (u64)swap_base << 27;
1449 
1450 	return sys_addr;
1451 }
1452 
1453 /* For a given @dram_range, check if @sys_addr falls within it. */
1454 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1455 				  u64 sys_addr, int *nid, int *chan_sel)
1456 {
1457 	int cs_found = -EINVAL;
1458 	u64 chan_addr;
1459 	u32 dct_sel_base;
1460 	u8 channel;
1461 	bool high_range = false;
1462 
1463 	u8 node_id    = dram_dst_node(pvt, range);
1464 	u8 intlv_en   = dram_intlv_en(pvt, range);
1465 	u32 intlv_sel = dram_intlv_sel(pvt, range);
1466 
1467 	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1468 		range, sys_addr, get_dram_limit(pvt, range));
1469 
1470 	if (dhar_valid(pvt) &&
1471 	    dhar_base(pvt) <= sys_addr &&
1472 	    sys_addr < BIT_64(32)) {
1473 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1474 			    sys_addr);
1475 		return -EINVAL;
1476 	}
1477 
1478 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1479 		return -EINVAL;
1480 
1481 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1482 
1483 	dct_sel_base = dct_sel_baseaddr(pvt);
1484 
1485 	/*
1486 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1487 	 * select between DCT0 and DCT1.
1488 	 */
1489 	if (dct_high_range_enabled(pvt) &&
1490 	   !dct_ganging_enabled(pvt) &&
1491 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1492 		high_range = true;
1493 
1494 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1495 
1496 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1497 					  high_range, dct_sel_base);
1498 
1499 	/* Remove node interleaving, see F1x120 */
1500 	if (intlv_en)
1501 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1502 			    (chan_addr & 0xfff);
1503 
1504 	/* remove channel interleave */
1505 	if (dct_interleave_enabled(pvt) &&
1506 	   !dct_high_range_enabled(pvt) &&
1507 	   !dct_ganging_enabled(pvt)) {
1508 
1509 		if (dct_sel_interleave_addr(pvt) != 1) {
1510 			if (dct_sel_interleave_addr(pvt) == 0x3)
1511 				/* hash 9 */
1512 				chan_addr = ((chan_addr >> 10) << 9) |
1513 					     (chan_addr & 0x1ff);
1514 			else
1515 				/* A[6] or hash 6 */
1516 				chan_addr = ((chan_addr >> 7) << 6) |
1517 					     (chan_addr & 0x3f);
1518 		} else
1519 			/* A[12] */
1520 			chan_addr = ((chan_addr >> 13) << 12) |
1521 				     (chan_addr & 0xfff);
1522 	}
1523 
1524 	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1525 
1526 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1527 
1528 	if (cs_found >= 0) {
1529 		*nid = node_id;
1530 		*chan_sel = channel;
1531 	}
1532 	return cs_found;
1533 }
1534 
1535 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1536 				       int *node, int *chan_sel)
1537 {
1538 	int cs_found = -EINVAL;
1539 	unsigned range;
1540 
1541 	for (range = 0; range < DRAM_RANGES; range++) {
1542 
1543 		if (!dram_rw(pvt, range))
1544 			continue;
1545 
1546 		if ((get_dram_base(pvt, range)  <= sys_addr) &&
1547 		    (get_dram_limit(pvt, range) >= sys_addr)) {
1548 
1549 			cs_found = f1x_match_to_this_node(pvt, range,
1550 							  sys_addr, node,
1551 							  chan_sel);
1552 			if (cs_found >= 0)
1553 				break;
1554 		}
1555 	}
1556 	return cs_found;
1557 }
1558 
1559 /*
1560  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1561  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1562  *
1563  * The @sys_addr is usually an error address received from the hardware
1564  * (MCX_ADDR).
1565  */
1566 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1567 				     u16 syndrome)
1568 {
1569 	struct amd64_pvt *pvt = mci->pvt_info;
1570 	u32 page, offset;
1571 	int nid, csrow, chan = 0;
1572 
1573 	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1574 
1575 	if (csrow < 0) {
1576 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1577 		return;
1578 	}
1579 
1580 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1581 
1582 	/*
1583 	 * We need the syndromes for channel detection only when we're
1584 	 * ganged. Otherwise @chan should already contain the channel at
1585 	 * this point.
1586 	 */
1587 	if (dct_ganging_enabled(pvt))
1588 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1589 
1590 	if (chan >= 0)
1591 		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1592 				  EDAC_MOD_STR);
1593 	else
1594 		/*
1595 		 * Channel unknown, report all channels on this CSROW as failed.
1596 		 */
1597 		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1598 			edac_mc_handle_ce(mci, page, offset, syndrome,
1599 					  csrow, chan, EDAC_MOD_STR);
1600 }
1601 
1602 /*
1603  * debug routine to display the memory sizes of all logical DIMMs and its
1604  * CSROWs
1605  */
1606 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1607 {
1608 	int dimm, size0, size1, factor = 0;
1609 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1610 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1611 
1612 	if (boot_cpu_data.x86 == 0xf) {
1613 		if (pvt->dclr0 & WIDTH_128)
1614 			factor = 1;
1615 
1616 		/* K8 families < revF not supported yet */
1617 	       if (pvt->ext_model < K8_REV_F)
1618 			return;
1619 	       else
1620 		       WARN_ON(ctrl != 0);
1621 	}
1622 
1623 	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1624 	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1625 						   : pvt->csels[0].csbases;
1626 
1627 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1628 
1629 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1630 
1631 	/* Dump memory sizes for DIMM and its CSROWs */
1632 	for (dimm = 0; dimm < 4; dimm++) {
1633 
1634 		size0 = 0;
1635 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1636 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1637 						     DBAM_DIMM(dimm, dbam));
1638 
1639 		size1 = 0;
1640 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1641 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1642 						     DBAM_DIMM(dimm, dbam));
1643 
1644 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1645 				dimm * 2,     size0 << factor,
1646 				dimm * 2 + 1, size1 << factor);
1647 	}
1648 }
1649 
1650 static struct amd64_family_type amd64_family_types[] = {
1651 	[K8_CPUS] = {
1652 		.ctl_name = "K8",
1653 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1654 		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1655 		.ops = {
1656 			.early_channel_count	= k8_early_channel_count,
1657 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1658 			.dbam_to_cs		= k8_dbam_to_chip_select,
1659 			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1660 		}
1661 	},
1662 	[F10_CPUS] = {
1663 		.ctl_name = "F10h",
1664 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1665 		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1666 		.ops = {
1667 			.early_channel_count	= f1x_early_channel_count,
1668 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1669 			.dbam_to_cs		= f10_dbam_to_chip_select,
1670 			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
1671 		}
1672 	},
1673 	[F15_CPUS] = {
1674 		.ctl_name = "F15h",
1675 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1676 		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1677 		.ops = {
1678 			.early_channel_count	= f1x_early_channel_count,
1679 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1680 			.dbam_to_cs		= f15_dbam_to_chip_select,
1681 			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1682 		}
1683 	},
1684 };
1685 
1686 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1687 						unsigned int device,
1688 						struct pci_dev *related)
1689 {
1690 	struct pci_dev *dev = NULL;
1691 
1692 	dev = pci_get_device(vendor, device, dev);
1693 	while (dev) {
1694 		if ((dev->bus->number == related->bus->number) &&
1695 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1696 			break;
1697 		dev = pci_get_device(vendor, device, dev);
1698 	}
1699 
1700 	return dev;
1701 }
1702 
1703 /*
1704  * These are tables of eigenvectors (one per line) which can be used for the
1705  * construction of the syndrome tables. The modified syndrome search algorithm
1706  * uses those to find the symbol in error and thus the DIMM.
1707  *
1708  * Algorithm courtesy of Ross LaFetra from AMD.
1709  */
1710 static u16 x4_vectors[] = {
1711 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1712 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1713 	0x0001, 0x0002, 0x0004, 0x0008,
1714 	0x1013, 0x3032, 0x4044, 0x8088,
1715 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1716 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1717 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1718 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1719 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1720 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1721 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1722 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1723 	0x2b87, 0x164e, 0x642c, 0xdc18,
1724 	0x40b9, 0x80de, 0x1094, 0x20e8,
1725 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1726 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1727 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1728 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1729 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1730 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1731 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1732 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1733 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1734 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1735 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1736 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1737 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1738 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1739 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1740 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1741 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1742 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1743 	0x4807, 0xc40e, 0x130c, 0x3208,
1744 	0x1905, 0x2e0a, 0x5804, 0xac08,
1745 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1746 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1747 };
1748 
1749 static u16 x8_vectors[] = {
1750 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1751 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1752 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1753 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1754 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1755 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1756 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1757 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1758 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1759 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1760 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1761 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1762 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1763 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1764 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1765 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1766 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1767 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1768 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1769 };
1770 
1771 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1772 			   unsigned v_dim)
1773 {
1774 	unsigned int i, err_sym;
1775 
1776 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1777 		u16 s = syndrome;
1778 		unsigned v_idx =  err_sym * v_dim;
1779 		unsigned v_end = (err_sym + 1) * v_dim;
1780 
1781 		/* walk over all 16 bits of the syndrome */
1782 		for (i = 1; i < (1U << 16); i <<= 1) {
1783 
1784 			/* if bit is set in that eigenvector... */
1785 			if (v_idx < v_end && vectors[v_idx] & i) {
1786 				u16 ev_comp = vectors[v_idx++];
1787 
1788 				/* ... and bit set in the modified syndrome, */
1789 				if (s & i) {
1790 					/* remove it. */
1791 					s ^= ev_comp;
1792 
1793 					if (!s)
1794 						return err_sym;
1795 				}
1796 
1797 			} else if (s & i)
1798 				/* can't get to zero, move to next symbol */
1799 				break;
1800 		}
1801 	}
1802 
1803 	debugf0("syndrome(%x) not found\n", syndrome);
1804 	return -1;
1805 }
1806 
1807 static int map_err_sym_to_channel(int err_sym, int sym_size)
1808 {
1809 	if (sym_size == 4)
1810 		switch (err_sym) {
1811 		case 0x20:
1812 		case 0x21:
1813 			return 0;
1814 			break;
1815 		case 0x22:
1816 		case 0x23:
1817 			return 1;
1818 			break;
1819 		default:
1820 			return err_sym >> 4;
1821 			break;
1822 		}
1823 	/* x8 symbols */
1824 	else
1825 		switch (err_sym) {
1826 		/* imaginary bits not in a DIMM */
1827 		case 0x10:
1828 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1829 					  err_sym);
1830 			return -1;
1831 			break;
1832 
1833 		case 0x11:
1834 			return 0;
1835 			break;
1836 		case 0x12:
1837 			return 1;
1838 			break;
1839 		default:
1840 			return err_sym >> 3;
1841 			break;
1842 		}
1843 	return -1;
1844 }
1845 
1846 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1847 {
1848 	struct amd64_pvt *pvt = mci->pvt_info;
1849 	int err_sym = -1;
1850 
1851 	if (pvt->ecc_sym_sz == 8)
1852 		err_sym = decode_syndrome(syndrome, x8_vectors,
1853 					  ARRAY_SIZE(x8_vectors),
1854 					  pvt->ecc_sym_sz);
1855 	else if (pvt->ecc_sym_sz == 4)
1856 		err_sym = decode_syndrome(syndrome, x4_vectors,
1857 					  ARRAY_SIZE(x4_vectors),
1858 					  pvt->ecc_sym_sz);
1859 	else {
1860 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1861 		return err_sym;
1862 	}
1863 
1864 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1865 }
1866 
1867 /*
1868  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1869  * ADDRESS and process.
1870  */
1871 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1872 {
1873 	struct amd64_pvt *pvt = mci->pvt_info;
1874 	u64 sys_addr;
1875 	u16 syndrome;
1876 
1877 	/* Ensure that the Error Address is VALID */
1878 	if (!(m->status & MCI_STATUS_ADDRV)) {
1879 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1880 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1881 		return;
1882 	}
1883 
1884 	sys_addr = get_error_address(m);
1885 	syndrome = extract_syndrome(m->status);
1886 
1887 	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1888 
1889 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1890 }
1891 
1892 /* Handle any Un-correctable Errors (UEs) */
1893 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1894 {
1895 	struct mem_ctl_info *log_mci, *src_mci = NULL;
1896 	int csrow;
1897 	u64 sys_addr;
1898 	u32 page, offset;
1899 
1900 	log_mci = mci;
1901 
1902 	if (!(m->status & MCI_STATUS_ADDRV)) {
1903 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1904 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1905 		return;
1906 	}
1907 
1908 	sys_addr = get_error_address(m);
1909 
1910 	/*
1911 	 * Find out which node the error address belongs to. This may be
1912 	 * different from the node that detected the error.
1913 	 */
1914 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1915 	if (!src_mci) {
1916 		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1917 				  (unsigned long)sys_addr);
1918 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1919 		return;
1920 	}
1921 
1922 	log_mci = src_mci;
1923 
1924 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1925 	if (csrow < 0) {
1926 		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1927 				  (unsigned long)sys_addr);
1928 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1929 	} else {
1930 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1931 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1932 	}
1933 }
1934 
1935 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1936 					    struct mce *m)
1937 {
1938 	u16 ec = EC(m->status);
1939 	u8 xec = XEC(m->status, 0x1f);
1940 	u8 ecc_type = (m->status >> 45) & 0x3;
1941 
1942 	/* Bail early out if this was an 'observed' error */
1943 	if (PP(ec) == NBSL_PP_OBS)
1944 		return;
1945 
1946 	/* Do only ECC errors */
1947 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1948 		return;
1949 
1950 	if (ecc_type == 2)
1951 		amd64_handle_ce(mci, m);
1952 	else if (ecc_type == 1)
1953 		amd64_handle_ue(mci, m);
1954 }
1955 
1956 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1957 {
1958 	struct mem_ctl_info *mci = mcis[node_id];
1959 
1960 	__amd64_decode_bus_error(mci, m);
1961 }
1962 
1963 /*
1964  * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1965  * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1966  */
1967 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1968 {
1969 	/* Reserve the ADDRESS MAP Device */
1970 	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1971 	if (!pvt->F1) {
1972 		amd64_err("error address map device not found: "
1973 			  "vendor %x device 0x%x (broken BIOS?)\n",
1974 			  PCI_VENDOR_ID_AMD, f1_id);
1975 		return -ENODEV;
1976 	}
1977 
1978 	/* Reserve the MISC Device */
1979 	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1980 	if (!pvt->F3) {
1981 		pci_dev_put(pvt->F1);
1982 		pvt->F1 = NULL;
1983 
1984 		amd64_err("error F3 device not found: "
1985 			  "vendor %x device 0x%x (broken BIOS?)\n",
1986 			  PCI_VENDOR_ID_AMD, f3_id);
1987 
1988 		return -ENODEV;
1989 	}
1990 	debugf1("F1: %s\n", pci_name(pvt->F1));
1991 	debugf1("F2: %s\n", pci_name(pvt->F2));
1992 	debugf1("F3: %s\n", pci_name(pvt->F3));
1993 
1994 	return 0;
1995 }
1996 
1997 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1998 {
1999 	pci_dev_put(pvt->F1);
2000 	pci_dev_put(pvt->F3);
2001 }
2002 
2003 /*
2004  * Retrieve the hardware registers of the memory controller (this includes the
2005  * 'Address Map' and 'Misc' device regs)
2006  */
2007 static void read_mc_regs(struct amd64_pvt *pvt)
2008 {
2009 	struct cpuinfo_x86 *c = &boot_cpu_data;
2010 	u64 msr_val;
2011 	u32 tmp;
2012 	unsigned range;
2013 
2014 	/*
2015 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2016 	 * those are Read-As-Zero
2017 	 */
2018 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2019 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2020 
2021 	/* check first whether TOP_MEM2 is enabled */
2022 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2023 	if (msr_val & (1U << 21)) {
2024 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2025 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2026 	} else
2027 		debugf0("  TOP_MEM2 disabled.\n");
2028 
2029 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2030 
2031 	read_dram_ctl_register(pvt);
2032 
2033 	for (range = 0; range < DRAM_RANGES; range++) {
2034 		u8 rw;
2035 
2036 		/* read settings for this DRAM range */
2037 		read_dram_base_limit_regs(pvt, range);
2038 
2039 		rw = dram_rw(pvt, range);
2040 		if (!rw)
2041 			continue;
2042 
2043 		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2044 			range,
2045 			get_dram_base(pvt, range),
2046 			get_dram_limit(pvt, range));
2047 
2048 		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2049 			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2050 			(rw & 0x1) ? "R" : "-",
2051 			(rw & 0x2) ? "W" : "-",
2052 			dram_intlv_sel(pvt, range),
2053 			dram_dst_node(pvt, range));
2054 	}
2055 
2056 	read_dct_base_mask(pvt);
2057 
2058 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2059 	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2060 
2061 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2062 
2063 	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2064 	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2065 
2066 	if (!dct_ganging_enabled(pvt)) {
2067 		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2068 		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2069 	}
2070 
2071 	pvt->ecc_sym_sz = 4;
2072 
2073 	if (c->x86 >= 0x10) {
2074 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2075 		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2076 
2077 		/* F10h, revD and later can do x8 ECC too */
2078 		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2079 			pvt->ecc_sym_sz = 8;
2080 	}
2081 	dump_misc_regs(pvt);
2082 }
2083 
2084 /*
2085  * NOTE: CPU Revision Dependent code
2086  *
2087  * Input:
2088  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2089  *	k8 private pointer to -->
2090  *			DRAM Bank Address mapping register
2091  *			node_id
2092  *			DCL register where dual_channel_active is
2093  *
2094  * The DBAM register consists of 4 sets of 4 bits each definitions:
2095  *
2096  * Bits:	CSROWs
2097  * 0-3		CSROWs 0 and 1
2098  * 4-7		CSROWs 2 and 3
2099  * 8-11		CSROWs 4 and 5
2100  * 12-15	CSROWs 6 and 7
2101  *
2102  * Values range from: 0 to 15
2103  * The meaning of the values depends on CPU revision and dual-channel state,
2104  * see relevant BKDG more info.
2105  *
2106  * The memory controller provides for total of only 8 CSROWs in its current
2107  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2108  * single channel or two (2) DIMMs in dual channel mode.
2109  *
2110  * The following code logic collapses the various tables for CSROW based on CPU
2111  * revision.
2112  *
2113  * Returns:
2114  *	The number of PAGE_SIZE pages on the specified CSROW number it
2115  *	encompasses
2116  *
2117  */
2118 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2119 {
2120 	u32 cs_mode, nr_pages;
2121 
2122 	/*
2123 	 * The math on this doesn't look right on the surface because x/2*4 can
2124 	 * be simplified to x*2 but this expression makes use of the fact that
2125 	 * it is integral math where 1/2=0. This intermediate value becomes the
2126 	 * number of bits to shift the DBAM register to extract the proper CSROW
2127 	 * field.
2128 	 */
2129 	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2130 
2131 	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2132 
2133 	/*
2134 	 * If dual channel then double the memory size of single channel.
2135 	 * Channel count is 1 or 2
2136 	 */
2137 	nr_pages <<= (pvt->channel_count - 1);
2138 
2139 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2140 	debugf0("    nr_pages= %u  channel-count = %d\n",
2141 		nr_pages, pvt->channel_count);
2142 
2143 	return nr_pages;
2144 }
2145 
2146 /*
2147  * Initialize the array of csrow attribute instances, based on the values
2148  * from pci config hardware registers.
2149  */
2150 static int init_csrows(struct mem_ctl_info *mci)
2151 {
2152 	struct csrow_info *csrow;
2153 	struct amd64_pvt *pvt = mci->pvt_info;
2154 	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2155 	u32 val;
2156 	int i, empty = 1;
2157 
2158 	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2159 
2160 	pvt->nbcfg = val;
2161 
2162 	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2163 		pvt->mc_node_id, val,
2164 		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2165 
2166 	for_each_chip_select(i, 0, pvt) {
2167 		csrow = &mci->csrows[i];
2168 
2169 		if (!csrow_enabled(i, 0, pvt)) {
2170 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2171 				pvt->mc_node_id);
2172 			continue;
2173 		}
2174 
2175 		debugf1("----CSROW %d VALID for MC node %d\n",
2176 			i, pvt->mc_node_id);
2177 
2178 		empty = 0;
2179 		csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2180 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2181 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2182 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2183 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2184 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2185 
2186 		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2187 		csrow->page_mask = ~mask;
2188 		/* 8 bytes of resolution */
2189 
2190 		csrow->mtype = amd64_determine_memory_type(pvt, i);
2191 
2192 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2193 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2194 			(unsigned long)input_addr_min,
2195 			(unsigned long)input_addr_max);
2196 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2197 			(unsigned long)sys_addr, csrow->page_mask);
2198 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2199 			"last_page: 0x%lx\n",
2200 			(unsigned)csrow->nr_pages,
2201 			csrow->first_page, csrow->last_page);
2202 
2203 		/*
2204 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2205 		 */
2206 		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2207 			csrow->edac_mode =
2208 			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2209 			    EDAC_S4ECD4ED : EDAC_SECDED;
2210 		else
2211 			csrow->edac_mode = EDAC_NONE;
2212 	}
2213 
2214 	return empty;
2215 }
2216 
2217 /* get all cores on this DCT */
2218 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2219 {
2220 	int cpu;
2221 
2222 	for_each_online_cpu(cpu)
2223 		if (amd_get_nb_id(cpu) == nid)
2224 			cpumask_set_cpu(cpu, mask);
2225 }
2226 
2227 /* check MCG_CTL on all the cpus on this node */
2228 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2229 {
2230 	cpumask_var_t mask;
2231 	int cpu, nbe;
2232 	bool ret = false;
2233 
2234 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2235 		amd64_warn("%s: Error allocating mask\n", __func__);
2236 		return false;
2237 	}
2238 
2239 	get_cpus_on_this_dct_cpumask(mask, nid);
2240 
2241 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2242 
2243 	for_each_cpu(cpu, mask) {
2244 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2245 		nbe = reg->l & MSR_MCGCTL_NBE;
2246 
2247 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2248 			cpu, reg->q,
2249 			(nbe ? "enabled" : "disabled"));
2250 
2251 		if (!nbe)
2252 			goto out;
2253 	}
2254 	ret = true;
2255 
2256 out:
2257 	free_cpumask_var(mask);
2258 	return ret;
2259 }
2260 
2261 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2262 {
2263 	cpumask_var_t cmask;
2264 	int cpu;
2265 
2266 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2267 		amd64_warn("%s: error allocating mask\n", __func__);
2268 		return false;
2269 	}
2270 
2271 	get_cpus_on_this_dct_cpumask(cmask, nid);
2272 
2273 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2274 
2275 	for_each_cpu(cpu, cmask) {
2276 
2277 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2278 
2279 		if (on) {
2280 			if (reg->l & MSR_MCGCTL_NBE)
2281 				s->flags.nb_mce_enable = 1;
2282 
2283 			reg->l |= MSR_MCGCTL_NBE;
2284 		} else {
2285 			/*
2286 			 * Turn off NB MCE reporting only when it was off before
2287 			 */
2288 			if (!s->flags.nb_mce_enable)
2289 				reg->l &= ~MSR_MCGCTL_NBE;
2290 		}
2291 	}
2292 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2293 
2294 	free_cpumask_var(cmask);
2295 
2296 	return 0;
2297 }
2298 
2299 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2300 				       struct pci_dev *F3)
2301 {
2302 	bool ret = true;
2303 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2304 
2305 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2306 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2307 		return false;
2308 	}
2309 
2310 	amd64_read_pci_cfg(F3, NBCTL, &value);
2311 
2312 	s->old_nbctl   = value & mask;
2313 	s->nbctl_valid = true;
2314 
2315 	value |= mask;
2316 	amd64_write_pci_cfg(F3, NBCTL, value);
2317 
2318 	amd64_read_pci_cfg(F3, NBCFG, &value);
2319 
2320 	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2321 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2322 
2323 	if (!(value & NBCFG_ECC_ENABLE)) {
2324 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2325 
2326 		s->flags.nb_ecc_prev = 0;
2327 
2328 		/* Attempt to turn on DRAM ECC Enable */
2329 		value |= NBCFG_ECC_ENABLE;
2330 		amd64_write_pci_cfg(F3, NBCFG, value);
2331 
2332 		amd64_read_pci_cfg(F3, NBCFG, &value);
2333 
2334 		if (!(value & NBCFG_ECC_ENABLE)) {
2335 			amd64_warn("Hardware rejected DRAM ECC enable,"
2336 				   "check memory DIMM configuration.\n");
2337 			ret = false;
2338 		} else {
2339 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2340 		}
2341 	} else {
2342 		s->flags.nb_ecc_prev = 1;
2343 	}
2344 
2345 	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2346 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2347 
2348 	return ret;
2349 }
2350 
2351 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2352 					struct pci_dev *F3)
2353 {
2354 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2355 
2356 
2357 	if (!s->nbctl_valid)
2358 		return;
2359 
2360 	amd64_read_pci_cfg(F3, NBCTL, &value);
2361 	value &= ~mask;
2362 	value |= s->old_nbctl;
2363 
2364 	amd64_write_pci_cfg(F3, NBCTL, value);
2365 
2366 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2367 	if (!s->flags.nb_ecc_prev) {
2368 		amd64_read_pci_cfg(F3, NBCFG, &value);
2369 		value &= ~NBCFG_ECC_ENABLE;
2370 		amd64_write_pci_cfg(F3, NBCFG, value);
2371 	}
2372 
2373 	/* restore the NB Enable MCGCTL bit */
2374 	if (toggle_ecc_err_reporting(s, nid, OFF))
2375 		amd64_warn("Error restoring NB MCGCTL settings!\n");
2376 }
2377 
2378 /*
2379  * EDAC requires that the BIOS have ECC enabled before
2380  * taking over the processing of ECC errors. A command line
2381  * option allows to force-enable hardware ECC later in
2382  * enable_ecc_error_reporting().
2383  */
2384 static const char *ecc_msg =
2385 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2386 	" Either enable ECC checking or force module loading by setting "
2387 	"'ecc_enable_override'.\n"
2388 	" (Note that use of the override may cause unknown side effects.)\n";
2389 
2390 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2391 {
2392 	u32 value;
2393 	u8 ecc_en = 0;
2394 	bool nb_mce_en = false;
2395 
2396 	amd64_read_pci_cfg(F3, NBCFG, &value);
2397 
2398 	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2399 	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2400 
2401 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2402 	if (!nb_mce_en)
2403 		amd64_notice("NB MCE bank disabled, set MSR "
2404 			     "0x%08x[4] on node %d to enable.\n",
2405 			     MSR_IA32_MCG_CTL, nid);
2406 
2407 	if (!ecc_en || !nb_mce_en) {
2408 		amd64_notice("%s", ecc_msg);
2409 		return false;
2410 	}
2411 	return true;
2412 }
2413 
2414 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2415 					  ARRAY_SIZE(amd64_inj_attrs) +
2416 					  1];
2417 
2418 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2419 
2420 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2421 {
2422 	unsigned int i = 0, j = 0;
2423 
2424 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2425 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2426 
2427 	if (boot_cpu_data.x86 >= 0x10)
2428 		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2429 			sysfs_attrs[i] = amd64_inj_attrs[j];
2430 
2431 	sysfs_attrs[i] = terminator;
2432 
2433 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2434 }
2435 
2436 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2437 				 struct amd64_family_type *fam)
2438 {
2439 	struct amd64_pvt *pvt = mci->pvt_info;
2440 
2441 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2442 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2443 
2444 	if (pvt->nbcap & NBCAP_SECDED)
2445 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2446 
2447 	if (pvt->nbcap & NBCAP_CHIPKILL)
2448 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2449 
2450 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2451 	mci->mod_name		= EDAC_MOD_STR;
2452 	mci->mod_ver		= EDAC_AMD64_VERSION;
2453 	mci->ctl_name		= fam->ctl_name;
2454 	mci->dev_name		= pci_name(pvt->F2);
2455 	mci->ctl_page_to_phys	= NULL;
2456 
2457 	/* memory scrubber interface */
2458 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2459 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2460 }
2461 
2462 /*
2463  * returns a pointer to the family descriptor on success, NULL otherwise.
2464  */
2465 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2466 {
2467 	u8 fam = boot_cpu_data.x86;
2468 	struct amd64_family_type *fam_type = NULL;
2469 
2470 	switch (fam) {
2471 	case 0xf:
2472 		fam_type		= &amd64_family_types[K8_CPUS];
2473 		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2474 		break;
2475 
2476 	case 0x10:
2477 		fam_type		= &amd64_family_types[F10_CPUS];
2478 		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2479 		break;
2480 
2481 	case 0x15:
2482 		fam_type		= &amd64_family_types[F15_CPUS];
2483 		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2484 		break;
2485 
2486 	default:
2487 		amd64_err("Unsupported family!\n");
2488 		return NULL;
2489 	}
2490 
2491 	pvt->ext_model = boot_cpu_data.x86_model >> 4;
2492 
2493 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2494 		     (fam == 0xf ?
2495 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
2496 							     : "revE or earlier ")
2497 				 : ""), pvt->mc_node_id);
2498 	return fam_type;
2499 }
2500 
2501 static int amd64_init_one_instance(struct pci_dev *F2)
2502 {
2503 	struct amd64_pvt *pvt = NULL;
2504 	struct amd64_family_type *fam_type = NULL;
2505 	struct mem_ctl_info *mci = NULL;
2506 	int err = 0, ret;
2507 	u8 nid = get_node_id(F2);
2508 
2509 	ret = -ENOMEM;
2510 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2511 	if (!pvt)
2512 		goto err_ret;
2513 
2514 	pvt->mc_node_id	= nid;
2515 	pvt->F2 = F2;
2516 
2517 	ret = -EINVAL;
2518 	fam_type = amd64_per_family_init(pvt);
2519 	if (!fam_type)
2520 		goto err_free;
2521 
2522 	ret = -ENODEV;
2523 	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2524 	if (err)
2525 		goto err_free;
2526 
2527 	read_mc_regs(pvt);
2528 
2529 	/*
2530 	 * We need to determine how many memory channels there are. Then use
2531 	 * that information for calculating the size of the dynamic instance
2532 	 * tables in the 'mci' structure.
2533 	 */
2534 	ret = -EINVAL;
2535 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2536 	if (pvt->channel_count < 0)
2537 		goto err_siblings;
2538 
2539 	ret = -ENOMEM;
2540 	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2541 	if (!mci)
2542 		goto err_siblings;
2543 
2544 	mci->pvt_info = pvt;
2545 	mci->dev = &pvt->F2->dev;
2546 
2547 	setup_mci_misc_attrs(mci, fam_type);
2548 
2549 	if (init_csrows(mci))
2550 		mci->edac_cap = EDAC_FLAG_NONE;
2551 
2552 	set_mc_sysfs_attrs(mci);
2553 
2554 	ret = -ENODEV;
2555 	if (edac_mc_add_mc(mci)) {
2556 		debugf1("failed edac_mc_add_mc()\n");
2557 		goto err_add_mc;
2558 	}
2559 
2560 	/* register stuff with EDAC MCE */
2561 	if (report_gart_errors)
2562 		amd_report_gart_errors(true);
2563 
2564 	amd_register_ecc_decoder(amd64_decode_bus_error);
2565 
2566 	mcis[nid] = mci;
2567 
2568 	atomic_inc(&drv_instances);
2569 
2570 	return 0;
2571 
2572 err_add_mc:
2573 	edac_mc_free(mci);
2574 
2575 err_siblings:
2576 	free_mc_sibling_devs(pvt);
2577 
2578 err_free:
2579 	kfree(pvt);
2580 
2581 err_ret:
2582 	return ret;
2583 }
2584 
2585 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2586 					     const struct pci_device_id *mc_type)
2587 {
2588 	u8 nid = get_node_id(pdev);
2589 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2590 	struct ecc_settings *s;
2591 	int ret = 0;
2592 
2593 	ret = pci_enable_device(pdev);
2594 	if (ret < 0) {
2595 		debugf0("ret=%d\n", ret);
2596 		return -EIO;
2597 	}
2598 
2599 	ret = -ENOMEM;
2600 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2601 	if (!s)
2602 		goto err_out;
2603 
2604 	ecc_stngs[nid] = s;
2605 
2606 	if (!ecc_enabled(F3, nid)) {
2607 		ret = -ENODEV;
2608 
2609 		if (!ecc_enable_override)
2610 			goto err_enable;
2611 
2612 		amd64_warn("Forcing ECC on!\n");
2613 
2614 		if (!enable_ecc_error_reporting(s, nid, F3))
2615 			goto err_enable;
2616 	}
2617 
2618 	ret = amd64_init_one_instance(pdev);
2619 	if (ret < 0) {
2620 		amd64_err("Error probing instance: %d\n", nid);
2621 		restore_ecc_error_reporting(s, nid, F3);
2622 	}
2623 
2624 	return ret;
2625 
2626 err_enable:
2627 	kfree(s);
2628 	ecc_stngs[nid] = NULL;
2629 
2630 err_out:
2631 	return ret;
2632 }
2633 
2634 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2635 {
2636 	struct mem_ctl_info *mci;
2637 	struct amd64_pvt *pvt;
2638 	u8 nid = get_node_id(pdev);
2639 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2640 	struct ecc_settings *s = ecc_stngs[nid];
2641 
2642 	/* Remove from EDAC CORE tracking list */
2643 	mci = edac_mc_del_mc(&pdev->dev);
2644 	if (!mci)
2645 		return;
2646 
2647 	pvt = mci->pvt_info;
2648 
2649 	restore_ecc_error_reporting(s, nid, F3);
2650 
2651 	free_mc_sibling_devs(pvt);
2652 
2653 	/* unregister from EDAC MCE */
2654 	amd_report_gart_errors(false);
2655 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2656 
2657 	kfree(ecc_stngs[nid]);
2658 	ecc_stngs[nid] = NULL;
2659 
2660 	/* Free the EDAC CORE resources */
2661 	mci->pvt_info = NULL;
2662 	mcis[nid] = NULL;
2663 
2664 	kfree(pvt);
2665 	edac_mc_free(mci);
2666 }
2667 
2668 /*
2669  * This table is part of the interface for loading drivers for PCI devices. The
2670  * PCI core identifies what devices are on a system during boot, and then
2671  * inquiry this table to see if this driver is for a given device found.
2672  */
2673 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2674 	{
2675 		.vendor		= PCI_VENDOR_ID_AMD,
2676 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2677 		.subvendor	= PCI_ANY_ID,
2678 		.subdevice	= PCI_ANY_ID,
2679 		.class		= 0,
2680 		.class_mask	= 0,
2681 	},
2682 	{
2683 		.vendor		= PCI_VENDOR_ID_AMD,
2684 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2685 		.subvendor	= PCI_ANY_ID,
2686 		.subdevice	= PCI_ANY_ID,
2687 		.class		= 0,
2688 		.class_mask	= 0,
2689 	},
2690 	{
2691 		.vendor		= PCI_VENDOR_ID_AMD,
2692 		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
2693 		.subvendor	= PCI_ANY_ID,
2694 		.subdevice	= PCI_ANY_ID,
2695 		.class		= 0,
2696 		.class_mask	= 0,
2697 	},
2698 
2699 	{0, }
2700 };
2701 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2702 
2703 static struct pci_driver amd64_pci_driver = {
2704 	.name		= EDAC_MOD_STR,
2705 	.probe		= amd64_probe_one_instance,
2706 	.remove		= __devexit_p(amd64_remove_one_instance),
2707 	.id_table	= amd64_pci_table,
2708 };
2709 
2710 static void setup_pci_device(void)
2711 {
2712 	struct mem_ctl_info *mci;
2713 	struct amd64_pvt *pvt;
2714 
2715 	if (amd64_ctl_pci)
2716 		return;
2717 
2718 	mci = mcis[0];
2719 	if (mci) {
2720 
2721 		pvt = mci->pvt_info;
2722 		amd64_ctl_pci =
2723 			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2724 
2725 		if (!amd64_ctl_pci) {
2726 			pr_warning("%s(): Unable to create PCI control\n",
2727 				   __func__);
2728 
2729 			pr_warning("%s(): PCI error report via EDAC not set\n",
2730 				   __func__);
2731 			}
2732 	}
2733 }
2734 
2735 static int __init amd64_edac_init(void)
2736 {
2737 	int err = -ENODEV;
2738 
2739 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2740 
2741 	opstate_init();
2742 
2743 	if (amd_cache_northbridges() < 0)
2744 		goto err_ret;
2745 
2746 	err = -ENOMEM;
2747 	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2748 	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2749 	if (!(mcis && ecc_stngs))
2750 		goto err_free;
2751 
2752 	msrs = msrs_alloc();
2753 	if (!msrs)
2754 		goto err_free;
2755 
2756 	err = pci_register_driver(&amd64_pci_driver);
2757 	if (err)
2758 		goto err_pci;
2759 
2760 	err = -ENODEV;
2761 	if (!atomic_read(&drv_instances))
2762 		goto err_no_instances;
2763 
2764 	setup_pci_device();
2765 	return 0;
2766 
2767 err_no_instances:
2768 	pci_unregister_driver(&amd64_pci_driver);
2769 
2770 err_pci:
2771 	msrs_free(msrs);
2772 	msrs = NULL;
2773 
2774 err_free:
2775 	kfree(mcis);
2776 	mcis = NULL;
2777 
2778 	kfree(ecc_stngs);
2779 	ecc_stngs = NULL;
2780 
2781 err_ret:
2782 	return err;
2783 }
2784 
2785 static void __exit amd64_edac_exit(void)
2786 {
2787 	if (amd64_ctl_pci)
2788 		edac_pci_release_generic_ctl(amd64_ctl_pci);
2789 
2790 	pci_unregister_driver(&amd64_pci_driver);
2791 
2792 	kfree(ecc_stngs);
2793 	ecc_stngs = NULL;
2794 
2795 	kfree(mcis);
2796 	mcis = NULL;
2797 
2798 	msrs_free(msrs);
2799 	msrs = NULL;
2800 }
2801 
2802 module_init(amd64_edac_init);
2803 module_exit(amd64_edac_exit);
2804 
2805 MODULE_LICENSE("GPL");
2806 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2807 		"Dave Peterson, Thayne Harbaugh");
2808 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2809 		EDAC_AMD64_VERSION);
2810 
2811 module_param(edac_op_state, int, 0444);
2812 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2813