1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *amd64_ctl_pci; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node driver instances */ 24 static struct mem_ctl_info **mcis; 25 static struct ecc_settings **ecc_stngs; 26 27 /* 28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 30 * or higher value'. 31 * 32 *FIXME: Produce a better mapping/linearisation. 33 */ 34 struct scrubrate { 35 u32 scrubval; /* bit pattern for scrub rate */ 36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 37 } scrubrates[] = { 38 { 0x01, 1600000000UL}, 39 { 0x02, 800000000UL}, 40 { 0x03, 400000000UL}, 41 { 0x04, 200000000UL}, 42 { 0x05, 100000000UL}, 43 { 0x06, 50000000UL}, 44 { 0x07, 25000000UL}, 45 { 0x08, 12284069UL}, 46 { 0x09, 6274509UL}, 47 { 0x0A, 3121951UL}, 48 { 0x0B, 1560975UL}, 49 { 0x0C, 781440UL}, 50 { 0x0D, 390720UL}, 51 { 0x0E, 195300UL}, 52 { 0x0F, 97650UL}, 53 { 0x10, 48854UL}, 54 { 0x11, 24427UL}, 55 { 0x12, 12213UL}, 56 { 0x13, 6101UL}, 57 { 0x14, 3051UL}, 58 { 0x15, 1523UL}, 59 { 0x16, 761UL}, 60 { 0x00, 0UL}, /* scrubbing off */ 61 }; 62 63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, 64 u32 *val, const char *func) 65 { 66 int err = 0; 67 68 err = pci_read_config_dword(pdev, offset, val); 69 if (err) 70 amd64_warn("%s: error reading F%dx%03x.\n", 71 func, PCI_FUNC(pdev->devfn), offset); 72 73 return err; 74 } 75 76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, 77 u32 val, const char *func) 78 { 79 int err = 0; 80 81 err = pci_write_config_dword(pdev, offset, val); 82 if (err) 83 amd64_warn("%s: error writing to F%dx%03x.\n", 84 func, PCI_FUNC(pdev->devfn), offset); 85 86 return err; 87 } 88 89 /* 90 * 91 * Depending on the family, F2 DCT reads need special handling: 92 * 93 * K8: has a single DCT only 94 * 95 * F10h: each DCT has its own set of regs 96 * DCT0 -> F2x040.. 97 * DCT1 -> F2x140.. 98 * 99 * F15h: we select which DCT we access using F1x10C[DctCfgSel] 100 * 101 */ 102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 103 const char *func) 104 { 105 if (addr >= 0x100) 106 return -EINVAL; 107 108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 109 } 110 111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 112 const char *func) 113 { 114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 115 } 116 117 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val, 118 const char *func) 119 { 120 u32 reg = 0; 121 u8 dct = 0; 122 123 if (addr >= 0x140 && addr <= 0x1a0) { 124 dct = 1; 125 addr -= 0x100; 126 } 127 128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); 129 reg &= 0xfffffffe; 130 reg |= dct; 131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); 132 133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func); 134 } 135 136 /* 137 * Memory scrubber control interface. For K8, memory scrubbing is handled by 138 * hardware and can involve L2 cache, dcache as well as the main memory. With 139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 140 * functionality. 141 * 142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 144 * bytes/sec for the setting. 145 * 146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 147 * other archs, we might not have access to the caches directly. 148 */ 149 150 /* 151 * scan the scrub rate mapping table for a close or matching bandwidth value to 152 * issue. If requested is too big, then use last maximum value found. 153 */ 154 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) 155 { 156 u32 scrubval; 157 int i; 158 159 /* 160 * map the configured rate (new_bw) to a value specific to the AMD64 161 * memory controller and apply to register. Search for the first 162 * bandwidth entry that is greater or equal than the setting requested 163 * and program that. If at last entry, turn off DRAM scrubbing. 164 */ 165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 166 /* 167 * skip scrub rates which aren't recommended 168 * (see F10 BKDG, F3x58) 169 */ 170 if (scrubrates[i].scrubval < min_rate) 171 continue; 172 173 if (scrubrates[i].bandwidth <= new_bw) 174 break; 175 176 /* 177 * if no suitable bandwidth found, turn off DRAM scrubbing 178 * entirely by falling back to the last element in the 179 * scrubrates array. 180 */ 181 } 182 183 scrubval = scrubrates[i].scrubval; 184 185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F); 186 187 if (scrubval) 188 return scrubrates[i].bandwidth; 189 190 return 0; 191 } 192 193 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 194 { 195 struct amd64_pvt *pvt = mci->pvt_info; 196 u32 min_scrubrate = 0x5; 197 198 if (boot_cpu_data.x86 == 0xf) 199 min_scrubrate = 0x0; 200 201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate); 202 } 203 204 static int amd64_get_scrub_rate(struct mem_ctl_info *mci) 205 { 206 struct amd64_pvt *pvt = mci->pvt_info; 207 u32 scrubval = 0; 208 int i, retval = -EINVAL; 209 210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); 211 212 scrubval = scrubval & 0x001F; 213 214 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 215 if (scrubrates[i].scrubval == scrubval) { 216 retval = scrubrates[i].bandwidth; 217 break; 218 } 219 } 220 return retval; 221 } 222 223 /* 224 * returns true if the SysAddr given by sys_addr matches the 225 * DRAM base/limit associated with node_id 226 */ 227 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, 228 unsigned nid) 229 { 230 u64 addr; 231 232 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 233 * all ones if the most significant implemented address bit is 1. 234 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 235 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 236 * Application Programming. 237 */ 238 addr = sys_addr & 0x000000ffffffffffull; 239 240 return ((addr >= get_dram_base(pvt, nid)) && 241 (addr <= get_dram_limit(pvt, nid))); 242 } 243 244 /* 245 * Attempt to map a SysAddr to a node. On success, return a pointer to the 246 * mem_ctl_info structure for the node that the SysAddr maps to. 247 * 248 * On failure, return NULL. 249 */ 250 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 251 u64 sys_addr) 252 { 253 struct amd64_pvt *pvt; 254 unsigned node_id; 255 u32 intlv_en, bits; 256 257 /* 258 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 259 * 3.4.4.2) registers to map the SysAddr to a node ID. 260 */ 261 pvt = mci->pvt_info; 262 263 /* 264 * The value of this field should be the same for all DRAM Base 265 * registers. Therefore we arbitrarily choose to read it from the 266 * register for node 0. 267 */ 268 intlv_en = dram_intlv_en(pvt, 0); 269 270 if (intlv_en == 0) { 271 for (node_id = 0; node_id < DRAM_RANGES; node_id++) { 272 if (amd64_base_limit_match(pvt, sys_addr, node_id)) 273 goto found; 274 } 275 goto err_no_match; 276 } 277 278 if (unlikely((intlv_en != 0x01) && 279 (intlv_en != 0x03) && 280 (intlv_en != 0x07))) { 281 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 282 return NULL; 283 } 284 285 bits = (((u32) sys_addr) >> 12) & intlv_en; 286 287 for (node_id = 0; ; ) { 288 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) 289 break; /* intlv_sel field matches */ 290 291 if (++node_id >= DRAM_RANGES) 292 goto err_no_match; 293 } 294 295 /* sanity test for sys_addr */ 296 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { 297 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 298 "range for node %d with node interleaving enabled.\n", 299 __func__, sys_addr, node_id); 300 return NULL; 301 } 302 303 found: 304 return edac_mc_find((int)node_id); 305 306 err_no_match: 307 debugf2("sys_addr 0x%lx doesn't match any node\n", 308 (unsigned long)sys_addr); 309 310 return NULL; 311 } 312 313 /* 314 * compute the CS base address of the @csrow on the DRAM controller @dct. 315 * For details see F2x[5C:40] in the processor's BKDG 316 */ 317 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, 318 u64 *base, u64 *mask) 319 { 320 u64 csbase, csmask, base_bits, mask_bits; 321 u8 addr_shift; 322 323 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { 324 csbase = pvt->csels[dct].csbases[csrow]; 325 csmask = pvt->csels[dct].csmasks[csrow]; 326 base_bits = GENMASK(21, 31) | GENMASK(9, 15); 327 mask_bits = GENMASK(21, 29) | GENMASK(9, 15); 328 addr_shift = 4; 329 } else { 330 csbase = pvt->csels[dct].csbases[csrow]; 331 csmask = pvt->csels[dct].csmasks[csrow >> 1]; 332 addr_shift = 8; 333 334 if (boot_cpu_data.x86 == 0x15) 335 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13); 336 else 337 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13); 338 } 339 340 *base = (csbase & base_bits) << addr_shift; 341 342 *mask = ~0ULL; 343 /* poke holes for the csmask */ 344 *mask &= ~(mask_bits << addr_shift); 345 /* OR them in */ 346 *mask |= (csmask & mask_bits) << addr_shift; 347 } 348 349 #define for_each_chip_select(i, dct, pvt) \ 350 for (i = 0; i < pvt->csels[dct].b_cnt; i++) 351 352 #define chip_select_base(i, dct, pvt) \ 353 pvt->csels[dct].csbases[i] 354 355 #define for_each_chip_select_mask(i, dct, pvt) \ 356 for (i = 0; i < pvt->csels[dct].m_cnt; i++) 357 358 /* 359 * @input_addr is an InputAddr associated with the node given by mci. Return the 360 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 361 */ 362 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 363 { 364 struct amd64_pvt *pvt; 365 int csrow; 366 u64 base, mask; 367 368 pvt = mci->pvt_info; 369 370 for_each_chip_select(csrow, 0, pvt) { 371 if (!csrow_enabled(csrow, 0, pvt)) 372 continue; 373 374 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 375 376 mask = ~mask; 377 378 if ((input_addr & mask) == (base & mask)) { 379 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", 380 (unsigned long)input_addr, csrow, 381 pvt->mc_node_id); 382 383 return csrow; 384 } 385 } 386 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", 387 (unsigned long)input_addr, pvt->mc_node_id); 388 389 return -1; 390 } 391 392 /* 393 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 394 * for the node represented by mci. Info is passed back in *hole_base, 395 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 396 * info is invalid. Info may be invalid for either of the following reasons: 397 * 398 * - The revision of the node is not E or greater. In this case, the DRAM Hole 399 * Address Register does not exist. 400 * 401 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 402 * indicating that its contents are not valid. 403 * 404 * The values passed back in *hole_base, *hole_offset, and *hole_size are 405 * complete 32-bit values despite the fact that the bitfields in the DHAR 406 * only represent bits 31-24 of the base and offset values. 407 */ 408 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 409 u64 *hole_offset, u64 *hole_size) 410 { 411 struct amd64_pvt *pvt = mci->pvt_info; 412 u64 base; 413 414 /* only revE and later have the DRAM Hole Address Register */ 415 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { 416 debugf1(" revision %d for node %d does not support DHAR\n", 417 pvt->ext_model, pvt->mc_node_id); 418 return 1; 419 } 420 421 /* valid for Fam10h and above */ 422 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) { 423 debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); 424 return 1; 425 } 426 427 if (!dhar_valid(pvt)) { 428 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", 429 pvt->mc_node_id); 430 return 1; 431 } 432 433 /* This node has Memory Hoisting */ 434 435 /* +------------------+--------------------+--------------------+----- 436 * | memory | DRAM hole | relocated | 437 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 438 * | | | DRAM hole | 439 * | | | [0x100000000, | 440 * | | | (0x100000000+ | 441 * | | | (0xffffffff-x))] | 442 * +------------------+--------------------+--------------------+----- 443 * 444 * Above is a diagram of physical memory showing the DRAM hole and the 445 * relocated addresses from the DRAM hole. As shown, the DRAM hole 446 * starts at address x (the base address) and extends through address 447 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 448 * addresses in the hole so that they start at 0x100000000. 449 */ 450 451 base = dhar_base(pvt); 452 453 *hole_base = base; 454 *hole_size = (0x1ull << 32) - base; 455 456 if (boot_cpu_data.x86 > 0xf) 457 *hole_offset = f10_dhar_offset(pvt); 458 else 459 *hole_offset = k8_dhar_offset(pvt); 460 461 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 462 pvt->mc_node_id, (unsigned long)*hole_base, 463 (unsigned long)*hole_offset, (unsigned long)*hole_size); 464 465 return 0; 466 } 467 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 468 469 /* 470 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 471 * assumed that sys_addr maps to the node given by mci. 472 * 473 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 474 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 475 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 476 * then it is also involved in translating a SysAddr to a DramAddr. Sections 477 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 478 * These parts of the documentation are unclear. I interpret them as follows: 479 * 480 * When node n receives a SysAddr, it processes the SysAddr as follows: 481 * 482 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 483 * Limit registers for node n. If the SysAddr is not within the range 484 * specified by the base and limit values, then node n ignores the Sysaddr 485 * (since it does not map to node n). Otherwise continue to step 2 below. 486 * 487 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 488 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 489 * the range of relocated addresses (starting at 0x100000000) from the DRAM 490 * hole. If not, skip to step 3 below. Else get the value of the 491 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 492 * offset defined by this value from the SysAddr. 493 * 494 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 495 * Base register for node n. To obtain the DramAddr, subtract the base 496 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 497 */ 498 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 499 { 500 struct amd64_pvt *pvt = mci->pvt_info; 501 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 502 int ret = 0; 503 504 dram_base = get_dram_base(pvt, pvt->mc_node_id); 505 506 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 507 &hole_size); 508 if (!ret) { 509 if ((sys_addr >= (1ull << 32)) && 510 (sys_addr < ((1ull << 32) + hole_size))) { 511 /* use DHAR to translate SysAddr to DramAddr */ 512 dram_addr = sys_addr - hole_offset; 513 514 debugf2("using DHAR to translate SysAddr 0x%lx to " 515 "DramAddr 0x%lx\n", 516 (unsigned long)sys_addr, 517 (unsigned long)dram_addr); 518 519 return dram_addr; 520 } 521 } 522 523 /* 524 * Translate the SysAddr to a DramAddr as shown near the start of 525 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 526 * only deals with 40-bit values. Therefore we discard bits 63-40 of 527 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 528 * discard are all 1s. Otherwise the bits we discard are all 0s. See 529 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 530 * Programmer's Manual Volume 1 Application Programming. 531 */ 532 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base; 533 534 debugf2("using DRAM Base register to translate SysAddr 0x%lx to " 535 "DramAddr 0x%lx\n", (unsigned long)sys_addr, 536 (unsigned long)dram_addr); 537 return dram_addr; 538 } 539 540 /* 541 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 542 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 543 * for node interleaving. 544 */ 545 static int num_node_interleave_bits(unsigned intlv_en) 546 { 547 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 548 int n; 549 550 BUG_ON(intlv_en > 7); 551 n = intlv_shift_table[intlv_en]; 552 return n; 553 } 554 555 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 556 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 557 { 558 struct amd64_pvt *pvt; 559 int intlv_shift; 560 u64 input_addr; 561 562 pvt = mci->pvt_info; 563 564 /* 565 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 566 * concerning translating a DramAddr to an InputAddr. 567 */ 568 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 569 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) + 570 (dram_addr & 0xfff); 571 572 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 573 intlv_shift, (unsigned long)dram_addr, 574 (unsigned long)input_addr); 575 576 return input_addr; 577 } 578 579 /* 580 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 581 * assumed that @sys_addr maps to the node given by mci. 582 */ 583 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 584 { 585 u64 input_addr; 586 587 input_addr = 588 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 589 590 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 591 (unsigned long)sys_addr, (unsigned long)input_addr); 592 593 return input_addr; 594 } 595 596 597 /* 598 * @input_addr is an InputAddr associated with the node represented by mci. 599 * Translate @input_addr to a DramAddr and return the result. 600 */ 601 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) 602 { 603 struct amd64_pvt *pvt; 604 unsigned node_id, intlv_shift; 605 u64 bits, dram_addr; 606 u32 intlv_sel; 607 608 /* 609 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 610 * shows how to translate a DramAddr to an InputAddr. Here we reverse 611 * this procedure. When translating from a DramAddr to an InputAddr, the 612 * bits used for node interleaving are discarded. Here we recover these 613 * bits from the IntlvSel field of the DRAM Limit register (section 614 * 3.4.4.2) for the node that input_addr is associated with. 615 */ 616 pvt = mci->pvt_info; 617 node_id = pvt->mc_node_id; 618 619 BUG_ON(node_id > 7); 620 621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); 622 if (intlv_shift == 0) { 623 debugf1(" InputAddr 0x%lx translates to DramAddr of " 624 "same value\n", (unsigned long)input_addr); 625 626 return input_addr; 627 } 628 629 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) + 630 (input_addr & 0xfff); 631 632 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1); 633 dram_addr = bits + (intlv_sel << 12); 634 635 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " 636 "(%d node interleave bits)\n", (unsigned long)input_addr, 637 (unsigned long)dram_addr, intlv_shift); 638 639 return dram_addr; 640 } 641 642 /* 643 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert 644 * @dram_addr to a SysAddr. 645 */ 646 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) 647 { 648 struct amd64_pvt *pvt = mci->pvt_info; 649 u64 hole_base, hole_offset, hole_size, base, sys_addr; 650 int ret = 0; 651 652 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 653 &hole_size); 654 if (!ret) { 655 if ((dram_addr >= hole_base) && 656 (dram_addr < (hole_base + hole_size))) { 657 sys_addr = dram_addr + hole_offset; 658 659 debugf1("using DHAR to translate DramAddr 0x%lx to " 660 "SysAddr 0x%lx\n", (unsigned long)dram_addr, 661 (unsigned long)sys_addr); 662 663 return sys_addr; 664 } 665 } 666 667 base = get_dram_base(pvt, pvt->mc_node_id); 668 sys_addr = dram_addr + base; 669 670 /* 671 * The sys_addr we have computed up to this point is a 40-bit value 672 * because the k8 deals with 40-bit values. However, the value we are 673 * supposed to return is a full 64-bit physical address. The AMD 674 * x86-64 architecture specifies that the most significant implemented 675 * address bit through bit 63 of a physical address must be either all 676 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a 677 * 64-bit value below. See section 3.4.2 of AMD publication 24592: 678 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application 679 * Programming. 680 */ 681 sys_addr |= ~((sys_addr & (1ull << 39)) - 1); 682 683 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", 684 pvt->mc_node_id, (unsigned long)dram_addr, 685 (unsigned long)sys_addr); 686 687 return sys_addr; 688 } 689 690 /* 691 * @input_addr is an InputAddr associated with the node given by mci. Translate 692 * @input_addr to a SysAddr. 693 */ 694 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, 695 u64 input_addr) 696 { 697 return dram_addr_to_sys_addr(mci, 698 input_addr_to_dram_addr(mci, input_addr)); 699 } 700 701 /* 702 * Find the minimum and maximum InputAddr values that map to the given @csrow. 703 * Pass back these values in *input_addr_min and *input_addr_max. 704 */ 705 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, 706 u64 *input_addr_min, u64 *input_addr_max) 707 { 708 struct amd64_pvt *pvt; 709 u64 base, mask; 710 711 pvt = mci->pvt_info; 712 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt)); 713 714 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); 715 716 *input_addr_min = base & ~mask; 717 *input_addr_max = base | mask; 718 } 719 720 /* Map the Error address to a PAGE and PAGE OFFSET. */ 721 static inline void error_address_to_page_and_offset(u64 error_address, 722 u32 *page, u32 *offset) 723 { 724 *page = (u32) (error_address >> PAGE_SHIFT); 725 *offset = ((u32) error_address) & ~PAGE_MASK; 726 } 727 728 /* 729 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 730 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 731 * of a node that detected an ECC memory error. mci represents the node that 732 * the error address maps to (possibly different from the node that detected 733 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 734 * error. 735 */ 736 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 737 { 738 int csrow; 739 740 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 741 742 if (csrow == -1) 743 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 744 "address 0x%lx\n", (unsigned long)sys_addr); 745 return csrow; 746 } 747 748 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 749 750 /* 751 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 752 * are ECC capable. 753 */ 754 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) 755 { 756 u8 bit; 757 enum dev_type edac_cap = EDAC_FLAG_NONE; 758 759 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) 760 ? 19 761 : 17; 762 763 if (pvt->dclr0 & BIT(bit)) 764 edac_cap = EDAC_FLAG_SECDED; 765 766 return edac_cap; 767 } 768 769 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8); 770 771 static void amd64_dump_dramcfg_low(u32 dclr, int chan) 772 { 773 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 774 775 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n", 776 (dclr & BIT(16)) ? "un" : "", 777 (dclr & BIT(19)) ? "yes" : "no"); 778 779 debugf1(" PAR/ERR parity: %s\n", 780 (dclr & BIT(8)) ? "enabled" : "disabled"); 781 782 if (boot_cpu_data.x86 == 0x10) 783 debugf1(" DCT 128bit mode width: %s\n", 784 (dclr & BIT(11)) ? "128b" : "64b"); 785 786 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 787 (dclr & BIT(12)) ? "yes" : "no", 788 (dclr & BIT(13)) ? "yes" : "no", 789 (dclr & BIT(14)) ? "yes" : "no", 790 (dclr & BIT(15)) ? "yes" : "no"); 791 } 792 793 /* Display and decode various NB registers for debug purposes. */ 794 static void dump_misc_regs(struct amd64_pvt *pvt) 795 { 796 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 797 798 debugf1(" NB two channel DRAM capable: %s\n", 799 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no"); 800 801 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n", 802 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no", 803 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no"); 804 805 amd64_dump_dramcfg_low(pvt->dclr0, 0); 806 807 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 808 809 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " 810 "offset: 0x%08x\n", 811 pvt->dhar, dhar_base(pvt), 812 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt) 813 : f10_dhar_offset(pvt)); 814 815 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no"); 816 817 amd64_debug_display_dimm_sizes(pvt, 0); 818 819 /* everything below this point is Fam10h and above */ 820 if (boot_cpu_data.x86 == 0xf) 821 return; 822 823 amd64_debug_display_dimm_sizes(pvt, 1); 824 825 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4")); 826 827 /* Only if NOT ganged does dclr1 have valid info */ 828 if (!dct_ganging_enabled(pvt)) 829 amd64_dump_dramcfg_low(pvt->dclr1, 1); 830 } 831 832 /* 833 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] 834 */ 835 static void prep_chip_selects(struct amd64_pvt *pvt) 836 { 837 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { 838 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 839 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; 840 } else { 841 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; 842 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; 843 } 844 } 845 846 /* 847 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers 848 */ 849 static void read_dct_base_mask(struct amd64_pvt *pvt) 850 { 851 int cs; 852 853 prep_chip_selects(pvt); 854 855 for_each_chip_select(cs, 0, pvt) { 856 int reg0 = DCSB0 + (cs * 4); 857 int reg1 = DCSB1 + (cs * 4); 858 u32 *base0 = &pvt->csels[0].csbases[cs]; 859 u32 *base1 = &pvt->csels[1].csbases[cs]; 860 861 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0)) 862 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", 863 cs, *base0, reg0); 864 865 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) 866 continue; 867 868 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1)) 869 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", 870 cs, *base1, reg1); 871 } 872 873 for_each_chip_select_mask(cs, 0, pvt) { 874 int reg0 = DCSM0 + (cs * 4); 875 int reg1 = DCSM1 + (cs * 4); 876 u32 *mask0 = &pvt->csels[0].csmasks[cs]; 877 u32 *mask1 = &pvt->csels[1].csmasks[cs]; 878 879 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0)) 880 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", 881 cs, *mask0, reg0); 882 883 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt)) 884 continue; 885 886 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1)) 887 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", 888 cs, *mask1, reg1); 889 } 890 } 891 892 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) 893 { 894 enum mem_type type; 895 896 /* F15h supports only DDR3 */ 897 if (boot_cpu_data.x86 >= 0x15) 898 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 899 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) { 900 if (pvt->dchr0 & DDR3_MODE) 901 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 902 else 903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 904 } else { 905 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 906 } 907 908 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); 909 910 return type; 911 } 912 913 /* Get the number of DCT channels the memory controller is using. */ 914 static int k8_early_channel_count(struct amd64_pvt *pvt) 915 { 916 int flag; 917 918 if (pvt->ext_model >= K8_REV_F) 919 /* RevF (NPT) and later */ 920 flag = pvt->dclr0 & WIDTH_128; 921 else 922 /* RevE and earlier */ 923 flag = pvt->dclr0 & REVE_WIDTH_128; 924 925 /* not used */ 926 pvt->dclr1 = 0; 927 928 return (flag) ? 2 : 1; 929 } 930 931 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ 932 static u64 get_error_address(struct mce *m) 933 { 934 struct cpuinfo_x86 *c = &boot_cpu_data; 935 u64 addr; 936 u8 start_bit = 1; 937 u8 end_bit = 47; 938 939 if (c->x86 == 0xf) { 940 start_bit = 3; 941 end_bit = 39; 942 } 943 944 addr = m->addr & GENMASK(start_bit, end_bit); 945 946 /* 947 * Erratum 637 workaround 948 */ 949 if (c->x86 == 0x15) { 950 struct amd64_pvt *pvt; 951 u64 cc6_base, tmp_addr; 952 u32 tmp; 953 u8 mce_nid, intlv_en; 954 955 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7) 956 return addr; 957 958 mce_nid = amd_get_nb_id(m->extcpu); 959 pvt = mcis[mce_nid]->pvt_info; 960 961 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); 962 intlv_en = tmp >> 21 & 0x7; 963 964 /* add [47:27] + 3 trailing bits */ 965 cc6_base = (tmp & GENMASK(0, 20)) << 3; 966 967 /* reverse and add DramIntlvEn */ 968 cc6_base |= intlv_en ^ 0x7; 969 970 /* pin at [47:24] */ 971 cc6_base <<= 24; 972 973 if (!intlv_en) 974 return cc6_base | (addr & GENMASK(0, 23)); 975 976 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); 977 978 /* faster log2 */ 979 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1); 980 981 /* OR DramIntlvSel into bits [14:12] */ 982 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9; 983 984 /* add remaining [11:0] bits from original MC4_ADDR */ 985 tmp_addr |= addr & GENMASK(0, 11); 986 987 return cc6_base | tmp_addr; 988 } 989 990 return addr; 991 } 992 993 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) 994 { 995 struct cpuinfo_x86 *c = &boot_cpu_data; 996 int off = range << 3; 997 998 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo); 999 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); 1000 1001 if (c->x86 == 0xf) 1002 return; 1003 1004 if (!dram_rw(pvt, range)) 1005 return; 1006 1007 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi); 1008 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); 1009 1010 /* Factor in CC6 save area by reading dst node's limit reg */ 1011 if (c->x86 == 0x15) { 1012 struct pci_dev *f1 = NULL; 1013 u8 nid = dram_dst_node(pvt, range); 1014 u32 llim; 1015 1016 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1)); 1017 if (WARN_ON(!f1)) 1018 return; 1019 1020 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); 1021 1022 pvt->ranges[range].lim.lo &= GENMASK(0, 15); 1023 1024 /* {[39:27],111b} */ 1025 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; 1026 1027 pvt->ranges[range].lim.hi &= GENMASK(0, 7); 1028 1029 /* [47:40] */ 1030 pvt->ranges[range].lim.hi |= llim >> 13; 1031 1032 pci_dev_put(f1); 1033 } 1034 } 1035 1036 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1037 u16 syndrome) 1038 { 1039 struct mem_ctl_info *src_mci; 1040 struct amd64_pvt *pvt = mci->pvt_info; 1041 int channel, csrow; 1042 u32 page, offset; 1043 1044 /* CHIPKILL enabled */ 1045 if (pvt->nbcfg & NBCFG_CHIPKILL) { 1046 channel = get_channel_from_ecc_syndrome(mci, syndrome); 1047 if (channel < 0) { 1048 /* 1049 * Syndrome didn't map, so we don't know which of the 1050 * 2 DIMMs is in error. So we need to ID 'both' of them 1051 * as suspect. 1052 */ 1053 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible " 1054 "error reporting race\n", syndrome); 1055 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1056 return; 1057 } 1058 } else { 1059 /* 1060 * non-chipkill ecc mode 1061 * 1062 * The k8 documentation is unclear about how to determine the 1063 * channel number when using non-chipkill memory. This method 1064 * was obtained from email communication with someone at AMD. 1065 * (Wish the email was placed in this comment - norsk) 1066 */ 1067 channel = ((sys_addr & BIT(3)) != 0); 1068 } 1069 1070 /* 1071 * Find out which node the error address belongs to. This may be 1072 * different from the node that detected the error. 1073 */ 1074 src_mci = find_mc_by_sys_addr(mci, sys_addr); 1075 if (!src_mci) { 1076 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 1077 (unsigned long)sys_addr); 1078 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1079 return; 1080 } 1081 1082 /* Now map the sys_addr to a CSROW */ 1083 csrow = sys_addr_to_csrow(src_mci, sys_addr); 1084 if (csrow < 0) { 1085 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); 1086 } else { 1087 error_address_to_page_and_offset(sys_addr, &page, &offset); 1088 1089 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, 1090 channel, EDAC_MOD_STR); 1091 } 1092 } 1093 1094 static int ddr2_cs_size(unsigned i, bool dct_width) 1095 { 1096 unsigned shift = 0; 1097 1098 if (i <= 2) 1099 shift = i; 1100 else if (!(i & 0x1)) 1101 shift = i >> 1; 1102 else 1103 shift = (i + 1) >> 1; 1104 1105 return 128 << (shift + !!dct_width); 1106 } 1107 1108 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1109 unsigned cs_mode) 1110 { 1111 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1112 1113 if (pvt->ext_model >= K8_REV_F) { 1114 WARN_ON(cs_mode > 11); 1115 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1116 } 1117 else if (pvt->ext_model >= K8_REV_D) { 1118 WARN_ON(cs_mode > 10); 1119 1120 if (cs_mode == 3 || cs_mode == 8) 1121 return 32 << (cs_mode - 1); 1122 else 1123 return 32 << cs_mode; 1124 } 1125 else { 1126 WARN_ON(cs_mode > 6); 1127 return 32 << cs_mode; 1128 } 1129 } 1130 1131 /* 1132 * Get the number of DCT channels in use. 1133 * 1134 * Return: 1135 * number of Memory Channels in operation 1136 * Pass back: 1137 * contents of the DCL0_LOW register 1138 */ 1139 static int f1x_early_channel_count(struct amd64_pvt *pvt) 1140 { 1141 int i, j, channels = 0; 1142 1143 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */ 1144 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128)) 1145 return 2; 1146 1147 /* 1148 * Need to check if in unganged mode: In such, there are 2 channels, 1149 * but they are not in 128 bit mode and thus the above 'dclr0' status 1150 * bit will be OFF. 1151 * 1152 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1153 * their CSEnable bit on. If so, then SINGLE DIMM case. 1154 */ 1155 debugf0("Data width is not 128 bits - need more decoding\n"); 1156 1157 /* 1158 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1159 * is more than just one DIMM present in unganged mode. Need to check 1160 * both controllers since DIMMs can be placed in either one. 1161 */ 1162 for (i = 0; i < 2; i++) { 1163 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0); 1164 1165 for (j = 0; j < 4; j++) { 1166 if (DBAM_DIMM(j, dbam) > 0) { 1167 channels++; 1168 break; 1169 } 1170 } 1171 } 1172 1173 if (channels > 2) 1174 channels = 2; 1175 1176 amd64_info("MCT channel count: %d\n", channels); 1177 1178 return channels; 1179 } 1180 1181 static int ddr3_cs_size(unsigned i, bool dct_width) 1182 { 1183 unsigned shift = 0; 1184 int cs_size = 0; 1185 1186 if (i == 0 || i == 3 || i == 4) 1187 cs_size = -1; 1188 else if (i <= 2) 1189 shift = i; 1190 else if (i == 12) 1191 shift = 7; 1192 else if (!(i & 0x1)) 1193 shift = i >> 1; 1194 else 1195 shift = (i + 1) >> 1; 1196 1197 if (cs_size != -1) 1198 cs_size = (128 * (1 << !!dct_width)) << shift; 1199 1200 return cs_size; 1201 } 1202 1203 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1204 unsigned cs_mode) 1205 { 1206 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; 1207 1208 WARN_ON(cs_mode > 11); 1209 1210 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1211 return ddr3_cs_size(cs_mode, dclr & WIDTH_128); 1212 else 1213 return ddr2_cs_size(cs_mode, dclr & WIDTH_128); 1214 } 1215 1216 /* 1217 * F15h supports only 64bit DCT interfaces 1218 */ 1219 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, 1220 unsigned cs_mode) 1221 { 1222 WARN_ON(cs_mode > 12); 1223 1224 return ddr3_cs_size(cs_mode, false); 1225 } 1226 1227 static void read_dram_ctl_register(struct amd64_pvt *pvt) 1228 { 1229 1230 if (boot_cpu_data.x86 == 0xf) 1231 return; 1232 1233 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) { 1234 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", 1235 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); 1236 1237 debugf0(" DCTs operate in %s mode.\n", 1238 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); 1239 1240 if (!dct_ganging_enabled(pvt)) 1241 debugf0(" Address range split per DCT: %s\n", 1242 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1243 1244 debugf0(" data interleave for ECC: %s, " 1245 "DRAM cleared since last warm reset: %s\n", 1246 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1247 (dct_memory_cleared(pvt) ? "yes" : "no")); 1248 1249 debugf0(" channel interleave: %s, " 1250 "interleave bits selector: 0x%x\n", 1251 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1252 dct_sel_interleave_addr(pvt)); 1253 } 1254 1255 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi); 1256 } 1257 1258 /* 1259 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1260 * Interleaving Modes. 1261 */ 1262 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1263 bool hi_range_sel, u8 intlv_en) 1264 { 1265 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; 1266 1267 if (dct_ganging_enabled(pvt)) 1268 return 0; 1269 1270 if (hi_range_sel) 1271 return dct_sel_high; 1272 1273 /* 1274 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1275 */ 1276 if (dct_interleave_enabled(pvt)) { 1277 u8 intlv_addr = dct_sel_interleave_addr(pvt); 1278 1279 /* return DCT select function: 0=DCT0, 1=DCT1 */ 1280 if (!intlv_addr) 1281 return sys_addr >> 6 & 1; 1282 1283 if (intlv_addr & 0x2) { 1284 u8 shift = intlv_addr & 0x1 ? 9 : 6; 1285 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1286 1287 return ((sys_addr >> shift) & 1) ^ temp; 1288 } 1289 1290 return (sys_addr >> (12 + hweight8(intlv_en))) & 1; 1291 } 1292 1293 if (dct_high_range_enabled(pvt)) 1294 return ~dct_sel_high & 1; 1295 1296 return 0; 1297 } 1298 1299 /* Convert the sys_addr to the normalized DCT address */ 1300 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range, 1301 u64 sys_addr, bool hi_rng, 1302 u32 dct_sel_base_addr) 1303 { 1304 u64 chan_off; 1305 u64 dram_base = get_dram_base(pvt, range); 1306 u64 hole_off = f10_dhar_offset(pvt); 1307 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16; 1308 1309 if (hi_rng) { 1310 /* 1311 * if 1312 * base address of high range is below 4Gb 1313 * (bits [47:27] at [31:11]) 1314 * DRAM address space on this DCT is hoisted above 4Gb && 1315 * sys_addr > 4Gb 1316 * 1317 * remove hole offset from sys_addr 1318 * else 1319 * remove high range offset from sys_addr 1320 */ 1321 if ((!(dct_sel_base_addr >> 16) || 1322 dct_sel_base_addr < dhar_base(pvt)) && 1323 dhar_valid(pvt) && 1324 (sys_addr >= BIT_64(32))) 1325 chan_off = hole_off; 1326 else 1327 chan_off = dct_sel_base_off; 1328 } else { 1329 /* 1330 * if 1331 * we have a valid hole && 1332 * sys_addr > 4Gb 1333 * 1334 * remove hole 1335 * else 1336 * remove dram base to normalize to DCT address 1337 */ 1338 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) 1339 chan_off = hole_off; 1340 else 1341 chan_off = dram_base; 1342 } 1343 1344 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47)); 1345 } 1346 1347 /* 1348 * checks if the csrow passed in is marked as SPARED, if so returns the new 1349 * spare row 1350 */ 1351 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) 1352 { 1353 int tmp_cs; 1354 1355 if (online_spare_swap_done(pvt, dct) && 1356 csrow == online_spare_bad_dramcs(pvt, dct)) { 1357 1358 for_each_chip_select(tmp_cs, dct, pvt) { 1359 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { 1360 csrow = tmp_cs; 1361 break; 1362 } 1363 } 1364 } 1365 return csrow; 1366 } 1367 1368 /* 1369 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1370 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1371 * 1372 * Return: 1373 * -EINVAL: NOT FOUND 1374 * 0..csrow = Chip-Select Row 1375 */ 1376 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct) 1377 { 1378 struct mem_ctl_info *mci; 1379 struct amd64_pvt *pvt; 1380 u64 cs_base, cs_mask; 1381 int cs_found = -EINVAL; 1382 int csrow; 1383 1384 mci = mcis[nid]; 1385 if (!mci) 1386 return cs_found; 1387 1388 pvt = mci->pvt_info; 1389 1390 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct); 1391 1392 for_each_chip_select(csrow, dct, pvt) { 1393 if (!csrow_enabled(csrow, dct, pvt)) 1394 continue; 1395 1396 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); 1397 1398 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", 1399 csrow, cs_base, cs_mask); 1400 1401 cs_mask = ~cs_mask; 1402 1403 debugf1(" (InputAddr & ~CSMask)=0x%llx " 1404 "(CSBase & ~CSMask)=0x%llx\n", 1405 (in_addr & cs_mask), (cs_base & cs_mask)); 1406 1407 if ((in_addr & cs_mask) == (cs_base & cs_mask)) { 1408 cs_found = f10_process_possible_spare(pvt, dct, csrow); 1409 1410 debugf1(" MATCH csrow=%d\n", cs_found); 1411 break; 1412 } 1413 } 1414 return cs_found; 1415 } 1416 1417 /* 1418 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is 1419 * swapped with a region located at the bottom of memory so that the GPU can use 1420 * the interleaved region and thus two channels. 1421 */ 1422 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) 1423 { 1424 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; 1425 1426 if (boot_cpu_data.x86 == 0x10) { 1427 /* only revC3 and revE have that feature */ 1428 if (boot_cpu_data.x86_model < 4 || 1429 (boot_cpu_data.x86_model < 0xa && 1430 boot_cpu_data.x86_mask < 3)) 1431 return sys_addr; 1432 } 1433 1434 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg); 1435 1436 if (!(swap_reg & 0x1)) 1437 return sys_addr; 1438 1439 swap_base = (swap_reg >> 3) & 0x7f; 1440 swap_limit = (swap_reg >> 11) & 0x7f; 1441 rgn_size = (swap_reg >> 20) & 0x7f; 1442 tmp_addr = sys_addr >> 27; 1443 1444 if (!(sys_addr >> 34) && 1445 (((tmp_addr >= swap_base) && 1446 (tmp_addr <= swap_limit)) || 1447 (tmp_addr < rgn_size))) 1448 return sys_addr ^ (u64)swap_base << 27; 1449 1450 return sys_addr; 1451 } 1452 1453 /* For a given @dram_range, check if @sys_addr falls within it. */ 1454 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, 1455 u64 sys_addr, int *nid, int *chan_sel) 1456 { 1457 int cs_found = -EINVAL; 1458 u64 chan_addr; 1459 u32 dct_sel_base; 1460 u8 channel; 1461 bool high_range = false; 1462 1463 u8 node_id = dram_dst_node(pvt, range); 1464 u8 intlv_en = dram_intlv_en(pvt, range); 1465 u32 intlv_sel = dram_intlv_sel(pvt, range); 1466 1467 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", 1468 range, sys_addr, get_dram_limit(pvt, range)); 1469 1470 if (dhar_valid(pvt) && 1471 dhar_base(pvt) <= sys_addr && 1472 sys_addr < BIT_64(32)) { 1473 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", 1474 sys_addr); 1475 return -EINVAL; 1476 } 1477 1478 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1479 return -EINVAL; 1480 1481 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); 1482 1483 dct_sel_base = dct_sel_baseaddr(pvt); 1484 1485 /* 1486 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1487 * select between DCT0 and DCT1. 1488 */ 1489 if (dct_high_range_enabled(pvt) && 1490 !dct_ganging_enabled(pvt) && 1491 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1492 high_range = true; 1493 1494 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); 1495 1496 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, 1497 high_range, dct_sel_base); 1498 1499 /* Remove node interleaving, see F1x120 */ 1500 if (intlv_en) 1501 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | 1502 (chan_addr & 0xfff); 1503 1504 /* remove channel interleave */ 1505 if (dct_interleave_enabled(pvt) && 1506 !dct_high_range_enabled(pvt) && 1507 !dct_ganging_enabled(pvt)) { 1508 1509 if (dct_sel_interleave_addr(pvt) != 1) { 1510 if (dct_sel_interleave_addr(pvt) == 0x3) 1511 /* hash 9 */ 1512 chan_addr = ((chan_addr >> 10) << 9) | 1513 (chan_addr & 0x1ff); 1514 else 1515 /* A[6] or hash 6 */ 1516 chan_addr = ((chan_addr >> 7) << 6) | 1517 (chan_addr & 0x3f); 1518 } else 1519 /* A[12] */ 1520 chan_addr = ((chan_addr >> 13) << 12) | 1521 (chan_addr & 0xfff); 1522 } 1523 1524 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr); 1525 1526 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); 1527 1528 if (cs_found >= 0) { 1529 *nid = node_id; 1530 *chan_sel = channel; 1531 } 1532 return cs_found; 1533 } 1534 1535 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, 1536 int *node, int *chan_sel) 1537 { 1538 int cs_found = -EINVAL; 1539 unsigned range; 1540 1541 for (range = 0; range < DRAM_RANGES; range++) { 1542 1543 if (!dram_rw(pvt, range)) 1544 continue; 1545 1546 if ((get_dram_base(pvt, range) <= sys_addr) && 1547 (get_dram_limit(pvt, range) >= sys_addr)) { 1548 1549 cs_found = f1x_match_to_this_node(pvt, range, 1550 sys_addr, node, 1551 chan_sel); 1552 if (cs_found >= 0) 1553 break; 1554 } 1555 } 1556 return cs_found; 1557 } 1558 1559 /* 1560 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1561 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1562 * 1563 * The @sys_addr is usually an error address received from the hardware 1564 * (MCX_ADDR). 1565 */ 1566 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, 1567 u16 syndrome) 1568 { 1569 struct amd64_pvt *pvt = mci->pvt_info; 1570 u32 page, offset; 1571 int nid, csrow, chan = 0; 1572 1573 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); 1574 1575 if (csrow < 0) { 1576 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1577 return; 1578 } 1579 1580 error_address_to_page_and_offset(sys_addr, &page, &offset); 1581 1582 /* 1583 * We need the syndromes for channel detection only when we're 1584 * ganged. Otherwise @chan should already contain the channel at 1585 * this point. 1586 */ 1587 if (dct_ganging_enabled(pvt)) 1588 chan = get_channel_from_ecc_syndrome(mci, syndrome); 1589 1590 if (chan >= 0) 1591 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, 1592 EDAC_MOD_STR); 1593 else 1594 /* 1595 * Channel unknown, report all channels on this CSROW as failed. 1596 */ 1597 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++) 1598 edac_mc_handle_ce(mci, page, offset, syndrome, 1599 csrow, chan, EDAC_MOD_STR); 1600 } 1601 1602 /* 1603 * debug routine to display the memory sizes of all logical DIMMs and its 1604 * CSROWs 1605 */ 1606 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) 1607 { 1608 int dimm, size0, size1, factor = 0; 1609 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; 1610 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1611 1612 if (boot_cpu_data.x86 == 0xf) { 1613 if (pvt->dclr0 & WIDTH_128) 1614 factor = 1; 1615 1616 /* K8 families < revF not supported yet */ 1617 if (pvt->ext_model < K8_REV_F) 1618 return; 1619 else 1620 WARN_ON(ctrl != 0); 1621 } 1622 1623 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0; 1624 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases 1625 : pvt->csels[0].csbases; 1626 1627 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam); 1628 1629 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1630 1631 /* Dump memory sizes for DIMM and its CSROWs */ 1632 for (dimm = 0; dimm < 4; dimm++) { 1633 1634 size0 = 0; 1635 if (dcsb[dimm*2] & DCSB_CS_ENABLE) 1636 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 1637 DBAM_DIMM(dimm, dbam)); 1638 1639 size1 = 0; 1640 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE) 1641 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 1642 DBAM_DIMM(dimm, dbam)); 1643 1644 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1645 dimm * 2, size0 << factor, 1646 dimm * 2 + 1, size1 << factor); 1647 } 1648 } 1649 1650 static struct amd64_family_type amd64_family_types[] = { 1651 [K8_CPUS] = { 1652 .ctl_name = "K8", 1653 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1654 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1655 .ops = { 1656 .early_channel_count = k8_early_channel_count, 1657 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1658 .dbam_to_cs = k8_dbam_to_chip_select, 1659 .read_dct_pci_cfg = k8_read_dct_pci_cfg, 1660 } 1661 }, 1662 [F10_CPUS] = { 1663 .ctl_name = "F10h", 1664 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1665 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1666 .ops = { 1667 .early_channel_count = f1x_early_channel_count, 1668 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1669 .dbam_to_cs = f10_dbam_to_chip_select, 1670 .read_dct_pci_cfg = f10_read_dct_pci_cfg, 1671 } 1672 }, 1673 [F15_CPUS] = { 1674 .ctl_name = "F15h", 1675 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1, 1676 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3, 1677 .ops = { 1678 .early_channel_count = f1x_early_channel_count, 1679 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow, 1680 .dbam_to_cs = f15_dbam_to_chip_select, 1681 .read_dct_pci_cfg = f15_read_dct_pci_cfg, 1682 } 1683 }, 1684 }; 1685 1686 static struct pci_dev *pci_get_related_function(unsigned int vendor, 1687 unsigned int device, 1688 struct pci_dev *related) 1689 { 1690 struct pci_dev *dev = NULL; 1691 1692 dev = pci_get_device(vendor, device, dev); 1693 while (dev) { 1694 if ((dev->bus->number == related->bus->number) && 1695 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 1696 break; 1697 dev = pci_get_device(vendor, device, dev); 1698 } 1699 1700 return dev; 1701 } 1702 1703 /* 1704 * These are tables of eigenvectors (one per line) which can be used for the 1705 * construction of the syndrome tables. The modified syndrome search algorithm 1706 * uses those to find the symbol in error and thus the DIMM. 1707 * 1708 * Algorithm courtesy of Ross LaFetra from AMD. 1709 */ 1710 static u16 x4_vectors[] = { 1711 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1712 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1713 0x0001, 0x0002, 0x0004, 0x0008, 1714 0x1013, 0x3032, 0x4044, 0x8088, 1715 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1716 0x4857, 0xc4fe, 0x13cc, 0x3288, 1717 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1718 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1719 0x15c1, 0x2a42, 0x89ac, 0x4758, 1720 0x2b03, 0x1602, 0x4f0c, 0xca08, 1721 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1722 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1723 0x2b87, 0x164e, 0x642c, 0xdc18, 1724 0x40b9, 0x80de, 0x1094, 0x20e8, 1725 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1726 0x11c1, 0x2242, 0x84ac, 0x4c58, 1727 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1728 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1729 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1730 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 1731 0x16b3, 0x3d62, 0x4f34, 0x8518, 1732 0x1e2f, 0x391a, 0x5cac, 0xf858, 1733 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 1734 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 1735 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 1736 0x4397, 0xc27e, 0x17fc, 0x3ea8, 1737 0x1617, 0x3d3e, 0x6464, 0xb8b8, 1738 0x23ff, 0x12aa, 0xab6c, 0x56d8, 1739 0x2dfb, 0x1ba6, 0x913c, 0x7328, 1740 0x185d, 0x2ca6, 0x7914, 0x9e28, 1741 0x171b, 0x3e36, 0x7d7c, 0xebe8, 1742 0x4199, 0x82ee, 0x19f4, 0x2e58, 1743 0x4807, 0xc40e, 0x130c, 0x3208, 1744 0x1905, 0x2e0a, 0x5804, 0xac08, 1745 0x213f, 0x132a, 0xadfc, 0x5ba8, 1746 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 1747 }; 1748 1749 static u16 x8_vectors[] = { 1750 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 1751 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 1752 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 1753 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 1754 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 1755 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 1756 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 1757 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 1758 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 1759 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 1760 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 1761 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 1762 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 1763 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 1764 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 1765 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 1766 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 1767 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1768 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 1769 }; 1770 1771 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs, 1772 unsigned v_dim) 1773 { 1774 unsigned int i, err_sym; 1775 1776 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 1777 u16 s = syndrome; 1778 unsigned v_idx = err_sym * v_dim; 1779 unsigned v_end = (err_sym + 1) * v_dim; 1780 1781 /* walk over all 16 bits of the syndrome */ 1782 for (i = 1; i < (1U << 16); i <<= 1) { 1783 1784 /* if bit is set in that eigenvector... */ 1785 if (v_idx < v_end && vectors[v_idx] & i) { 1786 u16 ev_comp = vectors[v_idx++]; 1787 1788 /* ... and bit set in the modified syndrome, */ 1789 if (s & i) { 1790 /* remove it. */ 1791 s ^= ev_comp; 1792 1793 if (!s) 1794 return err_sym; 1795 } 1796 1797 } else if (s & i) 1798 /* can't get to zero, move to next symbol */ 1799 break; 1800 } 1801 } 1802 1803 debugf0("syndrome(%x) not found\n", syndrome); 1804 return -1; 1805 } 1806 1807 static int map_err_sym_to_channel(int err_sym, int sym_size) 1808 { 1809 if (sym_size == 4) 1810 switch (err_sym) { 1811 case 0x20: 1812 case 0x21: 1813 return 0; 1814 break; 1815 case 0x22: 1816 case 0x23: 1817 return 1; 1818 break; 1819 default: 1820 return err_sym >> 4; 1821 break; 1822 } 1823 /* x8 symbols */ 1824 else 1825 switch (err_sym) { 1826 /* imaginary bits not in a DIMM */ 1827 case 0x10: 1828 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 1829 err_sym); 1830 return -1; 1831 break; 1832 1833 case 0x11: 1834 return 0; 1835 break; 1836 case 0x12: 1837 return 1; 1838 break; 1839 default: 1840 return err_sym >> 3; 1841 break; 1842 } 1843 return -1; 1844 } 1845 1846 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 1847 { 1848 struct amd64_pvt *pvt = mci->pvt_info; 1849 int err_sym = -1; 1850 1851 if (pvt->ecc_sym_sz == 8) 1852 err_sym = decode_syndrome(syndrome, x8_vectors, 1853 ARRAY_SIZE(x8_vectors), 1854 pvt->ecc_sym_sz); 1855 else if (pvt->ecc_sym_sz == 4) 1856 err_sym = decode_syndrome(syndrome, x4_vectors, 1857 ARRAY_SIZE(x4_vectors), 1858 pvt->ecc_sym_sz); 1859 else { 1860 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); 1861 return err_sym; 1862 } 1863 1864 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); 1865 } 1866 1867 /* 1868 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR 1869 * ADDRESS and process. 1870 */ 1871 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m) 1872 { 1873 struct amd64_pvt *pvt = mci->pvt_info; 1874 u64 sys_addr; 1875 u16 syndrome; 1876 1877 /* Ensure that the Error Address is VALID */ 1878 if (!(m->status & MCI_STATUS_ADDRV)) { 1879 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); 1880 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1881 return; 1882 } 1883 1884 sys_addr = get_error_address(m); 1885 syndrome = extract_syndrome(m->status); 1886 1887 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); 1888 1889 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome); 1890 } 1891 1892 /* Handle any Un-correctable Errors (UEs) */ 1893 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m) 1894 { 1895 struct mem_ctl_info *log_mci, *src_mci = NULL; 1896 int csrow; 1897 u64 sys_addr; 1898 u32 page, offset; 1899 1900 log_mci = mci; 1901 1902 if (!(m->status & MCI_STATUS_ADDRV)) { 1903 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); 1904 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1905 return; 1906 } 1907 1908 sys_addr = get_error_address(m); 1909 1910 /* 1911 * Find out which node the error address belongs to. This may be 1912 * different from the node that detected the error. 1913 */ 1914 src_mci = find_mc_by_sys_addr(mci, sys_addr); 1915 if (!src_mci) { 1916 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n", 1917 (unsigned long)sys_addr); 1918 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1919 return; 1920 } 1921 1922 log_mci = src_mci; 1923 1924 csrow = sys_addr_to_csrow(log_mci, sys_addr); 1925 if (csrow < 0) { 1926 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n", 1927 (unsigned long)sys_addr); 1928 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1929 } else { 1930 error_address_to_page_and_offset(sys_addr, &page, &offset); 1931 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); 1932 } 1933 } 1934 1935 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, 1936 struct mce *m) 1937 { 1938 u16 ec = EC(m->status); 1939 u8 xec = XEC(m->status, 0x1f); 1940 u8 ecc_type = (m->status >> 45) & 0x3; 1941 1942 /* Bail early out if this was an 'observed' error */ 1943 if (PP(ec) == NBSL_PP_OBS) 1944 return; 1945 1946 /* Do only ECC errors */ 1947 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 1948 return; 1949 1950 if (ecc_type == 2) 1951 amd64_handle_ce(mci, m); 1952 else if (ecc_type == 1) 1953 amd64_handle_ue(mci, m); 1954 } 1955 1956 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg) 1957 { 1958 struct mem_ctl_info *mci = mcis[node_id]; 1959 1960 __amd64_decode_bus_error(mci, m); 1961 } 1962 1963 /* 1964 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 1965 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 1966 */ 1967 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 1968 { 1969 /* Reserve the ADDRESS MAP Device */ 1970 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 1971 if (!pvt->F1) { 1972 amd64_err("error address map device not found: " 1973 "vendor %x device 0x%x (broken BIOS?)\n", 1974 PCI_VENDOR_ID_AMD, f1_id); 1975 return -ENODEV; 1976 } 1977 1978 /* Reserve the MISC Device */ 1979 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 1980 if (!pvt->F3) { 1981 pci_dev_put(pvt->F1); 1982 pvt->F1 = NULL; 1983 1984 amd64_err("error F3 device not found: " 1985 "vendor %x device 0x%x (broken BIOS?)\n", 1986 PCI_VENDOR_ID_AMD, f3_id); 1987 1988 return -ENODEV; 1989 } 1990 debugf1("F1: %s\n", pci_name(pvt->F1)); 1991 debugf1("F2: %s\n", pci_name(pvt->F2)); 1992 debugf1("F3: %s\n", pci_name(pvt->F3)); 1993 1994 return 0; 1995 } 1996 1997 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 1998 { 1999 pci_dev_put(pvt->F1); 2000 pci_dev_put(pvt->F3); 2001 } 2002 2003 /* 2004 * Retrieve the hardware registers of the memory controller (this includes the 2005 * 'Address Map' and 'Misc' device regs) 2006 */ 2007 static void read_mc_regs(struct amd64_pvt *pvt) 2008 { 2009 struct cpuinfo_x86 *c = &boot_cpu_data; 2010 u64 msr_val; 2011 u32 tmp; 2012 unsigned range; 2013 2014 /* 2015 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2016 * those are Read-As-Zero 2017 */ 2018 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2019 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem); 2020 2021 /* check first whether TOP_MEM2 is enabled */ 2022 rdmsrl(MSR_K8_SYSCFG, msr_val); 2023 if (msr_val & (1U << 21)) { 2024 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2025 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2026 } else 2027 debugf0(" TOP_MEM2 disabled.\n"); 2028 2029 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); 2030 2031 read_dram_ctl_register(pvt); 2032 2033 for (range = 0; range < DRAM_RANGES; range++) { 2034 u8 rw; 2035 2036 /* read settings for this DRAM range */ 2037 read_dram_base_limit_regs(pvt, range); 2038 2039 rw = dram_rw(pvt, range); 2040 if (!rw) 2041 continue; 2042 2043 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", 2044 range, 2045 get_dram_base(pvt, range), 2046 get_dram_limit(pvt, range)); 2047 2048 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", 2049 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", 2050 (rw & 0x1) ? "R" : "-", 2051 (rw & 0x2) ? "W" : "-", 2052 dram_intlv_sel(pvt, range), 2053 dram_dst_node(pvt, range)); 2054 } 2055 2056 read_dct_base_mask(pvt); 2057 2058 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); 2059 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0); 2060 2061 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2062 2063 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0); 2064 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0); 2065 2066 if (!dct_ganging_enabled(pvt)) { 2067 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1); 2068 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1); 2069 } 2070 2071 pvt->ecc_sym_sz = 4; 2072 2073 if (c->x86 >= 0x10) { 2074 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2075 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1); 2076 2077 /* F10h, revD and later can do x8 ECC too */ 2078 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25)) 2079 pvt->ecc_sym_sz = 8; 2080 } 2081 dump_misc_regs(pvt); 2082 } 2083 2084 /* 2085 * NOTE: CPU Revision Dependent code 2086 * 2087 * Input: 2088 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) 2089 * k8 private pointer to --> 2090 * DRAM Bank Address mapping register 2091 * node_id 2092 * DCL register where dual_channel_active is 2093 * 2094 * The DBAM register consists of 4 sets of 4 bits each definitions: 2095 * 2096 * Bits: CSROWs 2097 * 0-3 CSROWs 0 and 1 2098 * 4-7 CSROWs 2 and 3 2099 * 8-11 CSROWs 4 and 5 2100 * 12-15 CSROWs 6 and 7 2101 * 2102 * Values range from: 0 to 15 2103 * The meaning of the values depends on CPU revision and dual-channel state, 2104 * see relevant BKDG more info. 2105 * 2106 * The memory controller provides for total of only 8 CSROWs in its current 2107 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2108 * single channel or two (2) DIMMs in dual channel mode. 2109 * 2110 * The following code logic collapses the various tables for CSROW based on CPU 2111 * revision. 2112 * 2113 * Returns: 2114 * The number of PAGE_SIZE pages on the specified CSROW number it 2115 * encompasses 2116 * 2117 */ 2118 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) 2119 { 2120 u32 cs_mode, nr_pages; 2121 2122 /* 2123 * The math on this doesn't look right on the surface because x/2*4 can 2124 * be simplified to x*2 but this expression makes use of the fact that 2125 * it is integral math where 1/2=0. This intermediate value becomes the 2126 * number of bits to shift the DBAM register to extract the proper CSROW 2127 * field. 2128 */ 2129 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; 2130 2131 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT); 2132 2133 /* 2134 * If dual channel then double the memory size of single channel. 2135 * Channel count is 1 or 2 2136 */ 2137 nr_pages <<= (pvt->channel_count - 1); 2138 2139 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); 2140 debugf0(" nr_pages= %u channel-count = %d\n", 2141 nr_pages, pvt->channel_count); 2142 2143 return nr_pages; 2144 } 2145 2146 /* 2147 * Initialize the array of csrow attribute instances, based on the values 2148 * from pci config hardware registers. 2149 */ 2150 static int init_csrows(struct mem_ctl_info *mci) 2151 { 2152 struct csrow_info *csrow; 2153 struct amd64_pvt *pvt = mci->pvt_info; 2154 u64 input_addr_min, input_addr_max, sys_addr, base, mask; 2155 u32 val; 2156 int i, empty = 1; 2157 2158 amd64_read_pci_cfg(pvt->F3, NBCFG, &val); 2159 2160 pvt->nbcfg = val; 2161 2162 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2163 pvt->mc_node_id, val, 2164 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); 2165 2166 for_each_chip_select(i, 0, pvt) { 2167 csrow = &mci->csrows[i]; 2168 2169 if (!csrow_enabled(i, 0, pvt)) { 2170 debugf1("----CSROW %d EMPTY for node %d\n", i, 2171 pvt->mc_node_id); 2172 continue; 2173 } 2174 2175 debugf1("----CSROW %d VALID for MC node %d\n", 2176 i, pvt->mc_node_id); 2177 2178 empty = 0; 2179 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i); 2180 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); 2181 sys_addr = input_addr_to_sys_addr(mci, input_addr_min); 2182 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); 2183 sys_addr = input_addr_to_sys_addr(mci, input_addr_max); 2184 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); 2185 2186 get_cs_base_and_mask(pvt, i, 0, &base, &mask); 2187 csrow->page_mask = ~mask; 2188 /* 8 bytes of resolution */ 2189 2190 csrow->mtype = amd64_determine_memory_type(pvt, i); 2191 2192 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); 2193 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", 2194 (unsigned long)input_addr_min, 2195 (unsigned long)input_addr_max); 2196 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", 2197 (unsigned long)sys_addr, csrow->page_mask); 2198 debugf1(" nr_pages: %u first_page: 0x%lx " 2199 "last_page: 0x%lx\n", 2200 (unsigned)csrow->nr_pages, 2201 csrow->first_page, csrow->last_page); 2202 2203 /* 2204 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2205 */ 2206 if (pvt->nbcfg & NBCFG_ECC_ENABLE) 2207 csrow->edac_mode = 2208 (pvt->nbcfg & NBCFG_CHIPKILL) ? 2209 EDAC_S4ECD4ED : EDAC_SECDED; 2210 else 2211 csrow->edac_mode = EDAC_NONE; 2212 } 2213 2214 return empty; 2215 } 2216 2217 /* get all cores on this DCT */ 2218 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid) 2219 { 2220 int cpu; 2221 2222 for_each_online_cpu(cpu) 2223 if (amd_get_nb_id(cpu) == nid) 2224 cpumask_set_cpu(cpu, mask); 2225 } 2226 2227 /* check MCG_CTL on all the cpus on this node */ 2228 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid) 2229 { 2230 cpumask_var_t mask; 2231 int cpu, nbe; 2232 bool ret = false; 2233 2234 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2235 amd64_warn("%s: Error allocating mask\n", __func__); 2236 return false; 2237 } 2238 2239 get_cpus_on_this_dct_cpumask(mask, nid); 2240 2241 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2242 2243 for_each_cpu(cpu, mask) { 2244 struct msr *reg = per_cpu_ptr(msrs, cpu); 2245 nbe = reg->l & MSR_MCGCTL_NBE; 2246 2247 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2248 cpu, reg->q, 2249 (nbe ? "enabled" : "disabled")); 2250 2251 if (!nbe) 2252 goto out; 2253 } 2254 ret = true; 2255 2256 out: 2257 free_cpumask_var(mask); 2258 return ret; 2259 } 2260 2261 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on) 2262 { 2263 cpumask_var_t cmask; 2264 int cpu; 2265 2266 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2267 amd64_warn("%s: error allocating mask\n", __func__); 2268 return false; 2269 } 2270 2271 get_cpus_on_this_dct_cpumask(cmask, nid); 2272 2273 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2274 2275 for_each_cpu(cpu, cmask) { 2276 2277 struct msr *reg = per_cpu_ptr(msrs, cpu); 2278 2279 if (on) { 2280 if (reg->l & MSR_MCGCTL_NBE) 2281 s->flags.nb_mce_enable = 1; 2282 2283 reg->l |= MSR_MCGCTL_NBE; 2284 } else { 2285 /* 2286 * Turn off NB MCE reporting only when it was off before 2287 */ 2288 if (!s->flags.nb_mce_enable) 2289 reg->l &= ~MSR_MCGCTL_NBE; 2290 } 2291 } 2292 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2293 2294 free_cpumask_var(cmask); 2295 2296 return 0; 2297 } 2298 2299 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid, 2300 struct pci_dev *F3) 2301 { 2302 bool ret = true; 2303 u32 value, mask = 0x3; /* UECC/CECC enable */ 2304 2305 if (toggle_ecc_err_reporting(s, nid, ON)) { 2306 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2307 return false; 2308 } 2309 2310 amd64_read_pci_cfg(F3, NBCTL, &value); 2311 2312 s->old_nbctl = value & mask; 2313 s->nbctl_valid = true; 2314 2315 value |= mask; 2316 amd64_write_pci_cfg(F3, NBCTL, value); 2317 2318 amd64_read_pci_cfg(F3, NBCFG, &value); 2319 2320 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2321 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2322 2323 if (!(value & NBCFG_ECC_ENABLE)) { 2324 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2325 2326 s->flags.nb_ecc_prev = 0; 2327 2328 /* Attempt to turn on DRAM ECC Enable */ 2329 value |= NBCFG_ECC_ENABLE; 2330 amd64_write_pci_cfg(F3, NBCFG, value); 2331 2332 amd64_read_pci_cfg(F3, NBCFG, &value); 2333 2334 if (!(value & NBCFG_ECC_ENABLE)) { 2335 amd64_warn("Hardware rejected DRAM ECC enable," 2336 "check memory DIMM configuration.\n"); 2337 ret = false; 2338 } else { 2339 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2340 } 2341 } else { 2342 s->flags.nb_ecc_prev = 1; 2343 } 2344 2345 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", 2346 nid, value, !!(value & NBCFG_ECC_ENABLE)); 2347 2348 return ret; 2349 } 2350 2351 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid, 2352 struct pci_dev *F3) 2353 { 2354 u32 value, mask = 0x3; /* UECC/CECC enable */ 2355 2356 2357 if (!s->nbctl_valid) 2358 return; 2359 2360 amd64_read_pci_cfg(F3, NBCTL, &value); 2361 value &= ~mask; 2362 value |= s->old_nbctl; 2363 2364 amd64_write_pci_cfg(F3, NBCTL, value); 2365 2366 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2367 if (!s->flags.nb_ecc_prev) { 2368 amd64_read_pci_cfg(F3, NBCFG, &value); 2369 value &= ~NBCFG_ECC_ENABLE; 2370 amd64_write_pci_cfg(F3, NBCFG, value); 2371 } 2372 2373 /* restore the NB Enable MCGCTL bit */ 2374 if (toggle_ecc_err_reporting(s, nid, OFF)) 2375 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2376 } 2377 2378 /* 2379 * EDAC requires that the BIOS have ECC enabled before 2380 * taking over the processing of ECC errors. A command line 2381 * option allows to force-enable hardware ECC later in 2382 * enable_ecc_error_reporting(). 2383 */ 2384 static const char *ecc_msg = 2385 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2386 " Either enable ECC checking or force module loading by setting " 2387 "'ecc_enable_override'.\n" 2388 " (Note that use of the override may cause unknown side effects.)\n"; 2389 2390 static bool ecc_enabled(struct pci_dev *F3, u8 nid) 2391 { 2392 u32 value; 2393 u8 ecc_en = 0; 2394 bool nb_mce_en = false; 2395 2396 amd64_read_pci_cfg(F3, NBCFG, &value); 2397 2398 ecc_en = !!(value & NBCFG_ECC_ENABLE); 2399 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2400 2401 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); 2402 if (!nb_mce_en) 2403 amd64_notice("NB MCE bank disabled, set MSR " 2404 "0x%08x[4] on node %d to enable.\n", 2405 MSR_IA32_MCG_CTL, nid); 2406 2407 if (!ecc_en || !nb_mce_en) { 2408 amd64_notice("%s", ecc_msg); 2409 return false; 2410 } 2411 return true; 2412 } 2413 2414 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + 2415 ARRAY_SIZE(amd64_inj_attrs) + 2416 1]; 2417 2418 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; 2419 2420 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci) 2421 { 2422 unsigned int i = 0, j = 0; 2423 2424 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) 2425 sysfs_attrs[i] = amd64_dbg_attrs[i]; 2426 2427 if (boot_cpu_data.x86 >= 0x10) 2428 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) 2429 sysfs_attrs[i] = amd64_inj_attrs[j]; 2430 2431 sysfs_attrs[i] = terminator; 2432 2433 mci->mc_driver_sysfs_attributes = sysfs_attrs; 2434 } 2435 2436 static void setup_mci_misc_attrs(struct mem_ctl_info *mci, 2437 struct amd64_family_type *fam) 2438 { 2439 struct amd64_pvt *pvt = mci->pvt_info; 2440 2441 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2442 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2443 2444 if (pvt->nbcap & NBCAP_SECDED) 2445 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2446 2447 if (pvt->nbcap & NBCAP_CHIPKILL) 2448 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2449 2450 mci->edac_cap = amd64_determine_edac_cap(pvt); 2451 mci->mod_name = EDAC_MOD_STR; 2452 mci->mod_ver = EDAC_AMD64_VERSION; 2453 mci->ctl_name = fam->ctl_name; 2454 mci->dev_name = pci_name(pvt->F2); 2455 mci->ctl_page_to_phys = NULL; 2456 2457 /* memory scrubber interface */ 2458 mci->set_sdram_scrub_rate = amd64_set_scrub_rate; 2459 mci->get_sdram_scrub_rate = amd64_get_scrub_rate; 2460 } 2461 2462 /* 2463 * returns a pointer to the family descriptor on success, NULL otherwise. 2464 */ 2465 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) 2466 { 2467 u8 fam = boot_cpu_data.x86; 2468 struct amd64_family_type *fam_type = NULL; 2469 2470 switch (fam) { 2471 case 0xf: 2472 fam_type = &amd64_family_types[K8_CPUS]; 2473 pvt->ops = &amd64_family_types[K8_CPUS].ops; 2474 break; 2475 2476 case 0x10: 2477 fam_type = &amd64_family_types[F10_CPUS]; 2478 pvt->ops = &amd64_family_types[F10_CPUS].ops; 2479 break; 2480 2481 case 0x15: 2482 fam_type = &amd64_family_types[F15_CPUS]; 2483 pvt->ops = &amd64_family_types[F15_CPUS].ops; 2484 break; 2485 2486 default: 2487 amd64_err("Unsupported family!\n"); 2488 return NULL; 2489 } 2490 2491 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2492 2493 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name, 2494 (fam == 0xf ? 2495 (pvt->ext_model >= K8_REV_F ? "revF or later " 2496 : "revE or earlier ") 2497 : ""), pvt->mc_node_id); 2498 return fam_type; 2499 } 2500 2501 static int amd64_init_one_instance(struct pci_dev *F2) 2502 { 2503 struct amd64_pvt *pvt = NULL; 2504 struct amd64_family_type *fam_type = NULL; 2505 struct mem_ctl_info *mci = NULL; 2506 int err = 0, ret; 2507 u8 nid = get_node_id(F2); 2508 2509 ret = -ENOMEM; 2510 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2511 if (!pvt) 2512 goto err_ret; 2513 2514 pvt->mc_node_id = nid; 2515 pvt->F2 = F2; 2516 2517 ret = -EINVAL; 2518 fam_type = amd64_per_family_init(pvt); 2519 if (!fam_type) 2520 goto err_free; 2521 2522 ret = -ENODEV; 2523 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2524 if (err) 2525 goto err_free; 2526 2527 read_mc_regs(pvt); 2528 2529 /* 2530 * We need to determine how many memory channels there are. Then use 2531 * that information for calculating the size of the dynamic instance 2532 * tables in the 'mci' structure. 2533 */ 2534 ret = -EINVAL; 2535 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2536 if (pvt->channel_count < 0) 2537 goto err_siblings; 2538 2539 ret = -ENOMEM; 2540 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid); 2541 if (!mci) 2542 goto err_siblings; 2543 2544 mci->pvt_info = pvt; 2545 mci->dev = &pvt->F2->dev; 2546 2547 setup_mci_misc_attrs(mci, fam_type); 2548 2549 if (init_csrows(mci)) 2550 mci->edac_cap = EDAC_FLAG_NONE; 2551 2552 set_mc_sysfs_attrs(mci); 2553 2554 ret = -ENODEV; 2555 if (edac_mc_add_mc(mci)) { 2556 debugf1("failed edac_mc_add_mc()\n"); 2557 goto err_add_mc; 2558 } 2559 2560 /* register stuff with EDAC MCE */ 2561 if (report_gart_errors) 2562 amd_report_gart_errors(true); 2563 2564 amd_register_ecc_decoder(amd64_decode_bus_error); 2565 2566 mcis[nid] = mci; 2567 2568 atomic_inc(&drv_instances); 2569 2570 return 0; 2571 2572 err_add_mc: 2573 edac_mc_free(mci); 2574 2575 err_siblings: 2576 free_mc_sibling_devs(pvt); 2577 2578 err_free: 2579 kfree(pvt); 2580 2581 err_ret: 2582 return ret; 2583 } 2584 2585 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev, 2586 const struct pci_device_id *mc_type) 2587 { 2588 u8 nid = get_node_id(pdev); 2589 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2590 struct ecc_settings *s; 2591 int ret = 0; 2592 2593 ret = pci_enable_device(pdev); 2594 if (ret < 0) { 2595 debugf0("ret=%d\n", ret); 2596 return -EIO; 2597 } 2598 2599 ret = -ENOMEM; 2600 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2601 if (!s) 2602 goto err_out; 2603 2604 ecc_stngs[nid] = s; 2605 2606 if (!ecc_enabled(F3, nid)) { 2607 ret = -ENODEV; 2608 2609 if (!ecc_enable_override) 2610 goto err_enable; 2611 2612 amd64_warn("Forcing ECC on!\n"); 2613 2614 if (!enable_ecc_error_reporting(s, nid, F3)) 2615 goto err_enable; 2616 } 2617 2618 ret = amd64_init_one_instance(pdev); 2619 if (ret < 0) { 2620 amd64_err("Error probing instance: %d\n", nid); 2621 restore_ecc_error_reporting(s, nid, F3); 2622 } 2623 2624 return ret; 2625 2626 err_enable: 2627 kfree(s); 2628 ecc_stngs[nid] = NULL; 2629 2630 err_out: 2631 return ret; 2632 } 2633 2634 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) 2635 { 2636 struct mem_ctl_info *mci; 2637 struct amd64_pvt *pvt; 2638 u8 nid = get_node_id(pdev); 2639 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2640 struct ecc_settings *s = ecc_stngs[nid]; 2641 2642 /* Remove from EDAC CORE tracking list */ 2643 mci = edac_mc_del_mc(&pdev->dev); 2644 if (!mci) 2645 return; 2646 2647 pvt = mci->pvt_info; 2648 2649 restore_ecc_error_reporting(s, nid, F3); 2650 2651 free_mc_sibling_devs(pvt); 2652 2653 /* unregister from EDAC MCE */ 2654 amd_report_gart_errors(false); 2655 amd_unregister_ecc_decoder(amd64_decode_bus_error); 2656 2657 kfree(ecc_stngs[nid]); 2658 ecc_stngs[nid] = NULL; 2659 2660 /* Free the EDAC CORE resources */ 2661 mci->pvt_info = NULL; 2662 mcis[nid] = NULL; 2663 2664 kfree(pvt); 2665 edac_mc_free(mci); 2666 } 2667 2668 /* 2669 * This table is part of the interface for loading drivers for PCI devices. The 2670 * PCI core identifies what devices are on a system during boot, and then 2671 * inquiry this table to see if this driver is for a given device found. 2672 */ 2673 static const struct pci_device_id amd64_pci_table[] __devinitdata = { 2674 { 2675 .vendor = PCI_VENDOR_ID_AMD, 2676 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2677 .subvendor = PCI_ANY_ID, 2678 .subdevice = PCI_ANY_ID, 2679 .class = 0, 2680 .class_mask = 0, 2681 }, 2682 { 2683 .vendor = PCI_VENDOR_ID_AMD, 2684 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2685 .subvendor = PCI_ANY_ID, 2686 .subdevice = PCI_ANY_ID, 2687 .class = 0, 2688 .class_mask = 0, 2689 }, 2690 { 2691 .vendor = PCI_VENDOR_ID_AMD, 2692 .device = PCI_DEVICE_ID_AMD_15H_NB_F2, 2693 .subvendor = PCI_ANY_ID, 2694 .subdevice = PCI_ANY_ID, 2695 .class = 0, 2696 .class_mask = 0, 2697 }, 2698 2699 {0, } 2700 }; 2701 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2702 2703 static struct pci_driver amd64_pci_driver = { 2704 .name = EDAC_MOD_STR, 2705 .probe = amd64_probe_one_instance, 2706 .remove = __devexit_p(amd64_remove_one_instance), 2707 .id_table = amd64_pci_table, 2708 }; 2709 2710 static void setup_pci_device(void) 2711 { 2712 struct mem_ctl_info *mci; 2713 struct amd64_pvt *pvt; 2714 2715 if (amd64_ctl_pci) 2716 return; 2717 2718 mci = mcis[0]; 2719 if (mci) { 2720 2721 pvt = mci->pvt_info; 2722 amd64_ctl_pci = 2723 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 2724 2725 if (!amd64_ctl_pci) { 2726 pr_warning("%s(): Unable to create PCI control\n", 2727 __func__); 2728 2729 pr_warning("%s(): PCI error report via EDAC not set\n", 2730 __func__); 2731 } 2732 } 2733 } 2734 2735 static int __init amd64_edac_init(void) 2736 { 2737 int err = -ENODEV; 2738 2739 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION); 2740 2741 opstate_init(); 2742 2743 if (amd_cache_northbridges() < 0) 2744 goto err_ret; 2745 2746 err = -ENOMEM; 2747 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); 2748 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 2749 if (!(mcis && ecc_stngs)) 2750 goto err_free; 2751 2752 msrs = msrs_alloc(); 2753 if (!msrs) 2754 goto err_free; 2755 2756 err = pci_register_driver(&amd64_pci_driver); 2757 if (err) 2758 goto err_pci; 2759 2760 err = -ENODEV; 2761 if (!atomic_read(&drv_instances)) 2762 goto err_no_instances; 2763 2764 setup_pci_device(); 2765 return 0; 2766 2767 err_no_instances: 2768 pci_unregister_driver(&amd64_pci_driver); 2769 2770 err_pci: 2771 msrs_free(msrs); 2772 msrs = NULL; 2773 2774 err_free: 2775 kfree(mcis); 2776 mcis = NULL; 2777 2778 kfree(ecc_stngs); 2779 ecc_stngs = NULL; 2780 2781 err_ret: 2782 return err; 2783 } 2784 2785 static void __exit amd64_edac_exit(void) 2786 { 2787 if (amd64_ctl_pci) 2788 edac_pci_release_generic_ctl(amd64_ctl_pci); 2789 2790 pci_unregister_driver(&amd64_pci_driver); 2791 2792 kfree(ecc_stngs); 2793 ecc_stngs = NULL; 2794 2795 kfree(mcis); 2796 mcis = NULL; 2797 2798 msrs_free(msrs); 2799 msrs = NULL; 2800 } 2801 2802 module_init(amd64_edac_init); 2803 module_exit(amd64_edac_exit); 2804 2805 MODULE_LICENSE("GPL"); 2806 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 2807 "Dave Peterson, Thayne Harbaugh"); 2808 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 2809 EDAC_AMD64_VERSION); 2810 2811 module_param(edac_op_state, int, 0444); 2812 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2813