1 #include "amd64_edac.h" 2 #include <asm/amd_nb.h> 3 4 static struct edac_pci_ctl_info *amd64_ctl_pci; 5 6 static int report_gart_errors; 7 module_param(report_gart_errors, int, 0644); 8 9 /* 10 * Set by command line parameter. If BIOS has enabled the ECC, this override is 11 * cleared to prevent re-enabling the hardware by this driver. 12 */ 13 static int ecc_enable_override; 14 module_param(ecc_enable_override, int, 0644); 15 16 static struct msr __percpu *msrs; 17 18 /* 19 * count successfully initialized driver instances for setup_pci_device() 20 */ 21 static atomic_t drv_instances = ATOMIC_INIT(0); 22 23 /* Per-node driver instances */ 24 static struct mem_ctl_info **mcis; 25 static struct ecc_settings **ecc_stngs; 26 27 /* 28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and 29 * later. 30 */ 31 static int ddr2_dbam_revCG[] = { 32 [0] = 32, 33 [1] = 64, 34 [2] = 128, 35 [3] = 256, 36 [4] = 512, 37 [5] = 1024, 38 [6] = 2048, 39 }; 40 41 static int ddr2_dbam_revD[] = { 42 [0] = 32, 43 [1] = 64, 44 [2 ... 3] = 128, 45 [4] = 256, 46 [5] = 512, 47 [6] = 256, 48 [7] = 512, 49 [8 ... 9] = 1024, 50 [10] = 2048, 51 }; 52 53 static int ddr2_dbam[] = { [0] = 128, 54 [1] = 256, 55 [2 ... 4] = 512, 56 [5 ... 6] = 1024, 57 [7 ... 8] = 2048, 58 [9 ... 10] = 4096, 59 [11] = 8192, 60 }; 61 62 static int ddr3_dbam[] = { [0] = -1, 63 [1] = 256, 64 [2] = 512, 65 [3 ... 4] = -1, 66 [5 ... 6] = 1024, 67 [7 ... 8] = 2048, 68 [9 ... 10] = 4096, 69 [11] = 8192, 70 }; 71 72 /* 73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing 74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- 75 * or higher value'. 76 * 77 *FIXME: Produce a better mapping/linearisation. 78 */ 79 80 81 struct scrubrate { 82 u32 scrubval; /* bit pattern for scrub rate */ 83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */ 84 } scrubrates[] = { 85 { 0x01, 1600000000UL}, 86 { 0x02, 800000000UL}, 87 { 0x03, 400000000UL}, 88 { 0x04, 200000000UL}, 89 { 0x05, 100000000UL}, 90 { 0x06, 50000000UL}, 91 { 0x07, 25000000UL}, 92 { 0x08, 12284069UL}, 93 { 0x09, 6274509UL}, 94 { 0x0A, 3121951UL}, 95 { 0x0B, 1560975UL}, 96 { 0x0C, 781440UL}, 97 { 0x0D, 390720UL}, 98 { 0x0E, 195300UL}, 99 { 0x0F, 97650UL}, 100 { 0x10, 48854UL}, 101 { 0x11, 24427UL}, 102 { 0x12, 12213UL}, 103 { 0x13, 6101UL}, 104 { 0x14, 3051UL}, 105 { 0x15, 1523UL}, 106 { 0x16, 761UL}, 107 { 0x00, 0UL}, /* scrubbing off */ 108 }; 109 110 /* 111 * Memory scrubber control interface. For K8, memory scrubbing is handled by 112 * hardware and can involve L2 cache, dcache as well as the main memory. With 113 * F10, this is extended to L3 cache scrubbing on CPU models sporting that 114 * functionality. 115 * 116 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks 117 * (dram) over to cache lines. This is nasty, so we will use bandwidth in 118 * bytes/sec for the setting. 119 * 120 * Currently, we only do dram scrubbing. If the scrubbing is done in software on 121 * other archs, we might not have access to the caches directly. 122 */ 123 124 /* 125 * scan the scrub rate mapping table for a close or matching bandwidth value to 126 * issue. If requested is too big, then use last maximum value found. 127 */ 128 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate) 129 { 130 u32 scrubval; 131 int i; 132 133 /* 134 * map the configured rate (new_bw) to a value specific to the AMD64 135 * memory controller and apply to register. Search for the first 136 * bandwidth entry that is greater or equal than the setting requested 137 * and program that. If at last entry, turn off DRAM scrubbing. 138 */ 139 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 140 /* 141 * skip scrub rates which aren't recommended 142 * (see F10 BKDG, F3x58) 143 */ 144 if (scrubrates[i].scrubval < min_rate) 145 continue; 146 147 if (scrubrates[i].bandwidth <= new_bw) 148 break; 149 150 /* 151 * if no suitable bandwidth found, turn off DRAM scrubbing 152 * entirely by falling back to the last element in the 153 * scrubrates array. 154 */ 155 } 156 157 scrubval = scrubrates[i].scrubval; 158 159 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F); 160 161 if (scrubval) 162 return scrubrates[i].bandwidth; 163 164 return 0; 165 } 166 167 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw) 168 { 169 struct amd64_pvt *pvt = mci->pvt_info; 170 171 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate); 172 } 173 174 static int amd64_get_scrub_rate(struct mem_ctl_info *mci) 175 { 176 struct amd64_pvt *pvt = mci->pvt_info; 177 u32 scrubval = 0; 178 int i, retval = -EINVAL; 179 180 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval); 181 182 scrubval = scrubval & 0x001F; 183 184 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval); 185 186 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { 187 if (scrubrates[i].scrubval == scrubval) { 188 retval = scrubrates[i].bandwidth; 189 break; 190 } 191 } 192 return retval; 193 } 194 195 /* Map from a CSROW entry to the mask entry that operates on it */ 196 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow) 197 { 198 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) 199 return csrow; 200 else 201 return csrow >> 1; 202 } 203 204 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */ 205 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow) 206 { 207 if (dct == 0) 208 return pvt->dcsb0[csrow]; 209 else 210 return pvt->dcsb1[csrow]; 211 } 212 213 /* 214 * Return the 'mask' address the i'th CS entry. This function is needed because 215 * there number of DCSM registers on Rev E and prior vs Rev F and later is 216 * different. 217 */ 218 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow) 219 { 220 if (dct == 0) 221 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)]; 222 else 223 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)]; 224 } 225 226 227 /* 228 * In *base and *limit, pass back the full 40-bit base and limit physical 229 * addresses for the node given by node_id. This information is obtained from 230 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The 231 * base and limit addresses are of type SysAddr, as defined at the start of 232 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses 233 * in the address range they represent. 234 */ 235 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id, 236 u64 *base, u64 *limit) 237 { 238 *base = pvt->dram_base[node_id]; 239 *limit = pvt->dram_limit[node_id]; 240 } 241 242 /* 243 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated 244 * with node_id 245 */ 246 static int amd64_base_limit_match(struct amd64_pvt *pvt, 247 u64 sys_addr, int node_id) 248 { 249 u64 base, limit, addr; 250 251 amd64_get_base_and_limit(pvt, node_id, &base, &limit); 252 253 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be 254 * all ones if the most significant implemented address bit is 1. 255 * Here we discard bits 63-40. See section 3.4.2 of AMD publication 256 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 257 * Application Programming. 258 */ 259 addr = sys_addr & 0x000000ffffffffffull; 260 261 return (addr >= base) && (addr <= limit); 262 } 263 264 /* 265 * Attempt to map a SysAddr to a node. On success, return a pointer to the 266 * mem_ctl_info structure for the node that the SysAddr maps to. 267 * 268 * On failure, return NULL. 269 */ 270 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, 271 u64 sys_addr) 272 { 273 struct amd64_pvt *pvt; 274 int node_id; 275 u32 intlv_en, bits; 276 277 /* 278 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section 279 * 3.4.4.2) registers to map the SysAddr to a node ID. 280 */ 281 pvt = mci->pvt_info; 282 283 /* 284 * The value of this field should be the same for all DRAM Base 285 * registers. Therefore we arbitrarily choose to read it from the 286 * register for node 0. 287 */ 288 intlv_en = pvt->dram_IntlvEn[0]; 289 290 if (intlv_en == 0) { 291 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) { 292 if (amd64_base_limit_match(pvt, sys_addr, node_id)) 293 goto found; 294 } 295 goto err_no_match; 296 } 297 298 if (unlikely((intlv_en != 0x01) && 299 (intlv_en != 0x03) && 300 (intlv_en != 0x07))) { 301 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); 302 return NULL; 303 } 304 305 bits = (((u32) sys_addr) >> 12) & intlv_en; 306 307 for (node_id = 0; ; ) { 308 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits) 309 break; /* intlv_sel field matches */ 310 311 if (++node_id >= DRAM_REG_COUNT) 312 goto err_no_match; 313 } 314 315 /* sanity test for sys_addr */ 316 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { 317 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" 318 "range for node %d with node interleaving enabled.\n", 319 __func__, sys_addr, node_id); 320 return NULL; 321 } 322 323 found: 324 return edac_mc_find(node_id); 325 326 err_no_match: 327 debugf2("sys_addr 0x%lx doesn't match any node\n", 328 (unsigned long)sys_addr); 329 330 return NULL; 331 } 332 333 /* 334 * Extract the DRAM CS base address from selected csrow register. 335 */ 336 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow) 337 { 338 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) << 339 pvt->dcs_shift; 340 } 341 342 /* 343 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way. 344 */ 345 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow) 346 { 347 u64 dcsm_bits, other_bits; 348 u64 mask; 349 350 /* Extract bits from DRAM CS Mask. */ 351 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask; 352 353 other_bits = pvt->dcsm_mask; 354 other_bits = ~(other_bits << pvt->dcs_shift); 355 356 /* 357 * The extracted bits from DCSM belong in the spaces represented by 358 * the cleared bits in other_bits. 359 */ 360 mask = (dcsm_bits << pvt->dcs_shift) | other_bits; 361 362 return mask; 363 } 364 365 /* 366 * @input_addr is an InputAddr associated with the node given by mci. Return the 367 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). 368 */ 369 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) 370 { 371 struct amd64_pvt *pvt; 372 int csrow; 373 u64 base, mask; 374 375 pvt = mci->pvt_info; 376 377 /* 378 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS 379 * base/mask register pair, test the condition shown near the start of 380 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E). 381 */ 382 for (csrow = 0; csrow < pvt->cs_count; csrow++) { 383 384 /* This DRAM chip select is disabled on this node */ 385 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0) 386 continue; 387 388 base = base_from_dct_base(pvt, csrow); 389 mask = ~mask_from_dct_mask(pvt, csrow); 390 391 if ((input_addr & mask) == (base & mask)) { 392 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", 393 (unsigned long)input_addr, csrow, 394 pvt->mc_node_id); 395 396 return csrow; 397 } 398 } 399 400 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", 401 (unsigned long)input_addr, pvt->mc_node_id); 402 403 return -1; 404 } 405 406 /* 407 * Return the base value defined by the DRAM Base register for the node 408 * represented by mci. This function returns the full 40-bit value despite the 409 * fact that the register only stores bits 39-24 of the value. See section 410 * 3.4.4.1 (BKDG #26094, K8, revA-E) 411 */ 412 static inline u64 get_dram_base(struct mem_ctl_info *mci) 413 { 414 struct amd64_pvt *pvt = mci->pvt_info; 415 416 return pvt->dram_base[pvt->mc_node_id]; 417 } 418 419 /* 420 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) 421 * for the node represented by mci. Info is passed back in *hole_base, 422 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if 423 * info is invalid. Info may be invalid for either of the following reasons: 424 * 425 * - The revision of the node is not E or greater. In this case, the DRAM Hole 426 * Address Register does not exist. 427 * 428 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, 429 * indicating that its contents are not valid. 430 * 431 * The values passed back in *hole_base, *hole_offset, and *hole_size are 432 * complete 32-bit values despite the fact that the bitfields in the DHAR 433 * only represent bits 31-24 of the base and offset values. 434 */ 435 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, 436 u64 *hole_offset, u64 *hole_size) 437 { 438 struct amd64_pvt *pvt = mci->pvt_info; 439 u64 base; 440 441 /* only revE and later have the DRAM Hole Address Register */ 442 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) { 443 debugf1(" revision %d for node %d does not support DHAR\n", 444 pvt->ext_model, pvt->mc_node_id); 445 return 1; 446 } 447 448 /* only valid for Fam10h */ 449 if (boot_cpu_data.x86 == 0x10 && 450 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) { 451 debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); 452 return 1; 453 } 454 455 if ((pvt->dhar & DHAR_VALID) == 0) { 456 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", 457 pvt->mc_node_id); 458 return 1; 459 } 460 461 /* This node has Memory Hoisting */ 462 463 /* +------------------+--------------------+--------------------+----- 464 * | memory | DRAM hole | relocated | 465 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | 466 * | | | DRAM hole | 467 * | | | [0x100000000, | 468 * | | | (0x100000000+ | 469 * | | | (0xffffffff-x))] | 470 * +------------------+--------------------+--------------------+----- 471 * 472 * Above is a diagram of physical memory showing the DRAM hole and the 473 * relocated addresses from the DRAM hole. As shown, the DRAM hole 474 * starts at address x (the base address) and extends through address 475 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the 476 * addresses in the hole so that they start at 0x100000000. 477 */ 478 479 base = dhar_base(pvt->dhar); 480 481 *hole_base = base; 482 *hole_size = (0x1ull << 32) - base; 483 484 if (boot_cpu_data.x86 > 0xf) 485 *hole_offset = f10_dhar_offset(pvt->dhar); 486 else 487 *hole_offset = k8_dhar_offset(pvt->dhar); 488 489 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", 490 pvt->mc_node_id, (unsigned long)*hole_base, 491 (unsigned long)*hole_offset, (unsigned long)*hole_size); 492 493 return 0; 494 } 495 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); 496 497 /* 498 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is 499 * assumed that sys_addr maps to the node given by mci. 500 * 501 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section 502 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a 503 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, 504 * then it is also involved in translating a SysAddr to a DramAddr. Sections 505 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. 506 * These parts of the documentation are unclear. I interpret them as follows: 507 * 508 * When node n receives a SysAddr, it processes the SysAddr as follows: 509 * 510 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM 511 * Limit registers for node n. If the SysAddr is not within the range 512 * specified by the base and limit values, then node n ignores the Sysaddr 513 * (since it does not map to node n). Otherwise continue to step 2 below. 514 * 515 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is 516 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within 517 * the range of relocated addresses (starting at 0x100000000) from the DRAM 518 * hole. If not, skip to step 3 below. Else get the value of the 519 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the 520 * offset defined by this value from the SysAddr. 521 * 522 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM 523 * Base register for node n. To obtain the DramAddr, subtract the base 524 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). 525 */ 526 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) 527 { 528 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; 529 int ret = 0; 530 531 dram_base = get_dram_base(mci); 532 533 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 534 &hole_size); 535 if (!ret) { 536 if ((sys_addr >= (1ull << 32)) && 537 (sys_addr < ((1ull << 32) + hole_size))) { 538 /* use DHAR to translate SysAddr to DramAddr */ 539 dram_addr = sys_addr - hole_offset; 540 541 debugf2("using DHAR to translate SysAddr 0x%lx to " 542 "DramAddr 0x%lx\n", 543 (unsigned long)sys_addr, 544 (unsigned long)dram_addr); 545 546 return dram_addr; 547 } 548 } 549 550 /* 551 * Translate the SysAddr to a DramAddr as shown near the start of 552 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 553 * only deals with 40-bit values. Therefore we discard bits 63-40 of 554 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we 555 * discard are all 1s. Otherwise the bits we discard are all 0s. See 556 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture 557 * Programmer's Manual Volume 1 Application Programming. 558 */ 559 dram_addr = (sys_addr & 0xffffffffffull) - dram_base; 560 561 debugf2("using DRAM Base register to translate SysAddr 0x%lx to " 562 "DramAddr 0x%lx\n", (unsigned long)sys_addr, 563 (unsigned long)dram_addr); 564 return dram_addr; 565 } 566 567 /* 568 * @intlv_en is the value of the IntlvEn field from a DRAM Base register 569 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used 570 * for node interleaving. 571 */ 572 static int num_node_interleave_bits(unsigned intlv_en) 573 { 574 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; 575 int n; 576 577 BUG_ON(intlv_en > 7); 578 n = intlv_shift_table[intlv_en]; 579 return n; 580 } 581 582 /* Translate the DramAddr given by @dram_addr to an InputAddr. */ 583 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) 584 { 585 struct amd64_pvt *pvt; 586 int intlv_shift; 587 u64 input_addr; 588 589 pvt = mci->pvt_info; 590 591 /* 592 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 593 * concerning translating a DramAddr to an InputAddr. 594 */ 595 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); 596 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) + 597 (dram_addr & 0xfff); 598 599 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", 600 intlv_shift, (unsigned long)dram_addr, 601 (unsigned long)input_addr); 602 603 return input_addr; 604 } 605 606 /* 607 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is 608 * assumed that @sys_addr maps to the node given by mci. 609 */ 610 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) 611 { 612 u64 input_addr; 613 614 input_addr = 615 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); 616 617 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", 618 (unsigned long)sys_addr, (unsigned long)input_addr); 619 620 return input_addr; 621 } 622 623 624 /* 625 * @input_addr is an InputAddr associated with the node represented by mci. 626 * Translate @input_addr to a DramAddr and return the result. 627 */ 628 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) 629 { 630 struct amd64_pvt *pvt; 631 int node_id, intlv_shift; 632 u64 bits, dram_addr; 633 u32 intlv_sel; 634 635 /* 636 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) 637 * shows how to translate a DramAddr to an InputAddr. Here we reverse 638 * this procedure. When translating from a DramAddr to an InputAddr, the 639 * bits used for node interleaving are discarded. Here we recover these 640 * bits from the IntlvSel field of the DRAM Limit register (section 641 * 3.4.4.2) for the node that input_addr is associated with. 642 */ 643 pvt = mci->pvt_info; 644 node_id = pvt->mc_node_id; 645 BUG_ON((node_id < 0) || (node_id > 7)); 646 647 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); 648 649 if (intlv_shift == 0) { 650 debugf1(" InputAddr 0x%lx translates to DramAddr of " 651 "same value\n", (unsigned long)input_addr); 652 653 return input_addr; 654 } 655 656 bits = ((input_addr & 0xffffff000ull) << intlv_shift) + 657 (input_addr & 0xfff); 658 659 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1); 660 dram_addr = bits + (intlv_sel << 12); 661 662 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " 663 "(%d node interleave bits)\n", (unsigned long)input_addr, 664 (unsigned long)dram_addr, intlv_shift); 665 666 return dram_addr; 667 } 668 669 /* 670 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert 671 * @dram_addr to a SysAddr. 672 */ 673 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) 674 { 675 struct amd64_pvt *pvt = mci->pvt_info; 676 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr; 677 int ret = 0; 678 679 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, 680 &hole_size); 681 if (!ret) { 682 if ((dram_addr >= hole_base) && 683 (dram_addr < (hole_base + hole_size))) { 684 sys_addr = dram_addr + hole_offset; 685 686 debugf1("using DHAR to translate DramAddr 0x%lx to " 687 "SysAddr 0x%lx\n", (unsigned long)dram_addr, 688 (unsigned long)sys_addr); 689 690 return sys_addr; 691 } 692 } 693 694 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit); 695 sys_addr = dram_addr + base; 696 697 /* 698 * The sys_addr we have computed up to this point is a 40-bit value 699 * because the k8 deals with 40-bit values. However, the value we are 700 * supposed to return is a full 64-bit physical address. The AMD 701 * x86-64 architecture specifies that the most significant implemented 702 * address bit through bit 63 of a physical address must be either all 703 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a 704 * 64-bit value below. See section 3.4.2 of AMD publication 24592: 705 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application 706 * Programming. 707 */ 708 sys_addr |= ~((sys_addr & (1ull << 39)) - 1); 709 710 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", 711 pvt->mc_node_id, (unsigned long)dram_addr, 712 (unsigned long)sys_addr); 713 714 return sys_addr; 715 } 716 717 /* 718 * @input_addr is an InputAddr associated with the node given by mci. Translate 719 * @input_addr to a SysAddr. 720 */ 721 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, 722 u64 input_addr) 723 { 724 return dram_addr_to_sys_addr(mci, 725 input_addr_to_dram_addr(mci, input_addr)); 726 } 727 728 /* 729 * Find the minimum and maximum InputAddr values that map to the given @csrow. 730 * Pass back these values in *input_addr_min and *input_addr_max. 731 */ 732 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, 733 u64 *input_addr_min, u64 *input_addr_max) 734 { 735 struct amd64_pvt *pvt; 736 u64 base, mask; 737 738 pvt = mci->pvt_info; 739 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count)); 740 741 base = base_from_dct_base(pvt, csrow); 742 mask = mask_from_dct_mask(pvt, csrow); 743 744 *input_addr_min = base & ~mask; 745 *input_addr_max = base | mask | pvt->dcs_mask_notused; 746 } 747 748 /* Map the Error address to a PAGE and PAGE OFFSET. */ 749 static inline void error_address_to_page_and_offset(u64 error_address, 750 u32 *page, u32 *offset) 751 { 752 *page = (u32) (error_address >> PAGE_SHIFT); 753 *offset = ((u32) error_address) & ~PAGE_MASK; 754 } 755 756 /* 757 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address 758 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers 759 * of a node that detected an ECC memory error. mci represents the node that 760 * the error address maps to (possibly different from the node that detected 761 * the error). Return the number of the csrow that sys_addr maps to, or -1 on 762 * error. 763 */ 764 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) 765 { 766 int csrow; 767 768 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); 769 770 if (csrow == -1) 771 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " 772 "address 0x%lx\n", (unsigned long)sys_addr); 773 return csrow; 774 } 775 776 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); 777 778 static u16 extract_syndrome(struct err_regs *err) 779 { 780 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00); 781 } 782 783 /* 784 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs 785 * are ECC capable. 786 */ 787 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) 788 { 789 int bit; 790 enum dev_type edac_cap = EDAC_FLAG_NONE; 791 792 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F) 793 ? 19 794 : 17; 795 796 if (pvt->dclr0 & BIT(bit)) 797 edac_cap = EDAC_FLAG_SECDED; 798 799 return edac_cap; 800 } 801 802 803 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt); 804 805 static void amd64_dump_dramcfg_low(u32 dclr, int chan) 806 { 807 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); 808 809 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n", 810 (dclr & BIT(16)) ? "un" : "", 811 (dclr & BIT(19)) ? "yes" : "no"); 812 813 debugf1(" PAR/ERR parity: %s\n", 814 (dclr & BIT(8)) ? "enabled" : "disabled"); 815 816 debugf1(" DCT 128bit mode width: %s\n", 817 (dclr & BIT(11)) ? "128b" : "64b"); 818 819 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", 820 (dclr & BIT(12)) ? "yes" : "no", 821 (dclr & BIT(13)) ? "yes" : "no", 822 (dclr & BIT(14)) ? "yes" : "no", 823 (dclr & BIT(15)) ? "yes" : "no"); 824 } 825 826 /* Display and decode various NB registers for debug purposes. */ 827 static void amd64_dump_misc_regs(struct amd64_pvt *pvt) 828 { 829 int ganged; 830 831 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); 832 833 debugf1(" NB two channel DRAM capable: %s\n", 834 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no"); 835 836 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n", 837 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no", 838 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no"); 839 840 amd64_dump_dramcfg_low(pvt->dclr0, 0); 841 842 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); 843 844 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, " 845 "offset: 0x%08x\n", 846 pvt->dhar, 847 dhar_base(pvt->dhar), 848 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar) 849 : f10_dhar_offset(pvt->dhar)); 850 851 debugf1(" DramHoleValid: %s\n", 852 (pvt->dhar & DHAR_VALID) ? "yes" : "no"); 853 854 /* everything below this point is Fam10h and above */ 855 if (boot_cpu_data.x86 == 0xf) { 856 amd64_debug_display_dimm_sizes(0, pvt); 857 return; 858 } 859 860 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4")); 861 862 /* Only if NOT ganged does dclr1 have valid info */ 863 if (!dct_ganging_enabled(pvt)) 864 amd64_dump_dramcfg_low(pvt->dclr1, 1); 865 866 /* 867 * Determine if ganged and then dump memory sizes for first controller, 868 * and if NOT ganged dump info for 2nd controller. 869 */ 870 ganged = dct_ganging_enabled(pvt); 871 872 amd64_debug_display_dimm_sizes(0, pvt); 873 874 if (!ganged) 875 amd64_debug_display_dimm_sizes(1, pvt); 876 } 877 878 /* Read in both of DBAM registers */ 879 static void amd64_read_dbam_reg(struct amd64_pvt *pvt) 880 { 881 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0); 882 883 if (boot_cpu_data.x86 >= 0x10) 884 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1); 885 } 886 887 /* 888 * NOTE: CPU Revision Dependent code: Rev E and Rev F 889 * 890 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also 891 * set the shift factor for the DCSB and DCSM values. 892 * 893 * ->dcs_mask_notused, RevE: 894 * 895 * To find the max InputAddr for the csrow, start with the base address and set 896 * all bits that are "don't care" bits in the test at the start of section 897 * 3.5.4 (p. 84). 898 * 899 * The "don't care" bits are all set bits in the mask and all bits in the gaps 900 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS 901 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned 902 * gaps. 903 * 904 * ->dcs_mask_notused, RevF and later: 905 * 906 * To find the max InputAddr for the csrow, start with the base address and set 907 * all bits that are "don't care" bits in the test at the start of NPT section 908 * 4.5.4 (p. 87). 909 * 910 * The "don't care" bits are all set bits in the mask and all bits in the gaps 911 * between bit ranges [36:27] and [21:13]. 912 * 913 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0], 914 * which are all bits in the above-mentioned gaps. 915 */ 916 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt) 917 { 918 919 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) { 920 pvt->dcsb_base = REV_E_DCSB_BASE_BITS; 921 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS; 922 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS; 923 pvt->dcs_shift = REV_E_DCS_SHIFT; 924 pvt->cs_count = 8; 925 pvt->num_dcsm = 8; 926 } else { 927 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS; 928 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS; 929 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS; 930 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT; 931 pvt->cs_count = 8; 932 pvt->num_dcsm = 4; 933 } 934 } 935 936 /* 937 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers 938 */ 939 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt) 940 { 941 int cs, reg; 942 943 amd64_set_dct_base_and_mask(pvt); 944 945 for (cs = 0; cs < pvt->cs_count; cs++) { 946 reg = K8_DCSB0 + (cs * 4); 947 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs])) 948 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", 949 cs, pvt->dcsb0[cs], reg); 950 951 /* If DCT are NOT ganged, then read in DCT1's base */ 952 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { 953 reg = F10_DCSB1 + (cs * 4); 954 if (!amd64_read_pci_cfg(pvt->F2, reg, 955 &pvt->dcsb1[cs])) 956 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", 957 cs, pvt->dcsb1[cs], reg); 958 } else { 959 pvt->dcsb1[cs] = 0; 960 } 961 } 962 963 for (cs = 0; cs < pvt->num_dcsm; cs++) { 964 reg = K8_DCSM0 + (cs * 4); 965 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs])) 966 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", 967 cs, pvt->dcsm0[cs], reg); 968 969 /* If DCT are NOT ganged, then read in DCT1's mask */ 970 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { 971 reg = F10_DCSM1 + (cs * 4); 972 if (!amd64_read_pci_cfg(pvt->F2, reg, 973 &pvt->dcsm1[cs])) 974 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", 975 cs, pvt->dcsm1[cs], reg); 976 } else { 977 pvt->dcsm1[cs] = 0; 978 } 979 } 980 } 981 982 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs) 983 { 984 enum mem_type type; 985 986 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) { 987 if (pvt->dchr0 & DDR3_MODE) 988 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; 989 else 990 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; 991 } else { 992 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; 993 } 994 995 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]); 996 997 return type; 998 } 999 1000 /* 1001 * Read the DRAM Configuration Low register. It differs between CG, D & E revs 1002 * and the later RevF memory controllers (DDR vs DDR2) 1003 * 1004 * Return: 1005 * number of memory channels in operation 1006 * Pass back: 1007 * contents of the DCL0_LOW register 1008 */ 1009 static int k8_early_channel_count(struct amd64_pvt *pvt) 1010 { 1011 int flag, err = 0; 1012 1013 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0); 1014 if (err) 1015 return err; 1016 1017 if (pvt->ext_model >= K8_REV_F) 1018 /* RevF (NPT) and later */ 1019 flag = pvt->dclr0 & F10_WIDTH_128; 1020 else 1021 /* RevE and earlier */ 1022 flag = pvt->dclr0 & REVE_WIDTH_128; 1023 1024 /* not used */ 1025 pvt->dclr1 = 0; 1026 1027 return (flag) ? 2 : 1; 1028 } 1029 1030 /* extract the ERROR ADDRESS for the K8 CPUs */ 1031 static u64 k8_get_error_address(struct mem_ctl_info *mci, 1032 struct err_regs *info) 1033 { 1034 return (((u64) (info->nbeah & 0xff)) << 32) + 1035 (info->nbeal & ~0x03); 1036 } 1037 1038 /* 1039 * Read the Base and Limit registers for K8 based Memory controllers; extract 1040 * fields from the 'raw' reg into separate data fields 1041 * 1042 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN 1043 */ 1044 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram) 1045 { 1046 u32 low; 1047 u32 off = dram << 3; /* 8 bytes between DRAM entries */ 1048 1049 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low); 1050 1051 /* Extract parts into separate data entries */ 1052 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8; 1053 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7; 1054 pvt->dram_rw_en[dram] = (low & 0x3); 1055 1056 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low); 1057 1058 /* 1059 * Extract parts into separate data entries. Limit is the HIGHEST memory 1060 * location of the region, so lower 24 bits need to be all ones 1061 */ 1062 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF; 1063 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7; 1064 pvt->dram_DstNode[dram] = (low & 0x7); 1065 } 1066 1067 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, 1068 struct err_regs *err_info, u64 sys_addr) 1069 { 1070 struct mem_ctl_info *src_mci; 1071 int channel, csrow; 1072 u32 page, offset; 1073 u16 syndrome; 1074 1075 syndrome = extract_syndrome(err_info); 1076 1077 /* CHIPKILL enabled */ 1078 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) { 1079 channel = get_channel_from_ecc_syndrome(mci, syndrome); 1080 if (channel < 0) { 1081 /* 1082 * Syndrome didn't map, so we don't know which of the 1083 * 2 DIMMs is in error. So we need to ID 'both' of them 1084 * as suspect. 1085 */ 1086 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible " 1087 "error reporting race\n", syndrome); 1088 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1089 return; 1090 } 1091 } else { 1092 /* 1093 * non-chipkill ecc mode 1094 * 1095 * The k8 documentation is unclear about how to determine the 1096 * channel number when using non-chipkill memory. This method 1097 * was obtained from email communication with someone at AMD. 1098 * (Wish the email was placed in this comment - norsk) 1099 */ 1100 channel = ((sys_addr & BIT(3)) != 0); 1101 } 1102 1103 /* 1104 * Find out which node the error address belongs to. This may be 1105 * different from the node that detected the error. 1106 */ 1107 src_mci = find_mc_by_sys_addr(mci, sys_addr); 1108 if (!src_mci) { 1109 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", 1110 (unsigned long)sys_addr); 1111 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1112 return; 1113 } 1114 1115 /* Now map the sys_addr to a CSROW */ 1116 csrow = sys_addr_to_csrow(src_mci, sys_addr); 1117 if (csrow < 0) { 1118 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR); 1119 } else { 1120 error_address_to_page_and_offset(sys_addr, &page, &offset); 1121 1122 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow, 1123 channel, EDAC_MOD_STR); 1124 } 1125 } 1126 1127 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) 1128 { 1129 int *dbam_map; 1130 1131 if (pvt->ext_model >= K8_REV_F) 1132 dbam_map = ddr2_dbam; 1133 else if (pvt->ext_model >= K8_REV_D) 1134 dbam_map = ddr2_dbam_revD; 1135 else 1136 dbam_map = ddr2_dbam_revCG; 1137 1138 return dbam_map[cs_mode]; 1139 } 1140 1141 /* 1142 * Get the number of DCT channels in use. 1143 * 1144 * Return: 1145 * number of Memory Channels in operation 1146 * Pass back: 1147 * contents of the DCL0_LOW register 1148 */ 1149 static int f10_early_channel_count(struct amd64_pvt *pvt) 1150 { 1151 int dbams[] = { DBAM0, DBAM1 }; 1152 int i, j, channels = 0; 1153 u32 dbam; 1154 1155 /* If we are in 128 bit mode, then we are using 2 channels */ 1156 if (pvt->dclr0 & F10_WIDTH_128) { 1157 channels = 2; 1158 return channels; 1159 } 1160 1161 /* 1162 * Need to check if in unganged mode: In such, there are 2 channels, 1163 * but they are not in 128 bit mode and thus the above 'dclr0' status 1164 * bit will be OFF. 1165 * 1166 * Need to check DCT0[0] and DCT1[0] to see if only one of them has 1167 * their CSEnable bit on. If so, then SINGLE DIMM case. 1168 */ 1169 debugf0("Data width is not 128 bits - need more decoding\n"); 1170 1171 /* 1172 * Check DRAM Bank Address Mapping values for each DIMM to see if there 1173 * is more than just one DIMM present in unganged mode. Need to check 1174 * both controllers since DIMMs can be placed in either one. 1175 */ 1176 for (i = 0; i < ARRAY_SIZE(dbams); i++) { 1177 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam)) 1178 goto err_reg; 1179 1180 for (j = 0; j < 4; j++) { 1181 if (DBAM_DIMM(j, dbam) > 0) { 1182 channels++; 1183 break; 1184 } 1185 } 1186 } 1187 1188 if (channels > 2) 1189 channels = 2; 1190 1191 amd64_info("MCT channel count: %d\n", channels); 1192 1193 return channels; 1194 1195 err_reg: 1196 return -1; 1197 1198 } 1199 1200 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode) 1201 { 1202 int *dbam_map; 1203 1204 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) 1205 dbam_map = ddr3_dbam; 1206 else 1207 dbam_map = ddr2_dbam; 1208 1209 return dbam_map[cs_mode]; 1210 } 1211 1212 static u64 f10_get_error_address(struct mem_ctl_info *mci, 1213 struct err_regs *info) 1214 { 1215 return (((u64) (info->nbeah & 0xffff)) << 32) + 1216 (info->nbeal & ~0x01); 1217 } 1218 1219 /* 1220 * Read the Base and Limit registers for F10 based Memory controllers. Extract 1221 * fields from the 'raw' reg into separate data fields. 1222 * 1223 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN. 1224 */ 1225 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram) 1226 { 1227 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit; 1228 1229 low_offset = K8_DRAM_BASE_LOW + (dram << 3); 1230 high_offset = F10_DRAM_BASE_HIGH + (dram << 3); 1231 1232 /* read the 'raw' DRAM BASE Address register */ 1233 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base); 1234 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base); 1235 1236 /* Extract parts into separate data entries */ 1237 pvt->dram_rw_en[dram] = (low_base & 0x3); 1238 1239 if (pvt->dram_rw_en[dram] == 0) 1240 return; 1241 1242 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7; 1243 1244 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) | 1245 (((u64)low_base & 0xFFFF0000) << 8); 1246 1247 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3); 1248 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3); 1249 1250 /* read the 'raw' LIMIT registers */ 1251 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit); 1252 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit); 1253 1254 pvt->dram_DstNode[dram] = (low_limit & 0x7); 1255 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7; 1256 1257 /* 1258 * Extract address values and form a LIMIT address. Limit is the HIGHEST 1259 * memory location of the region, so low 24 bits need to be all ones. 1260 */ 1261 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) | 1262 (((u64) low_limit & 0xFFFF0000) << 8) | 1263 0x00FFFFFF; 1264 } 1265 1266 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt) 1267 { 1268 1269 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW, 1270 &pvt->dram_ctl_select_low)) { 1271 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, " 1272 "High range addresses at: 0x%x\n", 1273 pvt->dram_ctl_select_low, 1274 dct_sel_baseaddr(pvt)); 1275 1276 debugf0(" DCT mode: %s, All DCTs on: %s\n", 1277 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"), 1278 (dct_dram_enabled(pvt) ? "yes" : "no")); 1279 1280 if (!dct_ganging_enabled(pvt)) 1281 debugf0(" Address range split per DCT: %s\n", 1282 (dct_high_range_enabled(pvt) ? "yes" : "no")); 1283 1284 debugf0(" DCT data interleave for ECC: %s, " 1285 "DRAM cleared since last warm reset: %s\n", 1286 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"), 1287 (dct_memory_cleared(pvt) ? "yes" : "no")); 1288 1289 debugf0(" DCT channel interleave: %s, " 1290 "DCT interleave bits selector: 0x%x\n", 1291 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"), 1292 dct_sel_interleave_addr(pvt)); 1293 } 1294 1295 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH, 1296 &pvt->dram_ctl_select_high); 1297 } 1298 1299 /* 1300 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory 1301 * Interleaving Modes. 1302 */ 1303 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, 1304 int hi_range_sel, u32 intlv_en) 1305 { 1306 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1; 1307 1308 if (dct_ganging_enabled(pvt)) 1309 cs = 0; 1310 else if (hi_range_sel) 1311 cs = dct_sel_high; 1312 else if (dct_interleave_enabled(pvt)) { 1313 /* 1314 * see F2x110[DctSelIntLvAddr] - channel interleave mode 1315 */ 1316 if (dct_sel_interleave_addr(pvt) == 0) 1317 cs = sys_addr >> 6 & 1; 1318 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) { 1319 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2; 1320 1321 if (dct_sel_interleave_addr(pvt) & 1) 1322 cs = (sys_addr >> 9 & 1) ^ temp; 1323 else 1324 cs = (sys_addr >> 6 & 1) ^ temp; 1325 } else if (intlv_en & 4) 1326 cs = sys_addr >> 15 & 1; 1327 else if (intlv_en & 2) 1328 cs = sys_addr >> 14 & 1; 1329 else if (intlv_en & 1) 1330 cs = sys_addr >> 13 & 1; 1331 else 1332 cs = sys_addr >> 12 & 1; 1333 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt)) 1334 cs = ~dct_sel_high & 1; 1335 else 1336 cs = 0; 1337 1338 return cs; 1339 } 1340 1341 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en) 1342 { 1343 if (intlv_en == 1) 1344 return 1; 1345 else if (intlv_en == 3) 1346 return 2; 1347 else if (intlv_en == 7) 1348 return 3; 1349 1350 return 0; 1351 } 1352 1353 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */ 1354 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel, 1355 u32 dct_sel_base_addr, 1356 u64 dct_sel_base_off, 1357 u32 hole_valid, u32 hole_off, 1358 u64 dram_base) 1359 { 1360 u64 chan_off; 1361 1362 if (hi_range_sel) { 1363 if (!(dct_sel_base_addr & 0xFFFF0000) && 1364 hole_valid && (sys_addr >= 0x100000000ULL)) 1365 chan_off = hole_off << 16; 1366 else 1367 chan_off = dct_sel_base_off; 1368 } else { 1369 if (hole_valid && (sys_addr >= 0x100000000ULL)) 1370 chan_off = hole_off << 16; 1371 else 1372 chan_off = dram_base & 0xFFFFF8000000ULL; 1373 } 1374 1375 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) - 1376 (chan_off & 0x0000FFFFFF800000ULL); 1377 } 1378 1379 /* Hack for the time being - Can we get this from BIOS?? */ 1380 #define CH0SPARE_RANK 0 1381 #define CH1SPARE_RANK 1 1382 1383 /* 1384 * checks if the csrow passed in is marked as SPARED, if so returns the new 1385 * spare row 1386 */ 1387 static inline int f10_process_possible_spare(int csrow, 1388 u32 cs, struct amd64_pvt *pvt) 1389 { 1390 u32 swap_done; 1391 u32 bad_dram_cs; 1392 1393 /* Depending on channel, isolate respective SPARING info */ 1394 if (cs) { 1395 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare); 1396 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare); 1397 if (swap_done && (csrow == bad_dram_cs)) 1398 csrow = CH1SPARE_RANK; 1399 } else { 1400 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare); 1401 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare); 1402 if (swap_done && (csrow == bad_dram_cs)) 1403 csrow = CH0SPARE_RANK; 1404 } 1405 return csrow; 1406 } 1407 1408 /* 1409 * Iterate over the DRAM DCT "base" and "mask" registers looking for a 1410 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' 1411 * 1412 * Return: 1413 * -EINVAL: NOT FOUND 1414 * 0..csrow = Chip-Select Row 1415 */ 1416 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs) 1417 { 1418 struct mem_ctl_info *mci; 1419 struct amd64_pvt *pvt; 1420 u32 cs_base, cs_mask; 1421 int cs_found = -EINVAL; 1422 int csrow; 1423 1424 mci = mcis[nid]; 1425 if (!mci) 1426 return cs_found; 1427 1428 pvt = mci->pvt_info; 1429 1430 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs); 1431 1432 for (csrow = 0; csrow < pvt->cs_count; csrow++) { 1433 1434 cs_base = amd64_get_dct_base(pvt, cs, csrow); 1435 if (!(cs_base & K8_DCSB_CS_ENABLE)) 1436 continue; 1437 1438 /* 1439 * We have an ENABLED CSROW, Isolate just the MASK bits of the 1440 * target: [28:19] and [13:5], which map to [36:27] and [21:13] 1441 * of the actual address. 1442 */ 1443 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS; 1444 1445 /* 1446 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and 1447 * [4:0] to become ON. Then mask off bits [28:0] ([36:8]) 1448 */ 1449 cs_mask = amd64_get_dct_mask(pvt, cs, csrow); 1450 1451 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n", 1452 csrow, cs_base, cs_mask); 1453 1454 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF; 1455 1456 debugf1(" Final CSMask=0x%x\n", cs_mask); 1457 debugf1(" (InputAddr & ~CSMask)=0x%x " 1458 "(CSBase & ~CSMask)=0x%x\n", 1459 (in_addr & ~cs_mask), (cs_base & ~cs_mask)); 1460 1461 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) { 1462 cs_found = f10_process_possible_spare(csrow, cs, pvt); 1463 1464 debugf1(" MATCH csrow=%d\n", cs_found); 1465 break; 1466 } 1467 } 1468 return cs_found; 1469 } 1470 1471 /* For a given @dram_range, check if @sys_addr falls within it. */ 1472 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range, 1473 u64 sys_addr, int *nid, int *chan_sel) 1474 { 1475 int node_id, cs_found = -EINVAL, high_range = 0; 1476 u32 intlv_en, intlv_sel, intlv_shift, hole_off; 1477 u32 hole_valid, tmp, dct_sel_base, channel; 1478 u64 dram_base, chan_addr, dct_sel_base_off; 1479 1480 dram_base = pvt->dram_base[dram_range]; 1481 intlv_en = pvt->dram_IntlvEn[dram_range]; 1482 1483 node_id = pvt->dram_DstNode[dram_range]; 1484 intlv_sel = pvt->dram_IntlvSel[dram_range]; 1485 1486 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n", 1487 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]); 1488 1489 /* 1490 * This assumes that one node's DHAR is the same as all the other 1491 * nodes' DHAR. 1492 */ 1493 hole_off = (pvt->dhar & 0x0000FF80); 1494 hole_valid = (pvt->dhar & 0x1); 1495 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16; 1496 1497 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n", 1498 hole_off, hole_valid, intlv_sel); 1499 1500 if (intlv_en && 1501 (intlv_sel != ((sys_addr >> 12) & intlv_en))) 1502 return -EINVAL; 1503 1504 dct_sel_base = dct_sel_baseaddr(pvt); 1505 1506 /* 1507 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to 1508 * select between DCT0 and DCT1. 1509 */ 1510 if (dct_high_range_enabled(pvt) && 1511 !dct_ganging_enabled(pvt) && 1512 ((sys_addr >> 27) >= (dct_sel_base >> 11))) 1513 high_range = 1; 1514 1515 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en); 1516 1517 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base, 1518 dct_sel_base_off, hole_valid, 1519 hole_off, dram_base); 1520 1521 intlv_shift = f10_map_intlv_en_to_shift(intlv_en); 1522 1523 /* remove Node ID (in case of memory interleaving) */ 1524 tmp = chan_addr & 0xFC0; 1525 1526 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp; 1527 1528 /* remove channel interleave and hash */ 1529 if (dct_interleave_enabled(pvt) && 1530 !dct_high_range_enabled(pvt) && 1531 !dct_ganging_enabled(pvt)) { 1532 if (dct_sel_interleave_addr(pvt) != 1) 1533 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL; 1534 else { 1535 tmp = chan_addr & 0xFC0; 1536 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1) 1537 | tmp; 1538 } 1539 } 1540 1541 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n", 1542 chan_addr, (u32)(chan_addr >> 8)); 1543 1544 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel); 1545 1546 if (cs_found >= 0) { 1547 *nid = node_id; 1548 *chan_sel = channel; 1549 } 1550 return cs_found; 1551 } 1552 1553 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr, 1554 int *node, int *chan_sel) 1555 { 1556 int dram_range, cs_found = -EINVAL; 1557 u64 dram_base, dram_limit; 1558 1559 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) { 1560 1561 if (!pvt->dram_rw_en[dram_range]) 1562 continue; 1563 1564 dram_base = pvt->dram_base[dram_range]; 1565 dram_limit = pvt->dram_limit[dram_range]; 1566 1567 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) { 1568 1569 cs_found = f10_match_to_this_node(pvt, dram_range, 1570 sys_addr, node, 1571 chan_sel); 1572 if (cs_found >= 0) 1573 break; 1574 } 1575 } 1576 return cs_found; 1577 } 1578 1579 /* 1580 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps 1581 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). 1582 * 1583 * The @sys_addr is usually an error address received from the hardware 1584 * (MCX_ADDR). 1585 */ 1586 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci, 1587 struct err_regs *err_info, 1588 u64 sys_addr) 1589 { 1590 struct amd64_pvt *pvt = mci->pvt_info; 1591 u32 page, offset; 1592 int nid, csrow, chan = 0; 1593 u16 syndrome; 1594 1595 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan); 1596 1597 if (csrow < 0) { 1598 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1599 return; 1600 } 1601 1602 error_address_to_page_and_offset(sys_addr, &page, &offset); 1603 1604 syndrome = extract_syndrome(err_info); 1605 1606 /* 1607 * We need the syndromes for channel detection only when we're 1608 * ganged. Otherwise @chan should already contain the channel at 1609 * this point. 1610 */ 1611 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL)) 1612 chan = get_channel_from_ecc_syndrome(mci, syndrome); 1613 1614 if (chan >= 0) 1615 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan, 1616 EDAC_MOD_STR); 1617 else 1618 /* 1619 * Channel unknown, report all channels on this CSROW as failed. 1620 */ 1621 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++) 1622 edac_mc_handle_ce(mci, page, offset, syndrome, 1623 csrow, chan, EDAC_MOD_STR); 1624 } 1625 1626 /* 1627 * debug routine to display the memory sizes of all logical DIMMs and its 1628 * CSROWs as well 1629 */ 1630 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt) 1631 { 1632 int dimm, size0, size1, factor = 0; 1633 u32 dbam; 1634 u32 *dcsb; 1635 1636 if (boot_cpu_data.x86 == 0xf) { 1637 if (pvt->dclr0 & F10_WIDTH_128) 1638 factor = 1; 1639 1640 /* K8 families < revF not supported yet */ 1641 if (pvt->ext_model < K8_REV_F) 1642 return; 1643 else 1644 WARN_ON(ctrl != 0); 1645 } 1646 1647 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", 1648 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0); 1649 1650 dbam = ctrl ? pvt->dbam1 : pvt->dbam0; 1651 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0; 1652 1653 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); 1654 1655 /* Dump memory sizes for DIMM and its CSROWs */ 1656 for (dimm = 0; dimm < 4; dimm++) { 1657 1658 size0 = 0; 1659 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE) 1660 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); 1661 1662 size1 = 0; 1663 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE) 1664 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam)); 1665 1666 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", 1667 dimm * 2, size0 << factor, 1668 dimm * 2 + 1, size1 << factor); 1669 } 1670 } 1671 1672 static struct amd64_family_type amd64_family_types[] = { 1673 [K8_CPUS] = { 1674 .ctl_name = "K8", 1675 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP, 1676 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC, 1677 .ops = { 1678 .early_channel_count = k8_early_channel_count, 1679 .get_error_address = k8_get_error_address, 1680 .read_dram_base_limit = k8_read_dram_base_limit, 1681 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow, 1682 .dbam_to_cs = k8_dbam_to_chip_select, 1683 } 1684 }, 1685 [F10_CPUS] = { 1686 .ctl_name = "F10h", 1687 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP, 1688 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC, 1689 .ops = { 1690 .early_channel_count = f10_early_channel_count, 1691 .get_error_address = f10_get_error_address, 1692 .read_dram_base_limit = f10_read_dram_base_limit, 1693 .read_dram_ctl_register = f10_read_dram_ctl_register, 1694 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow, 1695 .dbam_to_cs = f10_dbam_to_chip_select, 1696 } 1697 }, 1698 }; 1699 1700 static struct pci_dev *pci_get_related_function(unsigned int vendor, 1701 unsigned int device, 1702 struct pci_dev *related) 1703 { 1704 struct pci_dev *dev = NULL; 1705 1706 dev = pci_get_device(vendor, device, dev); 1707 while (dev) { 1708 if ((dev->bus->number == related->bus->number) && 1709 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) 1710 break; 1711 dev = pci_get_device(vendor, device, dev); 1712 } 1713 1714 return dev; 1715 } 1716 1717 /* 1718 * These are tables of eigenvectors (one per line) which can be used for the 1719 * construction of the syndrome tables. The modified syndrome search algorithm 1720 * uses those to find the symbol in error and thus the DIMM. 1721 * 1722 * Algorithm courtesy of Ross LaFetra from AMD. 1723 */ 1724 static u16 x4_vectors[] = { 1725 0x2f57, 0x1afe, 0x66cc, 0xdd88, 1726 0x11eb, 0x3396, 0x7f4c, 0xeac8, 1727 0x0001, 0x0002, 0x0004, 0x0008, 1728 0x1013, 0x3032, 0x4044, 0x8088, 1729 0x106b, 0x30d6, 0x70fc, 0xe0a8, 1730 0x4857, 0xc4fe, 0x13cc, 0x3288, 1731 0x1ac5, 0x2f4a, 0x5394, 0xa1e8, 1732 0x1f39, 0x251e, 0xbd6c, 0x6bd8, 1733 0x15c1, 0x2a42, 0x89ac, 0x4758, 1734 0x2b03, 0x1602, 0x4f0c, 0xca08, 1735 0x1f07, 0x3a0e, 0x6b04, 0xbd08, 1736 0x8ba7, 0x465e, 0x244c, 0x1cc8, 1737 0x2b87, 0x164e, 0x642c, 0xdc18, 1738 0x40b9, 0x80de, 0x1094, 0x20e8, 1739 0x27db, 0x1eb6, 0x9dac, 0x7b58, 1740 0x11c1, 0x2242, 0x84ac, 0x4c58, 1741 0x1be5, 0x2d7a, 0x5e34, 0xa718, 1742 0x4b39, 0x8d1e, 0x14b4, 0x28d8, 1743 0x4c97, 0xc87e, 0x11fc, 0x33a8, 1744 0x8e97, 0x497e, 0x2ffc, 0x1aa8, 1745 0x16b3, 0x3d62, 0x4f34, 0x8518, 1746 0x1e2f, 0x391a, 0x5cac, 0xf858, 1747 0x1d9f, 0x3b7a, 0x572c, 0xfe18, 1748 0x15f5, 0x2a5a, 0x5264, 0xa3b8, 1749 0x1dbb, 0x3b66, 0x715c, 0xe3f8, 1750 0x4397, 0xc27e, 0x17fc, 0x3ea8, 1751 0x1617, 0x3d3e, 0x6464, 0xb8b8, 1752 0x23ff, 0x12aa, 0xab6c, 0x56d8, 1753 0x2dfb, 0x1ba6, 0x913c, 0x7328, 1754 0x185d, 0x2ca6, 0x7914, 0x9e28, 1755 0x171b, 0x3e36, 0x7d7c, 0xebe8, 1756 0x4199, 0x82ee, 0x19f4, 0x2e58, 1757 0x4807, 0xc40e, 0x130c, 0x3208, 1758 0x1905, 0x2e0a, 0x5804, 0xac08, 1759 0x213f, 0x132a, 0xadfc, 0x5ba8, 1760 0x19a9, 0x2efe, 0xb5cc, 0x6f88, 1761 }; 1762 1763 static u16 x8_vectors[] = { 1764 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, 1765 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, 1766 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, 1767 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, 1768 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, 1769 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, 1770 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, 1771 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, 1772 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, 1773 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, 1774 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, 1775 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, 1776 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, 1777 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, 1778 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, 1779 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, 1780 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, 1781 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 1782 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, 1783 }; 1784 1785 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs, 1786 int v_dim) 1787 { 1788 unsigned int i, err_sym; 1789 1790 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { 1791 u16 s = syndrome; 1792 int v_idx = err_sym * v_dim; 1793 int v_end = (err_sym + 1) * v_dim; 1794 1795 /* walk over all 16 bits of the syndrome */ 1796 for (i = 1; i < (1U << 16); i <<= 1) { 1797 1798 /* if bit is set in that eigenvector... */ 1799 if (v_idx < v_end && vectors[v_idx] & i) { 1800 u16 ev_comp = vectors[v_idx++]; 1801 1802 /* ... and bit set in the modified syndrome, */ 1803 if (s & i) { 1804 /* remove it. */ 1805 s ^= ev_comp; 1806 1807 if (!s) 1808 return err_sym; 1809 } 1810 1811 } else if (s & i) 1812 /* can't get to zero, move to next symbol */ 1813 break; 1814 } 1815 } 1816 1817 debugf0("syndrome(%x) not found\n", syndrome); 1818 return -1; 1819 } 1820 1821 static int map_err_sym_to_channel(int err_sym, int sym_size) 1822 { 1823 if (sym_size == 4) 1824 switch (err_sym) { 1825 case 0x20: 1826 case 0x21: 1827 return 0; 1828 break; 1829 case 0x22: 1830 case 0x23: 1831 return 1; 1832 break; 1833 default: 1834 return err_sym >> 4; 1835 break; 1836 } 1837 /* x8 symbols */ 1838 else 1839 switch (err_sym) { 1840 /* imaginary bits not in a DIMM */ 1841 case 0x10: 1842 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", 1843 err_sym); 1844 return -1; 1845 break; 1846 1847 case 0x11: 1848 return 0; 1849 break; 1850 case 0x12: 1851 return 1; 1852 break; 1853 default: 1854 return err_sym >> 3; 1855 break; 1856 } 1857 return -1; 1858 } 1859 1860 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) 1861 { 1862 struct amd64_pvt *pvt = mci->pvt_info; 1863 int err_sym = -1; 1864 1865 if (pvt->syn_type == 8) 1866 err_sym = decode_syndrome(syndrome, x8_vectors, 1867 ARRAY_SIZE(x8_vectors), 1868 pvt->syn_type); 1869 else if (pvt->syn_type == 4) 1870 err_sym = decode_syndrome(syndrome, x4_vectors, 1871 ARRAY_SIZE(x4_vectors), 1872 pvt->syn_type); 1873 else { 1874 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type); 1875 return err_sym; 1876 } 1877 1878 return map_err_sym_to_channel(err_sym, pvt->syn_type); 1879 } 1880 1881 /* 1882 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR 1883 * ADDRESS and process. 1884 */ 1885 static void amd64_handle_ce(struct mem_ctl_info *mci, 1886 struct err_regs *info) 1887 { 1888 struct amd64_pvt *pvt = mci->pvt_info; 1889 u64 sys_addr; 1890 1891 /* Ensure that the Error Address is VALID */ 1892 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) { 1893 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); 1894 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR); 1895 return; 1896 } 1897 1898 sys_addr = pvt->ops->get_error_address(mci, info); 1899 1900 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr); 1901 1902 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr); 1903 } 1904 1905 /* Handle any Un-correctable Errors (UEs) */ 1906 static void amd64_handle_ue(struct mem_ctl_info *mci, 1907 struct err_regs *info) 1908 { 1909 struct amd64_pvt *pvt = mci->pvt_info; 1910 struct mem_ctl_info *log_mci, *src_mci = NULL; 1911 int csrow; 1912 u64 sys_addr; 1913 u32 page, offset; 1914 1915 log_mci = mci; 1916 1917 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) { 1918 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n"); 1919 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1920 return; 1921 } 1922 1923 sys_addr = pvt->ops->get_error_address(mci, info); 1924 1925 /* 1926 * Find out which node the error address belongs to. This may be 1927 * different from the node that detected the error. 1928 */ 1929 src_mci = find_mc_by_sys_addr(mci, sys_addr); 1930 if (!src_mci) { 1931 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n", 1932 (unsigned long)sys_addr); 1933 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1934 return; 1935 } 1936 1937 log_mci = src_mci; 1938 1939 csrow = sys_addr_to_csrow(log_mci, sys_addr); 1940 if (csrow < 0) { 1941 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n", 1942 (unsigned long)sys_addr); 1943 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR); 1944 } else { 1945 error_address_to_page_and_offset(sys_addr, &page, &offset); 1946 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR); 1947 } 1948 } 1949 1950 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci, 1951 struct err_regs *info) 1952 { 1953 u16 ec = EC(info->nbsl); 1954 u8 xec = XEC(info->nbsl, 0x1f); 1955 int ecc_type = (info->nbsh >> 13) & 0x3; 1956 1957 /* Bail early out if this was an 'observed' error */ 1958 if (PP(ec) == K8_NBSL_PP_OBS) 1959 return; 1960 1961 /* Do only ECC errors */ 1962 if (xec && xec != F10_NBSL_EXT_ERR_ECC) 1963 return; 1964 1965 if (ecc_type == 2) 1966 amd64_handle_ce(mci, info); 1967 else if (ecc_type == 1) 1968 amd64_handle_ue(mci, info); 1969 } 1970 1971 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg) 1972 { 1973 struct mem_ctl_info *mci = mcis[node_id]; 1974 struct err_regs regs; 1975 1976 regs.nbsl = (u32) m->status; 1977 regs.nbsh = (u32)(m->status >> 32); 1978 regs.nbeal = (u32) m->addr; 1979 regs.nbeah = (u32)(m->addr >> 32); 1980 regs.nbcfg = nbcfg; 1981 1982 __amd64_decode_bus_error(mci, ®s); 1983 1984 /* 1985 * Check the UE bit of the NB status high register, if set generate some 1986 * logs. If NOT a GART error, then process the event as a NO-INFO event. 1987 * If it was a GART error, skip that process. 1988 * 1989 * FIXME: this should go somewhere else, if at all. 1990 */ 1991 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors) 1992 edac_mc_handle_ue_no_info(mci, "UE bit is set"); 1993 1994 } 1995 1996 /* 1997 * Use pvt->F2 which contains the F2 CPU PCI device to get the related 1998 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error. 1999 */ 2000 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id) 2001 { 2002 /* Reserve the ADDRESS MAP Device */ 2003 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2); 2004 if (!pvt->F1) { 2005 amd64_err("error address map device not found: " 2006 "vendor %x device 0x%x (broken BIOS?)\n", 2007 PCI_VENDOR_ID_AMD, f1_id); 2008 return -ENODEV; 2009 } 2010 2011 /* Reserve the MISC Device */ 2012 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2); 2013 if (!pvt->F3) { 2014 pci_dev_put(pvt->F1); 2015 pvt->F1 = NULL; 2016 2017 amd64_err("error F3 device not found: " 2018 "vendor %x device 0x%x (broken BIOS?)\n", 2019 PCI_VENDOR_ID_AMD, f3_id); 2020 2021 return -ENODEV; 2022 } 2023 debugf1("F1: %s\n", pci_name(pvt->F1)); 2024 debugf1("F2: %s\n", pci_name(pvt->F2)); 2025 debugf1("F3: %s\n", pci_name(pvt->F3)); 2026 2027 return 0; 2028 } 2029 2030 static void free_mc_sibling_devs(struct amd64_pvt *pvt) 2031 { 2032 pci_dev_put(pvt->F1); 2033 pci_dev_put(pvt->F3); 2034 } 2035 2036 /* 2037 * Retrieve the hardware registers of the memory controller (this includes the 2038 * 'Address Map' and 'Misc' device regs) 2039 */ 2040 static void read_mc_regs(struct amd64_pvt *pvt) 2041 { 2042 u64 msr_val; 2043 u32 tmp; 2044 int dram; 2045 2046 /* 2047 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since 2048 * those are Read-As-Zero 2049 */ 2050 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem); 2051 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem); 2052 2053 /* check first whether TOP_MEM2 is enabled */ 2054 rdmsrl(MSR_K8_SYSCFG, msr_val); 2055 if (msr_val & (1U << 21)) { 2056 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2); 2057 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2); 2058 } else 2059 debugf0(" TOP_MEM2 disabled.\n"); 2060 2061 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap); 2062 2063 if (pvt->ops->read_dram_ctl_register) 2064 pvt->ops->read_dram_ctl_register(pvt); 2065 2066 for (dram = 0; dram < DRAM_REG_COUNT; dram++) { 2067 /* 2068 * Call CPU specific READ function to get the DRAM Base and 2069 * Limit values from the DCT. 2070 */ 2071 pvt->ops->read_dram_base_limit(pvt, dram); 2072 2073 /* 2074 * Only print out debug info on rows with both R and W Enabled. 2075 * Normal processing, compiler should optimize this whole 'if' 2076 * debug output block away. 2077 */ 2078 if (pvt->dram_rw_en[dram] != 0) { 2079 debugf1(" DRAM-BASE[%d]: 0x%016llx " 2080 "DRAM-LIMIT: 0x%016llx\n", 2081 dram, 2082 pvt->dram_base[dram], 2083 pvt->dram_limit[dram]); 2084 2085 debugf1(" IntlvEn=%s %s %s " 2086 "IntlvSel=%d DstNode=%d\n", 2087 pvt->dram_IntlvEn[dram] ? 2088 "Enabled" : "Disabled", 2089 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W", 2090 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R", 2091 pvt->dram_IntlvSel[dram], 2092 pvt->dram_DstNode[dram]); 2093 } 2094 } 2095 2096 amd64_read_dct_base_mask(pvt); 2097 2098 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar); 2099 amd64_read_dbam_reg(pvt); 2100 2101 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); 2102 2103 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0); 2104 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0); 2105 2106 if (boot_cpu_data.x86 >= 0x10) { 2107 if (!dct_ganging_enabled(pvt)) { 2108 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1); 2109 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1); 2110 } 2111 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); 2112 } 2113 2114 if (boot_cpu_data.x86 == 0x10 && 2115 boot_cpu_data.x86_model > 7 && 2116 /* F3x180[EccSymbolSize]=1 => x8 symbols */ 2117 tmp & BIT(25)) 2118 pvt->syn_type = 8; 2119 else 2120 pvt->syn_type = 4; 2121 2122 amd64_dump_misc_regs(pvt); 2123 } 2124 2125 /* 2126 * NOTE: CPU Revision Dependent code 2127 * 2128 * Input: 2129 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1) 2130 * k8 private pointer to --> 2131 * DRAM Bank Address mapping register 2132 * node_id 2133 * DCL register where dual_channel_active is 2134 * 2135 * The DBAM register consists of 4 sets of 4 bits each definitions: 2136 * 2137 * Bits: CSROWs 2138 * 0-3 CSROWs 0 and 1 2139 * 4-7 CSROWs 2 and 3 2140 * 8-11 CSROWs 4 and 5 2141 * 12-15 CSROWs 6 and 7 2142 * 2143 * Values range from: 0 to 15 2144 * The meaning of the values depends on CPU revision and dual-channel state, 2145 * see relevant BKDG more info. 2146 * 2147 * The memory controller provides for total of only 8 CSROWs in its current 2148 * architecture. Each "pair" of CSROWs normally represents just one DIMM in 2149 * single channel or two (2) DIMMs in dual channel mode. 2150 * 2151 * The following code logic collapses the various tables for CSROW based on CPU 2152 * revision. 2153 * 2154 * Returns: 2155 * The number of PAGE_SIZE pages on the specified CSROW number it 2156 * encompasses 2157 * 2158 */ 2159 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt) 2160 { 2161 u32 cs_mode, nr_pages; 2162 2163 /* 2164 * The math on this doesn't look right on the surface because x/2*4 can 2165 * be simplified to x*2 but this expression makes use of the fact that 2166 * it is integral math where 1/2=0. This intermediate value becomes the 2167 * number of bits to shift the DBAM register to extract the proper CSROW 2168 * field. 2169 */ 2170 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF; 2171 2172 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT); 2173 2174 /* 2175 * If dual channel then double the memory size of single channel. 2176 * Channel count is 1 or 2 2177 */ 2178 nr_pages <<= (pvt->channel_count - 1); 2179 2180 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode); 2181 debugf0(" nr_pages= %u channel-count = %d\n", 2182 nr_pages, pvt->channel_count); 2183 2184 return nr_pages; 2185 } 2186 2187 /* 2188 * Initialize the array of csrow attribute instances, based on the values 2189 * from pci config hardware registers. 2190 */ 2191 static int init_csrows(struct mem_ctl_info *mci) 2192 { 2193 struct csrow_info *csrow; 2194 struct amd64_pvt *pvt = mci->pvt_info; 2195 u64 input_addr_min, input_addr_max, sys_addr; 2196 u32 val; 2197 int i, empty = 1; 2198 2199 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val); 2200 2201 pvt->nbcfg = val; 2202 pvt->ctl_error_info.nbcfg = val; 2203 2204 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2205 pvt->mc_node_id, val, 2206 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE)); 2207 2208 for (i = 0; i < pvt->cs_count; i++) { 2209 csrow = &mci->csrows[i]; 2210 2211 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) { 2212 debugf1("----CSROW %d EMPTY for node %d\n", i, 2213 pvt->mc_node_id); 2214 continue; 2215 } 2216 2217 debugf1("----CSROW %d VALID for MC node %d\n", 2218 i, pvt->mc_node_id); 2219 2220 empty = 0; 2221 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt); 2222 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max); 2223 sys_addr = input_addr_to_sys_addr(mci, input_addr_min); 2224 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT); 2225 sys_addr = input_addr_to_sys_addr(mci, input_addr_max); 2226 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT); 2227 csrow->page_mask = ~mask_from_dct_mask(pvt, i); 2228 /* 8 bytes of resolution */ 2229 2230 csrow->mtype = amd64_determine_memory_type(pvt, i); 2231 2232 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i); 2233 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n", 2234 (unsigned long)input_addr_min, 2235 (unsigned long)input_addr_max); 2236 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n", 2237 (unsigned long)sys_addr, csrow->page_mask); 2238 debugf1(" nr_pages: %u first_page: 0x%lx " 2239 "last_page: 0x%lx\n", 2240 (unsigned)csrow->nr_pages, 2241 csrow->first_page, csrow->last_page); 2242 2243 /* 2244 * determine whether CHIPKILL or JUST ECC or NO ECC is operating 2245 */ 2246 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) 2247 csrow->edac_mode = 2248 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? 2249 EDAC_S4ECD4ED : EDAC_SECDED; 2250 else 2251 csrow->edac_mode = EDAC_NONE; 2252 } 2253 2254 return empty; 2255 } 2256 2257 /* get all cores on this DCT */ 2258 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid) 2259 { 2260 int cpu; 2261 2262 for_each_online_cpu(cpu) 2263 if (amd_get_nb_id(cpu) == nid) 2264 cpumask_set_cpu(cpu, mask); 2265 } 2266 2267 /* check MCG_CTL on all the cpus on this node */ 2268 static bool amd64_nb_mce_bank_enabled_on_node(int nid) 2269 { 2270 cpumask_var_t mask; 2271 int cpu, nbe; 2272 bool ret = false; 2273 2274 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 2275 amd64_warn("%s: Error allocating mask\n", __func__); 2276 return false; 2277 } 2278 2279 get_cpus_on_this_dct_cpumask(mask, nid); 2280 2281 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); 2282 2283 for_each_cpu(cpu, mask) { 2284 struct msr *reg = per_cpu_ptr(msrs, cpu); 2285 nbe = reg->l & K8_MSR_MCGCTL_NBE; 2286 2287 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", 2288 cpu, reg->q, 2289 (nbe ? "enabled" : "disabled")); 2290 2291 if (!nbe) 2292 goto out; 2293 } 2294 ret = true; 2295 2296 out: 2297 free_cpumask_var(mask); 2298 return ret; 2299 } 2300 2301 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on) 2302 { 2303 cpumask_var_t cmask; 2304 int cpu; 2305 2306 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { 2307 amd64_warn("%s: error allocating mask\n", __func__); 2308 return false; 2309 } 2310 2311 get_cpus_on_this_dct_cpumask(cmask, nid); 2312 2313 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2314 2315 for_each_cpu(cpu, cmask) { 2316 2317 struct msr *reg = per_cpu_ptr(msrs, cpu); 2318 2319 if (on) { 2320 if (reg->l & K8_MSR_MCGCTL_NBE) 2321 s->flags.nb_mce_enable = 1; 2322 2323 reg->l |= K8_MSR_MCGCTL_NBE; 2324 } else { 2325 /* 2326 * Turn off NB MCE reporting only when it was off before 2327 */ 2328 if (!s->flags.nb_mce_enable) 2329 reg->l &= ~K8_MSR_MCGCTL_NBE; 2330 } 2331 } 2332 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); 2333 2334 free_cpumask_var(cmask); 2335 2336 return 0; 2337 } 2338 2339 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid, 2340 struct pci_dev *F3) 2341 { 2342 bool ret = true; 2343 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; 2344 2345 if (toggle_ecc_err_reporting(s, nid, ON)) { 2346 amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); 2347 return false; 2348 } 2349 2350 amd64_read_pci_cfg(F3, K8_NBCTL, &value); 2351 2352 /* turn on UECCEn and CECCEn bits */ 2353 s->old_nbctl = value & mask; 2354 s->nbctl_valid = true; 2355 2356 value |= mask; 2357 pci_write_config_dword(F3, K8_NBCTL, value); 2358 2359 amd64_read_pci_cfg(F3, K8_NBCFG, &value); 2360 2361 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2362 nid, value, 2363 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE)); 2364 2365 if (!(value & K8_NBCFG_ECC_ENABLE)) { 2366 amd64_warn("DRAM ECC disabled on this node, enabling...\n"); 2367 2368 s->flags.nb_ecc_prev = 0; 2369 2370 /* Attempt to turn on DRAM ECC Enable */ 2371 value |= K8_NBCFG_ECC_ENABLE; 2372 pci_write_config_dword(F3, K8_NBCFG, value); 2373 2374 amd64_read_pci_cfg(F3, K8_NBCFG, &value); 2375 2376 if (!(value & K8_NBCFG_ECC_ENABLE)) { 2377 amd64_warn("Hardware rejected DRAM ECC enable," 2378 "check memory DIMM configuration.\n"); 2379 ret = false; 2380 } else { 2381 amd64_info("Hardware accepted DRAM ECC Enable\n"); 2382 } 2383 } else { 2384 s->flags.nb_ecc_prev = 1; 2385 } 2386 2387 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", 2388 nid, value, 2389 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE)); 2390 2391 return ret; 2392 } 2393 2394 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid, 2395 struct pci_dev *F3) 2396 { 2397 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn; 2398 2399 if (!s->nbctl_valid) 2400 return; 2401 2402 amd64_read_pci_cfg(F3, K8_NBCTL, &value); 2403 value &= ~mask; 2404 value |= s->old_nbctl; 2405 2406 pci_write_config_dword(F3, K8_NBCTL, value); 2407 2408 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */ 2409 if (!s->flags.nb_ecc_prev) { 2410 amd64_read_pci_cfg(F3, K8_NBCFG, &value); 2411 value &= ~K8_NBCFG_ECC_ENABLE; 2412 pci_write_config_dword(F3, K8_NBCFG, value); 2413 } 2414 2415 /* restore the NB Enable MCGCTL bit */ 2416 if (toggle_ecc_err_reporting(s, nid, OFF)) 2417 amd64_warn("Error restoring NB MCGCTL settings!\n"); 2418 } 2419 2420 /* 2421 * EDAC requires that the BIOS have ECC enabled before 2422 * taking over the processing of ECC errors. A command line 2423 * option allows to force-enable hardware ECC later in 2424 * enable_ecc_error_reporting(). 2425 */ 2426 static const char *ecc_msg = 2427 "ECC disabled in the BIOS or no ECC capability, module will not load.\n" 2428 " Either enable ECC checking or force module loading by setting " 2429 "'ecc_enable_override'.\n" 2430 " (Note that use of the override may cause unknown side effects.)\n"; 2431 2432 static bool ecc_enabled(struct pci_dev *F3, u8 nid) 2433 { 2434 u32 value; 2435 u8 ecc_en = 0; 2436 bool nb_mce_en = false; 2437 2438 amd64_read_pci_cfg(F3, K8_NBCFG, &value); 2439 2440 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE); 2441 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled")); 2442 2443 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid); 2444 if (!nb_mce_en) 2445 amd64_notice("NB MCE bank disabled, set MSR " 2446 "0x%08x[4] on node %d to enable.\n", 2447 MSR_IA32_MCG_CTL, nid); 2448 2449 if (!ecc_en || !nb_mce_en) { 2450 amd64_notice("%s", ecc_msg); 2451 return false; 2452 } 2453 return true; 2454 } 2455 2456 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) + 2457 ARRAY_SIZE(amd64_inj_attrs) + 2458 1]; 2459 2460 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } }; 2461 2462 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci) 2463 { 2464 unsigned int i = 0, j = 0; 2465 2466 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++) 2467 sysfs_attrs[i] = amd64_dbg_attrs[i]; 2468 2469 if (boot_cpu_data.x86 >= 0x10) 2470 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++) 2471 sysfs_attrs[i] = amd64_inj_attrs[j]; 2472 2473 sysfs_attrs[i] = terminator; 2474 2475 mci->mc_driver_sysfs_attributes = sysfs_attrs; 2476 } 2477 2478 static void setup_mci_misc_attrs(struct mem_ctl_info *mci) 2479 { 2480 struct amd64_pvt *pvt = mci->pvt_info; 2481 2482 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; 2483 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2484 2485 if (pvt->nbcap & K8_NBCAP_SECDED) 2486 mci->edac_ctl_cap |= EDAC_FLAG_SECDED; 2487 2488 if (pvt->nbcap & K8_NBCAP_CHIPKILL) 2489 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; 2490 2491 mci->edac_cap = amd64_determine_edac_cap(pvt); 2492 mci->mod_name = EDAC_MOD_STR; 2493 mci->mod_ver = EDAC_AMD64_VERSION; 2494 mci->ctl_name = pvt->ctl_name; 2495 mci->dev_name = pci_name(pvt->F2); 2496 mci->ctl_page_to_phys = NULL; 2497 2498 /* memory scrubber interface */ 2499 mci->set_sdram_scrub_rate = amd64_set_scrub_rate; 2500 mci->get_sdram_scrub_rate = amd64_get_scrub_rate; 2501 } 2502 2503 /* 2504 * returns a pointer to the family descriptor on success, NULL otherwise. 2505 */ 2506 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt) 2507 { 2508 u8 fam = boot_cpu_data.x86; 2509 struct amd64_family_type *fam_type = NULL; 2510 2511 switch (fam) { 2512 case 0xf: 2513 fam_type = &amd64_family_types[K8_CPUS]; 2514 pvt->ops = &amd64_family_types[K8_CPUS].ops; 2515 pvt->ctl_name = fam_type->ctl_name; 2516 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS; 2517 break; 2518 case 0x10: 2519 fam_type = &amd64_family_types[F10_CPUS]; 2520 pvt->ops = &amd64_family_types[F10_CPUS].ops; 2521 pvt->ctl_name = fam_type->ctl_name; 2522 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS; 2523 break; 2524 2525 default: 2526 amd64_err("Unsupported family!\n"); 2527 return NULL; 2528 } 2529 2530 pvt->ext_model = boot_cpu_data.x86_model >> 4; 2531 2532 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name, 2533 (fam == 0xf ? 2534 (pvt->ext_model >= K8_REV_F ? "revF or later " 2535 : "revE or earlier ") 2536 : ""), pvt->mc_node_id); 2537 return fam_type; 2538 } 2539 2540 static int amd64_init_one_instance(struct pci_dev *F2) 2541 { 2542 struct amd64_pvt *pvt = NULL; 2543 struct amd64_family_type *fam_type = NULL; 2544 struct mem_ctl_info *mci = NULL; 2545 int err = 0, ret; 2546 u8 nid = get_node_id(F2); 2547 2548 ret = -ENOMEM; 2549 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); 2550 if (!pvt) 2551 goto err_ret; 2552 2553 pvt->mc_node_id = nid; 2554 pvt->F2 = F2; 2555 2556 ret = -EINVAL; 2557 fam_type = amd64_per_family_init(pvt); 2558 if (!fam_type) 2559 goto err_free; 2560 2561 ret = -ENODEV; 2562 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id); 2563 if (err) 2564 goto err_free; 2565 2566 read_mc_regs(pvt); 2567 2568 /* 2569 * We need to determine how many memory channels there are. Then use 2570 * that information for calculating the size of the dynamic instance 2571 * tables in the 'mci' structure. 2572 */ 2573 ret = -EINVAL; 2574 pvt->channel_count = pvt->ops->early_channel_count(pvt); 2575 if (pvt->channel_count < 0) 2576 goto err_siblings; 2577 2578 ret = -ENOMEM; 2579 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid); 2580 if (!mci) 2581 goto err_siblings; 2582 2583 mci->pvt_info = pvt; 2584 mci->dev = &pvt->F2->dev; 2585 2586 setup_mci_misc_attrs(mci); 2587 2588 if (init_csrows(mci)) 2589 mci->edac_cap = EDAC_FLAG_NONE; 2590 2591 set_mc_sysfs_attrs(mci); 2592 2593 ret = -ENODEV; 2594 if (edac_mc_add_mc(mci)) { 2595 debugf1("failed edac_mc_add_mc()\n"); 2596 goto err_add_mc; 2597 } 2598 2599 /* register stuff with EDAC MCE */ 2600 if (report_gart_errors) 2601 amd_report_gart_errors(true); 2602 2603 amd_register_ecc_decoder(amd64_decode_bus_error); 2604 2605 mcis[nid] = mci; 2606 2607 atomic_inc(&drv_instances); 2608 2609 return 0; 2610 2611 err_add_mc: 2612 edac_mc_free(mci); 2613 2614 err_siblings: 2615 free_mc_sibling_devs(pvt); 2616 2617 err_free: 2618 kfree(pvt); 2619 2620 err_ret: 2621 return ret; 2622 } 2623 2624 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev, 2625 const struct pci_device_id *mc_type) 2626 { 2627 u8 nid = get_node_id(pdev); 2628 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2629 struct ecc_settings *s; 2630 int ret = 0; 2631 2632 ret = pci_enable_device(pdev); 2633 if (ret < 0) { 2634 debugf0("ret=%d\n", ret); 2635 return -EIO; 2636 } 2637 2638 ret = -ENOMEM; 2639 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); 2640 if (!s) 2641 goto err_out; 2642 2643 ecc_stngs[nid] = s; 2644 2645 if (!ecc_enabled(F3, nid)) { 2646 ret = -ENODEV; 2647 2648 if (!ecc_enable_override) 2649 goto err_enable; 2650 2651 amd64_warn("Forcing ECC on!\n"); 2652 2653 if (!enable_ecc_error_reporting(s, nid, F3)) 2654 goto err_enable; 2655 } 2656 2657 ret = amd64_init_one_instance(pdev); 2658 if (ret < 0) { 2659 amd64_err("Error probing instance: %d\n", nid); 2660 restore_ecc_error_reporting(s, nid, F3); 2661 } 2662 2663 return ret; 2664 2665 err_enable: 2666 kfree(s); 2667 ecc_stngs[nid] = NULL; 2668 2669 err_out: 2670 return ret; 2671 } 2672 2673 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev) 2674 { 2675 struct mem_ctl_info *mci; 2676 struct amd64_pvt *pvt; 2677 u8 nid = get_node_id(pdev); 2678 struct pci_dev *F3 = node_to_amd_nb(nid)->misc; 2679 struct ecc_settings *s = ecc_stngs[nid]; 2680 2681 /* Remove from EDAC CORE tracking list */ 2682 mci = edac_mc_del_mc(&pdev->dev); 2683 if (!mci) 2684 return; 2685 2686 pvt = mci->pvt_info; 2687 2688 restore_ecc_error_reporting(s, nid, F3); 2689 2690 free_mc_sibling_devs(pvt); 2691 2692 /* unregister from EDAC MCE */ 2693 amd_report_gart_errors(false); 2694 amd_unregister_ecc_decoder(amd64_decode_bus_error); 2695 2696 kfree(ecc_stngs[nid]); 2697 ecc_stngs[nid] = NULL; 2698 2699 /* Free the EDAC CORE resources */ 2700 mci->pvt_info = NULL; 2701 mcis[nid] = NULL; 2702 2703 kfree(pvt); 2704 edac_mc_free(mci); 2705 } 2706 2707 /* 2708 * This table is part of the interface for loading drivers for PCI devices. The 2709 * PCI core identifies what devices are on a system during boot, and then 2710 * inquiry this table to see if this driver is for a given device found. 2711 */ 2712 static const struct pci_device_id amd64_pci_table[] __devinitdata = { 2713 { 2714 .vendor = PCI_VENDOR_ID_AMD, 2715 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL, 2716 .subvendor = PCI_ANY_ID, 2717 .subdevice = PCI_ANY_ID, 2718 .class = 0, 2719 .class_mask = 0, 2720 }, 2721 { 2722 .vendor = PCI_VENDOR_ID_AMD, 2723 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM, 2724 .subvendor = PCI_ANY_ID, 2725 .subdevice = PCI_ANY_ID, 2726 .class = 0, 2727 .class_mask = 0, 2728 }, 2729 {0, } 2730 }; 2731 MODULE_DEVICE_TABLE(pci, amd64_pci_table); 2732 2733 static struct pci_driver amd64_pci_driver = { 2734 .name = EDAC_MOD_STR, 2735 .probe = amd64_probe_one_instance, 2736 .remove = __devexit_p(amd64_remove_one_instance), 2737 .id_table = amd64_pci_table, 2738 }; 2739 2740 static void setup_pci_device(void) 2741 { 2742 struct mem_ctl_info *mci; 2743 struct amd64_pvt *pvt; 2744 2745 if (amd64_ctl_pci) 2746 return; 2747 2748 mci = mcis[0]; 2749 if (mci) { 2750 2751 pvt = mci->pvt_info; 2752 amd64_ctl_pci = 2753 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR); 2754 2755 if (!amd64_ctl_pci) { 2756 pr_warning("%s(): Unable to create PCI control\n", 2757 __func__); 2758 2759 pr_warning("%s(): PCI error report via EDAC not set\n", 2760 __func__); 2761 } 2762 } 2763 } 2764 2765 static int __init amd64_edac_init(void) 2766 { 2767 int err = -ENODEV; 2768 2769 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n"); 2770 2771 opstate_init(); 2772 2773 if (amd_cache_northbridges() < 0) 2774 goto err_ret; 2775 2776 err = -ENOMEM; 2777 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL); 2778 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL); 2779 if (!(mcis && ecc_stngs)) 2780 goto err_ret; 2781 2782 msrs = msrs_alloc(); 2783 if (!msrs) 2784 goto err_free; 2785 2786 err = pci_register_driver(&amd64_pci_driver); 2787 if (err) 2788 goto err_pci; 2789 2790 err = -ENODEV; 2791 if (!atomic_read(&drv_instances)) 2792 goto err_no_instances; 2793 2794 setup_pci_device(); 2795 return 0; 2796 2797 err_no_instances: 2798 pci_unregister_driver(&amd64_pci_driver); 2799 2800 err_pci: 2801 msrs_free(msrs); 2802 msrs = NULL; 2803 2804 err_free: 2805 kfree(mcis); 2806 mcis = NULL; 2807 2808 kfree(ecc_stngs); 2809 ecc_stngs = NULL; 2810 2811 err_ret: 2812 return err; 2813 } 2814 2815 static void __exit amd64_edac_exit(void) 2816 { 2817 if (amd64_ctl_pci) 2818 edac_pci_release_generic_ctl(amd64_ctl_pci); 2819 2820 pci_unregister_driver(&amd64_pci_driver); 2821 2822 kfree(ecc_stngs); 2823 ecc_stngs = NULL; 2824 2825 kfree(mcis); 2826 mcis = NULL; 2827 2828 msrs_free(msrs); 2829 msrs = NULL; 2830 } 2831 2832 module_init(amd64_edac_init); 2833 module_exit(amd64_edac_exit); 2834 2835 MODULE_LICENSE("GPL"); 2836 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, " 2837 "Dave Peterson, Thayne Harbaugh"); 2838 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - " 2839 EDAC_AMD64_VERSION); 2840 2841 module_param(edac_op_state, int, 0444); 2842 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2843