xref: /linux/drivers/edac/altera_edac.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/property.h>
26 #include <linux/regmap.h>
27 #include <linux/types.h>
28 #include <linux/uaccess.h>
29 
30 #include "altera_edac.h"
31 #include "edac_module.h"
32 
33 #define EDAC_MOD_STR		"altera_edac"
34 #define EDAC_DEVICE		"Altera"
35 
36 #ifdef CONFIG_EDAC_ALTERA_SDRAM
37 static const struct altr_sdram_prv_data c5_data = {
38 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
39 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
40 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
41 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
42 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
43 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
44 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
45 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
46 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
47 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
48 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
49 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
50 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
51 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
52 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
53 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
54 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
55 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
56 };
57 
58 static const struct altr_sdram_prv_data a10_data = {
59 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
60 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
61 	.ecc_stat_offset    = A10_INTSTAT_OFST,
62 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
63 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
64 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
65 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
66 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
67 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
68 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
69 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
70 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
71 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
72 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
73 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
74 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
75 };
76 
77 /*********************** EDAC Memory Controller Functions ****************/
78 
79 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
80 
81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
82 {
83 	struct mem_ctl_info *mci = dev_id;
84 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
85 	const struct altr_sdram_prv_data *priv = drvdata->data;
86 	u32 status, err_count = 1, err_addr;
87 
88 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
89 
90 	if (status & priv->ecc_stat_ue_mask) {
91 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
92 			    &err_addr);
93 		if (priv->ecc_uecnt_offset)
94 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
95 				    &err_count);
96 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
97 		      err_count, err_addr);
98 	}
99 	if (status & priv->ecc_stat_ce_mask) {
100 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
101 			    &err_addr);
102 		if (priv->ecc_uecnt_offset)
103 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
104 				    &err_count);
105 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
106 				     err_addr >> PAGE_SHIFT,
107 				     err_addr & ~PAGE_MASK, 0,
108 				     0, 0, -1, mci->ctl_name, "");
109 		/* Clear IRQ to resume */
110 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
111 			     priv->ecc_irq_clr_mask);
112 
113 		return IRQ_HANDLED;
114 	}
115 	return IRQ_NONE;
116 }
117 
118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
119 					    const char __user *data,
120 					    size_t count, loff_t *ppos)
121 {
122 	struct mem_ctl_info *mci = file->private_data;
123 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
124 	const struct altr_sdram_prv_data *priv = drvdata->data;
125 	u32 *ptemp;
126 	dma_addr_t dma_handle;
127 	u32 reg, read_reg;
128 
129 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
130 	if (!ptemp) {
131 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
132 		edac_printk(KERN_ERR, EDAC_MC,
133 			    "Inject: Buffer Allocation error\n");
134 		return -ENOMEM;
135 	}
136 
137 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
138 		    &read_reg);
139 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
140 
141 	/* Error are injected by writing a word while the SBE or DBE
142 	 * bit in the CTLCFG register is set. Reading the word will
143 	 * trigger the SBE or DBE error and the corresponding IRQ.
144 	 */
145 	if (count == 3) {
146 		edac_printk(KERN_ALERT, EDAC_MC,
147 			    "Inject Double bit error\n");
148 		local_irq_disable();
149 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
150 			     (read_reg | priv->ue_set_mask));
151 		local_irq_enable();
152 	} else {
153 		edac_printk(KERN_ALERT, EDAC_MC,
154 			    "Inject Single bit error\n");
155 		local_irq_disable();
156 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
157 			     (read_reg | priv->ce_set_mask));
158 		local_irq_enable();
159 	}
160 
161 	ptemp[0] = 0x5A5A5A5A;
162 	ptemp[1] = 0xA5A5A5A5;
163 
164 	/* Clear the error injection bits */
165 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
166 	/* Ensure it has been written out */
167 	wmb();
168 
169 	/*
170 	 * To trigger the error, we need to read the data back
171 	 * (the data was written with errors above).
172 	 * The READ_ONCE macros and printk are used to prevent the
173 	 * the compiler optimizing these reads out.
174 	 */
175 	reg = READ_ONCE(ptemp[0]);
176 	read_reg = READ_ONCE(ptemp[1]);
177 	/* Force Read */
178 	rmb();
179 
180 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
181 		    reg, read_reg);
182 
183 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
184 
185 	return count;
186 }
187 
188 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
189 	.open = simple_open,
190 	.write = altr_sdr_mc_err_inject_write,
191 	.llseek = generic_file_llseek,
192 };
193 
194 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
195 {
196 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
197 		return;
198 
199 	if (!mci->debugfs)
200 		return;
201 
202 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
203 				 &altr_sdr_mc_debug_inject_fops);
204 }
205 
206 /* Get total memory size from Open Firmware DTB */
207 static unsigned long get_total_mem(void)
208 {
209 	struct device_node *np = NULL;
210 	struct resource res;
211 	int ret;
212 	unsigned long total_mem = 0;
213 
214 	for_each_node_by_type(np, "memory") {
215 		ret = of_address_to_resource(np, 0, &res);
216 		if (ret)
217 			continue;
218 
219 		total_mem += resource_size(&res);
220 	}
221 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
222 	return total_mem;
223 }
224 
225 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
226 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
227 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
228 	{},
229 };
230 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
231 
232 static int a10_init(struct regmap *mc_vbase)
233 {
234 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
235 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
236 		edac_printk(KERN_ERR, EDAC_MC,
237 			    "Error setting SB IRQ mode\n");
238 		return -ENODEV;
239 	}
240 
241 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
242 		edac_printk(KERN_ERR, EDAC_MC,
243 			    "Error setting trigger count\n");
244 		return -ENODEV;
245 	}
246 
247 	return 0;
248 }
249 
250 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
251 {
252 	void __iomem  *sm_base;
253 	int  ret = 0;
254 
255 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
256 				dev_name(&pdev->dev))) {
257 		edac_printk(KERN_ERR, EDAC_MC,
258 			    "Unable to request mem region\n");
259 		return -EBUSY;
260 	}
261 
262 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
263 	if (!sm_base) {
264 		edac_printk(KERN_ERR, EDAC_MC,
265 			    "Unable to ioremap device\n");
266 
267 		ret = -ENOMEM;
268 		goto release;
269 	}
270 
271 	iowrite32(mask, sm_base);
272 
273 	iounmap(sm_base);
274 
275 release:
276 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
277 
278 	return ret;
279 }
280 
281 static int altr_sdram_probe(struct platform_device *pdev)
282 {
283 	struct edac_mc_layer layers[2];
284 	struct mem_ctl_info *mci;
285 	struct altr_sdram_mc_data *drvdata;
286 	const struct altr_sdram_prv_data *priv;
287 	struct regmap *mc_vbase;
288 	struct dimm_info *dimm;
289 	u32 read_reg;
290 	int irq, irq2, res = 0;
291 	unsigned long mem_size, irqflags = 0;
292 
293 	/* Grab the register range from the sdr controller in device tree */
294 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
295 						   "altr,sdr-syscon");
296 	if (IS_ERR(mc_vbase)) {
297 		edac_printk(KERN_ERR, EDAC_MC,
298 			    "regmap for altr,sdr-syscon lookup failed.\n");
299 		return -ENODEV;
300 	}
301 
302 	/* Check specific dependencies for the module */
303 	priv = device_get_match_data(&pdev->dev);
304 
305 	/* Validate the SDRAM controller has ECC enabled */
306 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
307 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
308 		edac_printk(KERN_ERR, EDAC_MC,
309 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
310 		return -ENODEV;
311 	}
312 
313 	/* Grab memory size from device tree. */
314 	mem_size = get_total_mem();
315 	if (!mem_size) {
316 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
317 		return -ENODEV;
318 	}
319 
320 	/* Ensure the SDRAM Interrupt is disabled */
321 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
322 			       priv->ecc_irq_en_mask, 0)) {
323 		edac_printk(KERN_ERR, EDAC_MC,
324 			    "Error disabling SDRAM ECC IRQ\n");
325 		return -ENODEV;
326 	}
327 
328 	/* Toggle to clear the SDRAM Error count */
329 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
330 			       priv->ecc_cnt_rst_mask,
331 			       priv->ecc_cnt_rst_mask)) {
332 		edac_printk(KERN_ERR, EDAC_MC,
333 			    "Error clearing SDRAM ECC count\n");
334 		return -ENODEV;
335 	}
336 
337 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
338 			       priv->ecc_cnt_rst_mask, 0)) {
339 		edac_printk(KERN_ERR, EDAC_MC,
340 			    "Error clearing SDRAM ECC count\n");
341 		return -ENODEV;
342 	}
343 
344 	irq = platform_get_irq(pdev, 0);
345 	if (irq < 0) {
346 		edac_printk(KERN_ERR, EDAC_MC,
347 			    "No irq %d in DT\n", irq);
348 		return irq;
349 	}
350 
351 	/* Arria10 has a 2nd IRQ */
352 	irq2 = platform_get_irq(pdev, 1);
353 
354 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
355 	layers[0].size = 1;
356 	layers[0].is_virt_csrow = true;
357 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
358 	layers[1].size = 1;
359 	layers[1].is_virt_csrow = false;
360 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
361 			    sizeof(struct altr_sdram_mc_data));
362 	if (!mci)
363 		return -ENOMEM;
364 
365 	mci->pdev = &pdev->dev;
366 	drvdata = mci->pvt_info;
367 	drvdata->mc_vbase = mc_vbase;
368 	drvdata->data = priv;
369 	platform_set_drvdata(pdev, mci);
370 
371 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
372 		edac_printk(KERN_ERR, EDAC_MC,
373 			    "Unable to get managed device resource\n");
374 		res = -ENOMEM;
375 		goto free;
376 	}
377 
378 	mci->mtype_cap = MEM_FLAG_DDR3;
379 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
380 	mci->edac_cap = EDAC_FLAG_SECDED;
381 	mci->mod_name = EDAC_MOD_STR;
382 	mci->ctl_name = dev_name(&pdev->dev);
383 	mci->scrub_mode = SCRUB_SW_SRC;
384 	mci->dev_name = dev_name(&pdev->dev);
385 
386 	dimm = *mci->dimms;
387 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
388 	dimm->grain = 8;
389 	dimm->dtype = DEV_X8;
390 	dimm->mtype = MEM_DDR3;
391 	dimm->edac_mode = EDAC_SECDED;
392 
393 	res = edac_mc_add_mc(mci);
394 	if (res < 0)
395 		goto err;
396 
397 	/* Only the Arria10 has separate IRQs */
398 	if (of_machine_is_compatible("altr,socfpga-arria10")) {
399 		/* Arria10 specific initialization */
400 		res = a10_init(mc_vbase);
401 		if (res < 0)
402 			goto err2;
403 
404 		res = devm_request_irq(&pdev->dev, irq2,
405 				       altr_sdram_mc_err_handler,
406 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
407 		if (res < 0) {
408 			edac_mc_printk(mci, KERN_ERR,
409 				       "Unable to request irq %d\n", irq2);
410 			res = -ENODEV;
411 			goto err2;
412 		}
413 
414 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
415 		if (res < 0)
416 			goto err2;
417 
418 		irqflags = IRQF_SHARED;
419 	}
420 
421 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
422 			       irqflags, dev_name(&pdev->dev), mci);
423 	if (res < 0) {
424 		edac_mc_printk(mci, KERN_ERR,
425 			       "Unable to request irq %d\n", irq);
426 		res = -ENODEV;
427 		goto err2;
428 	}
429 
430 	/* Infrastructure ready - enable the IRQ */
431 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
432 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
433 		edac_mc_printk(mci, KERN_ERR,
434 			       "Error enabling SDRAM ECC IRQ\n");
435 		res = -ENODEV;
436 		goto err2;
437 	}
438 
439 	altr_sdr_mc_create_debugfs_nodes(mci);
440 
441 	devres_close_group(&pdev->dev, NULL);
442 
443 	return 0;
444 
445 err2:
446 	edac_mc_del_mc(&pdev->dev);
447 err:
448 	devres_release_group(&pdev->dev, NULL);
449 free:
450 	edac_mc_free(mci);
451 	edac_printk(KERN_ERR, EDAC_MC,
452 		    "EDAC Probe Failed; Error %d\n", res);
453 
454 	return res;
455 }
456 
457 static void altr_sdram_remove(struct platform_device *pdev)
458 {
459 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
460 
461 	edac_mc_del_mc(&pdev->dev);
462 	edac_mc_free(mci);
463 	platform_set_drvdata(pdev, NULL);
464 }
465 
466 /*
467  * If you want to suspend, need to disable EDAC by removing it
468  * from the device tree or defconfig.
469  */
470 #ifdef CONFIG_PM
471 static int altr_sdram_prepare(struct device *dev)
472 {
473 	pr_err("Suspend not allowed when EDAC is enabled.\n");
474 
475 	return -EPERM;
476 }
477 
478 static const struct dev_pm_ops altr_sdram_pm_ops = {
479 	.prepare = altr_sdram_prepare,
480 };
481 #endif
482 
483 static struct platform_driver altr_sdram_edac_driver = {
484 	.probe = altr_sdram_probe,
485 	.remove_new = altr_sdram_remove,
486 	.driver = {
487 		.name = "altr_sdram_edac",
488 #ifdef CONFIG_PM
489 		.pm = &altr_sdram_pm_ops,
490 #endif
491 		.of_match_table = altr_sdram_ctrl_of_match,
492 	},
493 };
494 
495 module_platform_driver(altr_sdram_edac_driver);
496 
497 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
498 
499 /************************* EDAC Parent Probe *************************/
500 
501 static const struct of_device_id altr_edac_device_of_match[];
502 
503 static const struct of_device_id altr_edac_of_match[] = {
504 	{ .compatible = "altr,socfpga-ecc-manager" },
505 	{},
506 };
507 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
508 
509 static int altr_edac_probe(struct platform_device *pdev)
510 {
511 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
512 			     NULL, &pdev->dev);
513 	return 0;
514 }
515 
516 static struct platform_driver altr_edac_driver = {
517 	.probe =  altr_edac_probe,
518 	.driver = {
519 		.name = "socfpga_ecc_manager",
520 		.of_match_table = altr_edac_of_match,
521 	},
522 };
523 module_platform_driver(altr_edac_driver);
524 
525 /************************* EDAC Device Functions *************************/
526 
527 /*
528  * EDAC Device Functions (shared between various IPs).
529  * The discrete memories use the EDAC Device framework. The probe
530  * and error handling functions are very similar between memories
531  * so they are shared. The memory allocation and freeing for EDAC
532  * trigger testing are different for each memory.
533  */
534 
535 #ifdef CONFIG_EDAC_ALTERA_OCRAM
536 static const struct edac_device_prv_data ocramecc_data;
537 #endif
538 #ifdef CONFIG_EDAC_ALTERA_L2C
539 static const struct edac_device_prv_data l2ecc_data;
540 #endif
541 #ifdef CONFIG_EDAC_ALTERA_OCRAM
542 static const struct edac_device_prv_data a10_ocramecc_data;
543 #endif
544 #ifdef CONFIG_EDAC_ALTERA_L2C
545 static const struct edac_device_prv_data a10_l2ecc_data;
546 #endif
547 
548 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
549 {
550 	irqreturn_t ret_value = IRQ_NONE;
551 	struct edac_device_ctl_info *dci = dev_id;
552 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
553 	const struct edac_device_prv_data *priv = drvdata->data;
554 
555 	if (irq == drvdata->sb_irq) {
556 		if (priv->ce_clear_mask)
557 			writel(priv->ce_clear_mask, drvdata->base);
558 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
559 		ret_value = IRQ_HANDLED;
560 	} else if (irq == drvdata->db_irq) {
561 		if (priv->ue_clear_mask)
562 			writel(priv->ue_clear_mask, drvdata->base);
563 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
564 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
565 		ret_value = IRQ_HANDLED;
566 	} else {
567 		WARN_ON(1);
568 	}
569 
570 	return ret_value;
571 }
572 
573 static ssize_t __maybe_unused
574 altr_edac_device_trig(struct file *file, const char __user *user_buf,
575 		      size_t count, loff_t *ppos)
576 
577 {
578 	u32 *ptemp, i, error_mask;
579 	int result = 0;
580 	u8 trig_type;
581 	unsigned long flags;
582 	struct edac_device_ctl_info *edac_dci = file->private_data;
583 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
584 	const struct edac_device_prv_data *priv = drvdata->data;
585 	void *generic_ptr = edac_dci->dev;
586 
587 	if (!user_buf || get_user(trig_type, user_buf))
588 		return -EFAULT;
589 
590 	if (!priv->alloc_mem)
591 		return -ENOMEM;
592 
593 	/*
594 	 * Note that generic_ptr is initialized to the device * but in
595 	 * some alloc_functions, this is overridden and returns data.
596 	 */
597 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
598 	if (!ptemp) {
599 		edac_printk(KERN_ERR, EDAC_DEVICE,
600 			    "Inject: Buffer Allocation error\n");
601 		return -ENOMEM;
602 	}
603 
604 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
605 		error_mask = priv->ue_set_mask;
606 	else
607 		error_mask = priv->ce_set_mask;
608 
609 	edac_printk(KERN_ALERT, EDAC_DEVICE,
610 		    "Trigger Error Mask (0x%X)\n", error_mask);
611 
612 	local_irq_save(flags);
613 	/* write ECC corrupted data out. */
614 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
615 		/* Read data so we're in the correct state */
616 		rmb();
617 		if (READ_ONCE(ptemp[i]))
618 			result = -1;
619 		/* Toggle Error bit (it is latched), leave ECC enabled */
620 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
621 		writel(priv->ecc_enable_mask, (drvdata->base +
622 					       priv->set_err_ofst));
623 		ptemp[i] = i;
624 	}
625 	/* Ensure it has been written out */
626 	wmb();
627 	local_irq_restore(flags);
628 
629 	if (result)
630 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
631 
632 	/* Read out written data. ECC error caused here */
633 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
634 		if (READ_ONCE(ptemp[i]) != i)
635 			edac_printk(KERN_ERR, EDAC_DEVICE,
636 				    "Read doesn't match written data\n");
637 
638 	if (priv->free_mem)
639 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
640 
641 	return count;
642 }
643 
644 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
645 	.open = simple_open,
646 	.write = altr_edac_device_trig,
647 	.llseek = generic_file_llseek,
648 };
649 
650 static ssize_t __maybe_unused
651 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
652 			  size_t count, loff_t *ppos);
653 
654 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
655 	.open = simple_open,
656 	.write = altr_edac_a10_device_trig,
657 	.llseek = generic_file_llseek,
658 };
659 
660 static ssize_t __maybe_unused
661 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
662 			   size_t count, loff_t *ppos);
663 
664 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
665 	.open = simple_open,
666 	.write = altr_edac_a10_device_trig2,
667 	.llseek = generic_file_llseek,
668 };
669 
670 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
671 				      const struct edac_device_prv_data *priv)
672 {
673 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
674 
675 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
676 		return;
677 
678 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
679 	if (!drvdata->debugfs_dir)
680 		return;
681 
682 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
683 				      drvdata->debugfs_dir, edac_dci,
684 				      priv->inject_fops))
685 		debugfs_remove_recursive(drvdata->debugfs_dir);
686 }
687 
688 static const struct of_device_id altr_edac_device_of_match[] = {
689 #ifdef CONFIG_EDAC_ALTERA_L2C
690 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
691 #endif
692 #ifdef CONFIG_EDAC_ALTERA_OCRAM
693 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
694 #endif
695 	{},
696 };
697 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
698 
699 /*
700  * altr_edac_device_probe()
701  *	This is a generic EDAC device driver that will support
702  *	various Altera memory devices such as the L2 cache ECC and
703  *	OCRAM ECC as well as the memories for other peripherals.
704  *	Module specific initialization is done by passing the
705  *	function index in the device tree.
706  */
707 static int altr_edac_device_probe(struct platform_device *pdev)
708 {
709 	struct edac_device_ctl_info *dci;
710 	struct altr_edac_device_dev *drvdata;
711 	struct resource *r;
712 	int res = 0;
713 	struct device_node *np = pdev->dev.of_node;
714 	char *ecc_name = (char *)np->name;
715 	static int dev_instance;
716 
717 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
718 		edac_printk(KERN_ERR, EDAC_DEVICE,
719 			    "Unable to open devm\n");
720 		return -ENOMEM;
721 	}
722 
723 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
724 	if (!r) {
725 		edac_printk(KERN_ERR, EDAC_DEVICE,
726 			    "Unable to get mem resource\n");
727 		res = -ENODEV;
728 		goto fail;
729 	}
730 
731 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
732 				     dev_name(&pdev->dev))) {
733 		edac_printk(KERN_ERR, EDAC_DEVICE,
734 			    "%s:Error requesting mem region\n", ecc_name);
735 		res = -EBUSY;
736 		goto fail;
737 	}
738 
739 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
740 					 1, ecc_name, 1, 0, NULL, 0,
741 					 dev_instance++);
742 
743 	if (!dci) {
744 		edac_printk(KERN_ERR, EDAC_DEVICE,
745 			    "%s: Unable to allocate EDAC device\n", ecc_name);
746 		res = -ENOMEM;
747 		goto fail;
748 	}
749 
750 	drvdata = dci->pvt_info;
751 	dci->dev = &pdev->dev;
752 	platform_set_drvdata(pdev, dci);
753 	drvdata->edac_dev_name = ecc_name;
754 
755 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
756 	if (!drvdata->base) {
757 		res = -ENOMEM;
758 		goto fail1;
759 	}
760 
761 	/* Get driver specific data for this EDAC device */
762 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
763 
764 	/* Check specific dependencies for the module */
765 	if (drvdata->data->setup) {
766 		res = drvdata->data->setup(drvdata);
767 		if (res)
768 			goto fail1;
769 	}
770 
771 	drvdata->sb_irq = platform_get_irq(pdev, 0);
772 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
773 			       altr_edac_device_handler,
774 			       0, dev_name(&pdev->dev), dci);
775 	if (res)
776 		goto fail1;
777 
778 	drvdata->db_irq = platform_get_irq(pdev, 1);
779 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
780 			       altr_edac_device_handler,
781 			       0, dev_name(&pdev->dev), dci);
782 	if (res)
783 		goto fail1;
784 
785 	dci->mod_name = "Altera ECC Manager";
786 	dci->dev_name = drvdata->edac_dev_name;
787 
788 	res = edac_device_add_device(dci);
789 	if (res)
790 		goto fail1;
791 
792 	altr_create_edacdev_dbgfs(dci, drvdata->data);
793 
794 	devres_close_group(&pdev->dev, NULL);
795 
796 	return 0;
797 
798 fail1:
799 	edac_device_free_ctl_info(dci);
800 fail:
801 	devres_release_group(&pdev->dev, NULL);
802 	edac_printk(KERN_ERR, EDAC_DEVICE,
803 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
804 
805 	return res;
806 }
807 
808 static void altr_edac_device_remove(struct platform_device *pdev)
809 {
810 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
811 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
812 
813 	debugfs_remove_recursive(drvdata->debugfs_dir);
814 	edac_device_del_device(&pdev->dev);
815 	edac_device_free_ctl_info(dci);
816 }
817 
818 static struct platform_driver altr_edac_device_driver = {
819 	.probe =  altr_edac_device_probe,
820 	.remove_new = altr_edac_device_remove,
821 	.driver = {
822 		.name = "altr_edac_device",
823 		.of_match_table = altr_edac_device_of_match,
824 	},
825 };
826 module_platform_driver(altr_edac_device_driver);
827 
828 /******************* Arria10 Device ECC Shared Functions *****************/
829 
830 /*
831  *  Test for memory's ECC dependencies upon entry because platform specific
832  *  startup should have initialized the memory and enabled the ECC.
833  *  Can't turn on ECC here because accessing un-initialized memory will
834  *  cause CE/UE errors possibly causing an ABORT.
835  */
836 static int __maybe_unused
837 altr_check_ecc_deps(struct altr_edac_device_dev *device)
838 {
839 	void __iomem  *base = device->base;
840 	const struct edac_device_prv_data *prv = device->data;
841 
842 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
843 		return 0;
844 
845 	edac_printk(KERN_ERR, EDAC_DEVICE,
846 		    "%s: No ECC present or ECC disabled.\n",
847 		    device->edac_dev_name);
848 	return -ENODEV;
849 }
850 
851 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
852 {
853 	struct altr_edac_device_dev *dci = dev_id;
854 	void __iomem  *base = dci->base;
855 
856 	if (irq == dci->sb_irq) {
857 		writel(ALTR_A10_ECC_SERRPENA,
858 		       base + ALTR_A10_ECC_INTSTAT_OFST);
859 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
860 
861 		return IRQ_HANDLED;
862 	} else if (irq == dci->db_irq) {
863 		writel(ALTR_A10_ECC_DERRPENA,
864 		       base + ALTR_A10_ECC_INTSTAT_OFST);
865 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
866 		if (dci->data->panic)
867 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
868 
869 		return IRQ_HANDLED;
870 	}
871 
872 	WARN_ON(1);
873 
874 	return IRQ_NONE;
875 }
876 
877 /******************* Arria10 Memory Buffer Functions *********************/
878 
879 static inline int a10_get_irq_mask(struct device_node *np)
880 {
881 	int irq;
882 	const u32 *handle = of_get_property(np, "interrupts", NULL);
883 
884 	if (!handle)
885 		return -ENODEV;
886 	irq = be32_to_cpup(handle);
887 	return irq;
888 }
889 
890 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
891 {
892 	u32 value = readl(ioaddr);
893 
894 	value |= bit_mask;
895 	writel(value, ioaddr);
896 }
897 
898 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
899 {
900 	u32 value = readl(ioaddr);
901 
902 	value &= ~bit_mask;
903 	writel(value, ioaddr);
904 }
905 
906 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
907 {
908 	u32 value = readl(ioaddr);
909 
910 	return (value & bit_mask) ? 1 : 0;
911 }
912 
913 /*
914  * This function uses the memory initialization block in the Arria10 ECC
915  * controller to initialize/clear the entire memory data and ECC data.
916  */
917 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
918 {
919 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
920 	u32 init_mask, stat_mask, clear_mask;
921 	int ret = 0;
922 
923 	if (port) {
924 		init_mask = ALTR_A10_ECC_INITB;
925 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
926 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
927 	} else {
928 		init_mask = ALTR_A10_ECC_INITA;
929 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
930 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
931 	}
932 
933 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
934 	while (limit--) {
935 		if (ecc_test_bits(stat_mask,
936 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
937 			break;
938 		udelay(1);
939 	}
940 	if (limit < 0)
941 		ret = -EBUSY;
942 
943 	/* Clear any pending ECC interrupts */
944 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
945 
946 	return ret;
947 }
948 
949 static __init int __maybe_unused
950 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
951 			u32 ecc_ctrl_en_mask, bool dual_port)
952 {
953 	int ret = 0;
954 	void __iomem *ecc_block_base;
955 	struct regmap *ecc_mgr_map;
956 	char *ecc_name;
957 	struct device_node *np_eccmgr;
958 
959 	ecc_name = (char *)np->name;
960 
961 	/* Get the ECC Manager - parent of the device EDACs */
962 	np_eccmgr = of_get_parent(np);
963 
964 	ecc_mgr_map =
965 		altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
966 						     "altr,sysmgr-syscon");
967 
968 	of_node_put(np_eccmgr);
969 	if (IS_ERR(ecc_mgr_map)) {
970 		edac_printk(KERN_ERR, EDAC_DEVICE,
971 			    "Unable to get syscon altr,sysmgr-syscon\n");
972 		return -ENODEV;
973 	}
974 
975 	/* Map the ECC Block */
976 	ecc_block_base = of_iomap(np, 0);
977 	if (!ecc_block_base) {
978 		edac_printk(KERN_ERR, EDAC_DEVICE,
979 			    "Unable to map %s ECC block\n", ecc_name);
980 		return -ENODEV;
981 	}
982 
983 	/* Disable ECC */
984 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
985 	writel(ALTR_A10_ECC_SERRINTEN,
986 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
987 	ecc_clear_bits(ecc_ctrl_en_mask,
988 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
989 	/* Ensure all writes complete */
990 	wmb();
991 	/* Use HW initialization block to initialize memory for ECC */
992 	ret = altr_init_memory_port(ecc_block_base, 0);
993 	if (ret) {
994 		edac_printk(KERN_ERR, EDAC_DEVICE,
995 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
996 		goto out;
997 	}
998 
999 	if (dual_port) {
1000 		ret = altr_init_memory_port(ecc_block_base, 1);
1001 		if (ret) {
1002 			edac_printk(KERN_ERR, EDAC_DEVICE,
1003 				    "ECC: cannot init %s PORTB memory\n",
1004 				    ecc_name);
1005 			goto out;
1006 		}
1007 	}
1008 
1009 	/* Interrupt mode set to every SBERR */
1010 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1011 		     ALTR_A10_ECC_INTMODE);
1012 	/* Enable ECC */
1013 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1014 					ALTR_A10_ECC_CTRL_OFST));
1015 	writel(ALTR_A10_ECC_SERRINTEN,
1016 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1017 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1018 	/* Ensure all writes complete */
1019 	wmb();
1020 out:
1021 	iounmap(ecc_block_base);
1022 	return ret;
1023 }
1024 
1025 static int validate_parent_available(struct device_node *np);
1026 static const struct of_device_id altr_edac_a10_device_of_match[];
1027 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1028 {
1029 	int irq;
1030 	struct device_node *child, *np;
1031 
1032 	np = of_find_compatible_node(NULL, NULL,
1033 				     "altr,socfpga-a10-ecc-manager");
1034 	if (!np) {
1035 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1036 		return -ENODEV;
1037 	}
1038 
1039 	for_each_child_of_node(np, child) {
1040 		const struct of_device_id *pdev_id;
1041 		const struct edac_device_prv_data *prv;
1042 
1043 		if (!of_device_is_available(child))
1044 			continue;
1045 		if (!of_device_is_compatible(child, compat))
1046 			continue;
1047 
1048 		if (validate_parent_available(child))
1049 			continue;
1050 
1051 		irq = a10_get_irq_mask(child);
1052 		if (irq < 0)
1053 			continue;
1054 
1055 		/* Get matching node and check for valid result */
1056 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1057 		if (IS_ERR_OR_NULL(pdev_id))
1058 			continue;
1059 
1060 		/* Validate private data pointer before dereferencing */
1061 		prv = pdev_id->data;
1062 		if (!prv)
1063 			continue;
1064 
1065 		altr_init_a10_ecc_block(child, BIT(irq),
1066 					prv->ecc_enable_mask, 0);
1067 	}
1068 
1069 	of_node_put(np);
1070 	return 0;
1071 }
1072 
1073 /*********************** SDRAM EDAC Device Functions *********************/
1074 
1075 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1076 
1077 /*
1078  * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1079  * register if ECC is enabled. Linux checks the ECC Enable register to
1080  * determine ECC status.
1081  * Use an SMC call (which always works) to determine ECC enablement.
1082  */
1083 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1084 {
1085 	const struct edac_device_prv_data *prv = device->data;
1086 	unsigned long sdram_ecc_addr;
1087 	struct arm_smccc_res result;
1088 	struct device_node *np;
1089 	phys_addr_t sdram_addr;
1090 	u32 read_reg;
1091 	int ret;
1092 
1093 	np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1094 	if (!np)
1095 		goto sdram_err;
1096 
1097 	sdram_addr = of_translate_address(np, of_get_address(np, 0,
1098 							     NULL, NULL));
1099 	of_node_put(np);
1100 	sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1101 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1102 		      0, 0, 0, 0, 0, 0, &result);
1103 	read_reg = (unsigned int)result.a1;
1104 	ret = (int)result.a0;
1105 	if (!ret && (read_reg & prv->ecc_enable_mask))
1106 		return 0;
1107 
1108 sdram_err:
1109 	edac_printk(KERN_ERR, EDAC_DEVICE,
1110 		    "%s: No ECC present or ECC disabled.\n",
1111 		    device->edac_dev_name);
1112 	return -ENODEV;
1113 }
1114 
1115 static const struct edac_device_prv_data s10_sdramecc_data = {
1116 	.setup = altr_s10_sdram_check_ecc_deps,
1117 	.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1118 	.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1119 	.ecc_enable_mask = ALTR_S10_ECC_EN,
1120 	.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1121 	.ce_set_mask = ALTR_S10_ECC_TSERRA,
1122 	.ue_set_mask = ALTR_S10_ECC_TDERRA,
1123 	.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1124 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1125 	.inject_fops = &altr_edac_a10_device_inject_fops,
1126 };
1127 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1128 
1129 /*********************** OCRAM EDAC Device Functions *********************/
1130 
1131 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1132 
1133 static void *ocram_alloc_mem(size_t size, void **other)
1134 {
1135 	struct device_node *np;
1136 	struct gen_pool *gp;
1137 	void *sram_addr;
1138 
1139 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1140 	if (!np)
1141 		return NULL;
1142 
1143 	gp = of_gen_pool_get(np, "iram", 0);
1144 	of_node_put(np);
1145 	if (!gp)
1146 		return NULL;
1147 
1148 	sram_addr = (void *)gen_pool_alloc(gp, size);
1149 	if (!sram_addr)
1150 		return NULL;
1151 
1152 	memset(sram_addr, 0, size);
1153 	/* Ensure data is written out */
1154 	wmb();
1155 
1156 	/* Remember this handle for freeing  later */
1157 	*other = gp;
1158 
1159 	return sram_addr;
1160 }
1161 
1162 static void ocram_free_mem(void *p, size_t size, void *other)
1163 {
1164 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1165 }
1166 
1167 static const struct edac_device_prv_data ocramecc_data = {
1168 	.setup = altr_check_ecc_deps,
1169 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1170 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1171 	.alloc_mem = ocram_alloc_mem,
1172 	.free_mem = ocram_free_mem,
1173 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1174 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1175 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1176 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1177 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1178 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1179 	.inject_fops = &altr_edac_device_inject_fops,
1180 };
1181 
1182 static int __maybe_unused
1183 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1184 {
1185 	void __iomem  *base = device->base;
1186 	int ret;
1187 
1188 	ret = altr_check_ecc_deps(device);
1189 	if (ret)
1190 		return ret;
1191 
1192 	/* Verify OCRAM has been initialized */
1193 	if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1194 			   (base + ALTR_A10_ECC_INITSTAT_OFST)))
1195 		return -ENODEV;
1196 
1197 	/* Enable IRQ on Single Bit Error */
1198 	writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1199 	/* Ensure all writes complete */
1200 	wmb();
1201 
1202 	return 0;
1203 }
1204 
1205 static const struct edac_device_prv_data a10_ocramecc_data = {
1206 	.setup = altr_check_ocram_deps_init,
1207 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1208 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1209 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1210 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1211 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1212 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1213 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1214 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1215 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1216 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1217 	/*
1218 	 * OCRAM panic on uncorrectable error because sleep/resume
1219 	 * functions and FPGA contents are stored in OCRAM. Prefer
1220 	 * a kernel panic over executing/loading corrupted data.
1221 	 */
1222 	.panic = true,
1223 };
1224 
1225 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1226 
1227 /********************* L2 Cache EDAC Device Functions ********************/
1228 
1229 #ifdef CONFIG_EDAC_ALTERA_L2C
1230 
1231 static void *l2_alloc_mem(size_t size, void **other)
1232 {
1233 	struct device *dev = *other;
1234 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1235 
1236 	if (!ptemp)
1237 		return NULL;
1238 
1239 	/* Make sure everything is written out */
1240 	wmb();
1241 
1242 	/*
1243 	 * Clean all cache levels up to LoC (includes L2)
1244 	 * This ensures the corrupted data is written into
1245 	 * L2 cache for readback test (which causes ECC error).
1246 	 */
1247 	flush_cache_all();
1248 
1249 	return ptemp;
1250 }
1251 
1252 static void l2_free_mem(void *p, size_t size, void *other)
1253 {
1254 	struct device *dev = other;
1255 
1256 	if (dev && p)
1257 		devm_kfree(dev, p);
1258 }
1259 
1260 /*
1261  * altr_l2_check_deps()
1262  *	Test for L2 cache ECC dependencies upon entry because
1263  *	platform specific startup should have initialized the L2
1264  *	memory and enabled the ECC.
1265  *	Bail if ECC is not enabled.
1266  *	Note that L2 Cache Enable is forced at build time.
1267  */
1268 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1269 {
1270 	void __iomem *base = device->base;
1271 	const struct edac_device_prv_data *prv = device->data;
1272 
1273 	if ((readl(base) & prv->ecc_enable_mask) ==
1274 	     prv->ecc_enable_mask)
1275 		return 0;
1276 
1277 	edac_printk(KERN_ERR, EDAC_DEVICE,
1278 		    "L2: No ECC present, or ECC disabled\n");
1279 	return -ENODEV;
1280 }
1281 
1282 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1283 {
1284 	struct altr_edac_device_dev *dci = dev_id;
1285 
1286 	if (irq == dci->sb_irq) {
1287 		regmap_write(dci->edac->ecc_mgr_map,
1288 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1289 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1290 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1291 
1292 		return IRQ_HANDLED;
1293 	} else if (irq == dci->db_irq) {
1294 		regmap_write(dci->edac->ecc_mgr_map,
1295 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1296 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1297 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1298 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1299 
1300 		return IRQ_HANDLED;
1301 	}
1302 
1303 	WARN_ON(1);
1304 
1305 	return IRQ_NONE;
1306 }
1307 
1308 static const struct edac_device_prv_data l2ecc_data = {
1309 	.setup = altr_l2_check_deps,
1310 	.ce_clear_mask = 0,
1311 	.ue_clear_mask = 0,
1312 	.alloc_mem = l2_alloc_mem,
1313 	.free_mem = l2_free_mem,
1314 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1315 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1316 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1317 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1318 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1319 	.inject_fops = &altr_edac_device_inject_fops,
1320 };
1321 
1322 static const struct edac_device_prv_data a10_l2ecc_data = {
1323 	.setup = altr_l2_check_deps,
1324 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1325 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1326 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1327 	.alloc_mem = l2_alloc_mem,
1328 	.free_mem = l2_free_mem,
1329 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1330 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1331 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1332 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1333 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1334 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1335 	.inject_fops = &altr_edac_device_inject_fops,
1336 };
1337 
1338 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1339 
1340 /********************* Ethernet Device Functions ********************/
1341 
1342 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1343 
1344 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1345 {
1346 	int ret;
1347 
1348 	ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1349 	if (ret)
1350 		return ret;
1351 
1352 	return altr_check_ecc_deps(dev);
1353 }
1354 
1355 static const struct edac_device_prv_data a10_enetecc_data = {
1356 	.setup = socfpga_init_ethernet_ecc,
1357 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1358 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1359 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1360 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1361 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1362 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1363 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1364 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1365 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1366 };
1367 
1368 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1369 
1370 /********************** NAND Device Functions **********************/
1371 
1372 #ifdef CONFIG_EDAC_ALTERA_NAND
1373 
1374 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1375 {
1376 	int ret;
1377 
1378 	ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1379 	if (ret)
1380 		return ret;
1381 
1382 	return altr_check_ecc_deps(device);
1383 }
1384 
1385 static const struct edac_device_prv_data a10_nandecc_data = {
1386 	.setup = socfpga_init_nand_ecc,
1387 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1388 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1389 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1390 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1391 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1392 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1393 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1394 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1395 	.inject_fops = &altr_edac_a10_device_inject_fops,
1396 };
1397 
1398 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1399 
1400 /********************** DMA Device Functions **********************/
1401 
1402 #ifdef CONFIG_EDAC_ALTERA_DMA
1403 
1404 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1405 {
1406 	int ret;
1407 
1408 	ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1409 	if (ret)
1410 		return ret;
1411 
1412 	return altr_check_ecc_deps(device);
1413 }
1414 
1415 static const struct edac_device_prv_data a10_dmaecc_data = {
1416 	.setup = socfpga_init_dma_ecc,
1417 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1418 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1419 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1420 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1421 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1422 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1423 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1424 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1425 	.inject_fops = &altr_edac_a10_device_inject_fops,
1426 };
1427 
1428 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1429 
1430 /********************** USB Device Functions **********************/
1431 
1432 #ifdef CONFIG_EDAC_ALTERA_USB
1433 
1434 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1435 {
1436 	int ret;
1437 
1438 	ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1439 	if (ret)
1440 		return ret;
1441 
1442 	return altr_check_ecc_deps(device);
1443 }
1444 
1445 static const struct edac_device_prv_data a10_usbecc_data = {
1446 	.setup = socfpga_init_usb_ecc,
1447 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1448 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1449 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1450 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1451 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1452 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1453 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1454 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1455 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1456 };
1457 
1458 #endif	/* CONFIG_EDAC_ALTERA_USB */
1459 
1460 /********************** QSPI Device Functions **********************/
1461 
1462 #ifdef CONFIG_EDAC_ALTERA_QSPI
1463 
1464 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1465 {
1466 	int ret;
1467 
1468 	ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1469 	if (ret)
1470 		return ret;
1471 
1472 	return altr_check_ecc_deps(device);
1473 }
1474 
1475 static const struct edac_device_prv_data a10_qspiecc_data = {
1476 	.setup = socfpga_init_qspi_ecc,
1477 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1478 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1479 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1480 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1481 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1482 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1483 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1484 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1485 	.inject_fops = &altr_edac_a10_device_inject_fops,
1486 };
1487 
1488 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1489 
1490 /********************* SDMMC Device Functions **********************/
1491 
1492 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1493 
1494 static const struct edac_device_prv_data a10_sdmmceccb_data;
1495 static int altr_portb_setup(struct altr_edac_device_dev *device)
1496 {
1497 	struct edac_device_ctl_info *dci;
1498 	struct altr_edac_device_dev *altdev;
1499 	char *ecc_name = "sdmmcb-ecc";
1500 	int edac_idx, rc;
1501 	struct device_node *np;
1502 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1503 
1504 	rc = altr_check_ecc_deps(device);
1505 	if (rc)
1506 		return rc;
1507 
1508 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1509 	if (!np) {
1510 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1511 		return -ENODEV;
1512 	}
1513 
1514 	/* Create the PortB EDAC device */
1515 	edac_idx = edac_device_alloc_index();
1516 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1517 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1518 	if (!dci) {
1519 		edac_printk(KERN_ERR, EDAC_DEVICE,
1520 			    "%s: Unable to allocate PortB EDAC device\n",
1521 			    ecc_name);
1522 		return -ENOMEM;
1523 	}
1524 
1525 	/* Initialize the PortB EDAC device structure from PortA structure */
1526 	altdev = dci->pvt_info;
1527 	*altdev = *device;
1528 
1529 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1530 		return -ENOMEM;
1531 
1532 	/* Update PortB specific values */
1533 	altdev->edac_dev_name = ecc_name;
1534 	altdev->edac_idx = edac_idx;
1535 	altdev->edac_dev = dci;
1536 	altdev->data = prv;
1537 	dci->dev = &altdev->ddev;
1538 	dci->ctl_name = "Altera ECC Manager";
1539 	dci->mod_name = ecc_name;
1540 	dci->dev_name = ecc_name;
1541 
1542 	/*
1543 	 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1544 	 *
1545 	 * FIXME: Instead of ifdefs with different architectures the driver
1546 	 *        should properly use compatibles.
1547 	 */
1548 #ifdef CONFIG_64BIT
1549 	altdev->sb_irq = irq_of_parse_and_map(np, 1);
1550 #else
1551 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1552 #endif
1553 	if (!altdev->sb_irq) {
1554 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1555 		rc = -ENODEV;
1556 		goto err_release_group_1;
1557 	}
1558 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1559 			      prv->ecc_irq_handler,
1560 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1561 			      ecc_name, altdev);
1562 	if (rc) {
1563 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1564 		goto err_release_group_1;
1565 	}
1566 
1567 #ifdef CONFIG_64BIT
1568 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1569 	rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1570 	if (rc) {
1571 		edac_printk(KERN_ERR, EDAC_DEVICE,
1572 			    "Error PortB DBIRQ alloc\n");
1573 		goto err_release_group_1;
1574 	}
1575 #else
1576 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1577 	if (!altdev->db_irq) {
1578 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1579 		rc = -ENODEV;
1580 		goto err_release_group_1;
1581 	}
1582 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1583 			      prv->ecc_irq_handler,
1584 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1585 			      ecc_name, altdev);
1586 	if (rc) {
1587 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1588 		goto err_release_group_1;
1589 	}
1590 #endif
1591 
1592 	rc = edac_device_add_device(dci);
1593 	if (rc) {
1594 		edac_printk(KERN_ERR, EDAC_DEVICE,
1595 			    "edac_device_add_device portB failed\n");
1596 		rc = -ENOMEM;
1597 		goto err_release_group_1;
1598 	}
1599 	altr_create_edacdev_dbgfs(dci, prv);
1600 
1601 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1602 
1603 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1604 
1605 	return 0;
1606 
1607 err_release_group_1:
1608 	edac_device_free_ctl_info(dci);
1609 	devres_release_group(&altdev->ddev, altr_portb_setup);
1610 	edac_printk(KERN_ERR, EDAC_DEVICE,
1611 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1612 	return rc;
1613 }
1614 
1615 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1616 {
1617 	int rc = -ENODEV;
1618 	struct device_node *child;
1619 
1620 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1621 	if (!child)
1622 		return -ENODEV;
1623 
1624 	if (!of_device_is_available(child))
1625 		goto exit;
1626 
1627 	if (validate_parent_available(child))
1628 		goto exit;
1629 
1630 	/* Init portB */
1631 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1632 				     a10_sdmmceccb_data.ecc_enable_mask, 1);
1633 	if (rc)
1634 		goto exit;
1635 
1636 	/* Setup portB */
1637 	return altr_portb_setup(device);
1638 
1639 exit:
1640 	of_node_put(child);
1641 	return rc;
1642 }
1643 
1644 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1645 {
1646 	struct altr_edac_device_dev *ad = dev_id;
1647 	void __iomem  *base = ad->base;
1648 	const struct edac_device_prv_data *priv = ad->data;
1649 
1650 	if (irq == ad->sb_irq) {
1651 		writel(priv->ce_clear_mask,
1652 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1653 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1654 		return IRQ_HANDLED;
1655 	} else if (irq == ad->db_irq) {
1656 		writel(priv->ue_clear_mask,
1657 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1658 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1659 		return IRQ_HANDLED;
1660 	}
1661 
1662 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1663 
1664 	return IRQ_NONE;
1665 }
1666 
1667 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1668 	.setup = socfpga_init_sdmmc_ecc,
1669 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1670 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1671 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1672 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1673 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1674 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1675 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1676 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1677 	.inject_fops = &altr_edac_a10_device_inject_fops,
1678 };
1679 
1680 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1681 	.setup = socfpga_init_sdmmc_ecc,
1682 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1683 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1684 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1685 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1686 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1687 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1688 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1689 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1690 	.inject_fops = &altr_edac_a10_device_inject_fops,
1691 };
1692 
1693 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1694 
1695 /********************* Arria10 EDAC Device Functions *************************/
1696 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1697 #ifdef CONFIG_EDAC_ALTERA_L2C
1698 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1699 #endif
1700 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1701 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1702 	  .data = &a10_ocramecc_data },
1703 #endif
1704 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1705 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1706 	  .data = &a10_enetecc_data },
1707 #endif
1708 #ifdef CONFIG_EDAC_ALTERA_NAND
1709 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1710 #endif
1711 #ifdef CONFIG_EDAC_ALTERA_DMA
1712 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1713 #endif
1714 #ifdef CONFIG_EDAC_ALTERA_USB
1715 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1716 #endif
1717 #ifdef CONFIG_EDAC_ALTERA_QSPI
1718 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1719 #endif
1720 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1721 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1722 #endif
1723 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1724 	{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1725 #endif
1726 	{},
1727 };
1728 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1729 
1730 /*
1731  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1732  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1733  * manager manages the IRQs and the children.
1734  * Based on xgene_edac.c peripheral code.
1735  */
1736 
1737 static ssize_t __maybe_unused
1738 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1739 			  size_t count, loff_t *ppos)
1740 {
1741 	struct edac_device_ctl_info *edac_dci = file->private_data;
1742 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1743 	const struct edac_device_prv_data *priv = drvdata->data;
1744 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1745 	unsigned long flags;
1746 	u8 trig_type;
1747 
1748 	if (!user_buf || get_user(trig_type, user_buf))
1749 		return -EFAULT;
1750 
1751 	local_irq_save(flags);
1752 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1753 		writel(priv->ue_set_mask, set_addr);
1754 	else
1755 		writel(priv->ce_set_mask, set_addr);
1756 
1757 	/* Ensure the interrupt test bits are set */
1758 	wmb();
1759 	local_irq_restore(flags);
1760 
1761 	return count;
1762 }
1763 
1764 /*
1765  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1766  * slightly. A few Arria10 peripherals can use this injection function.
1767  * Inject the error into the memory and then readback to trigger the IRQ.
1768  */
1769 static ssize_t __maybe_unused
1770 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1771 			   size_t count, loff_t *ppos)
1772 {
1773 	struct edac_device_ctl_info *edac_dci = file->private_data;
1774 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1775 	const struct edac_device_prv_data *priv = drvdata->data;
1776 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1777 	unsigned long flags;
1778 	u8 trig_type;
1779 
1780 	if (!user_buf || get_user(trig_type, user_buf))
1781 		return -EFAULT;
1782 
1783 	local_irq_save(flags);
1784 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1785 		writel(priv->ue_set_mask, set_addr);
1786 	} else {
1787 		/* Setup read/write of 4 bytes */
1788 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1789 		/* Setup Address to 0 */
1790 		writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1791 		/* Setup accctrl to read & ecc & data override */
1792 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1793 		/* Kick it. */
1794 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1795 		/* Setup write for single bit change */
1796 		writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1797 		       drvdata->base + ECC_BLK_WDATA0_OFST);
1798 		writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1799 		       drvdata->base + ECC_BLK_WDATA1_OFST);
1800 		writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1801 		       drvdata->base + ECC_BLK_WDATA2_OFST);
1802 		writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1803 		       drvdata->base + ECC_BLK_WDATA3_OFST);
1804 
1805 		/* Copy Read ECC to Write ECC */
1806 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1807 		       drvdata->base + ECC_BLK_WECC0_OFST);
1808 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1809 		       drvdata->base + ECC_BLK_WECC1_OFST);
1810 		/* Setup accctrl to write & ecc override & data override */
1811 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1812 		/* Kick it. */
1813 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1814 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1815 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1816 		/* Kick it. */
1817 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1818 	}
1819 
1820 	/* Ensure the interrupt test bits are set */
1821 	wmb();
1822 	local_irq_restore(flags);
1823 
1824 	return count;
1825 }
1826 
1827 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1828 {
1829 	int dberr, bit, sm_offset, irq_status;
1830 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1831 	struct irq_chip *chip = irq_desc_get_chip(desc);
1832 	int irq = irq_desc_get_irq(desc);
1833 	unsigned long bits;
1834 
1835 	dberr = (irq == edac->db_irq) ? 1 : 0;
1836 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1837 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1838 
1839 	chained_irq_enter(chip, desc);
1840 
1841 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1842 
1843 	bits = irq_status;
1844 	for_each_set_bit(bit, &bits, 32)
1845 		generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1846 
1847 	chained_irq_exit(chip, desc);
1848 }
1849 
1850 static int validate_parent_available(struct device_node *np)
1851 {
1852 	struct device_node *parent;
1853 	int ret = 0;
1854 
1855 	/* SDRAM must be present for Linux (implied parent) */
1856 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1857 		return 0;
1858 
1859 	/* Ensure parent device is enabled if parent node exists */
1860 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1861 	if (parent && !of_device_is_available(parent))
1862 		ret = -ENODEV;
1863 
1864 	of_node_put(parent);
1865 	return ret;
1866 }
1867 
1868 static int get_s10_sdram_edac_resource(struct device_node *np,
1869 				       struct resource *res)
1870 {
1871 	struct device_node *parent;
1872 	int ret;
1873 
1874 	parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1875 	if (!parent)
1876 		return -ENODEV;
1877 
1878 	ret = of_address_to_resource(parent, 0, res);
1879 	of_node_put(parent);
1880 
1881 	return ret;
1882 }
1883 
1884 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1885 				    struct device_node *np)
1886 {
1887 	struct edac_device_ctl_info *dci;
1888 	struct altr_edac_device_dev *altdev;
1889 	char *ecc_name = (char *)np->name;
1890 	struct resource res;
1891 	int edac_idx;
1892 	int rc = 0;
1893 	const struct edac_device_prv_data *prv;
1894 	/* Get matching node and check for valid result */
1895 	const struct of_device_id *pdev_id =
1896 		of_match_node(altr_edac_a10_device_of_match, np);
1897 	if (IS_ERR_OR_NULL(pdev_id))
1898 		return -ENODEV;
1899 
1900 	/* Get driver specific data for this EDAC device */
1901 	prv = pdev_id->data;
1902 	if (IS_ERR_OR_NULL(prv))
1903 		return -ENODEV;
1904 
1905 	if (validate_parent_available(np))
1906 		return -ENODEV;
1907 
1908 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1909 		return -ENOMEM;
1910 
1911 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1912 		rc = get_s10_sdram_edac_resource(np, &res);
1913 	else
1914 		rc = of_address_to_resource(np, 0, &res);
1915 
1916 	if (rc < 0) {
1917 		edac_printk(KERN_ERR, EDAC_DEVICE,
1918 			    "%s: no resource address\n", ecc_name);
1919 		goto err_release_group;
1920 	}
1921 
1922 	edac_idx = edac_device_alloc_index();
1923 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1924 					 1, ecc_name, 1, 0, NULL, 0,
1925 					 edac_idx);
1926 
1927 	if (!dci) {
1928 		edac_printk(KERN_ERR, EDAC_DEVICE,
1929 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1930 		rc = -ENOMEM;
1931 		goto err_release_group;
1932 	}
1933 
1934 	altdev = dci->pvt_info;
1935 	dci->dev = edac->dev;
1936 	altdev->edac_dev_name = ecc_name;
1937 	altdev->edac_idx = edac_idx;
1938 	altdev->edac = edac;
1939 	altdev->edac_dev = dci;
1940 	altdev->data = prv;
1941 	altdev->ddev = *edac->dev;
1942 	dci->dev = &altdev->ddev;
1943 	dci->ctl_name = "Altera ECC Manager";
1944 	dci->mod_name = ecc_name;
1945 	dci->dev_name = ecc_name;
1946 
1947 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1948 	if (IS_ERR(altdev->base)) {
1949 		rc = PTR_ERR(altdev->base);
1950 		goto err_release_group1;
1951 	}
1952 
1953 	/* Check specific dependencies for the module */
1954 	if (altdev->data->setup) {
1955 		rc = altdev->data->setup(altdev);
1956 		if (rc)
1957 			goto err_release_group1;
1958 	}
1959 
1960 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1961 	if (!altdev->sb_irq) {
1962 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1963 		rc = -ENODEV;
1964 		goto err_release_group1;
1965 	}
1966 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1967 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1968 			      ecc_name, altdev);
1969 	if (rc) {
1970 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1971 		goto err_release_group1;
1972 	}
1973 
1974 #ifdef CONFIG_64BIT
1975 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1976 	rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1977 	if (rc) {
1978 		edac_printk(KERN_ERR, EDAC_DEVICE,
1979 			    "Unable to parse DB IRQ index\n");
1980 		goto err_release_group1;
1981 	}
1982 #else
1983 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1984 	if (!altdev->db_irq) {
1985 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1986 		rc = -ENODEV;
1987 		goto err_release_group1;
1988 	}
1989 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1990 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1991 			      ecc_name, altdev);
1992 	if (rc) {
1993 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1994 		goto err_release_group1;
1995 	}
1996 #endif
1997 
1998 	rc = edac_device_add_device(dci);
1999 	if (rc) {
2000 		dev_err(edac->dev, "edac_device_add_device failed\n");
2001 		rc = -ENOMEM;
2002 		goto err_release_group1;
2003 	}
2004 
2005 	altr_create_edacdev_dbgfs(dci, prv);
2006 
2007 	list_add(&altdev->next, &edac->a10_ecc_devices);
2008 
2009 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
2010 
2011 	return 0;
2012 
2013 err_release_group1:
2014 	edac_device_free_ctl_info(dci);
2015 err_release_group:
2016 	devres_release_group(edac->dev, NULL);
2017 	edac_printk(KERN_ERR, EDAC_DEVICE,
2018 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2019 
2020 	return rc;
2021 }
2022 
2023 static void a10_eccmgr_irq_mask(struct irq_data *d)
2024 {
2025 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2026 
2027 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
2028 		     BIT(d->hwirq));
2029 }
2030 
2031 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2032 {
2033 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2034 
2035 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2036 		     BIT(d->hwirq));
2037 }
2038 
2039 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2040 				    irq_hw_number_t hwirq)
2041 {
2042 	struct altr_arria10_edac *edac = d->host_data;
2043 
2044 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2045 	irq_set_chip_data(irq, edac);
2046 	irq_set_noprobe(irq);
2047 
2048 	return 0;
2049 }
2050 
2051 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2052 	.map = a10_eccmgr_irqdomain_map,
2053 	.xlate = irq_domain_xlate_twocell,
2054 };
2055 
2056 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2057 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2058 
2059 #ifdef CONFIG_64BIT
2060 /* panic routine issues reboot on non-zero panic_timeout */
2061 extern int panic_timeout;
2062 
2063 /*
2064  * The double bit error is handled through SError which is fatal. This is
2065  * called as a panic notifier to printout ECC error info as part of the panic.
2066  */
2067 static int s10_edac_dberr_handler(struct notifier_block *this,
2068 				  unsigned long event, void *ptr)
2069 {
2070 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2071 	int err_addr, dberror;
2072 
2073 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2074 		    &dberror);
2075 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2076 	if (dberror & S10_DBE_IRQ_MASK) {
2077 		struct list_head *position;
2078 		struct altr_edac_device_dev *ed;
2079 		struct arm_smccc_res result;
2080 
2081 		/* Find the matching DBE in the list of devices */
2082 		list_for_each(position, &edac->a10_ecc_devices) {
2083 			ed = list_entry(position, struct altr_edac_device_dev,
2084 					next);
2085 			if (!(BIT(ed->db_irq) & dberror))
2086 				continue;
2087 
2088 			writel(ALTR_A10_ECC_DERRPENA,
2089 			       ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2090 			err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2091 			regmap_write(edac->ecc_mgr_map,
2092 				     S10_SYSMGR_UE_ADDR_OFST, err_addr);
2093 			edac_printk(KERN_ERR, EDAC_DEVICE,
2094 				    "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2095 				    ed->edac_dev_name, err_addr);
2096 			break;
2097 		}
2098 		/* Notify the System through SMC. Reboot delay = 1 second */
2099 		panic_timeout = 1;
2100 		arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2101 			      0, 0, &result);
2102 	}
2103 
2104 	return NOTIFY_DONE;
2105 }
2106 #endif
2107 
2108 /****************** Arria 10 EDAC Probe Function *********************/
2109 static int altr_edac_a10_probe(struct platform_device *pdev)
2110 {
2111 	struct altr_arria10_edac *edac;
2112 	struct device_node *child;
2113 
2114 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2115 	if (!edac)
2116 		return -ENOMEM;
2117 
2118 	edac->dev = &pdev->dev;
2119 	platform_set_drvdata(pdev, edac);
2120 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2121 
2122 	edac->ecc_mgr_map =
2123 		altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2124 						     "altr,sysmgr-syscon");
2125 
2126 	if (IS_ERR(edac->ecc_mgr_map)) {
2127 		edac_printk(KERN_ERR, EDAC_DEVICE,
2128 			    "Unable to get syscon altr,sysmgr-syscon\n");
2129 		return PTR_ERR(edac->ecc_mgr_map);
2130 	}
2131 
2132 	edac->irq_chip.name = pdev->dev.of_node->name;
2133 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2134 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2135 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2136 					     &a10_eccmgr_ic_ops, edac);
2137 	if (!edac->domain) {
2138 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2139 		return -ENOMEM;
2140 	}
2141 
2142 	edac->sb_irq = platform_get_irq(pdev, 0);
2143 	if (edac->sb_irq < 0)
2144 		return edac->sb_irq;
2145 
2146 	irq_set_chained_handler_and_data(edac->sb_irq,
2147 					 altr_edac_a10_irq_handler,
2148 					 edac);
2149 
2150 #ifdef CONFIG_64BIT
2151 	{
2152 		int dberror, err_addr;
2153 
2154 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2155 		atomic_notifier_chain_register(&panic_notifier_list,
2156 					       &edac->panic_notifier);
2157 
2158 		/* Printout a message if uncorrectable error previously. */
2159 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2160 			    &dberror);
2161 		if (dberror) {
2162 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2163 				    &err_addr);
2164 			edac_printk(KERN_ERR, EDAC_DEVICE,
2165 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2166 				    dberror, err_addr);
2167 			/* Reset the sticky registers */
2168 			regmap_write(edac->ecc_mgr_map,
2169 				     S10_SYSMGR_UE_VAL_OFST, 0);
2170 			regmap_write(edac->ecc_mgr_map,
2171 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2172 		}
2173 	}
2174 #else
2175 	edac->db_irq = platform_get_irq(pdev, 1);
2176 	if (edac->db_irq < 0)
2177 		return edac->db_irq;
2178 
2179 	irq_set_chained_handler_and_data(edac->db_irq,
2180 					 altr_edac_a10_irq_handler, edac);
2181 #endif
2182 
2183 	for_each_child_of_node(pdev->dev.of_node, child) {
2184 		if (!of_device_is_available(child))
2185 			continue;
2186 
2187 		if (of_match_node(altr_edac_a10_device_of_match, child))
2188 			altr_edac_a10_device_add(edac, child);
2189 
2190 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2191 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2192 			of_platform_populate(pdev->dev.of_node,
2193 					     altr_sdram_ctrl_of_match,
2194 					     NULL, &pdev->dev);
2195 #endif
2196 	}
2197 
2198 	return 0;
2199 }
2200 
2201 static const struct of_device_id altr_edac_a10_of_match[] = {
2202 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2203 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2204 	{},
2205 };
2206 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2207 
2208 static struct platform_driver altr_edac_a10_driver = {
2209 	.probe =  altr_edac_a10_probe,
2210 	.driver = {
2211 		.name = "socfpga_a10_ecc_manager",
2212 		.of_match_table = altr_edac_a10_of_match,
2213 	},
2214 };
2215 module_platform_driver(altr_edac_a10_driver);
2216 
2217 MODULE_AUTHOR("Thor Thayer");
2218 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2219