xref: /linux/drivers/edac/amd64_edac.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /*
19  * count successfully initialized driver instances for setup_pci_device()
20  */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22 
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26 
27 /*
28  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30  * or higher value'.
31  *
32  *FIXME: Produce a better mapping/linearisation.
33  */
34 struct scrubrate {
35        u32 scrubval;           /* bit pattern for scrub rate */
36        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 	{ 0x01, 1600000000UL},
39 	{ 0x02, 800000000UL},
40 	{ 0x03, 400000000UL},
41 	{ 0x04, 200000000UL},
42 	{ 0x05, 100000000UL},
43 	{ 0x06, 50000000UL},
44 	{ 0x07, 25000000UL},
45 	{ 0x08, 12284069UL},
46 	{ 0x09, 6274509UL},
47 	{ 0x0A, 3121951UL},
48 	{ 0x0B, 1560975UL},
49 	{ 0x0C, 781440UL},
50 	{ 0x0D, 390720UL},
51 	{ 0x0E, 195300UL},
52 	{ 0x0F, 97650UL},
53 	{ 0x10, 48854UL},
54 	{ 0x11, 24427UL},
55 	{ 0x12, 12213UL},
56 	{ 0x13, 6101UL},
57 	{ 0x14, 3051UL},
58 	{ 0x15, 1523UL},
59 	{ 0x16, 761UL},
60 	{ 0x00, 0UL},        /* scrubbing off */
61 };
62 
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 				      u32 *val, const char *func)
65 {
66 	int err = 0;
67 
68 	err = pci_read_config_dword(pdev, offset, val);
69 	if (err)
70 		amd64_warn("%s: error reading F%dx%03x.\n",
71 			   func, PCI_FUNC(pdev->devfn), offset);
72 
73 	return err;
74 }
75 
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 				u32 val, const char *func)
78 {
79 	int err = 0;
80 
81 	err = pci_write_config_dword(pdev, offset, val);
82 	if (err)
83 		amd64_warn("%s: error writing to F%dx%03x.\n",
84 			   func, PCI_FUNC(pdev->devfn), offset);
85 
86 	return err;
87 }
88 
89 /*
90  *
91  * Depending on the family, F2 DCT reads need special handling:
92  *
93  * K8: has a single DCT only
94  *
95  * F10h: each DCT has its own set of regs
96  *	DCT0 -> F2x040..
97  *	DCT1 -> F2x140..
98  *
99  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100  *
101  */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 			       const char *func)
104 {
105 	if (addr >= 0x100)
106 		return -EINVAL;
107 
108 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110 
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 				 const char *func)
113 {
114 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116 
117 /*
118  * Select DCT to which PCI cfg accesses are routed
119  */
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 	u32 reg = 0;
123 
124 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 	reg &= 0xfffffffe;
126 	reg |= dct;
127 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129 
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 				 const char *func)
132 {
133 	u8 dct  = 0;
134 
135 	if (addr >= 0x140 && addr <= 0x1a0) {
136 		dct   = 1;
137 		addr -= 0x100;
138 	}
139 
140 	f15h_select_dct(pvt, dct);
141 
142 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144 
145 /*
146  * Memory scrubber control interface. For K8, memory scrubbing is handled by
147  * hardware and can involve L2 cache, dcache as well as the main memory. With
148  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149  * functionality.
150  *
151  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153  * bytes/sec for the setting.
154  *
155  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156  * other archs, we might not have access to the caches directly.
157  */
158 
159 /*
160  * scan the scrub rate mapping table for a close or matching bandwidth value to
161  * issue. If requested is too big, then use last maximum value found.
162  */
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 	u32 scrubval;
166 	int i;
167 
168 	/*
169 	 * map the configured rate (new_bw) to a value specific to the AMD64
170 	 * memory controller and apply to register. Search for the first
171 	 * bandwidth entry that is greater or equal than the setting requested
172 	 * and program that. If at last entry, turn off DRAM scrubbing.
173 	 */
174 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
175 		/*
176 		 * skip scrub rates which aren't recommended
177 		 * (see F10 BKDG, F3x58)
178 		 */
179 		if (scrubrates[i].scrubval < min_rate)
180 			continue;
181 
182 		if (scrubrates[i].bandwidth <= new_bw)
183 			break;
184 
185 		/*
186 		 * if no suitable bandwidth found, turn off DRAM scrubbing
187 		 * entirely by falling back to the last element in the
188 		 * scrubrates array.
189 		 */
190 	}
191 
192 	scrubval = scrubrates[i].scrubval;
193 
194 	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
195 
196 	if (scrubval)
197 		return scrubrates[i].bandwidth;
198 
199 	return 0;
200 }
201 
202 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
203 {
204 	struct amd64_pvt *pvt = mci->pvt_info;
205 	u32 min_scrubrate = 0x5;
206 
207 	if (boot_cpu_data.x86 == 0xf)
208 		min_scrubrate = 0x0;
209 
210 	/* F15h Erratum #505 */
211 	if (boot_cpu_data.x86 == 0x15)
212 		f15h_select_dct(pvt, 0);
213 
214 	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
215 }
216 
217 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
218 {
219 	struct amd64_pvt *pvt = mci->pvt_info;
220 	u32 scrubval = 0;
221 	int i, retval = -EINVAL;
222 
223 	/* F15h Erratum #505 */
224 	if (boot_cpu_data.x86 == 0x15)
225 		f15h_select_dct(pvt, 0);
226 
227 	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
228 
229 	scrubval = scrubval & 0x001F;
230 
231 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
232 		if (scrubrates[i].scrubval == scrubval) {
233 			retval = scrubrates[i].bandwidth;
234 			break;
235 		}
236 	}
237 	return retval;
238 }
239 
240 /*
241  * returns true if the SysAddr given by sys_addr matches the
242  * DRAM base/limit associated with node_id
243  */
244 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
245 				   unsigned nid)
246 {
247 	u64 addr;
248 
249 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
250 	 * all ones if the most significant implemented address bit is 1.
251 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
252 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 	 * Application Programming.
254 	 */
255 	addr = sys_addr & 0x000000ffffffffffull;
256 
257 	return ((addr >= get_dram_base(pvt, nid)) &&
258 		(addr <= get_dram_limit(pvt, nid)));
259 }
260 
261 /*
262  * Attempt to map a SysAddr to a node. On success, return a pointer to the
263  * mem_ctl_info structure for the node that the SysAddr maps to.
264  *
265  * On failure, return NULL.
266  */
267 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
268 						u64 sys_addr)
269 {
270 	struct amd64_pvt *pvt;
271 	unsigned node_id;
272 	u32 intlv_en, bits;
273 
274 	/*
275 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
276 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 	 */
278 	pvt = mci->pvt_info;
279 
280 	/*
281 	 * The value of this field should be the same for all DRAM Base
282 	 * registers.  Therefore we arbitrarily choose to read it from the
283 	 * register for node 0.
284 	 */
285 	intlv_en = dram_intlv_en(pvt, 0);
286 
287 	if (intlv_en == 0) {
288 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
289 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
290 				goto found;
291 		}
292 		goto err_no_match;
293 	}
294 
295 	if (unlikely((intlv_en != 0x01) &&
296 		     (intlv_en != 0x03) &&
297 		     (intlv_en != 0x07))) {
298 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
299 		return NULL;
300 	}
301 
302 	bits = (((u32) sys_addr) >> 12) & intlv_en;
303 
304 	for (node_id = 0; ; ) {
305 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
306 			break;	/* intlv_sel field matches */
307 
308 		if (++node_id >= DRAM_RANGES)
309 			goto err_no_match;
310 	}
311 
312 	/* sanity test for sys_addr */
313 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
314 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
315 			   "range for node %d with node interleaving enabled.\n",
316 			   __func__, sys_addr, node_id);
317 		return NULL;
318 	}
319 
320 found:
321 	return edac_mc_find((int)node_id);
322 
323 err_no_match:
324 	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
325 		 (unsigned long)sys_addr);
326 
327 	return NULL;
328 }
329 
330 /*
331  * compute the CS base address of the @csrow on the DRAM controller @dct.
332  * For details see F2x[5C:40] in the processor's BKDG
333  */
334 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
335 				 u64 *base, u64 *mask)
336 {
337 	u64 csbase, csmask, base_bits, mask_bits;
338 	u8 addr_shift;
339 
340 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
341 		csbase		= pvt->csels[dct].csbases[csrow];
342 		csmask		= pvt->csels[dct].csmasks[csrow];
343 		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
344 		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
345 		addr_shift	= 4;
346 	} else {
347 		csbase		= pvt->csels[dct].csbases[csrow];
348 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
349 		addr_shift	= 8;
350 
351 		if (boot_cpu_data.x86 == 0x15)
352 			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
353 		else
354 			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
355 	}
356 
357 	*base  = (csbase & base_bits) << addr_shift;
358 
359 	*mask  = ~0ULL;
360 	/* poke holes for the csmask */
361 	*mask &= ~(mask_bits << addr_shift);
362 	/* OR them in */
363 	*mask |= (csmask & mask_bits) << addr_shift;
364 }
365 
366 #define for_each_chip_select(i, dct, pvt) \
367 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
368 
369 #define chip_select_base(i, dct, pvt) \
370 	pvt->csels[dct].csbases[i]
371 
372 #define for_each_chip_select_mask(i, dct, pvt) \
373 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
374 
375 /*
376  * @input_addr is an InputAddr associated with the node given by mci. Return the
377  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
378  */
379 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
380 {
381 	struct amd64_pvt *pvt;
382 	int csrow;
383 	u64 base, mask;
384 
385 	pvt = mci->pvt_info;
386 
387 	for_each_chip_select(csrow, 0, pvt) {
388 		if (!csrow_enabled(csrow, 0, pvt))
389 			continue;
390 
391 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
392 
393 		mask = ~mask;
394 
395 		if ((input_addr & mask) == (base & mask)) {
396 			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
397 				 (unsigned long)input_addr, csrow,
398 				 pvt->mc_node_id);
399 
400 			return csrow;
401 		}
402 	}
403 	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
404 		 (unsigned long)input_addr, pvt->mc_node_id);
405 
406 	return -1;
407 }
408 
409 /*
410  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
411  * for the node represented by mci. Info is passed back in *hole_base,
412  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
413  * info is invalid. Info may be invalid for either of the following reasons:
414  *
415  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
416  *   Address Register does not exist.
417  *
418  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
419  *   indicating that its contents are not valid.
420  *
421  * The values passed back in *hole_base, *hole_offset, and *hole_size are
422  * complete 32-bit values despite the fact that the bitfields in the DHAR
423  * only represent bits 31-24 of the base and offset values.
424  */
425 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
426 			     u64 *hole_offset, u64 *hole_size)
427 {
428 	struct amd64_pvt *pvt = mci->pvt_info;
429 	u64 base;
430 
431 	/* only revE and later have the DRAM Hole Address Register */
432 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
433 		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
434 			 pvt->ext_model, pvt->mc_node_id);
435 		return 1;
436 	}
437 
438 	/* valid for Fam10h and above */
439 	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
440 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
441 		return 1;
442 	}
443 
444 	if (!dhar_valid(pvt)) {
445 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
446 			 pvt->mc_node_id);
447 		return 1;
448 	}
449 
450 	/* This node has Memory Hoisting */
451 
452 	/* +------------------+--------------------+--------------------+-----
453 	 * | memory           | DRAM hole          | relocated          |
454 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
455 	 * |                  |                    | DRAM hole          |
456 	 * |                  |                    | [0x100000000,      |
457 	 * |                  |                    |  (0x100000000+     |
458 	 * |                  |                    |   (0xffffffff-x))] |
459 	 * +------------------+--------------------+--------------------+-----
460 	 *
461 	 * Above is a diagram of physical memory showing the DRAM hole and the
462 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
463 	 * starts at address x (the base address) and extends through address
464 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
465 	 * addresses in the hole so that they start at 0x100000000.
466 	 */
467 
468 	base = dhar_base(pvt);
469 
470 	*hole_base = base;
471 	*hole_size = (0x1ull << 32) - base;
472 
473 	if (boot_cpu_data.x86 > 0xf)
474 		*hole_offset = f10_dhar_offset(pvt);
475 	else
476 		*hole_offset = k8_dhar_offset(pvt);
477 
478 	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
479 		 pvt->mc_node_id, (unsigned long)*hole_base,
480 		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
485 
486 /*
487  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
488  * assumed that sys_addr maps to the node given by mci.
489  *
490  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
491  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
492  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
493  * then it is also involved in translating a SysAddr to a DramAddr. Sections
494  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
495  * These parts of the documentation are unclear. I interpret them as follows:
496  *
497  * When node n receives a SysAddr, it processes the SysAddr as follows:
498  *
499  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
500  *    Limit registers for node n. If the SysAddr is not within the range
501  *    specified by the base and limit values, then node n ignores the Sysaddr
502  *    (since it does not map to node n). Otherwise continue to step 2 below.
503  *
504  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
505  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
506  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
507  *    hole. If not, skip to step 3 below. Else get the value of the
508  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
509  *    offset defined by this value from the SysAddr.
510  *
511  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
512  *    Base register for node n. To obtain the DramAddr, subtract the base
513  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
514  */
515 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
516 {
517 	struct amd64_pvt *pvt = mci->pvt_info;
518 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
519 	int ret = 0;
520 
521 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
522 
523 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
524 				      &hole_size);
525 	if (!ret) {
526 		if ((sys_addr >= (1ull << 32)) &&
527 		    (sys_addr < ((1ull << 32) + hole_size))) {
528 			/* use DHAR to translate SysAddr to DramAddr */
529 			dram_addr = sys_addr - hole_offset;
530 
531 			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
532 				 (unsigned long)sys_addr,
533 				 (unsigned long)dram_addr);
534 
535 			return dram_addr;
536 		}
537 	}
538 
539 	/*
540 	 * Translate the SysAddr to a DramAddr as shown near the start of
541 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
542 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
543 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
544 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
545 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
546 	 * Programmer's Manual Volume 1 Application Programming.
547 	 */
548 	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
549 
550 	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
551 		 (unsigned long)sys_addr, (unsigned long)dram_addr);
552 	return dram_addr;
553 }
554 
555 /*
556  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
557  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
558  * for node interleaving.
559  */
560 static int num_node_interleave_bits(unsigned intlv_en)
561 {
562 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
563 	int n;
564 
565 	BUG_ON(intlv_en > 7);
566 	n = intlv_shift_table[intlv_en];
567 	return n;
568 }
569 
570 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
571 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
572 {
573 	struct amd64_pvt *pvt;
574 	int intlv_shift;
575 	u64 input_addr;
576 
577 	pvt = mci->pvt_info;
578 
579 	/*
580 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
581 	 * concerning translating a DramAddr to an InputAddr.
582 	 */
583 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
584 	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
585 		      (dram_addr & 0xfff);
586 
587 	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
588 		 intlv_shift, (unsigned long)dram_addr,
589 		 (unsigned long)input_addr);
590 
591 	return input_addr;
592 }
593 
594 /*
595  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
596  * assumed that @sys_addr maps to the node given by mci.
597  */
598 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
599 {
600 	u64 input_addr;
601 
602 	input_addr =
603 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
604 
605 	edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
606 		 (unsigned long)sys_addr, (unsigned long)input_addr);
607 
608 	return input_addr;
609 }
610 
611 
612 /*
613  * @input_addr is an InputAddr associated with the node represented by mci.
614  * Translate @input_addr to a DramAddr and return the result.
615  */
616 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
617 {
618 	struct amd64_pvt *pvt;
619 	unsigned node_id, intlv_shift;
620 	u64 bits, dram_addr;
621 	u32 intlv_sel;
622 
623 	/*
624 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
625 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
626 	 * this procedure. When translating from a DramAddr to an InputAddr, the
627 	 * bits used for node interleaving are discarded.  Here we recover these
628 	 * bits from the IntlvSel field of the DRAM Limit register (section
629 	 * 3.4.4.2) for the node that input_addr is associated with.
630 	 */
631 	pvt = mci->pvt_info;
632 	node_id = pvt->mc_node_id;
633 
634 	BUG_ON(node_id > 7);
635 
636 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
637 	if (intlv_shift == 0) {
638 		edac_dbg(1, "    InputAddr 0x%lx translates to DramAddr of same value\n",
639 			 (unsigned long)input_addr);
640 
641 		return input_addr;
642 	}
643 
644 	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
645 		(input_addr & 0xfff);
646 
647 	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
648 	dram_addr = bits + (intlv_sel << 12);
649 
650 	edac_dbg(1, "InputAddr 0x%lx translates to DramAddr 0x%lx (%d node interleave bits)\n",
651 		 (unsigned long)input_addr,
652 		 (unsigned long)dram_addr, intlv_shift);
653 
654 	return dram_addr;
655 }
656 
657 /*
658  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
659  * @dram_addr to a SysAddr.
660  */
661 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
662 {
663 	struct amd64_pvt *pvt = mci->pvt_info;
664 	u64 hole_base, hole_offset, hole_size, base, sys_addr;
665 	int ret = 0;
666 
667 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
668 				      &hole_size);
669 	if (!ret) {
670 		if ((dram_addr >= hole_base) &&
671 		    (dram_addr < (hole_base + hole_size))) {
672 			sys_addr = dram_addr + hole_offset;
673 
674 			edac_dbg(1, "using DHAR to translate DramAddr 0x%lx to SysAddr 0x%lx\n",
675 				 (unsigned long)dram_addr,
676 				 (unsigned long)sys_addr);
677 
678 			return sys_addr;
679 		}
680 	}
681 
682 	base     = get_dram_base(pvt, pvt->mc_node_id);
683 	sys_addr = dram_addr + base;
684 
685 	/*
686 	 * The sys_addr we have computed up to this point is a 40-bit value
687 	 * because the k8 deals with 40-bit values.  However, the value we are
688 	 * supposed to return is a full 64-bit physical address.  The AMD
689 	 * x86-64 architecture specifies that the most significant implemented
690 	 * address bit through bit 63 of a physical address must be either all
691 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
692 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
693 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
694 	 * Programming.
695 	 */
696 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
697 
698 	edac_dbg(1, "    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
699 		 pvt->mc_node_id, (unsigned long)dram_addr,
700 		 (unsigned long)sys_addr);
701 
702 	return sys_addr;
703 }
704 
705 /*
706  * @input_addr is an InputAddr associated with the node given by mci. Translate
707  * @input_addr to a SysAddr.
708  */
709 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
710 					 u64 input_addr)
711 {
712 	return dram_addr_to_sys_addr(mci,
713 				     input_addr_to_dram_addr(mci, input_addr));
714 }
715 
716 /* Map the Error address to a PAGE and PAGE OFFSET. */
717 static inline void error_address_to_page_and_offset(u64 error_address,
718 						    u32 *page, u32 *offset)
719 {
720 	*page = (u32) (error_address >> PAGE_SHIFT);
721 	*offset = ((u32) error_address) & ~PAGE_MASK;
722 }
723 
724 /*
725  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
726  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
727  * of a node that detected an ECC memory error.  mci represents the node that
728  * the error address maps to (possibly different from the node that detected
729  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
730  * error.
731  */
732 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
733 {
734 	int csrow;
735 
736 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
737 
738 	if (csrow == -1)
739 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
740 				  "address 0x%lx\n", (unsigned long)sys_addr);
741 	return csrow;
742 }
743 
744 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
745 
746 /*
747  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
748  * are ECC capable.
749  */
750 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
751 {
752 	u8 bit;
753 	unsigned long edac_cap = EDAC_FLAG_NONE;
754 
755 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
756 		? 19
757 		: 17;
758 
759 	if (pvt->dclr0 & BIT(bit))
760 		edac_cap = EDAC_FLAG_SECDED;
761 
762 	return edac_cap;
763 }
764 
765 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
766 
767 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
768 {
769 	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
770 
771 	edac_dbg(1, "  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
772 		 (dclr & BIT(16)) ?  "un" : "",
773 		 (dclr & BIT(19)) ? "yes" : "no");
774 
775 	edac_dbg(1, "  PAR/ERR parity: %s\n",
776 		 (dclr & BIT(8)) ?  "enabled" : "disabled");
777 
778 	if (boot_cpu_data.x86 == 0x10)
779 		edac_dbg(1, "  DCT 128bit mode width: %s\n",
780 			 (dclr & BIT(11)) ?  "128b" : "64b");
781 
782 	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
783 		 (dclr & BIT(12)) ?  "yes" : "no",
784 		 (dclr & BIT(13)) ?  "yes" : "no",
785 		 (dclr & BIT(14)) ?  "yes" : "no",
786 		 (dclr & BIT(15)) ?  "yes" : "no");
787 }
788 
789 /* Display and decode various NB registers for debug purposes. */
790 static void dump_misc_regs(struct amd64_pvt *pvt)
791 {
792 	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
793 
794 	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
795 		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
796 
797 	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
798 		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
799 		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
800 
801 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
802 
803 	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
804 
805 	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
806 		 pvt->dhar, dhar_base(pvt),
807 		 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
808 		 : f10_dhar_offset(pvt));
809 
810 	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
811 
812 	amd64_debug_display_dimm_sizes(pvt, 0);
813 
814 	/* everything below this point is Fam10h and above */
815 	if (boot_cpu_data.x86 == 0xf)
816 		return;
817 
818 	amd64_debug_display_dimm_sizes(pvt, 1);
819 
820 	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
821 
822 	/* Only if NOT ganged does dclr1 have valid info */
823 	if (!dct_ganging_enabled(pvt))
824 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
825 }
826 
827 /*
828  * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
829  */
830 static void prep_chip_selects(struct amd64_pvt *pvt)
831 {
832 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
833 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
834 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
835 	} else {
836 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
837 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
838 	}
839 }
840 
841 /*
842  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
843  */
844 static void read_dct_base_mask(struct amd64_pvt *pvt)
845 {
846 	int cs;
847 
848 	prep_chip_selects(pvt);
849 
850 	for_each_chip_select(cs, 0, pvt) {
851 		int reg0   = DCSB0 + (cs * 4);
852 		int reg1   = DCSB1 + (cs * 4);
853 		u32 *base0 = &pvt->csels[0].csbases[cs];
854 		u32 *base1 = &pvt->csels[1].csbases[cs];
855 
856 		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
857 			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
858 				 cs, *base0, reg0);
859 
860 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
861 			continue;
862 
863 		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
864 			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
865 				 cs, *base1, reg1);
866 	}
867 
868 	for_each_chip_select_mask(cs, 0, pvt) {
869 		int reg0   = DCSM0 + (cs * 4);
870 		int reg1   = DCSM1 + (cs * 4);
871 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
872 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
873 
874 		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
875 			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
876 				 cs, *mask0, reg0);
877 
878 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
879 			continue;
880 
881 		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
882 			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
883 				 cs, *mask1, reg1);
884 	}
885 }
886 
887 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
888 {
889 	enum mem_type type;
890 
891 	/* F15h supports only DDR3 */
892 	if (boot_cpu_data.x86 >= 0x15)
893 		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
894 	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
895 		if (pvt->dchr0 & DDR3_MODE)
896 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
897 		else
898 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
899 	} else {
900 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
901 	}
902 
903 	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
904 
905 	return type;
906 }
907 
908 /* Get the number of DCT channels the memory controller is using. */
909 static int k8_early_channel_count(struct amd64_pvt *pvt)
910 {
911 	int flag;
912 
913 	if (pvt->ext_model >= K8_REV_F)
914 		/* RevF (NPT) and later */
915 		flag = pvt->dclr0 & WIDTH_128;
916 	else
917 		/* RevE and earlier */
918 		flag = pvt->dclr0 & REVE_WIDTH_128;
919 
920 	/* not used */
921 	pvt->dclr1 = 0;
922 
923 	return (flag) ? 2 : 1;
924 }
925 
926 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
927 static u64 get_error_address(struct mce *m)
928 {
929 	struct cpuinfo_x86 *c = &boot_cpu_data;
930 	u64 addr;
931 	u8 start_bit = 1;
932 	u8 end_bit   = 47;
933 
934 	if (c->x86 == 0xf) {
935 		start_bit = 3;
936 		end_bit   = 39;
937 	}
938 
939 	addr = m->addr & GENMASK(start_bit, end_bit);
940 
941 	/*
942 	 * Erratum 637 workaround
943 	 */
944 	if (c->x86 == 0x15) {
945 		struct amd64_pvt *pvt;
946 		u64 cc6_base, tmp_addr;
947 		u32 tmp;
948 		u8 mce_nid, intlv_en;
949 
950 		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
951 			return addr;
952 
953 		mce_nid	= amd_get_nb_id(m->extcpu);
954 		pvt	= mcis[mce_nid]->pvt_info;
955 
956 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
957 		intlv_en = tmp >> 21 & 0x7;
958 
959 		/* add [47:27] + 3 trailing bits */
960 		cc6_base  = (tmp & GENMASK(0, 20)) << 3;
961 
962 		/* reverse and add DramIntlvEn */
963 		cc6_base |= intlv_en ^ 0x7;
964 
965 		/* pin at [47:24] */
966 		cc6_base <<= 24;
967 
968 		if (!intlv_en)
969 			return cc6_base | (addr & GENMASK(0, 23));
970 
971 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
972 
973 							/* faster log2 */
974 		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
975 
976 		/* OR DramIntlvSel into bits [14:12] */
977 		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
978 
979 		/* add remaining [11:0] bits from original MC4_ADDR */
980 		tmp_addr |= addr & GENMASK(0, 11);
981 
982 		return cc6_base | tmp_addr;
983 	}
984 
985 	return addr;
986 }
987 
988 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
989 {
990 	struct cpuinfo_x86 *c = &boot_cpu_data;
991 	int off = range << 3;
992 
993 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
994 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
995 
996 	if (c->x86 == 0xf)
997 		return;
998 
999 	if (!dram_rw(pvt, range))
1000 		return;
1001 
1002 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
1003 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1004 
1005 	/* Factor in CC6 save area by reading dst node's limit reg */
1006 	if (c->x86 == 0x15) {
1007 		struct pci_dev *f1 = NULL;
1008 		u8 nid = dram_dst_node(pvt, range);
1009 		u32 llim;
1010 
1011 		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1012 		if (WARN_ON(!f1))
1013 			return;
1014 
1015 		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1016 
1017 		pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1018 
1019 					    /* {[39:27],111b} */
1020 		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1021 
1022 		pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1023 
1024 					    /* [47:40] */
1025 		pvt->ranges[range].lim.hi |= llim >> 13;
1026 
1027 		pci_dev_put(f1);
1028 	}
1029 }
1030 
1031 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1032 				    u16 syndrome)
1033 {
1034 	struct mem_ctl_info *src_mci;
1035 	struct amd64_pvt *pvt = mci->pvt_info;
1036 	int channel, csrow;
1037 	u32 page, offset;
1038 
1039 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1040 
1041 	/*
1042 	 * Find out which node the error address belongs to. This may be
1043 	 * different from the node that detected the error.
1044 	 */
1045 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1046 	if (!src_mci) {
1047 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1048 			     (unsigned long)sys_addr);
1049 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1050 				     page, offset, syndrome,
1051 				     -1, -1, -1,
1052 				     "failed to map error addr to a node",
1053 				     "");
1054 		return;
1055 	}
1056 
1057 	/* Now map the sys_addr to a CSROW */
1058 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1059 	if (csrow < 0) {
1060 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1061 				     page, offset, syndrome,
1062 				     -1, -1, -1,
1063 				     "failed to map error addr to a csrow",
1064 				     "");
1065 		return;
1066 	}
1067 
1068 	/* CHIPKILL enabled */
1069 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1070 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1071 		if (channel < 0) {
1072 			/*
1073 			 * Syndrome didn't map, so we don't know which of the
1074 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1075 			 * as suspect.
1076 			 */
1077 			amd64_mc_warn(src_mci, "unknown syndrome 0x%04x - "
1078 				      "possible error reporting race\n",
1079 				      syndrome);
1080 			edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1081 					     page, offset, syndrome,
1082 					     csrow, -1, -1,
1083 					     "unknown syndrome - possible error reporting race",
1084 					     "");
1085 			return;
1086 		}
1087 	} else {
1088 		/*
1089 		 * non-chipkill ecc mode
1090 		 *
1091 		 * The k8 documentation is unclear about how to determine the
1092 		 * channel number when using non-chipkill memory.  This method
1093 		 * was obtained from email communication with someone at AMD.
1094 		 * (Wish the email was placed in this comment - norsk)
1095 		 */
1096 		channel = ((sys_addr & BIT(3)) != 0);
1097 	}
1098 
1099 	edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, src_mci, 1,
1100 			     page, offset, syndrome,
1101 			     csrow, channel, -1,
1102 			     "", "");
1103 }
1104 
1105 static int ddr2_cs_size(unsigned i, bool dct_width)
1106 {
1107 	unsigned shift = 0;
1108 
1109 	if (i <= 2)
1110 		shift = i;
1111 	else if (!(i & 0x1))
1112 		shift = i >> 1;
1113 	else
1114 		shift = (i + 1) >> 1;
1115 
1116 	return 128 << (shift + !!dct_width);
1117 }
1118 
1119 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1120 				  unsigned cs_mode)
1121 {
1122 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1123 
1124 	if (pvt->ext_model >= K8_REV_F) {
1125 		WARN_ON(cs_mode > 11);
1126 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1127 	}
1128 	else if (pvt->ext_model >= K8_REV_D) {
1129 		unsigned diff;
1130 		WARN_ON(cs_mode > 10);
1131 
1132 		/*
1133 		 * the below calculation, besides trying to win an obfuscated C
1134 		 * contest, maps cs_mode values to DIMM chip select sizes. The
1135 		 * mappings are:
1136 		 *
1137 		 * cs_mode	CS size (mb)
1138 		 * =======	============
1139 		 * 0		32
1140 		 * 1		64
1141 		 * 2		128
1142 		 * 3		128
1143 		 * 4		256
1144 		 * 5		512
1145 		 * 6		256
1146 		 * 7		512
1147 		 * 8		1024
1148 		 * 9		1024
1149 		 * 10		2048
1150 		 *
1151 		 * Basically, it calculates a value with which to shift the
1152 		 * smallest CS size of 32MB.
1153 		 *
1154 		 * ddr[23]_cs_size have a similar purpose.
1155 		 */
1156 		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1157 
1158 		return 32 << (cs_mode - diff);
1159 	}
1160 	else {
1161 		WARN_ON(cs_mode > 6);
1162 		return 32 << cs_mode;
1163 	}
1164 }
1165 
1166 /*
1167  * Get the number of DCT channels in use.
1168  *
1169  * Return:
1170  *	number of Memory Channels in operation
1171  * Pass back:
1172  *	contents of the DCL0_LOW register
1173  */
1174 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1175 {
1176 	int i, j, channels = 0;
1177 
1178 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1179 	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1180 		return 2;
1181 
1182 	/*
1183 	 * Need to check if in unganged mode: In such, there are 2 channels,
1184 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1185 	 * bit will be OFF.
1186 	 *
1187 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1188 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1189 	 */
1190 	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1191 
1192 	/*
1193 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1194 	 * is more than just one DIMM present in unganged mode. Need to check
1195 	 * both controllers since DIMMs can be placed in either one.
1196 	 */
1197 	for (i = 0; i < 2; i++) {
1198 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1199 
1200 		for (j = 0; j < 4; j++) {
1201 			if (DBAM_DIMM(j, dbam) > 0) {
1202 				channels++;
1203 				break;
1204 			}
1205 		}
1206 	}
1207 
1208 	if (channels > 2)
1209 		channels = 2;
1210 
1211 	amd64_info("MCT channel count: %d\n", channels);
1212 
1213 	return channels;
1214 }
1215 
1216 static int ddr3_cs_size(unsigned i, bool dct_width)
1217 {
1218 	unsigned shift = 0;
1219 	int cs_size = 0;
1220 
1221 	if (i == 0 || i == 3 || i == 4)
1222 		cs_size = -1;
1223 	else if (i <= 2)
1224 		shift = i;
1225 	else if (i == 12)
1226 		shift = 7;
1227 	else if (!(i & 0x1))
1228 		shift = i >> 1;
1229 	else
1230 		shift = (i + 1) >> 1;
1231 
1232 	if (cs_size != -1)
1233 		cs_size = (128 * (1 << !!dct_width)) << shift;
1234 
1235 	return cs_size;
1236 }
1237 
1238 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1239 				   unsigned cs_mode)
1240 {
1241 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1242 
1243 	WARN_ON(cs_mode > 11);
1244 
1245 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1246 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1247 	else
1248 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1249 }
1250 
1251 /*
1252  * F15h supports only 64bit DCT interfaces
1253  */
1254 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1255 				   unsigned cs_mode)
1256 {
1257 	WARN_ON(cs_mode > 12);
1258 
1259 	return ddr3_cs_size(cs_mode, false);
1260 }
1261 
1262 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1263 {
1264 
1265 	if (boot_cpu_data.x86 == 0xf)
1266 		return;
1267 
1268 	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1269 		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1270 			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1271 
1272 		edac_dbg(0, "  DCTs operate in %s mode\n",
1273 			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1274 
1275 		if (!dct_ganging_enabled(pvt))
1276 			edac_dbg(0, "  Address range split per DCT: %s\n",
1277 				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1278 
1279 		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1280 			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1281 			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1282 
1283 		edac_dbg(0, "  channel interleave: %s, "
1284 			 "interleave bits selector: 0x%x\n",
1285 			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1286 			 dct_sel_interleave_addr(pvt));
1287 	}
1288 
1289 	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1290 }
1291 
1292 /*
1293  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1294  * Interleaving Modes.
1295  */
1296 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1297 				bool hi_range_sel, u8 intlv_en)
1298 {
1299 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1300 
1301 	if (dct_ganging_enabled(pvt))
1302 		return 0;
1303 
1304 	if (hi_range_sel)
1305 		return dct_sel_high;
1306 
1307 	/*
1308 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1309 	 */
1310 	if (dct_interleave_enabled(pvt)) {
1311 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1312 
1313 		/* return DCT select function: 0=DCT0, 1=DCT1 */
1314 		if (!intlv_addr)
1315 			return sys_addr >> 6 & 1;
1316 
1317 		if (intlv_addr & 0x2) {
1318 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1319 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1320 
1321 			return ((sys_addr >> shift) & 1) ^ temp;
1322 		}
1323 
1324 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1325 	}
1326 
1327 	if (dct_high_range_enabled(pvt))
1328 		return ~dct_sel_high & 1;
1329 
1330 	return 0;
1331 }
1332 
1333 /* Convert the sys_addr to the normalized DCT address */
1334 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1335 				 u64 sys_addr, bool hi_rng,
1336 				 u32 dct_sel_base_addr)
1337 {
1338 	u64 chan_off;
1339 	u64 dram_base		= get_dram_base(pvt, range);
1340 	u64 hole_off		= f10_dhar_offset(pvt);
1341 	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1342 
1343 	if (hi_rng) {
1344 		/*
1345 		 * if
1346 		 * base address of high range is below 4Gb
1347 		 * (bits [47:27] at [31:11])
1348 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
1349 		 * sys_addr > 4Gb
1350 		 *
1351 		 *	remove hole offset from sys_addr
1352 		 * else
1353 		 *	remove high range offset from sys_addr
1354 		 */
1355 		if ((!(dct_sel_base_addr >> 16) ||
1356 		     dct_sel_base_addr < dhar_base(pvt)) &&
1357 		    dhar_valid(pvt) &&
1358 		    (sys_addr >= BIT_64(32)))
1359 			chan_off = hole_off;
1360 		else
1361 			chan_off = dct_sel_base_off;
1362 	} else {
1363 		/*
1364 		 * if
1365 		 * we have a valid hole		&&
1366 		 * sys_addr > 4Gb
1367 		 *
1368 		 *	remove hole
1369 		 * else
1370 		 *	remove dram base to normalize to DCT address
1371 		 */
1372 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1373 			chan_off = hole_off;
1374 		else
1375 			chan_off = dram_base;
1376 	}
1377 
1378 	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1379 }
1380 
1381 /*
1382  * checks if the csrow passed in is marked as SPARED, if so returns the new
1383  * spare row
1384  */
1385 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1386 {
1387 	int tmp_cs;
1388 
1389 	if (online_spare_swap_done(pvt, dct) &&
1390 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
1391 
1392 		for_each_chip_select(tmp_cs, dct, pvt) {
1393 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1394 				csrow = tmp_cs;
1395 				break;
1396 			}
1397 		}
1398 	}
1399 	return csrow;
1400 }
1401 
1402 /*
1403  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1404  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1405  *
1406  * Return:
1407  *	-EINVAL:  NOT FOUND
1408  *	0..csrow = Chip-Select Row
1409  */
1410 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1411 {
1412 	struct mem_ctl_info *mci;
1413 	struct amd64_pvt *pvt;
1414 	u64 cs_base, cs_mask;
1415 	int cs_found = -EINVAL;
1416 	int csrow;
1417 
1418 	mci = mcis[nid];
1419 	if (!mci)
1420 		return cs_found;
1421 
1422 	pvt = mci->pvt_info;
1423 
1424 	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1425 
1426 	for_each_chip_select(csrow, dct, pvt) {
1427 		if (!csrow_enabled(csrow, dct, pvt))
1428 			continue;
1429 
1430 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1431 
1432 		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1433 			 csrow, cs_base, cs_mask);
1434 
1435 		cs_mask = ~cs_mask;
1436 
1437 		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1438 			 (in_addr & cs_mask), (cs_base & cs_mask));
1439 
1440 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1441 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1442 
1443 			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1444 			break;
1445 		}
1446 	}
1447 	return cs_found;
1448 }
1449 
1450 /*
1451  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1452  * swapped with a region located at the bottom of memory so that the GPU can use
1453  * the interleaved region and thus two channels.
1454  */
1455 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1456 {
1457 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1458 
1459 	if (boot_cpu_data.x86 == 0x10) {
1460 		/* only revC3 and revE have that feature */
1461 		if (boot_cpu_data.x86_model < 4 ||
1462 		    (boot_cpu_data.x86_model < 0xa &&
1463 		     boot_cpu_data.x86_mask < 3))
1464 			return sys_addr;
1465 	}
1466 
1467 	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1468 
1469 	if (!(swap_reg & 0x1))
1470 		return sys_addr;
1471 
1472 	swap_base	= (swap_reg >> 3) & 0x7f;
1473 	swap_limit	= (swap_reg >> 11) & 0x7f;
1474 	rgn_size	= (swap_reg >> 20) & 0x7f;
1475 	tmp_addr	= sys_addr >> 27;
1476 
1477 	if (!(sys_addr >> 34) &&
1478 	    (((tmp_addr >= swap_base) &&
1479 	     (tmp_addr <= swap_limit)) ||
1480 	     (tmp_addr < rgn_size)))
1481 		return sys_addr ^ (u64)swap_base << 27;
1482 
1483 	return sys_addr;
1484 }
1485 
1486 /* For a given @dram_range, check if @sys_addr falls within it. */
1487 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1488 				  u64 sys_addr, int *nid, int *chan_sel)
1489 {
1490 	int cs_found = -EINVAL;
1491 	u64 chan_addr;
1492 	u32 dct_sel_base;
1493 	u8 channel;
1494 	bool high_range = false;
1495 
1496 	u8 node_id    = dram_dst_node(pvt, range);
1497 	u8 intlv_en   = dram_intlv_en(pvt, range);
1498 	u32 intlv_sel = dram_intlv_sel(pvt, range);
1499 
1500 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1501 		 range, sys_addr, get_dram_limit(pvt, range));
1502 
1503 	if (dhar_valid(pvt) &&
1504 	    dhar_base(pvt) <= sys_addr &&
1505 	    sys_addr < BIT_64(32)) {
1506 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1507 			    sys_addr);
1508 		return -EINVAL;
1509 	}
1510 
1511 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1512 		return -EINVAL;
1513 
1514 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1515 
1516 	dct_sel_base = dct_sel_baseaddr(pvt);
1517 
1518 	/*
1519 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1520 	 * select between DCT0 and DCT1.
1521 	 */
1522 	if (dct_high_range_enabled(pvt) &&
1523 	   !dct_ganging_enabled(pvt) &&
1524 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1525 		high_range = true;
1526 
1527 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1528 
1529 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1530 					  high_range, dct_sel_base);
1531 
1532 	/* Remove node interleaving, see F1x120 */
1533 	if (intlv_en)
1534 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1535 			    (chan_addr & 0xfff);
1536 
1537 	/* remove channel interleave */
1538 	if (dct_interleave_enabled(pvt) &&
1539 	   !dct_high_range_enabled(pvt) &&
1540 	   !dct_ganging_enabled(pvt)) {
1541 
1542 		if (dct_sel_interleave_addr(pvt) != 1) {
1543 			if (dct_sel_interleave_addr(pvt) == 0x3)
1544 				/* hash 9 */
1545 				chan_addr = ((chan_addr >> 10) << 9) |
1546 					     (chan_addr & 0x1ff);
1547 			else
1548 				/* A[6] or hash 6 */
1549 				chan_addr = ((chan_addr >> 7) << 6) |
1550 					     (chan_addr & 0x3f);
1551 		} else
1552 			/* A[12] */
1553 			chan_addr = ((chan_addr >> 13) << 12) |
1554 				     (chan_addr & 0xfff);
1555 	}
1556 
1557 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1558 
1559 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1560 
1561 	if (cs_found >= 0) {
1562 		*nid = node_id;
1563 		*chan_sel = channel;
1564 	}
1565 	return cs_found;
1566 }
1567 
1568 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1569 				       int *node, int *chan_sel)
1570 {
1571 	int cs_found = -EINVAL;
1572 	unsigned range;
1573 
1574 	for (range = 0; range < DRAM_RANGES; range++) {
1575 
1576 		if (!dram_rw(pvt, range))
1577 			continue;
1578 
1579 		if ((get_dram_base(pvt, range)  <= sys_addr) &&
1580 		    (get_dram_limit(pvt, range) >= sys_addr)) {
1581 
1582 			cs_found = f1x_match_to_this_node(pvt, range,
1583 							  sys_addr, node,
1584 							  chan_sel);
1585 			if (cs_found >= 0)
1586 				break;
1587 		}
1588 	}
1589 	return cs_found;
1590 }
1591 
1592 /*
1593  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1594  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1595  *
1596  * The @sys_addr is usually an error address received from the hardware
1597  * (MCX_ADDR).
1598  */
1599 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1600 				     u16 syndrome)
1601 {
1602 	struct amd64_pvt *pvt = mci->pvt_info;
1603 	u32 page, offset;
1604 	int nid, csrow, chan = 0;
1605 
1606 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1607 
1608 	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1609 
1610 	if (csrow < 0) {
1611 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1612 				     page, offset, syndrome,
1613 				     -1, -1, -1,
1614 				     "failed to map error addr to a csrow",
1615 				     "");
1616 		return;
1617 	}
1618 
1619 	/*
1620 	 * We need the syndromes for channel detection only when we're
1621 	 * ganged. Otherwise @chan should already contain the channel at
1622 	 * this point.
1623 	 */
1624 	if (dct_ganging_enabled(pvt))
1625 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1626 
1627 	edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1628 			     page, offset, syndrome,
1629 			     csrow, chan, -1,
1630 			     "", "");
1631 }
1632 
1633 /*
1634  * debug routine to display the memory sizes of all logical DIMMs and its
1635  * CSROWs
1636  */
1637 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1638 {
1639 	int dimm, size0, size1, factor = 0;
1640 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1641 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1642 
1643 	if (boot_cpu_data.x86 == 0xf) {
1644 		if (pvt->dclr0 & WIDTH_128)
1645 			factor = 1;
1646 
1647 		/* K8 families < revF not supported yet */
1648 	       if (pvt->ext_model < K8_REV_F)
1649 			return;
1650 	       else
1651 		       WARN_ON(ctrl != 0);
1652 	}
1653 
1654 	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1655 	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1656 						   : pvt->csels[0].csbases;
1657 
1658 	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1659 		 ctrl, dbam);
1660 
1661 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1662 
1663 	/* Dump memory sizes for DIMM and its CSROWs */
1664 	for (dimm = 0; dimm < 4; dimm++) {
1665 
1666 		size0 = 0;
1667 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1668 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1669 						     DBAM_DIMM(dimm, dbam));
1670 
1671 		size1 = 0;
1672 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1673 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1674 						     DBAM_DIMM(dimm, dbam));
1675 
1676 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1677 				dimm * 2,     size0 << factor,
1678 				dimm * 2 + 1, size1 << factor);
1679 	}
1680 }
1681 
1682 static struct amd64_family_type amd64_family_types[] = {
1683 	[K8_CPUS] = {
1684 		.ctl_name = "K8",
1685 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1686 		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1687 		.ops = {
1688 			.early_channel_count	= k8_early_channel_count,
1689 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1690 			.dbam_to_cs		= k8_dbam_to_chip_select,
1691 			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1692 		}
1693 	},
1694 	[F10_CPUS] = {
1695 		.ctl_name = "F10h",
1696 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1697 		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1698 		.ops = {
1699 			.early_channel_count	= f1x_early_channel_count,
1700 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1701 			.dbam_to_cs		= f10_dbam_to_chip_select,
1702 			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
1703 		}
1704 	},
1705 	[F15_CPUS] = {
1706 		.ctl_name = "F15h",
1707 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1708 		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1709 		.ops = {
1710 			.early_channel_count	= f1x_early_channel_count,
1711 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1712 			.dbam_to_cs		= f15_dbam_to_chip_select,
1713 			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1714 		}
1715 	},
1716 };
1717 
1718 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1719 						unsigned int device,
1720 						struct pci_dev *related)
1721 {
1722 	struct pci_dev *dev = NULL;
1723 
1724 	dev = pci_get_device(vendor, device, dev);
1725 	while (dev) {
1726 		if ((dev->bus->number == related->bus->number) &&
1727 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1728 			break;
1729 		dev = pci_get_device(vendor, device, dev);
1730 	}
1731 
1732 	return dev;
1733 }
1734 
1735 /*
1736  * These are tables of eigenvectors (one per line) which can be used for the
1737  * construction of the syndrome tables. The modified syndrome search algorithm
1738  * uses those to find the symbol in error and thus the DIMM.
1739  *
1740  * Algorithm courtesy of Ross LaFetra from AMD.
1741  */
1742 static u16 x4_vectors[] = {
1743 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1744 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1745 	0x0001, 0x0002, 0x0004, 0x0008,
1746 	0x1013, 0x3032, 0x4044, 0x8088,
1747 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1748 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1749 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1750 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1751 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1752 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1753 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1754 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1755 	0x2b87, 0x164e, 0x642c, 0xdc18,
1756 	0x40b9, 0x80de, 0x1094, 0x20e8,
1757 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1758 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1759 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1760 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1761 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1762 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1763 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1764 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1765 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1766 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1767 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1768 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1769 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1770 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1771 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1772 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1773 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1774 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1775 	0x4807, 0xc40e, 0x130c, 0x3208,
1776 	0x1905, 0x2e0a, 0x5804, 0xac08,
1777 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1778 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1779 };
1780 
1781 static u16 x8_vectors[] = {
1782 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1783 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1784 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1785 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1786 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1787 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1788 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1789 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1790 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1791 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1792 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1793 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1794 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1795 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1796 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1797 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1798 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1799 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1800 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1801 };
1802 
1803 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1804 			   unsigned v_dim)
1805 {
1806 	unsigned int i, err_sym;
1807 
1808 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1809 		u16 s = syndrome;
1810 		unsigned v_idx =  err_sym * v_dim;
1811 		unsigned v_end = (err_sym + 1) * v_dim;
1812 
1813 		/* walk over all 16 bits of the syndrome */
1814 		for (i = 1; i < (1U << 16); i <<= 1) {
1815 
1816 			/* if bit is set in that eigenvector... */
1817 			if (v_idx < v_end && vectors[v_idx] & i) {
1818 				u16 ev_comp = vectors[v_idx++];
1819 
1820 				/* ... and bit set in the modified syndrome, */
1821 				if (s & i) {
1822 					/* remove it. */
1823 					s ^= ev_comp;
1824 
1825 					if (!s)
1826 						return err_sym;
1827 				}
1828 
1829 			} else if (s & i)
1830 				/* can't get to zero, move to next symbol */
1831 				break;
1832 		}
1833 	}
1834 
1835 	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1836 	return -1;
1837 }
1838 
1839 static int map_err_sym_to_channel(int err_sym, int sym_size)
1840 {
1841 	if (sym_size == 4)
1842 		switch (err_sym) {
1843 		case 0x20:
1844 		case 0x21:
1845 			return 0;
1846 			break;
1847 		case 0x22:
1848 		case 0x23:
1849 			return 1;
1850 			break;
1851 		default:
1852 			return err_sym >> 4;
1853 			break;
1854 		}
1855 	/* x8 symbols */
1856 	else
1857 		switch (err_sym) {
1858 		/* imaginary bits not in a DIMM */
1859 		case 0x10:
1860 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1861 					  err_sym);
1862 			return -1;
1863 			break;
1864 
1865 		case 0x11:
1866 			return 0;
1867 			break;
1868 		case 0x12:
1869 			return 1;
1870 			break;
1871 		default:
1872 			return err_sym >> 3;
1873 			break;
1874 		}
1875 	return -1;
1876 }
1877 
1878 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1879 {
1880 	struct amd64_pvt *pvt = mci->pvt_info;
1881 	int err_sym = -1;
1882 
1883 	if (pvt->ecc_sym_sz == 8)
1884 		err_sym = decode_syndrome(syndrome, x8_vectors,
1885 					  ARRAY_SIZE(x8_vectors),
1886 					  pvt->ecc_sym_sz);
1887 	else if (pvt->ecc_sym_sz == 4)
1888 		err_sym = decode_syndrome(syndrome, x4_vectors,
1889 					  ARRAY_SIZE(x4_vectors),
1890 					  pvt->ecc_sym_sz);
1891 	else {
1892 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1893 		return err_sym;
1894 	}
1895 
1896 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1897 }
1898 
1899 /*
1900  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1901  * ADDRESS and process.
1902  */
1903 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1904 {
1905 	struct amd64_pvt *pvt = mci->pvt_info;
1906 	u64 sys_addr;
1907 	u16 syndrome;
1908 
1909 	/* Ensure that the Error Address is VALID */
1910 	if (!(m->status & MCI_STATUS_ADDRV)) {
1911 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1912 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
1913 				     0, 0, 0,
1914 				     -1, -1, -1,
1915 				     "HW has no ERROR_ADDRESS available",
1916 				     "");
1917 		return;
1918 	}
1919 
1920 	sys_addr = get_error_address(m);
1921 	syndrome = extract_syndrome(m->status);
1922 
1923 	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1924 
1925 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1926 }
1927 
1928 /* Handle any Un-correctable Errors (UEs) */
1929 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1930 {
1931 	struct mem_ctl_info *log_mci, *src_mci = NULL;
1932 	int csrow;
1933 	u64 sys_addr;
1934 	u32 page, offset;
1935 
1936 	log_mci = mci;
1937 
1938 	if (!(m->status & MCI_STATUS_ADDRV)) {
1939 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1940 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
1941 				     0, 0, 0,
1942 				     -1, -1, -1,
1943 				     "HW has no ERROR_ADDRESS available",
1944 				     "");
1945 		return;
1946 	}
1947 
1948 	sys_addr = get_error_address(m);
1949 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1950 
1951 	/*
1952 	 * Find out which node the error address belongs to. This may be
1953 	 * different from the node that detected the error.
1954 	 */
1955 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1956 	if (!src_mci) {
1957 		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1958 				  (unsigned long)sys_addr);
1959 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
1960 				     page, offset, 0,
1961 				     -1, -1, -1,
1962 				     "ERROR ADDRESS NOT mapped to a MC",
1963 				     "");
1964 		return;
1965 	}
1966 
1967 	log_mci = src_mci;
1968 
1969 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1970 	if (csrow < 0) {
1971 		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1972 				  (unsigned long)sys_addr);
1973 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
1974 				     page, offset, 0,
1975 				     -1, -1, -1,
1976 				     "ERROR ADDRESS NOT mapped to CS",
1977 				     "");
1978 	} else {
1979 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
1980 				     page, offset, 0,
1981 				     csrow, -1, -1,
1982 				     "", "");
1983 	}
1984 }
1985 
1986 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1987 					    struct mce *m)
1988 {
1989 	u16 ec = EC(m->status);
1990 	u8 xec = XEC(m->status, 0x1f);
1991 	u8 ecc_type = (m->status >> 45) & 0x3;
1992 
1993 	/* Bail early out if this was an 'observed' error */
1994 	if (PP(ec) == NBSL_PP_OBS)
1995 		return;
1996 
1997 	/* Do only ECC errors */
1998 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1999 		return;
2000 
2001 	if (ecc_type == 2)
2002 		amd64_handle_ce(mci, m);
2003 	else if (ecc_type == 1)
2004 		amd64_handle_ue(mci, m);
2005 }
2006 
2007 void amd64_decode_bus_error(int node_id, struct mce *m)
2008 {
2009 	__amd64_decode_bus_error(mcis[node_id], m);
2010 }
2011 
2012 /*
2013  * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2014  * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2015  */
2016 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2017 {
2018 	/* Reserve the ADDRESS MAP Device */
2019 	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2020 	if (!pvt->F1) {
2021 		amd64_err("error address map device not found: "
2022 			  "vendor %x device 0x%x (broken BIOS?)\n",
2023 			  PCI_VENDOR_ID_AMD, f1_id);
2024 		return -ENODEV;
2025 	}
2026 
2027 	/* Reserve the MISC Device */
2028 	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2029 	if (!pvt->F3) {
2030 		pci_dev_put(pvt->F1);
2031 		pvt->F1 = NULL;
2032 
2033 		amd64_err("error F3 device not found: "
2034 			  "vendor %x device 0x%x (broken BIOS?)\n",
2035 			  PCI_VENDOR_ID_AMD, f3_id);
2036 
2037 		return -ENODEV;
2038 	}
2039 	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2040 	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2041 	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2042 
2043 	return 0;
2044 }
2045 
2046 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2047 {
2048 	pci_dev_put(pvt->F1);
2049 	pci_dev_put(pvt->F3);
2050 }
2051 
2052 /*
2053  * Retrieve the hardware registers of the memory controller (this includes the
2054  * 'Address Map' and 'Misc' device regs)
2055  */
2056 static void read_mc_regs(struct amd64_pvt *pvt)
2057 {
2058 	struct cpuinfo_x86 *c = &boot_cpu_data;
2059 	u64 msr_val;
2060 	u32 tmp;
2061 	unsigned range;
2062 
2063 	/*
2064 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2065 	 * those are Read-As-Zero
2066 	 */
2067 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2068 	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2069 
2070 	/* check first whether TOP_MEM2 is enabled */
2071 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2072 	if (msr_val & (1U << 21)) {
2073 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2074 		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2075 	} else
2076 		edac_dbg(0, "  TOP_MEM2 disabled\n");
2077 
2078 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2079 
2080 	read_dram_ctl_register(pvt);
2081 
2082 	for (range = 0; range < DRAM_RANGES; range++) {
2083 		u8 rw;
2084 
2085 		/* read settings for this DRAM range */
2086 		read_dram_base_limit_regs(pvt, range);
2087 
2088 		rw = dram_rw(pvt, range);
2089 		if (!rw)
2090 			continue;
2091 
2092 		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2093 			 range,
2094 			 get_dram_base(pvt, range),
2095 			 get_dram_limit(pvt, range));
2096 
2097 		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2098 			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2099 			 (rw & 0x1) ? "R" : "-",
2100 			 (rw & 0x2) ? "W" : "-",
2101 			 dram_intlv_sel(pvt, range),
2102 			 dram_dst_node(pvt, range));
2103 	}
2104 
2105 	read_dct_base_mask(pvt);
2106 
2107 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2108 	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2109 
2110 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2111 
2112 	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2113 	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2114 
2115 	if (!dct_ganging_enabled(pvt)) {
2116 		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2117 		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2118 	}
2119 
2120 	pvt->ecc_sym_sz = 4;
2121 
2122 	if (c->x86 >= 0x10) {
2123 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2124 		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2125 
2126 		/* F10h, revD and later can do x8 ECC too */
2127 		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2128 			pvt->ecc_sym_sz = 8;
2129 	}
2130 	dump_misc_regs(pvt);
2131 }
2132 
2133 /*
2134  * NOTE: CPU Revision Dependent code
2135  *
2136  * Input:
2137  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2138  *	k8 private pointer to -->
2139  *			DRAM Bank Address mapping register
2140  *			node_id
2141  *			DCL register where dual_channel_active is
2142  *
2143  * The DBAM register consists of 4 sets of 4 bits each definitions:
2144  *
2145  * Bits:	CSROWs
2146  * 0-3		CSROWs 0 and 1
2147  * 4-7		CSROWs 2 and 3
2148  * 8-11		CSROWs 4 and 5
2149  * 12-15	CSROWs 6 and 7
2150  *
2151  * Values range from: 0 to 15
2152  * The meaning of the values depends on CPU revision and dual-channel state,
2153  * see relevant BKDG more info.
2154  *
2155  * The memory controller provides for total of only 8 CSROWs in its current
2156  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2157  * single channel or two (2) DIMMs in dual channel mode.
2158  *
2159  * The following code logic collapses the various tables for CSROW based on CPU
2160  * revision.
2161  *
2162  * Returns:
2163  *	The number of PAGE_SIZE pages on the specified CSROW number it
2164  *	encompasses
2165  *
2166  */
2167 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2168 {
2169 	u32 cs_mode, nr_pages;
2170 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2171 
2172 	/*
2173 	 * The math on this doesn't look right on the surface because x/2*4 can
2174 	 * be simplified to x*2 but this expression makes use of the fact that
2175 	 * it is integral math where 1/2=0. This intermediate value becomes the
2176 	 * number of bits to shift the DBAM register to extract the proper CSROW
2177 	 * field.
2178 	 */
2179 	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2180 
2181 	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2182 
2183 	edac_dbg(0, "  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2184 	edac_dbg(0, "    nr_pages/channel= %u  channel-count = %d\n",
2185 		 nr_pages, pvt->channel_count);
2186 
2187 	return nr_pages;
2188 }
2189 
2190 /*
2191  * Initialize the array of csrow attribute instances, based on the values
2192  * from pci config hardware registers.
2193  */
2194 static int init_csrows(struct mem_ctl_info *mci)
2195 {
2196 	struct csrow_info *csrow;
2197 	struct dimm_info *dimm;
2198 	struct amd64_pvt *pvt = mci->pvt_info;
2199 	u64 base, mask;
2200 	u32 val;
2201 	int i, j, empty = 1;
2202 	enum mem_type mtype;
2203 	enum edac_type edac_mode;
2204 	int nr_pages = 0;
2205 
2206 	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2207 
2208 	pvt->nbcfg = val;
2209 
2210 	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2211 		 pvt->mc_node_id, val,
2212 		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2213 
2214 	for_each_chip_select(i, 0, pvt) {
2215 		csrow = mci->csrows[i];
2216 
2217 		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2218 			edac_dbg(1, "----CSROW %d VALID for MC node %d\n",
2219 				 i, pvt->mc_node_id);
2220 			continue;
2221 		}
2222 
2223 		empty = 0;
2224 		if (csrow_enabled(i, 0, pvt))
2225 			nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2226 		if (csrow_enabled(i, 1, pvt))
2227 			nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2228 
2229 		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2230 		/* 8 bytes of resolution */
2231 
2232 		mtype = amd64_determine_memory_type(pvt, i);
2233 
2234 		edac_dbg(1, "  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2235 		edac_dbg(1, "    nr_pages: %u\n",
2236 			 nr_pages * pvt->channel_count);
2237 
2238 		/*
2239 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2240 		 */
2241 		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2242 			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2243 				    EDAC_S4ECD4ED : EDAC_SECDED;
2244 		else
2245 			edac_mode = EDAC_NONE;
2246 
2247 		for (j = 0; j < pvt->channel_count; j++) {
2248 			dimm = csrow->channels[j]->dimm;
2249 			dimm->mtype = mtype;
2250 			dimm->edac_mode = edac_mode;
2251 			dimm->nr_pages = nr_pages;
2252 		}
2253 	}
2254 
2255 	return empty;
2256 }
2257 
2258 /* get all cores on this DCT */
2259 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2260 {
2261 	int cpu;
2262 
2263 	for_each_online_cpu(cpu)
2264 		if (amd_get_nb_id(cpu) == nid)
2265 			cpumask_set_cpu(cpu, mask);
2266 }
2267 
2268 /* check MCG_CTL on all the cpus on this node */
2269 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2270 {
2271 	cpumask_var_t mask;
2272 	int cpu, nbe;
2273 	bool ret = false;
2274 
2275 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2276 		amd64_warn("%s: Error allocating mask\n", __func__);
2277 		return false;
2278 	}
2279 
2280 	get_cpus_on_this_dct_cpumask(mask, nid);
2281 
2282 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2283 
2284 	for_each_cpu(cpu, mask) {
2285 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2286 		nbe = reg->l & MSR_MCGCTL_NBE;
2287 
2288 		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2289 			 cpu, reg->q,
2290 			 (nbe ? "enabled" : "disabled"));
2291 
2292 		if (!nbe)
2293 			goto out;
2294 	}
2295 	ret = true;
2296 
2297 out:
2298 	free_cpumask_var(mask);
2299 	return ret;
2300 }
2301 
2302 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2303 {
2304 	cpumask_var_t cmask;
2305 	int cpu;
2306 
2307 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2308 		amd64_warn("%s: error allocating mask\n", __func__);
2309 		return false;
2310 	}
2311 
2312 	get_cpus_on_this_dct_cpumask(cmask, nid);
2313 
2314 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2315 
2316 	for_each_cpu(cpu, cmask) {
2317 
2318 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2319 
2320 		if (on) {
2321 			if (reg->l & MSR_MCGCTL_NBE)
2322 				s->flags.nb_mce_enable = 1;
2323 
2324 			reg->l |= MSR_MCGCTL_NBE;
2325 		} else {
2326 			/*
2327 			 * Turn off NB MCE reporting only when it was off before
2328 			 */
2329 			if (!s->flags.nb_mce_enable)
2330 				reg->l &= ~MSR_MCGCTL_NBE;
2331 		}
2332 	}
2333 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2334 
2335 	free_cpumask_var(cmask);
2336 
2337 	return 0;
2338 }
2339 
2340 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2341 				       struct pci_dev *F3)
2342 {
2343 	bool ret = true;
2344 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2345 
2346 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2347 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2348 		return false;
2349 	}
2350 
2351 	amd64_read_pci_cfg(F3, NBCTL, &value);
2352 
2353 	s->old_nbctl   = value & mask;
2354 	s->nbctl_valid = true;
2355 
2356 	value |= mask;
2357 	amd64_write_pci_cfg(F3, NBCTL, value);
2358 
2359 	amd64_read_pci_cfg(F3, NBCFG, &value);
2360 
2361 	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2362 		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2363 
2364 	if (!(value & NBCFG_ECC_ENABLE)) {
2365 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2366 
2367 		s->flags.nb_ecc_prev = 0;
2368 
2369 		/* Attempt to turn on DRAM ECC Enable */
2370 		value |= NBCFG_ECC_ENABLE;
2371 		amd64_write_pci_cfg(F3, NBCFG, value);
2372 
2373 		amd64_read_pci_cfg(F3, NBCFG, &value);
2374 
2375 		if (!(value & NBCFG_ECC_ENABLE)) {
2376 			amd64_warn("Hardware rejected DRAM ECC enable,"
2377 				   "check memory DIMM configuration.\n");
2378 			ret = false;
2379 		} else {
2380 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2381 		}
2382 	} else {
2383 		s->flags.nb_ecc_prev = 1;
2384 	}
2385 
2386 	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2387 		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2388 
2389 	return ret;
2390 }
2391 
2392 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2393 					struct pci_dev *F3)
2394 {
2395 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2396 
2397 
2398 	if (!s->nbctl_valid)
2399 		return;
2400 
2401 	amd64_read_pci_cfg(F3, NBCTL, &value);
2402 	value &= ~mask;
2403 	value |= s->old_nbctl;
2404 
2405 	amd64_write_pci_cfg(F3, NBCTL, value);
2406 
2407 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2408 	if (!s->flags.nb_ecc_prev) {
2409 		amd64_read_pci_cfg(F3, NBCFG, &value);
2410 		value &= ~NBCFG_ECC_ENABLE;
2411 		amd64_write_pci_cfg(F3, NBCFG, value);
2412 	}
2413 
2414 	/* restore the NB Enable MCGCTL bit */
2415 	if (toggle_ecc_err_reporting(s, nid, OFF))
2416 		amd64_warn("Error restoring NB MCGCTL settings!\n");
2417 }
2418 
2419 /*
2420  * EDAC requires that the BIOS have ECC enabled before
2421  * taking over the processing of ECC errors. A command line
2422  * option allows to force-enable hardware ECC later in
2423  * enable_ecc_error_reporting().
2424  */
2425 static const char *ecc_msg =
2426 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2427 	" Either enable ECC checking or force module loading by setting "
2428 	"'ecc_enable_override'.\n"
2429 	" (Note that use of the override may cause unknown side effects.)\n";
2430 
2431 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2432 {
2433 	u32 value;
2434 	u8 ecc_en = 0;
2435 	bool nb_mce_en = false;
2436 
2437 	amd64_read_pci_cfg(F3, NBCFG, &value);
2438 
2439 	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2440 	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2441 
2442 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2443 	if (!nb_mce_en)
2444 		amd64_notice("NB MCE bank disabled, set MSR "
2445 			     "0x%08x[4] on node %d to enable.\n",
2446 			     MSR_IA32_MCG_CTL, nid);
2447 
2448 	if (!ecc_en || !nb_mce_en) {
2449 		amd64_notice("%s", ecc_msg);
2450 		return false;
2451 	}
2452 	return true;
2453 }
2454 
2455 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2456 {
2457 	int rc;
2458 
2459 	rc = amd64_create_sysfs_dbg_files(mci);
2460 	if (rc < 0)
2461 		return rc;
2462 
2463 	if (boot_cpu_data.x86 >= 0x10) {
2464 		rc = amd64_create_sysfs_inject_files(mci);
2465 		if (rc < 0)
2466 			return rc;
2467 	}
2468 
2469 	return 0;
2470 }
2471 
2472 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2473 {
2474 	amd64_remove_sysfs_dbg_files(mci);
2475 
2476 	if (boot_cpu_data.x86 >= 0x10)
2477 		amd64_remove_sysfs_inject_files(mci);
2478 }
2479 
2480 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2481 				 struct amd64_family_type *fam)
2482 {
2483 	struct amd64_pvt *pvt = mci->pvt_info;
2484 
2485 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2486 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2487 
2488 	if (pvt->nbcap & NBCAP_SECDED)
2489 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2490 
2491 	if (pvt->nbcap & NBCAP_CHIPKILL)
2492 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2493 
2494 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2495 	mci->mod_name		= EDAC_MOD_STR;
2496 	mci->mod_ver		= EDAC_AMD64_VERSION;
2497 	mci->ctl_name		= fam->ctl_name;
2498 	mci->dev_name		= pci_name(pvt->F2);
2499 	mci->ctl_page_to_phys	= NULL;
2500 
2501 	/* memory scrubber interface */
2502 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2503 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2504 }
2505 
2506 /*
2507  * returns a pointer to the family descriptor on success, NULL otherwise.
2508  */
2509 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2510 {
2511 	u8 fam = boot_cpu_data.x86;
2512 	struct amd64_family_type *fam_type = NULL;
2513 
2514 	switch (fam) {
2515 	case 0xf:
2516 		fam_type		= &amd64_family_types[K8_CPUS];
2517 		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2518 		break;
2519 
2520 	case 0x10:
2521 		fam_type		= &amd64_family_types[F10_CPUS];
2522 		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2523 		break;
2524 
2525 	case 0x15:
2526 		fam_type		= &amd64_family_types[F15_CPUS];
2527 		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2528 		break;
2529 
2530 	default:
2531 		amd64_err("Unsupported family!\n");
2532 		return NULL;
2533 	}
2534 
2535 	pvt->ext_model = boot_cpu_data.x86_model >> 4;
2536 
2537 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2538 		     (fam == 0xf ?
2539 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
2540 							     : "revE or earlier ")
2541 				 : ""), pvt->mc_node_id);
2542 	return fam_type;
2543 }
2544 
2545 static int amd64_init_one_instance(struct pci_dev *F2)
2546 {
2547 	struct amd64_pvt *pvt = NULL;
2548 	struct amd64_family_type *fam_type = NULL;
2549 	struct mem_ctl_info *mci = NULL;
2550 	struct edac_mc_layer layers[2];
2551 	int err = 0, ret;
2552 	u8 nid = get_node_id(F2);
2553 
2554 	ret = -ENOMEM;
2555 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2556 	if (!pvt)
2557 		goto err_ret;
2558 
2559 	pvt->mc_node_id	= nid;
2560 	pvt->F2 = F2;
2561 
2562 	ret = -EINVAL;
2563 	fam_type = amd64_per_family_init(pvt);
2564 	if (!fam_type)
2565 		goto err_free;
2566 
2567 	ret = -ENODEV;
2568 	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2569 	if (err)
2570 		goto err_free;
2571 
2572 	read_mc_regs(pvt);
2573 
2574 	/*
2575 	 * We need to determine how many memory channels there are. Then use
2576 	 * that information for calculating the size of the dynamic instance
2577 	 * tables in the 'mci' structure.
2578 	 */
2579 	ret = -EINVAL;
2580 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2581 	if (pvt->channel_count < 0)
2582 		goto err_siblings;
2583 
2584 	ret = -ENOMEM;
2585 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2586 	layers[0].size = pvt->csels[0].b_cnt;
2587 	layers[0].is_virt_csrow = true;
2588 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
2589 	layers[1].size = pvt->channel_count;
2590 	layers[1].is_virt_csrow = false;
2591 	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2592 	if (!mci)
2593 		goto err_siblings;
2594 
2595 	mci->pvt_info = pvt;
2596 	mci->pdev = &pvt->F2->dev;
2597 
2598 	setup_mci_misc_attrs(mci, fam_type);
2599 
2600 	if (init_csrows(mci))
2601 		mci->edac_cap = EDAC_FLAG_NONE;
2602 
2603 	ret = -ENODEV;
2604 	if (edac_mc_add_mc(mci)) {
2605 		edac_dbg(1, "failed edac_mc_add_mc()\n");
2606 		goto err_add_mc;
2607 	}
2608 	if (set_mc_sysfs_attrs(mci)) {
2609 		edac_dbg(1, "failed edac_mc_add_mc()\n");
2610 		goto err_add_sysfs;
2611 	}
2612 
2613 	/* register stuff with EDAC MCE */
2614 	if (report_gart_errors)
2615 		amd_report_gart_errors(true);
2616 
2617 	amd_register_ecc_decoder(amd64_decode_bus_error);
2618 
2619 	mcis[nid] = mci;
2620 
2621 	atomic_inc(&drv_instances);
2622 
2623 	return 0;
2624 
2625 err_add_sysfs:
2626 	edac_mc_del_mc(mci->pdev);
2627 err_add_mc:
2628 	edac_mc_free(mci);
2629 
2630 err_siblings:
2631 	free_mc_sibling_devs(pvt);
2632 
2633 err_free:
2634 	kfree(pvt);
2635 
2636 err_ret:
2637 	return ret;
2638 }
2639 
2640 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2641 					     const struct pci_device_id *mc_type)
2642 {
2643 	u8 nid = get_node_id(pdev);
2644 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2645 	struct ecc_settings *s;
2646 	int ret = 0;
2647 
2648 	ret = pci_enable_device(pdev);
2649 	if (ret < 0) {
2650 		edac_dbg(0, "ret=%d\n", ret);
2651 		return -EIO;
2652 	}
2653 
2654 	ret = -ENOMEM;
2655 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2656 	if (!s)
2657 		goto err_out;
2658 
2659 	ecc_stngs[nid] = s;
2660 
2661 	if (!ecc_enabled(F3, nid)) {
2662 		ret = -ENODEV;
2663 
2664 		if (!ecc_enable_override)
2665 			goto err_enable;
2666 
2667 		amd64_warn("Forcing ECC on!\n");
2668 
2669 		if (!enable_ecc_error_reporting(s, nid, F3))
2670 			goto err_enable;
2671 	}
2672 
2673 	ret = amd64_init_one_instance(pdev);
2674 	if (ret < 0) {
2675 		amd64_err("Error probing instance: %d\n", nid);
2676 		restore_ecc_error_reporting(s, nid, F3);
2677 	}
2678 
2679 	return ret;
2680 
2681 err_enable:
2682 	kfree(s);
2683 	ecc_stngs[nid] = NULL;
2684 
2685 err_out:
2686 	return ret;
2687 }
2688 
2689 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2690 {
2691 	struct mem_ctl_info *mci;
2692 	struct amd64_pvt *pvt;
2693 	u8 nid = get_node_id(pdev);
2694 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2695 	struct ecc_settings *s = ecc_stngs[nid];
2696 
2697 	mci = find_mci_by_dev(&pdev->dev);
2698 	del_mc_sysfs_attrs(mci);
2699 	/* Remove from EDAC CORE tracking list */
2700 	mci = edac_mc_del_mc(&pdev->dev);
2701 	if (!mci)
2702 		return;
2703 
2704 	pvt = mci->pvt_info;
2705 
2706 	restore_ecc_error_reporting(s, nid, F3);
2707 
2708 	free_mc_sibling_devs(pvt);
2709 
2710 	/* unregister from EDAC MCE */
2711 	amd_report_gart_errors(false);
2712 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2713 
2714 	kfree(ecc_stngs[nid]);
2715 	ecc_stngs[nid] = NULL;
2716 
2717 	/* Free the EDAC CORE resources */
2718 	mci->pvt_info = NULL;
2719 	mcis[nid] = NULL;
2720 
2721 	kfree(pvt);
2722 	edac_mc_free(mci);
2723 }
2724 
2725 /*
2726  * This table is part of the interface for loading drivers for PCI devices. The
2727  * PCI core identifies what devices are on a system during boot, and then
2728  * inquiry this table to see if this driver is for a given device found.
2729  */
2730 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2731 	{
2732 		.vendor		= PCI_VENDOR_ID_AMD,
2733 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2734 		.subvendor	= PCI_ANY_ID,
2735 		.subdevice	= PCI_ANY_ID,
2736 		.class		= 0,
2737 		.class_mask	= 0,
2738 	},
2739 	{
2740 		.vendor		= PCI_VENDOR_ID_AMD,
2741 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2742 		.subvendor	= PCI_ANY_ID,
2743 		.subdevice	= PCI_ANY_ID,
2744 		.class		= 0,
2745 		.class_mask	= 0,
2746 	},
2747 	{
2748 		.vendor		= PCI_VENDOR_ID_AMD,
2749 		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
2750 		.subvendor	= PCI_ANY_ID,
2751 		.subdevice	= PCI_ANY_ID,
2752 		.class		= 0,
2753 		.class_mask	= 0,
2754 	},
2755 
2756 	{0, }
2757 };
2758 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2759 
2760 static struct pci_driver amd64_pci_driver = {
2761 	.name		= EDAC_MOD_STR,
2762 	.probe		= amd64_probe_one_instance,
2763 	.remove		= __devexit_p(amd64_remove_one_instance),
2764 	.id_table	= amd64_pci_table,
2765 };
2766 
2767 static void setup_pci_device(void)
2768 {
2769 	struct mem_ctl_info *mci;
2770 	struct amd64_pvt *pvt;
2771 
2772 	if (amd64_ctl_pci)
2773 		return;
2774 
2775 	mci = mcis[0];
2776 	if (mci) {
2777 
2778 		pvt = mci->pvt_info;
2779 		amd64_ctl_pci =
2780 			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2781 
2782 		if (!amd64_ctl_pci) {
2783 			pr_warning("%s(): Unable to create PCI control\n",
2784 				   __func__);
2785 
2786 			pr_warning("%s(): PCI error report via EDAC not set\n",
2787 				   __func__);
2788 			}
2789 	}
2790 }
2791 
2792 static int __init amd64_edac_init(void)
2793 {
2794 	int err = -ENODEV;
2795 
2796 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2797 
2798 	opstate_init();
2799 
2800 	if (amd_cache_northbridges() < 0)
2801 		goto err_ret;
2802 
2803 	err = -ENOMEM;
2804 	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2805 	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2806 	if (!(mcis && ecc_stngs))
2807 		goto err_free;
2808 
2809 	msrs = msrs_alloc();
2810 	if (!msrs)
2811 		goto err_free;
2812 
2813 	err = pci_register_driver(&amd64_pci_driver);
2814 	if (err)
2815 		goto err_pci;
2816 
2817 	err = -ENODEV;
2818 	if (!atomic_read(&drv_instances))
2819 		goto err_no_instances;
2820 
2821 	setup_pci_device();
2822 	return 0;
2823 
2824 err_no_instances:
2825 	pci_unregister_driver(&amd64_pci_driver);
2826 
2827 err_pci:
2828 	msrs_free(msrs);
2829 	msrs = NULL;
2830 
2831 err_free:
2832 	kfree(mcis);
2833 	mcis = NULL;
2834 
2835 	kfree(ecc_stngs);
2836 	ecc_stngs = NULL;
2837 
2838 err_ret:
2839 	return err;
2840 }
2841 
2842 static void __exit amd64_edac_exit(void)
2843 {
2844 	if (amd64_ctl_pci)
2845 		edac_pci_release_generic_ctl(amd64_ctl_pci);
2846 
2847 	pci_unregister_driver(&amd64_pci_driver);
2848 
2849 	kfree(ecc_stngs);
2850 	ecc_stngs = NULL;
2851 
2852 	kfree(mcis);
2853 	mcis = NULL;
2854 
2855 	msrs_free(msrs);
2856 	msrs = NULL;
2857 }
2858 
2859 module_init(amd64_edac_init);
2860 module_exit(amd64_edac_exit);
2861 
2862 MODULE_LICENSE("GPL");
2863 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2864 		"Dave Peterson, Thayne Harbaugh");
2865 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2866 		EDAC_AMD64_VERSION);
2867 
2868 module_param(edac_op_state, int, 0444);
2869 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2870