xref: /linux/drivers/edac/amd64_edac.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 /* Lookup table for all possible MC control instances */
17 struct amd64_pvt;
18 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
20 
21 /*
22  * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
23  * later.
24  */
25 static int ddr2_dbam_revCG[] = {
26 			   [0]		= 32,
27 			   [1]		= 64,
28 			   [2]		= 128,
29 			   [3]		= 256,
30 			   [4]		= 512,
31 			   [5]		= 1024,
32 			   [6]		= 2048,
33 };
34 
35 static int ddr2_dbam_revD[] = {
36 			   [0]		= 32,
37 			   [1]		= 64,
38 			   [2 ... 3]	= 128,
39 			   [4]		= 256,
40 			   [5]		= 512,
41 			   [6]		= 256,
42 			   [7]		= 512,
43 			   [8 ... 9]	= 1024,
44 			   [10]		= 2048,
45 };
46 
47 static int ddr2_dbam[] = { [0]		= 128,
48 			   [1]		= 256,
49 			   [2 ... 4]	= 512,
50 			   [5 ... 6]	= 1024,
51 			   [7 ... 8]	= 2048,
52 			   [9 ... 10]	= 4096,
53 			   [11]		= 8192,
54 };
55 
56 static int ddr3_dbam[] = { [0]		= -1,
57 			   [1]		= 256,
58 			   [2]		= 512,
59 			   [3 ... 4]	= -1,
60 			   [5 ... 6]	= 1024,
61 			   [7 ... 8]	= 2048,
62 			   [9 ... 10]	= 4096,
63 			   [11]	= 8192,
64 };
65 
66 /*
67  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
68  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
69  * or higher value'.
70  *
71  *FIXME: Produce a better mapping/linearisation.
72  */
73 
74 struct scrubrate scrubrates[] = {
75 	{ 0x01, 1600000000UL},
76 	{ 0x02, 800000000UL},
77 	{ 0x03, 400000000UL},
78 	{ 0x04, 200000000UL},
79 	{ 0x05, 100000000UL},
80 	{ 0x06, 50000000UL},
81 	{ 0x07, 25000000UL},
82 	{ 0x08, 12284069UL},
83 	{ 0x09, 6274509UL},
84 	{ 0x0A, 3121951UL},
85 	{ 0x0B, 1560975UL},
86 	{ 0x0C, 781440UL},
87 	{ 0x0D, 390720UL},
88 	{ 0x0E, 195300UL},
89 	{ 0x0F, 97650UL},
90 	{ 0x10, 48854UL},
91 	{ 0x11, 24427UL},
92 	{ 0x12, 12213UL},
93 	{ 0x13, 6101UL},
94 	{ 0x14, 3051UL},
95 	{ 0x15, 1523UL},
96 	{ 0x16, 761UL},
97 	{ 0x00, 0UL},        /* scrubbing off */
98 };
99 
100 /*
101  * Memory scrubber control interface. For K8, memory scrubbing is handled by
102  * hardware and can involve L2 cache, dcache as well as the main memory. With
103  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
104  * functionality.
105  *
106  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
107  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
108  * bytes/sec for the setting.
109  *
110  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
111  * other archs, we might not have access to the caches directly.
112  */
113 
114 /*
115  * scan the scrub rate mapping table for a close or matching bandwidth value to
116  * issue. If requested is too big, then use last maximum value found.
117  */
118 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
119 				       u32 min_scrubrate)
120 {
121 	u32 scrubval;
122 	int i;
123 
124 	/*
125 	 * map the configured rate (new_bw) to a value specific to the AMD64
126 	 * memory controller and apply to register. Search for the first
127 	 * bandwidth entry that is greater or equal than the setting requested
128 	 * and program that. If at last entry, turn off DRAM scrubbing.
129 	 */
130 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
131 		/*
132 		 * skip scrub rates which aren't recommended
133 		 * (see F10 BKDG, F3x58)
134 		 */
135 		if (scrubrates[i].scrubval < min_scrubrate)
136 			continue;
137 
138 		if (scrubrates[i].bandwidth <= new_bw)
139 			break;
140 
141 		/*
142 		 * if no suitable bandwidth found, turn off DRAM scrubbing
143 		 * entirely by falling back to the last element in the
144 		 * scrubrates array.
145 		 */
146 	}
147 
148 	scrubval = scrubrates[i].scrubval;
149 	if (scrubval)
150 		edac_printk(KERN_DEBUG, EDAC_MC,
151 			    "Setting scrub rate bandwidth: %u\n",
152 			    scrubrates[i].bandwidth);
153 	else
154 		edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
155 
156 	pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
157 
158 	return 0;
159 }
160 
161 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
162 {
163 	struct amd64_pvt *pvt = mci->pvt_info;
164 	u32 min_scrubrate = 0x0;
165 
166 	switch (boot_cpu_data.x86) {
167 	case 0xf:
168 		min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
169 		break;
170 	case 0x10:
171 		min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
172 		break;
173 	case 0x11:
174 		min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
175 		break;
176 
177 	default:
178 		amd64_printk(KERN_ERR, "Unsupported family!\n");
179 		break;
180 	}
181 	return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
182 			min_scrubrate);
183 }
184 
185 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
186 {
187 	struct amd64_pvt *pvt = mci->pvt_info;
188 	u32 scrubval = 0;
189 	int status = -1, i;
190 
191 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
192 
193 	scrubval = scrubval & 0x001F;
194 
195 	edac_printk(KERN_DEBUG, EDAC_MC,
196 		    "pci-read, sdram scrub control value: %d \n", scrubval);
197 
198 	for (i = 0; ARRAY_SIZE(scrubrates); i++) {
199 		if (scrubrates[i].scrubval == scrubval) {
200 			*bw = scrubrates[i].bandwidth;
201 			status = 0;
202 			break;
203 		}
204 	}
205 
206 	return status;
207 }
208 
209 /* Map from a CSROW entry to the mask entry that operates on it */
210 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
211 {
212 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
213 		return csrow;
214 	else
215 		return csrow >> 1;
216 }
217 
218 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
219 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
220 {
221 	if (dct == 0)
222 		return pvt->dcsb0[csrow];
223 	else
224 		return pvt->dcsb1[csrow];
225 }
226 
227 /*
228  * Return the 'mask' address the i'th CS entry. This function is needed because
229  * there number of DCSM registers on Rev E and prior vs Rev F and later is
230  * different.
231  */
232 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
233 {
234 	if (dct == 0)
235 		return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
236 	else
237 		return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
238 }
239 
240 
241 /*
242  * In *base and *limit, pass back the full 40-bit base and limit physical
243  * addresses for the node given by node_id.  This information is obtained from
244  * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
245  * base and limit addresses are of type SysAddr, as defined at the start of
246  * section 3.4.4 (p. 70).  They are the lowest and highest physical addresses
247  * in the address range they represent.
248  */
249 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
250 			       u64 *base, u64 *limit)
251 {
252 	*base = pvt->dram_base[node_id];
253 	*limit = pvt->dram_limit[node_id];
254 }
255 
256 /*
257  * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
258  * with node_id
259  */
260 static int amd64_base_limit_match(struct amd64_pvt *pvt,
261 					u64 sys_addr, int node_id)
262 {
263 	u64 base, limit, addr;
264 
265 	amd64_get_base_and_limit(pvt, node_id, &base, &limit);
266 
267 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
268 	 * all ones if the most significant implemented address bit is 1.
269 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
270 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
271 	 * Application Programming.
272 	 */
273 	addr = sys_addr & 0x000000ffffffffffull;
274 
275 	return (addr >= base) && (addr <= limit);
276 }
277 
278 /*
279  * Attempt to map a SysAddr to a node. On success, return a pointer to the
280  * mem_ctl_info structure for the node that the SysAddr maps to.
281  *
282  * On failure, return NULL.
283  */
284 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
285 						u64 sys_addr)
286 {
287 	struct amd64_pvt *pvt;
288 	int node_id;
289 	u32 intlv_en, bits;
290 
291 	/*
292 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
293 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
294 	 */
295 	pvt = mci->pvt_info;
296 
297 	/*
298 	 * The value of this field should be the same for all DRAM Base
299 	 * registers.  Therefore we arbitrarily choose to read it from the
300 	 * register for node 0.
301 	 */
302 	intlv_en = pvt->dram_IntlvEn[0];
303 
304 	if (intlv_en == 0) {
305 		for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
306 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
307 				goto found;
308 		}
309 		goto err_no_match;
310 	}
311 
312 	if (unlikely((intlv_en != 0x01) &&
313 		     (intlv_en != 0x03) &&
314 		     (intlv_en != 0x07))) {
315 		amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
316 			     "IntlvEn field of DRAM Base Register for node 0: "
317 			     "this probably indicates a BIOS bug.\n", intlv_en);
318 		return NULL;
319 	}
320 
321 	bits = (((u32) sys_addr) >> 12) & intlv_en;
322 
323 	for (node_id = 0; ; ) {
324 		if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
325 			break;	/* intlv_sel field matches */
326 
327 		if (++node_id >= DRAM_REG_COUNT)
328 			goto err_no_match;
329 	}
330 
331 	/* sanity test for sys_addr */
332 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
333 		amd64_printk(KERN_WARNING,
334 			     "%s(): sys_addr 0x%llx falls outside base/limit "
335 			     "address range for node %d with node interleaving "
336 			     "enabled.\n",
337 			     __func__, sys_addr, node_id);
338 		return NULL;
339 	}
340 
341 found:
342 	return edac_mc_find(node_id);
343 
344 err_no_match:
345 	debugf2("sys_addr 0x%lx doesn't match any node\n",
346 		(unsigned long)sys_addr);
347 
348 	return NULL;
349 }
350 
351 /*
352  * Extract the DRAM CS base address from selected csrow register.
353  */
354 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
355 {
356 	return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
357 				pvt->dcs_shift;
358 }
359 
360 /*
361  * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
362  */
363 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
364 {
365 	u64 dcsm_bits, other_bits;
366 	u64 mask;
367 
368 	/* Extract bits from DRAM CS Mask. */
369 	dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
370 
371 	other_bits = pvt->dcsm_mask;
372 	other_bits = ~(other_bits << pvt->dcs_shift);
373 
374 	/*
375 	 * The extracted bits from DCSM belong in the spaces represented by
376 	 * the cleared bits in other_bits.
377 	 */
378 	mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
379 
380 	return mask;
381 }
382 
383 /*
384  * @input_addr is an InputAddr associated with the node given by mci. Return the
385  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
386  */
387 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
388 {
389 	struct amd64_pvt *pvt;
390 	int csrow;
391 	u64 base, mask;
392 
393 	pvt = mci->pvt_info;
394 
395 	/*
396 	 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
397 	 * base/mask register pair, test the condition shown near the start of
398 	 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
399 	 */
400 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
401 
402 		/* This DRAM chip select is disabled on this node */
403 		if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
404 			continue;
405 
406 		base = base_from_dct_base(pvt, csrow);
407 		mask = ~mask_from_dct_mask(pvt, csrow);
408 
409 		if ((input_addr & mask) == (base & mask)) {
410 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
411 				(unsigned long)input_addr, csrow,
412 				pvt->mc_node_id);
413 
414 			return csrow;
415 		}
416 	}
417 
418 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
419 		(unsigned long)input_addr, pvt->mc_node_id);
420 
421 	return -1;
422 }
423 
424 /*
425  * Return the base value defined by the DRAM Base register for the node
426  * represented by mci.  This function returns the full 40-bit value despite the
427  * fact that the register only stores bits 39-24 of the value. See section
428  * 3.4.4.1 (BKDG #26094, K8, revA-E)
429  */
430 static inline u64 get_dram_base(struct mem_ctl_info *mci)
431 {
432 	struct amd64_pvt *pvt = mci->pvt_info;
433 
434 	return pvt->dram_base[pvt->mc_node_id];
435 }
436 
437 /*
438  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
439  * for the node represented by mci. Info is passed back in *hole_base,
440  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
441  * info is invalid. Info may be invalid for either of the following reasons:
442  *
443  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
444  *   Address Register does not exist.
445  *
446  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
447  *   indicating that its contents are not valid.
448  *
449  * The values passed back in *hole_base, *hole_offset, and *hole_size are
450  * complete 32-bit values despite the fact that the bitfields in the DHAR
451  * only represent bits 31-24 of the base and offset values.
452  */
453 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
454 			     u64 *hole_offset, u64 *hole_size)
455 {
456 	struct amd64_pvt *pvt = mci->pvt_info;
457 	u64 base;
458 
459 	/* only revE and later have the DRAM Hole Address Register */
460 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
461 		debugf1("  revision %d for node %d does not support DHAR\n",
462 			pvt->ext_model, pvt->mc_node_id);
463 		return 1;
464 	}
465 
466 	/* only valid for Fam10h */
467 	if (boot_cpu_data.x86 == 0x10 &&
468 	    (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
469 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
470 		return 1;
471 	}
472 
473 	if ((pvt->dhar & DHAR_VALID) == 0) {
474 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
475 			pvt->mc_node_id);
476 		return 1;
477 	}
478 
479 	/* This node has Memory Hoisting */
480 
481 	/* +------------------+--------------------+--------------------+-----
482 	 * | memory           | DRAM hole          | relocated          |
483 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
484 	 * |                  |                    | DRAM hole          |
485 	 * |                  |                    | [0x100000000,      |
486 	 * |                  |                    |  (0x100000000+     |
487 	 * |                  |                    |   (0xffffffff-x))] |
488 	 * +------------------+--------------------+--------------------+-----
489 	 *
490 	 * Above is a diagram of physical memory showing the DRAM hole and the
491 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
492 	 * starts at address x (the base address) and extends through address
493 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
494 	 * addresses in the hole so that they start at 0x100000000.
495 	 */
496 
497 	base = dhar_base(pvt->dhar);
498 
499 	*hole_base = base;
500 	*hole_size = (0x1ull << 32) - base;
501 
502 	if (boot_cpu_data.x86 > 0xf)
503 		*hole_offset = f10_dhar_offset(pvt->dhar);
504 	else
505 		*hole_offset = k8_dhar_offset(pvt->dhar);
506 
507 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
508 		pvt->mc_node_id, (unsigned long)*hole_base,
509 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
510 
511 	return 0;
512 }
513 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
514 
515 /*
516  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
517  * assumed that sys_addr maps to the node given by mci.
518  *
519  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
520  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
521  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
522  * then it is also involved in translating a SysAddr to a DramAddr. Sections
523  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
524  * These parts of the documentation are unclear. I interpret them as follows:
525  *
526  * When node n receives a SysAddr, it processes the SysAddr as follows:
527  *
528  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
529  *    Limit registers for node n. If the SysAddr is not within the range
530  *    specified by the base and limit values, then node n ignores the Sysaddr
531  *    (since it does not map to node n). Otherwise continue to step 2 below.
532  *
533  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
534  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
535  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
536  *    hole. If not, skip to step 3 below. Else get the value of the
537  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
538  *    offset defined by this value from the SysAddr.
539  *
540  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
541  *    Base register for node n. To obtain the DramAddr, subtract the base
542  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
543  */
544 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
545 {
546 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
547 	int ret = 0;
548 
549 	dram_base = get_dram_base(mci);
550 
551 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
552 				      &hole_size);
553 	if (!ret) {
554 		if ((sys_addr >= (1ull << 32)) &&
555 		    (sys_addr < ((1ull << 32) + hole_size))) {
556 			/* use DHAR to translate SysAddr to DramAddr */
557 			dram_addr = sys_addr - hole_offset;
558 
559 			debugf2("using DHAR to translate SysAddr 0x%lx to "
560 				"DramAddr 0x%lx\n",
561 				(unsigned long)sys_addr,
562 				(unsigned long)dram_addr);
563 
564 			return dram_addr;
565 		}
566 	}
567 
568 	/*
569 	 * Translate the SysAddr to a DramAddr as shown near the start of
570 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
571 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
572 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
573 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
574 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
575 	 * Programmer's Manual Volume 1 Application Programming.
576 	 */
577 	dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
578 
579 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
580 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
581 		(unsigned long)dram_addr);
582 	return dram_addr;
583 }
584 
585 /*
586  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
587  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
588  * for node interleaving.
589  */
590 static int num_node_interleave_bits(unsigned intlv_en)
591 {
592 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
593 	int n;
594 
595 	BUG_ON(intlv_en > 7);
596 	n = intlv_shift_table[intlv_en];
597 	return n;
598 }
599 
600 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
601 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
602 {
603 	struct amd64_pvt *pvt;
604 	int intlv_shift;
605 	u64 input_addr;
606 
607 	pvt = mci->pvt_info;
608 
609 	/*
610 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
611 	 * concerning translating a DramAddr to an InputAddr.
612 	 */
613 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
614 	input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
615 	    (dram_addr & 0xfff);
616 
617 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
618 		intlv_shift, (unsigned long)dram_addr,
619 		(unsigned long)input_addr);
620 
621 	return input_addr;
622 }
623 
624 /*
625  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
626  * assumed that @sys_addr maps to the node given by mci.
627  */
628 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
629 {
630 	u64 input_addr;
631 
632 	input_addr =
633 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
634 
635 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
636 		(unsigned long)sys_addr, (unsigned long)input_addr);
637 
638 	return input_addr;
639 }
640 
641 
642 /*
643  * @input_addr is an InputAddr associated with the node represented by mci.
644  * Translate @input_addr to a DramAddr and return the result.
645  */
646 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
647 {
648 	struct amd64_pvt *pvt;
649 	int node_id, intlv_shift;
650 	u64 bits, dram_addr;
651 	u32 intlv_sel;
652 
653 	/*
654 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
655 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
656 	 * this procedure. When translating from a DramAddr to an InputAddr, the
657 	 * bits used for node interleaving are discarded.  Here we recover these
658 	 * bits from the IntlvSel field of the DRAM Limit register (section
659 	 * 3.4.4.2) for the node that input_addr is associated with.
660 	 */
661 	pvt = mci->pvt_info;
662 	node_id = pvt->mc_node_id;
663 	BUG_ON((node_id < 0) || (node_id > 7));
664 
665 	intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
666 
667 	if (intlv_shift == 0) {
668 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
669 			"same value\n",	(unsigned long)input_addr);
670 
671 		return input_addr;
672 	}
673 
674 	bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
675 	    (input_addr & 0xfff);
676 
677 	intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
678 	dram_addr = bits + (intlv_sel << 12);
679 
680 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
681 		"(%d node interleave bits)\n", (unsigned long)input_addr,
682 		(unsigned long)dram_addr, intlv_shift);
683 
684 	return dram_addr;
685 }
686 
687 /*
688  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
689  * @dram_addr to a SysAddr.
690  */
691 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
692 {
693 	struct amd64_pvt *pvt = mci->pvt_info;
694 	u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
695 	int ret = 0;
696 
697 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
698 				      &hole_size);
699 	if (!ret) {
700 		if ((dram_addr >= hole_base) &&
701 		    (dram_addr < (hole_base + hole_size))) {
702 			sys_addr = dram_addr + hole_offset;
703 
704 			debugf1("using DHAR to translate DramAddr 0x%lx to "
705 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
706 				(unsigned long)sys_addr);
707 
708 			return sys_addr;
709 		}
710 	}
711 
712 	amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
713 	sys_addr = dram_addr + base;
714 
715 	/*
716 	 * The sys_addr we have computed up to this point is a 40-bit value
717 	 * because the k8 deals with 40-bit values.  However, the value we are
718 	 * supposed to return is a full 64-bit physical address.  The AMD
719 	 * x86-64 architecture specifies that the most significant implemented
720 	 * address bit through bit 63 of a physical address must be either all
721 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
722 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
723 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
724 	 * Programming.
725 	 */
726 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
727 
728 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
729 		pvt->mc_node_id, (unsigned long)dram_addr,
730 		(unsigned long)sys_addr);
731 
732 	return sys_addr;
733 }
734 
735 /*
736  * @input_addr is an InputAddr associated with the node given by mci. Translate
737  * @input_addr to a SysAddr.
738  */
739 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
740 					 u64 input_addr)
741 {
742 	return dram_addr_to_sys_addr(mci,
743 				     input_addr_to_dram_addr(mci, input_addr));
744 }
745 
746 /*
747  * Find the minimum and maximum InputAddr values that map to the given @csrow.
748  * Pass back these values in *input_addr_min and *input_addr_max.
749  */
750 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
751 			      u64 *input_addr_min, u64 *input_addr_max)
752 {
753 	struct amd64_pvt *pvt;
754 	u64 base, mask;
755 
756 	pvt = mci->pvt_info;
757 	BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
758 
759 	base = base_from_dct_base(pvt, csrow);
760 	mask = mask_from_dct_mask(pvt, csrow);
761 
762 	*input_addr_min = base & ~mask;
763 	*input_addr_max = base | mask | pvt->dcs_mask_notused;
764 }
765 
766 /* Map the Error address to a PAGE and PAGE OFFSET. */
767 static inline void error_address_to_page_and_offset(u64 error_address,
768 						    u32 *page, u32 *offset)
769 {
770 	*page = (u32) (error_address >> PAGE_SHIFT);
771 	*offset = ((u32) error_address) & ~PAGE_MASK;
772 }
773 
774 /*
775  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
776  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
777  * of a node that detected an ECC memory error.  mci represents the node that
778  * the error address maps to (possibly different from the node that detected
779  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
780  * error.
781  */
782 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
783 {
784 	int csrow;
785 
786 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
787 
788 	if (csrow == -1)
789 		amd64_mc_printk(mci, KERN_ERR,
790 			     "Failed to translate InputAddr to csrow for "
791 			     "address 0x%lx\n", (unsigned long)sys_addr);
792 	return csrow;
793 }
794 
795 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
796 
797 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
798 {
799 	if (boot_cpu_data.x86 == 0x11)
800 		edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
801 	else if (boot_cpu_data.x86 == 0x10)
802 		edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
803 	else if (boot_cpu_data.x86 == 0xf)
804 		edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
805 			(pvt->ext_model >= K8_REV_F) ?
806 			"Rev F or later" : "Rev E or earlier");
807 	else
808 		/* we'll hardly ever ever get here */
809 		edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
810 }
811 
812 /*
813  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
814  * are ECC capable.
815  */
816 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
817 {
818 	int bit;
819 	enum dev_type edac_cap = EDAC_FLAG_NONE;
820 
821 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
822 		? 19
823 		: 17;
824 
825 	if (pvt->dclr0 & BIT(bit))
826 		edac_cap = EDAC_FLAG_SECDED;
827 
828 	return edac_cap;
829 }
830 
831 
832 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
833 
834 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
835 {
836 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
837 
838 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
839 		(dclr & BIT(16)) ?  "un" : "",
840 		(dclr & BIT(19)) ? "yes" : "no");
841 
842 	debugf1("  PAR/ERR parity: %s\n",
843 		(dclr & BIT(8)) ?  "enabled" : "disabled");
844 
845 	debugf1("  DCT 128bit mode width: %s\n",
846 		(dclr & BIT(11)) ?  "128b" : "64b");
847 
848 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
849 		(dclr & BIT(12)) ?  "yes" : "no",
850 		(dclr & BIT(13)) ?  "yes" : "no",
851 		(dclr & BIT(14)) ?  "yes" : "no",
852 		(dclr & BIT(15)) ?  "yes" : "no");
853 }
854 
855 /* Display and decode various NB registers for debug purposes. */
856 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
857 {
858 	int ganged;
859 
860 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
861 
862 	debugf1("  NB two channel DRAM capable: %s\n",
863 		(pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
864 
865 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
866 		(pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
867 		(pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
868 
869 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
870 
871 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
872 
873 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
874 			"offset: 0x%08x\n",
875 			pvt->dhar,
876 			dhar_base(pvt->dhar),
877 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
878 						   : f10_dhar_offset(pvt->dhar));
879 
880 	debugf1("  DramHoleValid: %s\n",
881 		(pvt->dhar & DHAR_VALID) ? "yes" : "no");
882 
883 	/* everything below this point is Fam10h and above */
884 	if (boot_cpu_data.x86 == 0xf) {
885 		amd64_debug_display_dimm_sizes(0, pvt);
886 		return;
887 	}
888 
889 	/* Only if NOT ganged does dclr1 have valid info */
890 	if (!dct_ganging_enabled(pvt))
891 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
892 
893 	/*
894 	 * Determine if ganged and then dump memory sizes for first controller,
895 	 * and if NOT ganged dump info for 2nd controller.
896 	 */
897 	ganged = dct_ganging_enabled(pvt);
898 
899 	amd64_debug_display_dimm_sizes(0, pvt);
900 
901 	if (!ganged)
902 		amd64_debug_display_dimm_sizes(1, pvt);
903 }
904 
905 /* Read in both of DBAM registers */
906 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
907 {
908 	amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
909 
910 	if (boot_cpu_data.x86 >= 0x10)
911 		amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
912 }
913 
914 /*
915  * NOTE: CPU Revision Dependent code: Rev E and Rev F
916  *
917  * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
918  * set the shift factor for the DCSB and DCSM values.
919  *
920  * ->dcs_mask_notused, RevE:
921  *
922  * To find the max InputAddr for the csrow, start with the base address and set
923  * all bits that are "don't care" bits in the test at the start of section
924  * 3.5.4 (p. 84).
925  *
926  * The "don't care" bits are all set bits in the mask and all bits in the gaps
927  * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
928  * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
929  * gaps.
930  *
931  * ->dcs_mask_notused, RevF and later:
932  *
933  * To find the max InputAddr for the csrow, start with the base address and set
934  * all bits that are "don't care" bits in the test at the start of NPT section
935  * 4.5.4 (p. 87).
936  *
937  * The "don't care" bits are all set bits in the mask and all bits in the gaps
938  * between bit ranges [36:27] and [21:13].
939  *
940  * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
941  * which are all bits in the above-mentioned gaps.
942  */
943 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
944 {
945 
946 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
947 		pvt->dcsb_base		= REV_E_DCSB_BASE_BITS;
948 		pvt->dcsm_mask		= REV_E_DCSM_MASK_BITS;
949 		pvt->dcs_mask_notused	= REV_E_DCS_NOTUSED_BITS;
950 		pvt->dcs_shift		= REV_E_DCS_SHIFT;
951 		pvt->cs_count		= 8;
952 		pvt->num_dcsm		= 8;
953 	} else {
954 		pvt->dcsb_base		= REV_F_F1Xh_DCSB_BASE_BITS;
955 		pvt->dcsm_mask		= REV_F_F1Xh_DCSM_MASK_BITS;
956 		pvt->dcs_mask_notused	= REV_F_F1Xh_DCS_NOTUSED_BITS;
957 		pvt->dcs_shift		= REV_F_F1Xh_DCS_SHIFT;
958 
959 		if (boot_cpu_data.x86 == 0x11) {
960 			pvt->cs_count = 4;
961 			pvt->num_dcsm = 2;
962 		} else {
963 			pvt->cs_count = 8;
964 			pvt->num_dcsm = 4;
965 		}
966 	}
967 }
968 
969 /*
970  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
971  */
972 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
973 {
974 	int cs, reg;
975 
976 	amd64_set_dct_base_and_mask(pvt);
977 
978 	for (cs = 0; cs < pvt->cs_count; cs++) {
979 		reg = K8_DCSB0 + (cs * 4);
980 		if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
981 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
982 				cs, pvt->dcsb0[cs], reg);
983 
984 		/* If DCT are NOT ganged, then read in DCT1's base */
985 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
986 			reg = F10_DCSB1 + (cs * 4);
987 			if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
988 						&pvt->dcsb1[cs]))
989 				debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
990 					cs, pvt->dcsb1[cs], reg);
991 		} else {
992 			pvt->dcsb1[cs] = 0;
993 		}
994 	}
995 
996 	for (cs = 0; cs < pvt->num_dcsm; cs++) {
997 		reg = K8_DCSM0 + (cs * 4);
998 		if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
999 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
1000 				cs, pvt->dcsm0[cs], reg);
1001 
1002 		/* If DCT are NOT ganged, then read in DCT1's mask */
1003 		if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1004 			reg = F10_DCSM1 + (cs * 4);
1005 			if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1006 						&pvt->dcsm1[cs]))
1007 				debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
1008 					cs, pvt->dcsm1[cs], reg);
1009 		} else {
1010 			pvt->dcsm1[cs] = 0;
1011 		}
1012 	}
1013 }
1014 
1015 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1016 {
1017 	enum mem_type type;
1018 
1019 	if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1020 		if (pvt->dchr0 & DDR3_MODE)
1021 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
1022 		else
1023 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1024 	} else {
1025 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1026 	}
1027 
1028 	debugf1("  Memory type is: %s\n", edac_mem_types[type]);
1029 
1030 	return type;
1031 }
1032 
1033 /*
1034  * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1035  * and the later RevF memory controllers (DDR vs DDR2)
1036  *
1037  * Return:
1038  *      number of memory channels in operation
1039  * Pass back:
1040  *      contents of the DCL0_LOW register
1041  */
1042 static int k8_early_channel_count(struct amd64_pvt *pvt)
1043 {
1044 	int flag, err = 0;
1045 
1046 	err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1047 	if (err)
1048 		return err;
1049 
1050 	if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1051 		/* RevF (NPT) and later */
1052 		flag = pvt->dclr0 & F10_WIDTH_128;
1053 	} else {
1054 		/* RevE and earlier */
1055 		flag = pvt->dclr0 & REVE_WIDTH_128;
1056 	}
1057 
1058 	/* not used */
1059 	pvt->dclr1 = 0;
1060 
1061 	return (flag) ? 2 : 1;
1062 }
1063 
1064 /* extract the ERROR ADDRESS for the K8 CPUs */
1065 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1066 				struct err_regs *info)
1067 {
1068 	return (((u64) (info->nbeah & 0xff)) << 32) +
1069 			(info->nbeal & ~0x03);
1070 }
1071 
1072 /*
1073  * Read the Base and Limit registers for K8 based Memory controllers; extract
1074  * fields from the 'raw' reg into separate data fields
1075  *
1076  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1077  */
1078 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1079 {
1080 	u32 low;
1081 	u32 off = dram << 3;	/* 8 bytes between DRAM entries */
1082 
1083 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1084 
1085 	/* Extract parts into separate data entries */
1086 	pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1087 	pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1088 	pvt->dram_rw_en[dram] = (low & 0x3);
1089 
1090 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1091 
1092 	/*
1093 	 * Extract parts into separate data entries. Limit is the HIGHEST memory
1094 	 * location of the region, so lower 24 bits need to be all ones
1095 	 */
1096 	pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1097 	pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1098 	pvt->dram_DstNode[dram] = (low & 0x7);
1099 }
1100 
1101 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1102 					struct err_regs *info,
1103 					u64 sys_addr)
1104 {
1105 	struct mem_ctl_info *src_mci;
1106 	unsigned short syndrome;
1107 	int channel, csrow;
1108 	u32 page, offset;
1109 
1110 	/* Extract the syndrome parts and form a 16-bit syndrome */
1111 	syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
1112 	syndrome |= LOW_SYNDROME(info->nbsh);
1113 
1114 	/* CHIPKILL enabled */
1115 	if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1116 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1117 		if (channel < 0) {
1118 			/*
1119 			 * Syndrome didn't map, so we don't know which of the
1120 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1121 			 * as suspect.
1122 			 */
1123 			amd64_mc_printk(mci, KERN_WARNING,
1124 				       "unknown syndrome 0x%x - possible error "
1125 				       "reporting race\n", syndrome);
1126 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1127 			return;
1128 		}
1129 	} else {
1130 		/*
1131 		 * non-chipkill ecc mode
1132 		 *
1133 		 * The k8 documentation is unclear about how to determine the
1134 		 * channel number when using non-chipkill memory.  This method
1135 		 * was obtained from email communication with someone at AMD.
1136 		 * (Wish the email was placed in this comment - norsk)
1137 		 */
1138 		channel = ((sys_addr & BIT(3)) != 0);
1139 	}
1140 
1141 	/*
1142 	 * Find out which node the error address belongs to. This may be
1143 	 * different from the node that detected the error.
1144 	 */
1145 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1146 	if (!src_mci) {
1147 		amd64_mc_printk(mci, KERN_ERR,
1148 			     "failed to map error address 0x%lx to a node\n",
1149 			     (unsigned long)sys_addr);
1150 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1151 		return;
1152 	}
1153 
1154 	/* Now map the sys_addr to a CSROW */
1155 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1156 	if (csrow < 0) {
1157 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1158 	} else {
1159 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1160 
1161 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1162 				  channel, EDAC_MOD_STR);
1163 	}
1164 }
1165 
1166 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1167 {
1168 	int *dbam_map;
1169 
1170 	if (pvt->ext_model >= K8_REV_F)
1171 		dbam_map = ddr2_dbam;
1172 	else if (pvt->ext_model >= K8_REV_D)
1173 		dbam_map = ddr2_dbam_revD;
1174 	else
1175 		dbam_map = ddr2_dbam_revCG;
1176 
1177 	return dbam_map[cs_mode];
1178 }
1179 
1180 /*
1181  * Get the number of DCT channels in use.
1182  *
1183  * Return:
1184  *	number of Memory Channels in operation
1185  * Pass back:
1186  *	contents of the DCL0_LOW register
1187  */
1188 static int f10_early_channel_count(struct amd64_pvt *pvt)
1189 {
1190 	int dbams[] = { DBAM0, DBAM1 };
1191 	int i, j, channels = 0;
1192 	u32 dbam;
1193 
1194 	/* If we are in 128 bit mode, then we are using 2 channels */
1195 	if (pvt->dclr0 & F10_WIDTH_128) {
1196 		channels = 2;
1197 		return channels;
1198 	}
1199 
1200 	/*
1201 	 * Need to check if in unganged mode: In such, there are 2 channels,
1202 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1203 	 * bit will be OFF.
1204 	 *
1205 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1206 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1207 	 */
1208 	debugf0("Data width is not 128 bits - need more decoding\n");
1209 
1210 	/*
1211 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1212 	 * is more than just one DIMM present in unganged mode. Need to check
1213 	 * both controllers since DIMMs can be placed in either one.
1214 	 */
1215 	for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1216 		if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1217 			goto err_reg;
1218 
1219 		for (j = 0; j < 4; j++) {
1220 			if (DBAM_DIMM(j, dbam) > 0) {
1221 				channels++;
1222 				break;
1223 			}
1224 		}
1225 	}
1226 
1227 	if (channels > 2)
1228 		channels = 2;
1229 
1230 	debugf0("MCT channel count: %d\n", channels);
1231 
1232 	return channels;
1233 
1234 err_reg:
1235 	return -1;
1236 
1237 }
1238 
1239 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1240 {
1241 	int *dbam_map;
1242 
1243 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1244 		dbam_map = ddr3_dbam;
1245 	else
1246 		dbam_map = ddr2_dbam;
1247 
1248 	return dbam_map[cs_mode];
1249 }
1250 
1251 /* Enable extended configuration access via 0xCF8 feature */
1252 static void amd64_setup(struct amd64_pvt *pvt)
1253 {
1254 	u32 reg;
1255 
1256 	amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1257 
1258 	pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1259 	reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1260 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1261 }
1262 
1263 /* Restore the extended configuration access via 0xCF8 feature */
1264 static void amd64_teardown(struct amd64_pvt *pvt)
1265 {
1266 	u32 reg;
1267 
1268 	amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1269 
1270 	reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1271 	if (pvt->flags.cf8_extcfg)
1272 		reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 	pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1274 }
1275 
1276 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1277 			struct err_regs *info)
1278 {
1279 	return (((u64) (info->nbeah & 0xffff)) << 32) +
1280 			(info->nbeal & ~0x01);
1281 }
1282 
1283 /*
1284  * Read the Base and Limit registers for F10 based Memory controllers. Extract
1285  * fields from the 'raw' reg into separate data fields.
1286  *
1287  * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1288  */
1289 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1290 {
1291 	u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1292 
1293 	low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1294 	high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1295 
1296 	/* read the 'raw' DRAM BASE Address register */
1297 	amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1298 
1299 	/* Read from the ECS data register */
1300 	amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1301 
1302 	/* Extract parts into separate data entries */
1303 	pvt->dram_rw_en[dram] = (low_base & 0x3);
1304 
1305 	if (pvt->dram_rw_en[dram] == 0)
1306 		return;
1307 
1308 	pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1309 
1310 	pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1311 			       (((u64)low_base  & 0xFFFF0000) << 8);
1312 
1313 	low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1314 	high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1315 
1316 	/* read the 'raw' LIMIT registers */
1317 	amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1318 
1319 	/* Read from the ECS data register for the HIGH portion */
1320 	amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1321 
1322 	pvt->dram_DstNode[dram] = (low_limit & 0x7);
1323 	pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1324 
1325 	/*
1326 	 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1327 	 * memory location of the region, so low 24 bits need to be all ones.
1328 	 */
1329 	pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1330 				(((u64) low_limit & 0xFFFF0000) << 8) |
1331 				0x00FFFFFF;
1332 }
1333 
1334 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1335 {
1336 
1337 	if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1338 				&pvt->dram_ctl_select_low)) {
1339 		debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1340 			"High range addresses at: 0x%x\n",
1341 			pvt->dram_ctl_select_low,
1342 			dct_sel_baseaddr(pvt));
1343 
1344 		debugf0("  DCT mode: %s, All DCTs on: %s\n",
1345 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1346 			(dct_dram_enabled(pvt) ? "yes"   : "no"));
1347 
1348 		if (!dct_ganging_enabled(pvt))
1349 			debugf0("  Address range split per DCT: %s\n",
1350 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1351 
1352 		debugf0("  DCT data interleave for ECC: %s, "
1353 			"DRAM cleared since last warm reset: %s\n",
1354 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1355 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1356 
1357 		debugf0("  DCT channel interleave: %s, "
1358 			"DCT interleave bits selector: 0x%x\n",
1359 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1360 			dct_sel_interleave_addr(pvt));
1361 	}
1362 
1363 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1364 			   &pvt->dram_ctl_select_high);
1365 }
1366 
1367 /*
1368  * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1369  * Interleaving Modes.
1370  */
1371 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1372 				int hi_range_sel, u32 intlv_en)
1373 {
1374 	u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1375 
1376 	if (dct_ganging_enabled(pvt))
1377 		cs = 0;
1378 	else if (hi_range_sel)
1379 		cs = dct_sel_high;
1380 	else if (dct_interleave_enabled(pvt)) {
1381 		/*
1382 		 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1383 		 */
1384 		if (dct_sel_interleave_addr(pvt) == 0)
1385 			cs = sys_addr >> 6 & 1;
1386 		else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1387 			temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1388 
1389 			if (dct_sel_interleave_addr(pvt) & 1)
1390 				cs = (sys_addr >> 9 & 1) ^ temp;
1391 			else
1392 				cs = (sys_addr >> 6 & 1) ^ temp;
1393 		} else if (intlv_en & 4)
1394 			cs = sys_addr >> 15 & 1;
1395 		else if (intlv_en & 2)
1396 			cs = sys_addr >> 14 & 1;
1397 		else if (intlv_en & 1)
1398 			cs = sys_addr >> 13 & 1;
1399 		else
1400 			cs = sys_addr >> 12 & 1;
1401 	} else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1402 		cs = ~dct_sel_high & 1;
1403 	else
1404 		cs = 0;
1405 
1406 	return cs;
1407 }
1408 
1409 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1410 {
1411 	if (intlv_en == 1)
1412 		return 1;
1413 	else if (intlv_en == 3)
1414 		return 2;
1415 	else if (intlv_en == 7)
1416 		return 3;
1417 
1418 	return 0;
1419 }
1420 
1421 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1422 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1423 						 u32 dct_sel_base_addr,
1424 						 u64 dct_sel_base_off,
1425 						 u32 hole_valid, u32 hole_off,
1426 						 u64 dram_base)
1427 {
1428 	u64 chan_off;
1429 
1430 	if (hi_range_sel) {
1431 		if (!(dct_sel_base_addr & 0xFFFFF800) &&
1432 		   hole_valid && (sys_addr >= 0x100000000ULL))
1433 			chan_off = hole_off << 16;
1434 		else
1435 			chan_off = dct_sel_base_off;
1436 	} else {
1437 		if (hole_valid && (sys_addr >= 0x100000000ULL))
1438 			chan_off = hole_off << 16;
1439 		else
1440 			chan_off = dram_base & 0xFFFFF8000000ULL;
1441 	}
1442 
1443 	return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1444 			(chan_off & 0x0000FFFFFF800000ULL);
1445 }
1446 
1447 /* Hack for the time being - Can we get this from BIOS?? */
1448 #define	CH0SPARE_RANK	0
1449 #define	CH1SPARE_RANK	1
1450 
1451 /*
1452  * checks if the csrow passed in is marked as SPARED, if so returns the new
1453  * spare row
1454  */
1455 static inline int f10_process_possible_spare(int csrow,
1456 				u32 cs, struct amd64_pvt *pvt)
1457 {
1458 	u32 swap_done;
1459 	u32 bad_dram_cs;
1460 
1461 	/* Depending on channel, isolate respective SPARING info */
1462 	if (cs) {
1463 		swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1464 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1465 		if (swap_done && (csrow == bad_dram_cs))
1466 			csrow = CH1SPARE_RANK;
1467 	} else {
1468 		swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1469 		bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1470 		if (swap_done && (csrow == bad_dram_cs))
1471 			csrow = CH0SPARE_RANK;
1472 	}
1473 	return csrow;
1474 }
1475 
1476 /*
1477  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1478  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1479  *
1480  * Return:
1481  *	-EINVAL:  NOT FOUND
1482  *	0..csrow = Chip-Select Row
1483  */
1484 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1485 {
1486 	struct mem_ctl_info *mci;
1487 	struct amd64_pvt *pvt;
1488 	u32 cs_base, cs_mask;
1489 	int cs_found = -EINVAL;
1490 	int csrow;
1491 
1492 	mci = mci_lookup[nid];
1493 	if (!mci)
1494 		return cs_found;
1495 
1496 	pvt = mci->pvt_info;
1497 
1498 	debugf1("InputAddr=0x%x  channelselect=%d\n", in_addr, cs);
1499 
1500 	for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1501 
1502 		cs_base = amd64_get_dct_base(pvt, cs, csrow);
1503 		if (!(cs_base & K8_DCSB_CS_ENABLE))
1504 			continue;
1505 
1506 		/*
1507 		 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1508 		 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1509 		 * of the actual address.
1510 		 */
1511 		cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1512 
1513 		/*
1514 		 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1515 		 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1516 		 */
1517 		cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1518 
1519 		debugf1("    CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1520 				csrow, cs_base, cs_mask);
1521 
1522 		cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1523 
1524 		debugf1("              Final CSMask=0x%x\n", cs_mask);
1525 		debugf1("    (InputAddr & ~CSMask)=0x%x "
1526 				"(CSBase & ~CSMask)=0x%x\n",
1527 				(in_addr & ~cs_mask), (cs_base & ~cs_mask));
1528 
1529 		if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1530 			cs_found = f10_process_possible_spare(csrow, cs, pvt);
1531 
1532 			debugf1(" MATCH csrow=%d\n", cs_found);
1533 			break;
1534 		}
1535 	}
1536 	return cs_found;
1537 }
1538 
1539 /* For a given @dram_range, check if @sys_addr falls within it. */
1540 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1541 				  u64 sys_addr, int *nid, int *chan_sel)
1542 {
1543 	int node_id, cs_found = -EINVAL, high_range = 0;
1544 	u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1545 	u32 hole_valid, tmp, dct_sel_base, channel;
1546 	u64 dram_base, chan_addr, dct_sel_base_off;
1547 
1548 	dram_base = pvt->dram_base[dram_range];
1549 	intlv_en = pvt->dram_IntlvEn[dram_range];
1550 
1551 	node_id = pvt->dram_DstNode[dram_range];
1552 	intlv_sel = pvt->dram_IntlvSel[dram_range];
1553 
1554 	debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1555 		dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1556 
1557 	/*
1558 	 * This assumes that one node's DHAR is the same as all the other
1559 	 * nodes' DHAR.
1560 	 */
1561 	hole_off = (pvt->dhar & 0x0000FF80);
1562 	hole_valid = (pvt->dhar & 0x1);
1563 	dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1564 
1565 	debugf1("   HoleOffset=0x%x  HoleValid=0x%x IntlvSel=0x%x\n",
1566 			hole_off, hole_valid, intlv_sel);
1567 
1568 	if (intlv_en ||
1569 	    (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1570 		return -EINVAL;
1571 
1572 	dct_sel_base = dct_sel_baseaddr(pvt);
1573 
1574 	/*
1575 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1576 	 * select between DCT0 and DCT1.
1577 	 */
1578 	if (dct_high_range_enabled(pvt) &&
1579 	   !dct_ganging_enabled(pvt) &&
1580 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1581 		high_range = 1;
1582 
1583 	channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1584 
1585 	chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1586 					     dct_sel_base_off, hole_valid,
1587 					     hole_off, dram_base);
1588 
1589 	intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1590 
1591 	/* remove Node ID (in case of memory interleaving) */
1592 	tmp = chan_addr & 0xFC0;
1593 
1594 	chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1595 
1596 	/* remove channel interleave and hash */
1597 	if (dct_interleave_enabled(pvt) &&
1598 	   !dct_high_range_enabled(pvt) &&
1599 	   !dct_ganging_enabled(pvt)) {
1600 		if (dct_sel_interleave_addr(pvt) != 1)
1601 			chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1602 		else {
1603 			tmp = chan_addr & 0xFC0;
1604 			chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1605 					| tmp;
1606 		}
1607 	}
1608 
1609 	debugf1("   (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1610 		chan_addr, (u32)(chan_addr >> 8));
1611 
1612 	cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1613 
1614 	if (cs_found >= 0) {
1615 		*nid = node_id;
1616 		*chan_sel = channel;
1617 	}
1618 	return cs_found;
1619 }
1620 
1621 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1622 				       int *node, int *chan_sel)
1623 {
1624 	int dram_range, cs_found = -EINVAL;
1625 	u64 dram_base, dram_limit;
1626 
1627 	for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1628 
1629 		if (!pvt->dram_rw_en[dram_range])
1630 			continue;
1631 
1632 		dram_base = pvt->dram_base[dram_range];
1633 		dram_limit = pvt->dram_limit[dram_range];
1634 
1635 		if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1636 
1637 			cs_found = f10_match_to_this_node(pvt, dram_range,
1638 							  sys_addr, node,
1639 							  chan_sel);
1640 			if (cs_found >= 0)
1641 				break;
1642 		}
1643 	}
1644 	return cs_found;
1645 }
1646 
1647 /*
1648  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1649  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1650  *
1651  * The @sys_addr is usually an error address received from the hardware
1652  * (MCX_ADDR).
1653  */
1654 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1655 				     struct err_regs *info,
1656 				     u64 sys_addr)
1657 {
1658 	struct amd64_pvt *pvt = mci->pvt_info;
1659 	u32 page, offset;
1660 	unsigned short syndrome;
1661 	int nid, csrow, chan = 0;
1662 
1663 	csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1664 
1665 	if (csrow < 0) {
1666 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1667 		return;
1668 	}
1669 
1670 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1671 
1672 	syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
1673 	syndrome |= LOW_SYNDROME(info->nbsh);
1674 
1675 	/*
1676 	 * We need the syndromes for channel detection only when we're
1677 	 * ganged. Otherwise @chan should already contain the channel at
1678 	 * this point.
1679 	 */
1680 	if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
1681 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1682 
1683 	if (chan >= 0)
1684 		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1685 				  EDAC_MOD_STR);
1686 	else
1687 		/*
1688 		 * Channel unknown, report all channels on this CSROW as failed.
1689 		 */
1690 		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1691 			edac_mc_handle_ce(mci, page, offset, syndrome,
1692 					  csrow, chan, EDAC_MOD_STR);
1693 }
1694 
1695 /*
1696  * debug routine to display the memory sizes of all logical DIMMs and its
1697  * CSROWs as well
1698  */
1699 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1700 {
1701 	int dimm, size0, size1;
1702 	u32 dbam;
1703 	u32 *dcsb;
1704 
1705 	if (boot_cpu_data.x86 == 0xf) {
1706 		/* K8 families < revF not supported yet */
1707 	       if (pvt->ext_model < K8_REV_F)
1708 			return;
1709 	       else
1710 		       WARN_ON(ctrl != 0);
1711 	}
1712 
1713 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1714 		ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1715 
1716 	dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1717 	dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1718 
1719 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1720 
1721 	/* Dump memory sizes for DIMM and its CSROWs */
1722 	for (dimm = 0; dimm < 4; dimm++) {
1723 
1724 		size0 = 0;
1725 		if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1726 			size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1727 
1728 		size1 = 0;
1729 		if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1730 			size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1731 
1732 		edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1733 			    dimm * 2, size0, dimm * 2 + 1, size1);
1734 	}
1735 }
1736 
1737 /*
1738  * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1739  * (as per PCI DEVICE_IDs):
1740  *
1741  * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1742  * DEVICE ID, even though there is differences between the different Revisions
1743  * (CG,D,E,F).
1744  *
1745  * Family F10h and F11h.
1746  *
1747  */
1748 static struct amd64_family_type amd64_family_types[] = {
1749 	[K8_CPUS] = {
1750 		.ctl_name = "RevF",
1751 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1752 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1753 		.ops = {
1754 			.early_channel_count	= k8_early_channel_count,
1755 			.get_error_address	= k8_get_error_address,
1756 			.read_dram_base_limit	= k8_read_dram_base_limit,
1757 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1758 			.dbam_to_cs		= k8_dbam_to_chip_select,
1759 		}
1760 	},
1761 	[F10_CPUS] = {
1762 		.ctl_name = "Family 10h",
1763 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1764 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1765 		.ops = {
1766 			.early_channel_count	= f10_early_channel_count,
1767 			.get_error_address	= f10_get_error_address,
1768 			.read_dram_base_limit	= f10_read_dram_base_limit,
1769 			.read_dram_ctl_register	= f10_read_dram_ctl_register,
1770 			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
1771 			.dbam_to_cs		= f10_dbam_to_chip_select,
1772 		}
1773 	},
1774 	[F11_CPUS] = {
1775 		.ctl_name = "Family 11h",
1776 		.addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1777 		.misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1778 		.ops = {
1779 			.early_channel_count	= f10_early_channel_count,
1780 			.get_error_address	= f10_get_error_address,
1781 			.read_dram_base_limit	= f10_read_dram_base_limit,
1782 			.read_dram_ctl_register	= f10_read_dram_ctl_register,
1783 			.map_sysaddr_to_csrow	= f10_map_sysaddr_to_csrow,
1784 			.dbam_to_cs		= f10_dbam_to_chip_select,
1785 		}
1786 	},
1787 };
1788 
1789 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1790 						unsigned int device,
1791 						struct pci_dev *related)
1792 {
1793 	struct pci_dev *dev = NULL;
1794 
1795 	dev = pci_get_device(vendor, device, dev);
1796 	while (dev) {
1797 		if ((dev->bus->number == related->bus->number) &&
1798 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1799 			break;
1800 		dev = pci_get_device(vendor, device, dev);
1801 	}
1802 
1803 	return dev;
1804 }
1805 
1806 /*
1807  * These are tables of eigenvectors (one per line) which can be used for the
1808  * construction of the syndrome tables. The modified syndrome search algorithm
1809  * uses those to find the symbol in error and thus the DIMM.
1810  *
1811  * Algorithm courtesy of Ross LaFetra from AMD.
1812  */
1813 static u16 x4_vectors[] = {
1814 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1815 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1816 	0x0001, 0x0002, 0x0004, 0x0008,
1817 	0x1013, 0x3032, 0x4044, 0x8088,
1818 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1819 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1820 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1821 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1822 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1823 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1824 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1825 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1826 	0x2b87, 0x164e, 0x642c, 0xdc18,
1827 	0x40b9, 0x80de, 0x1094, 0x20e8,
1828 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1829 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1830 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1831 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1832 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1833 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1834 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1835 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1836 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1837 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1838 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1839 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1840 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1841 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1842 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1843 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1844 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1845 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1846 	0x4807, 0xc40e, 0x130c, 0x3208,
1847 	0x1905, 0x2e0a, 0x5804, 0xac08,
1848 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1849 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1850 };
1851 
1852 static u16 x8_vectors[] = {
1853 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1854 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1855 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1856 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1857 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1858 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1859 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1860 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1861 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1862 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1863 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1864 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1865 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1866 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1867 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1868 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1869 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1870 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1871 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1872 };
1873 
1874 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1875 				 int v_dim)
1876 {
1877 	unsigned int i, err_sym;
1878 
1879 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1880 		u16 s = syndrome;
1881 		int v_idx =  err_sym * v_dim;
1882 		int v_end = (err_sym + 1) * v_dim;
1883 
1884 		/* walk over all 16 bits of the syndrome */
1885 		for (i = 1; i < (1U << 16); i <<= 1) {
1886 
1887 			/* if bit is set in that eigenvector... */
1888 			if (v_idx < v_end && vectors[v_idx] & i) {
1889 				u16 ev_comp = vectors[v_idx++];
1890 
1891 				/* ... and bit set in the modified syndrome, */
1892 				if (s & i) {
1893 					/* remove it. */
1894 					s ^= ev_comp;
1895 
1896 					if (!s)
1897 						return err_sym;
1898 				}
1899 
1900 			} else if (s & i)
1901 				/* can't get to zero, move to next symbol */
1902 				break;
1903 		}
1904 	}
1905 
1906 	debugf0("syndrome(%x) not found\n", syndrome);
1907 	return -1;
1908 }
1909 
1910 static int map_err_sym_to_channel(int err_sym, int sym_size)
1911 {
1912 	if (sym_size == 4)
1913 		switch (err_sym) {
1914 		case 0x20:
1915 		case 0x21:
1916 			return 0;
1917 			break;
1918 		case 0x22:
1919 		case 0x23:
1920 			return 1;
1921 			break;
1922 		default:
1923 			return err_sym >> 4;
1924 			break;
1925 		}
1926 	/* x8 symbols */
1927 	else
1928 		switch (err_sym) {
1929 		/* imaginary bits not in a DIMM */
1930 		case 0x10:
1931 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1932 					  err_sym);
1933 			return -1;
1934 			break;
1935 
1936 		case 0x11:
1937 			return 0;
1938 			break;
1939 		case 0x12:
1940 			return 1;
1941 			break;
1942 		default:
1943 			return err_sym >> 3;
1944 			break;
1945 		}
1946 	return -1;
1947 }
1948 
1949 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1950 {
1951 	struct amd64_pvt *pvt = mci->pvt_info;
1952 	u32 value = 0;
1953 	int err_sym = 0;
1954 
1955 	amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
1956 
1957 	/* F3x180[EccSymbolSize]=1, x8 symbols */
1958 	if (boot_cpu_data.x86 == 0x10 &&
1959 	    boot_cpu_data.x86_model > 7 &&
1960 	    value & BIT(25)) {
1961 		err_sym = decode_syndrome(syndrome, x8_vectors,
1962 					  ARRAY_SIZE(x8_vectors), 8);
1963 		return map_err_sym_to_channel(err_sym, 8);
1964 	} else {
1965 		err_sym = decode_syndrome(syndrome, x4_vectors,
1966 					  ARRAY_SIZE(x4_vectors), 4);
1967 		return map_err_sym_to_channel(err_sym, 4);
1968 	}
1969 }
1970 
1971 /*
1972  * Check for valid error in the NB Status High register. If so, proceed to read
1973  * NB Status Low, NB Address Low and NB Address High registers and store data
1974  * into error structure.
1975  *
1976  * Returns:
1977  *	- 1: if hardware regs contains valid error info
1978  *	- 0: if no valid error is indicated
1979  */
1980 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
1981 				     struct err_regs *regs)
1982 {
1983 	struct amd64_pvt *pvt;
1984 	struct pci_dev *misc_f3_ctl;
1985 
1986 	pvt = mci->pvt_info;
1987 	misc_f3_ctl = pvt->misc_f3_ctl;
1988 
1989 	if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
1990 		return 0;
1991 
1992 	if (!(regs->nbsh & K8_NBSH_VALID_BIT))
1993 		return 0;
1994 
1995 	/* valid error, read remaining error information registers */
1996 	if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
1997 	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
1998 	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
1999 	    amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2000 		return 0;
2001 
2002 	return 1;
2003 }
2004 
2005 /*
2006  * This function is called to retrieve the error data from hardware and store it
2007  * in the info structure.
2008  *
2009  * Returns:
2010  *	- 1: if a valid error is found
2011  *	- 0: if no error is found
2012  */
2013 static int amd64_get_error_info(struct mem_ctl_info *mci,
2014 				struct err_regs *info)
2015 {
2016 	struct amd64_pvt *pvt;
2017 	struct err_regs regs;
2018 
2019 	pvt = mci->pvt_info;
2020 
2021 	if (!amd64_get_error_info_regs(mci, info))
2022 		return 0;
2023 
2024 	/*
2025 	 * Here's the problem with the K8's EDAC reporting: There are four
2026 	 * registers which report pieces of error information. They are shared
2027 	 * between CEs and UEs. Furthermore, contrary to what is stated in the
2028 	 * BKDG, the overflow bit is never used! Every error always updates the
2029 	 * reporting registers.
2030 	 *
2031 	 * Can you see the race condition? All four error reporting registers
2032 	 * must be read before a new error updates them! There is no way to read
2033 	 * all four registers atomically. The best than can be done is to detect
2034 	 * that a race has occured and then report the error without any kind of
2035 	 * precision.
2036 	 *
2037 	 * What is still positive is that errors are still reported and thus
2038 	 * problems can still be detected - just not localized because the
2039 	 * syndrome and address are spread out across registers.
2040 	 *
2041 	 * Grrrrr!!!!!  Here's hoping that AMD fixes this in some future K8 rev.
2042 	 * UEs and CEs should have separate register sets with proper overflow
2043 	 * bits that are used! At very least the problem can be fixed by
2044 	 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2045 	 * set the overflow bit - unless the current error is CE and the new
2046 	 * error is UE which would be the only situation for overwriting the
2047 	 * current values.
2048 	 */
2049 
2050 	regs = *info;
2051 
2052 	/* Use info from the second read - most current */
2053 	if (unlikely(!amd64_get_error_info_regs(mci, info)))
2054 		return 0;
2055 
2056 	/* clear the error bits in hardware */
2057 	pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2058 
2059 	/* Check for the possible race condition */
2060 	if ((regs.nbsh != info->nbsh) ||
2061 	     (regs.nbsl != info->nbsl) ||
2062 	     (regs.nbeah != info->nbeah) ||
2063 	     (regs.nbeal != info->nbeal)) {
2064 		amd64_mc_printk(mci, KERN_WARNING,
2065 				"hardware STATUS read access race condition "
2066 				"detected!\n");
2067 		return 0;
2068 	}
2069 	return 1;
2070 }
2071 
2072 /*
2073  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2074  * ADDRESS and process.
2075  */
2076 static void amd64_handle_ce(struct mem_ctl_info *mci,
2077 			    struct err_regs *info)
2078 {
2079 	struct amd64_pvt *pvt = mci->pvt_info;
2080 	u64 sys_addr;
2081 
2082 	/* Ensure that the Error Address is VALID */
2083 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2084 		amd64_mc_printk(mci, KERN_ERR,
2085 			"HW has no ERROR_ADDRESS available\n");
2086 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2087 		return;
2088 	}
2089 
2090 	sys_addr = pvt->ops->get_error_address(mci, info);
2091 
2092 	amd64_mc_printk(mci, KERN_ERR,
2093 		"CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
2094 
2095 	pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2096 }
2097 
2098 /* Handle any Un-correctable Errors (UEs) */
2099 static void amd64_handle_ue(struct mem_ctl_info *mci,
2100 			    struct err_regs *info)
2101 {
2102 	struct amd64_pvt *pvt = mci->pvt_info;
2103 	struct mem_ctl_info *log_mci, *src_mci = NULL;
2104 	int csrow;
2105 	u64 sys_addr;
2106 	u32 page, offset;
2107 
2108 	log_mci = mci;
2109 
2110 	if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2111 		amd64_mc_printk(mci, KERN_CRIT,
2112 			"HW has no ERROR_ADDRESS available\n");
2113 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2114 		return;
2115 	}
2116 
2117 	sys_addr = pvt->ops->get_error_address(mci, info);
2118 
2119 	/*
2120 	 * Find out which node the error address belongs to. This may be
2121 	 * different from the node that detected the error.
2122 	 */
2123 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
2124 	if (!src_mci) {
2125 		amd64_mc_printk(mci, KERN_CRIT,
2126 			"ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2127 			(unsigned long)sys_addr);
2128 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2129 		return;
2130 	}
2131 
2132 	log_mci = src_mci;
2133 
2134 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
2135 	if (csrow < 0) {
2136 		amd64_mc_printk(mci, KERN_CRIT,
2137 			"ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2138 			(unsigned long)sys_addr);
2139 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2140 	} else {
2141 		error_address_to_page_and_offset(sys_addr, &page, &offset);
2142 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2143 	}
2144 }
2145 
2146 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2147 					    struct err_regs *info)
2148 {
2149 	u32 ec  = ERROR_CODE(info->nbsl);
2150 	u32 xec = EXT_ERROR_CODE(info->nbsl);
2151 	int ecc_type = (info->nbsh >> 13) & 0x3;
2152 
2153 	/* Bail early out if this was an 'observed' error */
2154 	if (PP(ec) == K8_NBSL_PP_OBS)
2155 		return;
2156 
2157 	/* Do only ECC errors */
2158 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2159 		return;
2160 
2161 	if (ecc_type == 2)
2162 		amd64_handle_ce(mci, info);
2163 	else if (ecc_type == 1)
2164 		amd64_handle_ue(mci, info);
2165 
2166 	/*
2167 	 * If main error is CE then overflow must be CE.  If main error is UE
2168 	 * then overflow is unknown.  We'll call the overflow a CE - if
2169 	 * panic_on_ue is set then we're already panic'ed and won't arrive
2170 	 * here. Else, then apparently someone doesn't think that UE's are
2171 	 * catastrophic.
2172 	 */
2173 	if (info->nbsh & K8_NBSH_OVERFLOW)
2174 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2175 }
2176 
2177 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2178 {
2179 	struct mem_ctl_info *mci = mci_lookup[node_id];
2180 
2181 	__amd64_decode_bus_error(mci, regs);
2182 
2183 	/*
2184 	 * Check the UE bit of the NB status high register, if set generate some
2185 	 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2186 	 * If it was a GART error, skip that process.
2187 	 *
2188 	 * FIXME: this should go somewhere else, if at all.
2189 	 */
2190 	if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2191 		edac_mc_handle_ue_no_info(mci, "UE bit is set");
2192 
2193 }
2194 
2195 /*
2196  * The main polling 'check' function, called FROM the edac core to perform the
2197  * error checking and if an error is encountered, error processing.
2198  */
2199 static void amd64_check(struct mem_ctl_info *mci)
2200 {
2201 	struct err_regs regs;
2202 
2203 	if (amd64_get_error_info(mci, &regs)) {
2204 		struct amd64_pvt *pvt = mci->pvt_info;
2205 		amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2206 	}
2207 }
2208 
2209 /*
2210  * Input:
2211  *	1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2212  *	2) AMD Family index value
2213  *
2214  * Ouput:
2215  *	Upon return of 0, the following filled in:
2216  *
2217  *		struct pvt->addr_f1_ctl
2218  *		struct pvt->misc_f3_ctl
2219  *
2220  *	Filled in with related device funcitions of 'dram_f2_ctl'
2221  *	These devices are "reserved" via the pci_get_device()
2222  *
2223  *	Upon return of 1 (error status):
2224  *
2225  *		Nothing reserved
2226  */
2227 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2228 {
2229 	const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2230 
2231 	/* Reserve the ADDRESS MAP Device */
2232 	pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2233 						    amd64_dev->addr_f1_ctl,
2234 						    pvt->dram_f2_ctl);
2235 
2236 	if (!pvt->addr_f1_ctl) {
2237 		amd64_printk(KERN_ERR, "error address map device not found: "
2238 			     "vendor %x device 0x%x (broken BIOS?)\n",
2239 			     PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2240 		return 1;
2241 	}
2242 
2243 	/* Reserve the MISC Device */
2244 	pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2245 						    amd64_dev->misc_f3_ctl,
2246 						    pvt->dram_f2_ctl);
2247 
2248 	if (!pvt->misc_f3_ctl) {
2249 		pci_dev_put(pvt->addr_f1_ctl);
2250 		pvt->addr_f1_ctl = NULL;
2251 
2252 		amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2253 			     "vendor %x device 0x%x (broken BIOS?)\n",
2254 			     PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2255 		return 1;
2256 	}
2257 
2258 	debugf1("    Addr Map device PCI Bus ID:\t%s\n",
2259 		pci_name(pvt->addr_f1_ctl));
2260 	debugf1("    DRAM MEM-CTL PCI Bus ID:\t%s\n",
2261 		pci_name(pvt->dram_f2_ctl));
2262 	debugf1("    Misc device PCI Bus ID:\t%s\n",
2263 		pci_name(pvt->misc_f3_ctl));
2264 
2265 	return 0;
2266 }
2267 
2268 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2269 {
2270 	pci_dev_put(pvt->addr_f1_ctl);
2271 	pci_dev_put(pvt->misc_f3_ctl);
2272 }
2273 
2274 /*
2275  * Retrieve the hardware registers of the memory controller (this includes the
2276  * 'Address Map' and 'Misc' device regs)
2277  */
2278 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2279 {
2280 	u64 msr_val;
2281 	int dram;
2282 
2283 	/*
2284 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2285 	 * those are Read-As-Zero
2286 	 */
2287 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2288 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2289 
2290 	/* check first whether TOP_MEM2 is enabled */
2291 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2292 	if (msr_val & (1U << 21)) {
2293 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2294 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2295 	} else
2296 		debugf0("  TOP_MEM2 disabled.\n");
2297 
2298 	amd64_cpu_display_info(pvt);
2299 
2300 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2301 
2302 	if (pvt->ops->read_dram_ctl_register)
2303 		pvt->ops->read_dram_ctl_register(pvt);
2304 
2305 	for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2306 		/*
2307 		 * Call CPU specific READ function to get the DRAM Base and
2308 		 * Limit values from the DCT.
2309 		 */
2310 		pvt->ops->read_dram_base_limit(pvt, dram);
2311 
2312 		/*
2313 		 * Only print out debug info on rows with both R and W Enabled.
2314 		 * Normal processing, compiler should optimize this whole 'if'
2315 		 * debug output block away.
2316 		 */
2317 		if (pvt->dram_rw_en[dram] != 0) {
2318 			debugf1("  DRAM-BASE[%d]: 0x%016llx "
2319 				"DRAM-LIMIT:  0x%016llx\n",
2320 				dram,
2321 				pvt->dram_base[dram],
2322 				pvt->dram_limit[dram]);
2323 
2324 			debugf1("        IntlvEn=%s %s %s "
2325 				"IntlvSel=%d DstNode=%d\n",
2326 				pvt->dram_IntlvEn[dram] ?
2327 					"Enabled" : "Disabled",
2328 				(pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2329 				(pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2330 				pvt->dram_IntlvSel[dram],
2331 				pvt->dram_DstNode[dram]);
2332 		}
2333 	}
2334 
2335 	amd64_read_dct_base_mask(pvt);
2336 
2337 	amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2338 	amd64_read_dbam_reg(pvt);
2339 
2340 	amd64_read_pci_cfg(pvt->misc_f3_ctl,
2341 			   F10_ONLINE_SPARE, &pvt->online_spare);
2342 
2343 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2344 	amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2345 
2346 	if (!dct_ganging_enabled(pvt)) {
2347 		amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2348 		amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2349 	}
2350 	amd64_dump_misc_regs(pvt);
2351 }
2352 
2353 /*
2354  * NOTE: CPU Revision Dependent code
2355  *
2356  * Input:
2357  *	@csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2358  *	k8 private pointer to -->
2359  *			DRAM Bank Address mapping register
2360  *			node_id
2361  *			DCL register where dual_channel_active is
2362  *
2363  * The DBAM register consists of 4 sets of 4 bits each definitions:
2364  *
2365  * Bits:	CSROWs
2366  * 0-3		CSROWs 0 and 1
2367  * 4-7		CSROWs 2 and 3
2368  * 8-11		CSROWs 4 and 5
2369  * 12-15	CSROWs 6 and 7
2370  *
2371  * Values range from: 0 to 15
2372  * The meaning of the values depends on CPU revision and dual-channel state,
2373  * see relevant BKDG more info.
2374  *
2375  * The memory controller provides for total of only 8 CSROWs in its current
2376  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2377  * single channel or two (2) DIMMs in dual channel mode.
2378  *
2379  * The following code logic collapses the various tables for CSROW based on CPU
2380  * revision.
2381  *
2382  * Returns:
2383  *	The number of PAGE_SIZE pages on the specified CSROW number it
2384  *	encompasses
2385  *
2386  */
2387 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2388 {
2389 	u32 cs_mode, nr_pages;
2390 
2391 	/*
2392 	 * The math on this doesn't look right on the surface because x/2*4 can
2393 	 * be simplified to x*2 but this expression makes use of the fact that
2394 	 * it is integral math where 1/2=0. This intermediate value becomes the
2395 	 * number of bits to shift the DBAM register to extract the proper CSROW
2396 	 * field.
2397 	 */
2398 	cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2399 
2400 	nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2401 
2402 	/*
2403 	 * If dual channel then double the memory size of single channel.
2404 	 * Channel count is 1 or 2
2405 	 */
2406 	nr_pages <<= (pvt->channel_count - 1);
2407 
2408 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2409 	debugf0("    nr_pages= %u  channel-count = %d\n",
2410 		nr_pages, pvt->channel_count);
2411 
2412 	return nr_pages;
2413 }
2414 
2415 /*
2416  * Initialize the array of csrow attribute instances, based on the values
2417  * from pci config hardware registers.
2418  */
2419 static int amd64_init_csrows(struct mem_ctl_info *mci)
2420 {
2421 	struct csrow_info *csrow;
2422 	struct amd64_pvt *pvt;
2423 	u64 input_addr_min, input_addr_max, sys_addr;
2424 	int i, empty = 1;
2425 
2426 	pvt = mci->pvt_info;
2427 
2428 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2429 
2430 	debugf0("NBCFG= 0x%x  CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2431 		(pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2432 		(pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2433 		);
2434 
2435 	for (i = 0; i < pvt->cs_count; i++) {
2436 		csrow = &mci->csrows[i];
2437 
2438 		if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2439 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2440 				pvt->mc_node_id);
2441 			continue;
2442 		}
2443 
2444 		debugf1("----CSROW %d VALID for MC node %d\n",
2445 			i, pvt->mc_node_id);
2446 
2447 		empty = 0;
2448 		csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2449 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2450 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2451 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2452 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2453 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2454 		csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2455 		/* 8 bytes of resolution */
2456 
2457 		csrow->mtype = amd64_determine_memory_type(pvt);
2458 
2459 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2460 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2461 			(unsigned long)input_addr_min,
2462 			(unsigned long)input_addr_max);
2463 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2464 			(unsigned long)sys_addr, csrow->page_mask);
2465 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2466 			"last_page: 0x%lx\n",
2467 			(unsigned)csrow->nr_pages,
2468 			csrow->first_page, csrow->last_page);
2469 
2470 		/*
2471 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2472 		 */
2473 		if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2474 			csrow->edac_mode =
2475 			    (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2476 			    EDAC_S4ECD4ED : EDAC_SECDED;
2477 		else
2478 			csrow->edac_mode = EDAC_NONE;
2479 	}
2480 
2481 	return empty;
2482 }
2483 
2484 /* get all cores on this DCT */
2485 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2486 {
2487 	int cpu;
2488 
2489 	for_each_online_cpu(cpu)
2490 		if (amd_get_nb_id(cpu) == nid)
2491 			cpumask_set_cpu(cpu, mask);
2492 }
2493 
2494 /* check MCG_CTL on all the cpus on this node */
2495 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2496 {
2497 	cpumask_var_t mask;
2498 	struct msr *msrs;
2499 	int cpu, nbe, idx = 0;
2500 	bool ret = false;
2501 
2502 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2503 		amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2504 			     __func__);
2505 		return false;
2506 	}
2507 
2508 	get_cpus_on_this_dct_cpumask(mask, nid);
2509 
2510 	msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
2511 	if (!msrs) {
2512 		amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2513 			      __func__);
2514 		free_cpumask_var(mask);
2515 		 return false;
2516 	}
2517 
2518 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2519 
2520 	for_each_cpu(cpu, mask) {
2521 		nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2522 
2523 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2524 			cpu, msrs[idx].q,
2525 			(nbe ? "enabled" : "disabled"));
2526 
2527 		if (!nbe)
2528 			goto out;
2529 
2530 		idx++;
2531 	}
2532 	ret = true;
2533 
2534 out:
2535 	kfree(msrs);
2536 	free_cpumask_var(mask);
2537 	return ret;
2538 }
2539 
2540 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2541 {
2542 	cpumask_var_t cmask;
2543 	struct msr *msrs = NULL;
2544 	int cpu, idx = 0;
2545 
2546 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2547 		amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2548 			     __func__);
2549 		return false;
2550 	}
2551 
2552 	get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2553 
2554 	msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
2555 	if (!msrs) {
2556 		amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2557 			     __func__);
2558 		return -ENOMEM;
2559 	}
2560 
2561 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2562 
2563 	for_each_cpu(cpu, cmask) {
2564 
2565 		if (on) {
2566 			if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2567 				pvt->flags.ecc_report = 1;
2568 
2569 			msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2570 		} else {
2571 			/*
2572 			 * Turn off ECC reporting only when it was off before
2573 			 */
2574 			if (!pvt->flags.ecc_report)
2575 				msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2576 		}
2577 		idx++;
2578 	}
2579 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2580 
2581 	kfree(msrs);
2582 	free_cpumask_var(cmask);
2583 
2584 	return 0;
2585 }
2586 
2587 /*
2588  * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2589  * enable it.
2590  */
2591 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2592 {
2593 	struct amd64_pvt *pvt = mci->pvt_info;
2594 	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2595 
2596 	if (!ecc_enable_override)
2597 		return;
2598 
2599 	amd64_printk(KERN_WARNING,
2600 		"'ecc_enable_override' parameter is active, "
2601 		"Enabling AMD ECC hardware now: CAUTION\n");
2602 
2603 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2604 
2605 	/* turn on UECCn and CECCEn bits */
2606 	pvt->old_nbctl = value & mask;
2607 	pvt->nbctl_mcgctl_saved = 1;
2608 
2609 	value |= mask;
2610 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2611 
2612 	if (amd64_toggle_ecc_err_reporting(pvt, ON))
2613 		amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2614 					   "MCGCTL!\n");
2615 
2616 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2617 
2618 	debugf0("NBCFG(1)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2619 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2620 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2621 
2622 	if (!(value & K8_NBCFG_ECC_ENABLE)) {
2623 		amd64_printk(KERN_WARNING,
2624 			"This node reports that DRAM ECC is "
2625 			"currently Disabled; ENABLING now\n");
2626 
2627 		/* Attempt to turn on DRAM ECC Enable */
2628 		value |= K8_NBCFG_ECC_ENABLE;
2629 		pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2630 
2631 		amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2632 
2633 		if (!(value & K8_NBCFG_ECC_ENABLE)) {
2634 			amd64_printk(KERN_WARNING,
2635 				"Hardware rejects Enabling DRAM ECC checking\n"
2636 				"Check memory DIMM configuration\n");
2637 		} else {
2638 			amd64_printk(KERN_DEBUG,
2639 				"Hardware accepted DRAM ECC Enable\n");
2640 		}
2641 	}
2642 	debugf0("NBCFG(2)= 0x%x  CHIPKILL= %s ECC_ENABLE= %s\n", value,
2643 		(value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2644 		(value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2645 
2646 	pvt->ctl_error_info.nbcfg = value;
2647 }
2648 
2649 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2650 {
2651 	u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2652 
2653 	if (!pvt->nbctl_mcgctl_saved)
2654 		return;
2655 
2656 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2657 	value &= ~mask;
2658 	value |= pvt->old_nbctl;
2659 
2660 	/* restore the NB Enable MCGCTL bit */
2661 	pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2662 
2663 	if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2664 		amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
2665 					   "MCGCTL!\n");
2666 }
2667 
2668 /*
2669  * EDAC requires that the BIOS have ECC enabled before taking over the
2670  * processing of ECC errors. This is because the BIOS can properly initialize
2671  * the memory system completely. A command line option allows to force-enable
2672  * hardware ECC later in amd64_enable_ecc_error_reporting().
2673  */
2674 static const char *ecc_warning =
2675 	"WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2676 	" Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2677 	" Also, use of the override can cause unknown side effects.\n";
2678 
2679 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2680 {
2681 	u32 value;
2682 	u8 ecc_enabled = 0;
2683 	bool nb_mce_en = false;
2684 
2685 	amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2686 
2687 	ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2688 	if (!ecc_enabled)
2689 		amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2690 			     "is currently disabled, set F3x%x[22] (%s).\n",
2691 			     K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2692 	else
2693 		amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2694 
2695 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2696 	if (!nb_mce_en)
2697 		amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2698 			     "0x%08x[4] on node %d to enable.\n",
2699 			     MSR_IA32_MCG_CTL, pvt->mc_node_id);
2700 
2701 	if (!ecc_enabled || !nb_mce_en) {
2702 		if (!ecc_enable_override) {
2703 			amd64_printk(KERN_WARNING, "%s", ecc_warning);
2704 			return -ENODEV;
2705 		}
2706 	} else
2707 		/* CLEAR the override, since BIOS controlled it */
2708 		ecc_enable_override = 0;
2709 
2710 	return 0;
2711 }
2712 
2713 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2714 					  ARRAY_SIZE(amd64_inj_attrs) +
2715 					  1];
2716 
2717 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2718 
2719 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2720 {
2721 	unsigned int i = 0, j = 0;
2722 
2723 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2724 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2725 
2726 	for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2727 		sysfs_attrs[i] = amd64_inj_attrs[j];
2728 
2729 	sysfs_attrs[i] = terminator;
2730 
2731 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2732 }
2733 
2734 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2735 {
2736 	struct amd64_pvt *pvt = mci->pvt_info;
2737 
2738 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2739 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2740 
2741 	if (pvt->nbcap & K8_NBCAP_SECDED)
2742 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2743 
2744 	if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2745 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2746 
2747 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2748 	mci->mod_name		= EDAC_MOD_STR;
2749 	mci->mod_ver		= EDAC_AMD64_VERSION;
2750 	mci->ctl_name		= get_amd_family_name(pvt->mc_type_index);
2751 	mci->dev_name		= pci_name(pvt->dram_f2_ctl);
2752 	mci->ctl_page_to_phys	= NULL;
2753 
2754 	/* IMPORTANT: Set the polling 'check' function in this module */
2755 	mci->edac_check		= amd64_check;
2756 
2757 	/* memory scrubber interface */
2758 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2759 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2760 }
2761 
2762 /*
2763  * Init stuff for this DRAM Controller device.
2764  *
2765  * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2766  * Space feature MUST be enabled on ALL Processors prior to actually reading
2767  * from the ECS registers. Since the loading of the module can occur on any
2768  * 'core', and cores don't 'see' all the other processors ECS data when the
2769  * others are NOT enabled. Our solution is to first enable ECS access in this
2770  * routine on all processors, gather some data in a amd64_pvt structure and
2771  * later come back in a finish-setup function to perform that final
2772  * initialization. See also amd64_init_2nd_stage() for that.
2773  */
2774 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2775 				    int mc_type_index)
2776 {
2777 	struct amd64_pvt *pvt = NULL;
2778 	int err = 0, ret;
2779 
2780 	ret = -ENOMEM;
2781 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2782 	if (!pvt)
2783 		goto err_exit;
2784 
2785 	pvt->mc_node_id = get_node_id(dram_f2_ctl);
2786 
2787 	pvt->dram_f2_ctl	= dram_f2_ctl;
2788 	pvt->ext_model		= boot_cpu_data.x86_model >> 4;
2789 	pvt->mc_type_index	= mc_type_index;
2790 	pvt->ops		= family_ops(mc_type_index);
2791 
2792 	/*
2793 	 * We have the dram_f2_ctl device as an argument, now go reserve its
2794 	 * sibling devices from the PCI system.
2795 	 */
2796 	ret = -ENODEV;
2797 	err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2798 	if (err)
2799 		goto err_free;
2800 
2801 	ret = -EINVAL;
2802 	err = amd64_check_ecc_enabled(pvt);
2803 	if (err)
2804 		goto err_put;
2805 
2806 	/*
2807 	 * Key operation here: setup of HW prior to performing ops on it. Some
2808 	 * setup is required to access ECS data. After this is performed, the
2809 	 * 'teardown' function must be called upon error and normal exit paths.
2810 	 */
2811 	if (boot_cpu_data.x86 >= 0x10)
2812 		amd64_setup(pvt);
2813 
2814 	/*
2815 	 * Save the pointer to the private data for use in 2nd initialization
2816 	 * stage
2817 	 */
2818 	pvt_lookup[pvt->mc_node_id] = pvt;
2819 
2820 	return 0;
2821 
2822 err_put:
2823 	amd64_free_mc_sibling_devices(pvt);
2824 
2825 err_free:
2826 	kfree(pvt);
2827 
2828 err_exit:
2829 	return ret;
2830 }
2831 
2832 /*
2833  * This is the finishing stage of the init code. Needs to be performed after all
2834  * MCs' hardware have been prepped for accessing extended config space.
2835  */
2836 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2837 {
2838 	int node_id = pvt->mc_node_id;
2839 	struct mem_ctl_info *mci;
2840 	int ret = -ENODEV;
2841 
2842 	amd64_read_mc_registers(pvt);
2843 
2844 	/*
2845 	 * We need to determine how many memory channels there are. Then use
2846 	 * that information for calculating the size of the dynamic instance
2847 	 * tables in the 'mci' structure
2848 	 */
2849 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2850 	if (pvt->channel_count < 0)
2851 		goto err_exit;
2852 
2853 	ret = -ENOMEM;
2854 	mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2855 	if (!mci)
2856 		goto err_exit;
2857 
2858 	mci->pvt_info = pvt;
2859 
2860 	mci->dev = &pvt->dram_f2_ctl->dev;
2861 	amd64_setup_mci_misc_attributes(mci);
2862 
2863 	if (amd64_init_csrows(mci))
2864 		mci->edac_cap = EDAC_FLAG_NONE;
2865 
2866 	amd64_enable_ecc_error_reporting(mci);
2867 	amd64_set_mc_sysfs_attributes(mci);
2868 
2869 	ret = -ENODEV;
2870 	if (edac_mc_add_mc(mci)) {
2871 		debugf1("failed edac_mc_add_mc()\n");
2872 		goto err_add_mc;
2873 	}
2874 
2875 	mci_lookup[node_id] = mci;
2876 	pvt_lookup[node_id] = NULL;
2877 
2878 	/* register stuff with EDAC MCE */
2879 	if (report_gart_errors)
2880 		amd_report_gart_errors(true);
2881 
2882 	amd_register_ecc_decoder(amd64_decode_bus_error);
2883 
2884 	return 0;
2885 
2886 err_add_mc:
2887 	edac_mc_free(mci);
2888 
2889 err_exit:
2890 	debugf0("failure to init 2nd stage: ret=%d\n", ret);
2891 
2892 	amd64_restore_ecc_error_reporting(pvt);
2893 
2894 	if (boot_cpu_data.x86 > 0xf)
2895 		amd64_teardown(pvt);
2896 
2897 	amd64_free_mc_sibling_devices(pvt);
2898 
2899 	kfree(pvt_lookup[pvt->mc_node_id]);
2900 	pvt_lookup[node_id] = NULL;
2901 
2902 	return ret;
2903 }
2904 
2905 
2906 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2907 				 const struct pci_device_id *mc_type)
2908 {
2909 	int ret = 0;
2910 
2911 	debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2912 		get_amd_family_name(mc_type->driver_data));
2913 
2914 	ret = pci_enable_device(pdev);
2915 	if (ret < 0)
2916 		ret = -EIO;
2917 	else
2918 		ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2919 
2920 	if (ret < 0)
2921 		debugf0("ret=%d\n", ret);
2922 
2923 	return ret;
2924 }
2925 
2926 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2927 {
2928 	struct mem_ctl_info *mci;
2929 	struct amd64_pvt *pvt;
2930 
2931 	/* Remove from EDAC CORE tracking list */
2932 	mci = edac_mc_del_mc(&pdev->dev);
2933 	if (!mci)
2934 		return;
2935 
2936 	pvt = mci->pvt_info;
2937 
2938 	amd64_restore_ecc_error_reporting(pvt);
2939 
2940 	if (boot_cpu_data.x86 > 0xf)
2941 		amd64_teardown(pvt);
2942 
2943 	amd64_free_mc_sibling_devices(pvt);
2944 
2945 	kfree(pvt);
2946 	mci->pvt_info = NULL;
2947 
2948 	mci_lookup[pvt->mc_node_id] = NULL;
2949 
2950 	/* unregister from EDAC MCE */
2951 	amd_report_gart_errors(false);
2952 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2953 
2954 	/* Free the EDAC CORE resources */
2955 	edac_mc_free(mci);
2956 }
2957 
2958 /*
2959  * This table is part of the interface for loading drivers for PCI devices. The
2960  * PCI core identifies what devices are on a system during boot, and then
2961  * inquiry this table to see if this driver is for a given device found.
2962  */
2963 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2964 	{
2965 		.vendor		= PCI_VENDOR_ID_AMD,
2966 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2967 		.subvendor	= PCI_ANY_ID,
2968 		.subdevice	= PCI_ANY_ID,
2969 		.class		= 0,
2970 		.class_mask	= 0,
2971 		.driver_data	= K8_CPUS
2972 	},
2973 	{
2974 		.vendor		= PCI_VENDOR_ID_AMD,
2975 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2976 		.subvendor	= PCI_ANY_ID,
2977 		.subdevice	= PCI_ANY_ID,
2978 		.class		= 0,
2979 		.class_mask	= 0,
2980 		.driver_data	= F10_CPUS
2981 	},
2982 	{
2983 		.vendor		= PCI_VENDOR_ID_AMD,
2984 		.device		= PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2985 		.subvendor	= PCI_ANY_ID,
2986 		.subdevice	= PCI_ANY_ID,
2987 		.class		= 0,
2988 		.class_mask	= 0,
2989 		.driver_data	= F11_CPUS
2990 	},
2991 	{0, }
2992 };
2993 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2994 
2995 static struct pci_driver amd64_pci_driver = {
2996 	.name		= EDAC_MOD_STR,
2997 	.probe		= amd64_init_one_instance,
2998 	.remove		= __devexit_p(amd64_remove_one_instance),
2999 	.id_table	= amd64_pci_table,
3000 };
3001 
3002 static void amd64_setup_pci_device(void)
3003 {
3004 	struct mem_ctl_info *mci;
3005 	struct amd64_pvt *pvt;
3006 
3007 	if (amd64_ctl_pci)
3008 		return;
3009 
3010 	mci = mci_lookup[0];
3011 	if (mci) {
3012 
3013 		pvt = mci->pvt_info;
3014 		amd64_ctl_pci =
3015 			edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3016 						    EDAC_MOD_STR);
3017 
3018 		if (!amd64_ctl_pci) {
3019 			pr_warning("%s(): Unable to create PCI control\n",
3020 				   __func__);
3021 
3022 			pr_warning("%s(): PCI error report via EDAC not set\n",
3023 				   __func__);
3024 			}
3025 	}
3026 }
3027 
3028 static int __init amd64_edac_init(void)
3029 {
3030 	int nb, err = -ENODEV;
3031 
3032 	edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3033 
3034 	opstate_init();
3035 
3036 	if (cache_k8_northbridges() < 0)
3037 		return err;
3038 
3039 	err = pci_register_driver(&amd64_pci_driver);
3040 	if (err)
3041 		return err;
3042 
3043 	/*
3044 	 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3045 	 * amd64_pvt structs. These will be used in the 2nd stage init function
3046 	 * to finish initialization of the MC instances.
3047 	 */
3048 	for (nb = 0; nb < num_k8_northbridges; nb++) {
3049 		if (!pvt_lookup[nb])
3050 			continue;
3051 
3052 		err = amd64_init_2nd_stage(pvt_lookup[nb]);
3053 		if (err)
3054 			goto err_2nd_stage;
3055 	}
3056 
3057 	amd64_setup_pci_device();
3058 
3059 	return 0;
3060 
3061 err_2nd_stage:
3062 	debugf0("2nd stage failed\n");
3063 	pci_unregister_driver(&amd64_pci_driver);
3064 
3065 	return err;
3066 }
3067 
3068 static void __exit amd64_edac_exit(void)
3069 {
3070 	if (amd64_ctl_pci)
3071 		edac_pci_release_generic_ctl(amd64_ctl_pci);
3072 
3073 	pci_unregister_driver(&amd64_pci_driver);
3074 }
3075 
3076 module_init(amd64_edac_init);
3077 module_exit(amd64_edac_exit);
3078 
3079 MODULE_LICENSE("GPL");
3080 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3081 		"Dave Peterson, Thayne Harbaugh");
3082 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3083 		EDAC_AMD64_VERSION);
3084 
3085 module_param(edac_op_state, int, 0444);
3086 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3087