xref: /linux/drivers/edac/altera_edac.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
3  *  Copyright 2011-2012 Calxeda, Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * Adapted from the highbank_mc_edac driver.
18  */
19 
20 #include <asm/cacheflush.h>
21 #include <linux/ctype.h>
22 #include <linux/delay.h>
23 #include <linux/edac.h>
24 #include <linux/genalloc.h>
25 #include <linux/interrupt.h>
26 #include <linux/irqchip/chained_irq.h>
27 #include <linux/kernel.h>
28 #include <linux/mfd/syscon.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/regmap.h>
34 #include <linux/types.h>
35 #include <linux/uaccess.h>
36 
37 #include "altera_edac.h"
38 #include "edac_module.h"
39 
40 #define EDAC_MOD_STR		"altera_edac"
41 #define EDAC_VERSION		"1"
42 #define EDAC_DEVICE		"Altera"
43 
44 static const struct altr_sdram_prv_data c5_data = {
45 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
46 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
47 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
48 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
49 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
50 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
51 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
52 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
53 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
54 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
55 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
56 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
57 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
58 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
59 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
60 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
61 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
62 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
63 };
64 
65 static const struct altr_sdram_prv_data a10_data = {
66 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
67 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
68 	.ecc_stat_offset    = A10_INTSTAT_OFST,
69 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
70 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
71 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
72 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
73 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
74 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
75 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
76 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
77 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
78 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
79 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
80 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
81 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
82 };
83 
84 /*********************** EDAC Memory Controller Functions ****************/
85 
86 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
87 
88 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
89 {
90 	struct mem_ctl_info *mci = dev_id;
91 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
92 	const struct altr_sdram_prv_data *priv = drvdata->data;
93 	u32 status, err_count = 1, err_addr;
94 
95 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
96 
97 	if (status & priv->ecc_stat_ue_mask) {
98 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
99 			    &err_addr);
100 		if (priv->ecc_uecnt_offset)
101 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
102 				    &err_count);
103 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
104 		      err_count, err_addr);
105 	}
106 	if (status & priv->ecc_stat_ce_mask) {
107 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
108 			    &err_addr);
109 		if (priv->ecc_uecnt_offset)
110 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
111 				    &err_count);
112 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
113 				     err_addr >> PAGE_SHIFT,
114 				     err_addr & ~PAGE_MASK, 0,
115 				     0, 0, -1, mci->ctl_name, "");
116 		/* Clear IRQ to resume */
117 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
118 			     priv->ecc_irq_clr_mask);
119 
120 		return IRQ_HANDLED;
121 	}
122 	return IRQ_NONE;
123 }
124 
125 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
126 					    const char __user *data,
127 					    size_t count, loff_t *ppos)
128 {
129 	struct mem_ctl_info *mci = file->private_data;
130 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
131 	const struct altr_sdram_prv_data *priv = drvdata->data;
132 	u32 *ptemp;
133 	dma_addr_t dma_handle;
134 	u32 reg, read_reg;
135 
136 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
137 	if (!ptemp) {
138 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
139 		edac_printk(KERN_ERR, EDAC_MC,
140 			    "Inject: Buffer Allocation error\n");
141 		return -ENOMEM;
142 	}
143 
144 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
145 		    &read_reg);
146 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
147 
148 	/* Error are injected by writing a word while the SBE or DBE
149 	 * bit in the CTLCFG register is set. Reading the word will
150 	 * trigger the SBE or DBE error and the corresponding IRQ.
151 	 */
152 	if (count == 3) {
153 		edac_printk(KERN_ALERT, EDAC_MC,
154 			    "Inject Double bit error\n");
155 		local_irq_disable();
156 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
157 			     (read_reg | priv->ue_set_mask));
158 		local_irq_enable();
159 	} else {
160 		edac_printk(KERN_ALERT, EDAC_MC,
161 			    "Inject Single bit error\n");
162 		local_irq_disable();
163 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
164 			     (read_reg | priv->ce_set_mask));
165 		local_irq_enable();
166 	}
167 
168 	ptemp[0] = 0x5A5A5A5A;
169 	ptemp[1] = 0xA5A5A5A5;
170 
171 	/* Clear the error injection bits */
172 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
173 	/* Ensure it has been written out */
174 	wmb();
175 
176 	/*
177 	 * To trigger the error, we need to read the data back
178 	 * (the data was written with errors above).
179 	 * The ACCESS_ONCE macros and printk are used to prevent the
180 	 * the compiler optimizing these reads out.
181 	 */
182 	reg = ACCESS_ONCE(ptemp[0]);
183 	read_reg = ACCESS_ONCE(ptemp[1]);
184 	/* Force Read */
185 	rmb();
186 
187 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
188 		    reg, read_reg);
189 
190 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
191 
192 	return count;
193 }
194 
195 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
196 	.open = simple_open,
197 	.write = altr_sdr_mc_err_inject_write,
198 	.llseek = generic_file_llseek,
199 };
200 
201 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
202 {
203 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
204 		return;
205 
206 	if (!mci->debugfs)
207 		return;
208 
209 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
210 				 &altr_sdr_mc_debug_inject_fops);
211 }
212 
213 /* Get total memory size from Open Firmware DTB */
214 static unsigned long get_total_mem(void)
215 {
216 	struct device_node *np = NULL;
217 	const unsigned int *reg, *reg_end;
218 	int len, sw, aw;
219 	unsigned long start, size, total_mem = 0;
220 
221 	for_each_node_by_type(np, "memory") {
222 		aw = of_n_addr_cells(np);
223 		sw = of_n_size_cells(np);
224 		reg = (const unsigned int *)of_get_property(np, "reg", &len);
225 		reg_end = reg + (len / sizeof(u32));
226 
227 		total_mem = 0;
228 		do {
229 			start = of_read_number(reg, aw);
230 			reg += aw;
231 			size = of_read_number(reg, sw);
232 			reg += sw;
233 			total_mem += size;
234 		} while (reg < reg_end);
235 	}
236 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
237 	return total_mem;
238 }
239 
240 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
241 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
242 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
243 	{},
244 };
245 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
246 
247 static int a10_init(struct regmap *mc_vbase)
248 {
249 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
250 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
251 		edac_printk(KERN_ERR, EDAC_MC,
252 			    "Error setting SB IRQ mode\n");
253 		return -ENODEV;
254 	}
255 
256 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
257 		edac_printk(KERN_ERR, EDAC_MC,
258 			    "Error setting trigger count\n");
259 		return -ENODEV;
260 	}
261 
262 	return 0;
263 }
264 
265 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
266 {
267 	void __iomem  *sm_base;
268 	int  ret = 0;
269 
270 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
271 				dev_name(&pdev->dev))) {
272 		edac_printk(KERN_ERR, EDAC_MC,
273 			    "Unable to request mem region\n");
274 		return -EBUSY;
275 	}
276 
277 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
278 	if (!sm_base) {
279 		edac_printk(KERN_ERR, EDAC_MC,
280 			    "Unable to ioremap device\n");
281 
282 		ret = -ENOMEM;
283 		goto release;
284 	}
285 
286 	iowrite32(mask, sm_base);
287 
288 	iounmap(sm_base);
289 
290 release:
291 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
292 
293 	return ret;
294 }
295 
296 static int altr_sdram_probe(struct platform_device *pdev)
297 {
298 	const struct of_device_id *id;
299 	struct edac_mc_layer layers[2];
300 	struct mem_ctl_info *mci;
301 	struct altr_sdram_mc_data *drvdata;
302 	const struct altr_sdram_prv_data *priv;
303 	struct regmap *mc_vbase;
304 	struct dimm_info *dimm;
305 	u32 read_reg;
306 	int irq, irq2, res = 0;
307 	unsigned long mem_size, irqflags = 0;
308 
309 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
310 	if (!id)
311 		return -ENODEV;
312 
313 	/* Grab the register range from the sdr controller in device tree */
314 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
315 						   "altr,sdr-syscon");
316 	if (IS_ERR(mc_vbase)) {
317 		edac_printk(KERN_ERR, EDAC_MC,
318 			    "regmap for altr,sdr-syscon lookup failed.\n");
319 		return -ENODEV;
320 	}
321 
322 	/* Check specific dependencies for the module */
323 	priv = of_match_node(altr_sdram_ctrl_of_match,
324 			     pdev->dev.of_node)->data;
325 
326 	/* Validate the SDRAM controller has ECC enabled */
327 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
328 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
329 		edac_printk(KERN_ERR, EDAC_MC,
330 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
331 		return -ENODEV;
332 	}
333 
334 	/* Grab memory size from device tree. */
335 	mem_size = get_total_mem();
336 	if (!mem_size) {
337 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
338 		return -ENODEV;
339 	}
340 
341 	/* Ensure the SDRAM Interrupt is disabled */
342 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
343 			       priv->ecc_irq_en_mask, 0)) {
344 		edac_printk(KERN_ERR, EDAC_MC,
345 			    "Error disabling SDRAM ECC IRQ\n");
346 		return -ENODEV;
347 	}
348 
349 	/* Toggle to clear the SDRAM Error count */
350 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
351 			       priv->ecc_cnt_rst_mask,
352 			       priv->ecc_cnt_rst_mask)) {
353 		edac_printk(KERN_ERR, EDAC_MC,
354 			    "Error clearing SDRAM ECC count\n");
355 		return -ENODEV;
356 	}
357 
358 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
359 			       priv->ecc_cnt_rst_mask, 0)) {
360 		edac_printk(KERN_ERR, EDAC_MC,
361 			    "Error clearing SDRAM ECC count\n");
362 		return -ENODEV;
363 	}
364 
365 	irq = platform_get_irq(pdev, 0);
366 	if (irq < 0) {
367 		edac_printk(KERN_ERR, EDAC_MC,
368 			    "No irq %d in DT\n", irq);
369 		return -ENODEV;
370 	}
371 
372 	/* Arria10 has a 2nd IRQ */
373 	irq2 = platform_get_irq(pdev, 1);
374 
375 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
376 	layers[0].size = 1;
377 	layers[0].is_virt_csrow = true;
378 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
379 	layers[1].size = 1;
380 	layers[1].is_virt_csrow = false;
381 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
382 			    sizeof(struct altr_sdram_mc_data));
383 	if (!mci)
384 		return -ENOMEM;
385 
386 	mci->pdev = &pdev->dev;
387 	drvdata = mci->pvt_info;
388 	drvdata->mc_vbase = mc_vbase;
389 	drvdata->data = priv;
390 	platform_set_drvdata(pdev, mci);
391 
392 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
393 		edac_printk(KERN_ERR, EDAC_MC,
394 			    "Unable to get managed device resource\n");
395 		res = -ENOMEM;
396 		goto free;
397 	}
398 
399 	mci->mtype_cap = MEM_FLAG_DDR3;
400 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
401 	mci->edac_cap = EDAC_FLAG_SECDED;
402 	mci->mod_name = EDAC_MOD_STR;
403 	mci->mod_ver = EDAC_VERSION;
404 	mci->ctl_name = dev_name(&pdev->dev);
405 	mci->scrub_mode = SCRUB_SW_SRC;
406 	mci->dev_name = dev_name(&pdev->dev);
407 
408 	dimm = *mci->dimms;
409 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
410 	dimm->grain = 8;
411 	dimm->dtype = DEV_X8;
412 	dimm->mtype = MEM_DDR3;
413 	dimm->edac_mode = EDAC_SECDED;
414 
415 	res = edac_mc_add_mc(mci);
416 	if (res < 0)
417 		goto err;
418 
419 	/* Only the Arria10 has separate IRQs */
420 	if (irq2 > 0) {
421 		/* Arria10 specific initialization */
422 		res = a10_init(mc_vbase);
423 		if (res < 0)
424 			goto err2;
425 
426 		res = devm_request_irq(&pdev->dev, irq2,
427 				       altr_sdram_mc_err_handler,
428 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
429 		if (res < 0) {
430 			edac_mc_printk(mci, KERN_ERR,
431 				       "Unable to request irq %d\n", irq2);
432 			res = -ENODEV;
433 			goto err2;
434 		}
435 
436 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
437 		if (res < 0)
438 			goto err2;
439 
440 		irqflags = IRQF_SHARED;
441 	}
442 
443 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
444 			       irqflags, dev_name(&pdev->dev), mci);
445 	if (res < 0) {
446 		edac_mc_printk(mci, KERN_ERR,
447 			       "Unable to request irq %d\n", irq);
448 		res = -ENODEV;
449 		goto err2;
450 	}
451 
452 	/* Infrastructure ready - enable the IRQ */
453 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
454 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
455 		edac_mc_printk(mci, KERN_ERR,
456 			       "Error enabling SDRAM ECC IRQ\n");
457 		res = -ENODEV;
458 		goto err2;
459 	}
460 
461 	altr_sdr_mc_create_debugfs_nodes(mci);
462 
463 	devres_close_group(&pdev->dev, NULL);
464 
465 	return 0;
466 
467 err2:
468 	edac_mc_del_mc(&pdev->dev);
469 err:
470 	devres_release_group(&pdev->dev, NULL);
471 free:
472 	edac_mc_free(mci);
473 	edac_printk(KERN_ERR, EDAC_MC,
474 		    "EDAC Probe Failed; Error %d\n", res);
475 
476 	return res;
477 }
478 
479 static int altr_sdram_remove(struct platform_device *pdev)
480 {
481 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
482 
483 	edac_mc_del_mc(&pdev->dev);
484 	edac_mc_free(mci);
485 	platform_set_drvdata(pdev, NULL);
486 
487 	return 0;
488 }
489 
490 /*
491  * If you want to suspend, need to disable EDAC by removing it
492  * from the device tree or defconfig.
493  */
494 #ifdef CONFIG_PM
495 static int altr_sdram_prepare(struct device *dev)
496 {
497 	pr_err("Suspend not allowed when EDAC is enabled.\n");
498 
499 	return -EPERM;
500 }
501 
502 static const struct dev_pm_ops altr_sdram_pm_ops = {
503 	.prepare = altr_sdram_prepare,
504 };
505 #endif
506 
507 static struct platform_driver altr_sdram_edac_driver = {
508 	.probe = altr_sdram_probe,
509 	.remove = altr_sdram_remove,
510 	.driver = {
511 		.name = "altr_sdram_edac",
512 #ifdef CONFIG_PM
513 		.pm = &altr_sdram_pm_ops,
514 #endif
515 		.of_match_table = altr_sdram_ctrl_of_match,
516 	},
517 };
518 
519 module_platform_driver(altr_sdram_edac_driver);
520 
521 /************************* EDAC Parent Probe *************************/
522 
523 static const struct of_device_id altr_edac_device_of_match[];
524 
525 static const struct of_device_id altr_edac_of_match[] = {
526 	{ .compatible = "altr,socfpga-ecc-manager" },
527 	{},
528 };
529 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
530 
531 static int altr_edac_probe(struct platform_device *pdev)
532 {
533 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
534 			     NULL, &pdev->dev);
535 	return 0;
536 }
537 
538 static struct platform_driver altr_edac_driver = {
539 	.probe =  altr_edac_probe,
540 	.driver = {
541 		.name = "socfpga_ecc_manager",
542 		.of_match_table = altr_edac_of_match,
543 	},
544 };
545 module_platform_driver(altr_edac_driver);
546 
547 /************************* EDAC Device Functions *************************/
548 
549 /*
550  * EDAC Device Functions (shared between various IPs).
551  * The discrete memories use the EDAC Device framework. The probe
552  * and error handling functions are very similar between memories
553  * so they are shared. The memory allocation and freeing for EDAC
554  * trigger testing are different for each memory.
555  */
556 
557 static const struct edac_device_prv_data ocramecc_data;
558 static const struct edac_device_prv_data l2ecc_data;
559 static const struct edac_device_prv_data a10_ocramecc_data;
560 static const struct edac_device_prv_data a10_l2ecc_data;
561 
562 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
563 {
564 	irqreturn_t ret_value = IRQ_NONE;
565 	struct edac_device_ctl_info *dci = dev_id;
566 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
567 	const struct edac_device_prv_data *priv = drvdata->data;
568 
569 	if (irq == drvdata->sb_irq) {
570 		if (priv->ce_clear_mask)
571 			writel(priv->ce_clear_mask, drvdata->base);
572 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
573 		ret_value = IRQ_HANDLED;
574 	} else if (irq == drvdata->db_irq) {
575 		if (priv->ue_clear_mask)
576 			writel(priv->ue_clear_mask, drvdata->base);
577 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
578 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
579 		ret_value = IRQ_HANDLED;
580 	} else {
581 		WARN_ON(1);
582 	}
583 
584 	return ret_value;
585 }
586 
587 static ssize_t altr_edac_device_trig(struct file *file,
588 				     const char __user *user_buf,
589 				     size_t count, loff_t *ppos)
590 
591 {
592 	u32 *ptemp, i, error_mask;
593 	int result = 0;
594 	u8 trig_type;
595 	unsigned long flags;
596 	struct edac_device_ctl_info *edac_dci = file->private_data;
597 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
598 	const struct edac_device_prv_data *priv = drvdata->data;
599 	void *generic_ptr = edac_dci->dev;
600 
601 	if (!user_buf || get_user(trig_type, user_buf))
602 		return -EFAULT;
603 
604 	if (!priv->alloc_mem)
605 		return -ENOMEM;
606 
607 	/*
608 	 * Note that generic_ptr is initialized to the device * but in
609 	 * some alloc_functions, this is overridden and returns data.
610 	 */
611 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
612 	if (!ptemp) {
613 		edac_printk(KERN_ERR, EDAC_DEVICE,
614 			    "Inject: Buffer Allocation error\n");
615 		return -ENOMEM;
616 	}
617 
618 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
619 		error_mask = priv->ue_set_mask;
620 	else
621 		error_mask = priv->ce_set_mask;
622 
623 	edac_printk(KERN_ALERT, EDAC_DEVICE,
624 		    "Trigger Error Mask (0x%X)\n", error_mask);
625 
626 	local_irq_save(flags);
627 	/* write ECC corrupted data out. */
628 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
629 		/* Read data so we're in the correct state */
630 		rmb();
631 		if (ACCESS_ONCE(ptemp[i]))
632 			result = -1;
633 		/* Toggle Error bit (it is latched), leave ECC enabled */
634 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
635 		writel(priv->ecc_enable_mask, (drvdata->base +
636 					       priv->set_err_ofst));
637 		ptemp[i] = i;
638 	}
639 	/* Ensure it has been written out */
640 	wmb();
641 	local_irq_restore(flags);
642 
643 	if (result)
644 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
645 
646 	/* Read out written data. ECC error caused here */
647 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
648 		if (ACCESS_ONCE(ptemp[i]) != i)
649 			edac_printk(KERN_ERR, EDAC_DEVICE,
650 				    "Read doesn't match written data\n");
651 
652 	if (priv->free_mem)
653 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
654 
655 	return count;
656 }
657 
658 static const struct file_operations altr_edac_device_inject_fops = {
659 	.open = simple_open,
660 	.write = altr_edac_device_trig,
661 	.llseek = generic_file_llseek,
662 };
663 
664 static ssize_t altr_edac_a10_device_trig(struct file *file,
665 					 const char __user *user_buf,
666 					 size_t count, loff_t *ppos);
667 
668 static const struct file_operations altr_edac_a10_device_inject_fops = {
669 	.open = simple_open,
670 	.write = altr_edac_a10_device_trig,
671 	.llseek = generic_file_llseek,
672 };
673 
674 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
675 				      const struct edac_device_prv_data *priv)
676 {
677 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
678 
679 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
680 		return;
681 
682 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
683 	if (!drvdata->debugfs_dir)
684 		return;
685 
686 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
687 				      drvdata->debugfs_dir, edac_dci,
688 				      priv->inject_fops))
689 		debugfs_remove_recursive(drvdata->debugfs_dir);
690 }
691 
692 static const struct of_device_id altr_edac_device_of_match[] = {
693 #ifdef CONFIG_EDAC_ALTERA_L2C
694 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
695 #endif
696 #ifdef CONFIG_EDAC_ALTERA_OCRAM
697 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
698 #endif
699 	{},
700 };
701 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
702 
703 /*
704  * altr_edac_device_probe()
705  *	This is a generic EDAC device driver that will support
706  *	various Altera memory devices such as the L2 cache ECC and
707  *	OCRAM ECC as well as the memories for other peripherals.
708  *	Module specific initialization is done by passing the
709  *	function index in the device tree.
710  */
711 static int altr_edac_device_probe(struct platform_device *pdev)
712 {
713 	struct edac_device_ctl_info *dci;
714 	struct altr_edac_device_dev *drvdata;
715 	struct resource *r;
716 	int res = 0;
717 	struct device_node *np = pdev->dev.of_node;
718 	char *ecc_name = (char *)np->name;
719 	static int dev_instance;
720 
721 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
722 		edac_printk(KERN_ERR, EDAC_DEVICE,
723 			    "Unable to open devm\n");
724 		return -ENOMEM;
725 	}
726 
727 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
728 	if (!r) {
729 		edac_printk(KERN_ERR, EDAC_DEVICE,
730 			    "Unable to get mem resource\n");
731 		res = -ENODEV;
732 		goto fail;
733 	}
734 
735 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
736 				     dev_name(&pdev->dev))) {
737 		edac_printk(KERN_ERR, EDAC_DEVICE,
738 			    "%s:Error requesting mem region\n", ecc_name);
739 		res = -EBUSY;
740 		goto fail;
741 	}
742 
743 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
744 					 1, ecc_name, 1, 0, NULL, 0,
745 					 dev_instance++);
746 
747 	if (!dci) {
748 		edac_printk(KERN_ERR, EDAC_DEVICE,
749 			    "%s: Unable to allocate EDAC device\n", ecc_name);
750 		res = -ENOMEM;
751 		goto fail;
752 	}
753 
754 	drvdata = dci->pvt_info;
755 	dci->dev = &pdev->dev;
756 	platform_set_drvdata(pdev, dci);
757 	drvdata->edac_dev_name = ecc_name;
758 
759 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
760 	if (!drvdata->base)
761 		goto fail1;
762 
763 	/* Get driver specific data for this EDAC device */
764 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
765 
766 	/* Check specific dependencies for the module */
767 	if (drvdata->data->setup) {
768 		res = drvdata->data->setup(drvdata);
769 		if (res)
770 			goto fail1;
771 	}
772 
773 	drvdata->sb_irq = platform_get_irq(pdev, 0);
774 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
775 			       altr_edac_device_handler,
776 			       0, dev_name(&pdev->dev), dci);
777 	if (res)
778 		goto fail1;
779 
780 	drvdata->db_irq = platform_get_irq(pdev, 1);
781 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
782 			       altr_edac_device_handler,
783 			       0, dev_name(&pdev->dev), dci);
784 	if (res)
785 		goto fail1;
786 
787 	dci->mod_name = "Altera ECC Manager";
788 	dci->dev_name = drvdata->edac_dev_name;
789 
790 	res = edac_device_add_device(dci);
791 	if (res)
792 		goto fail1;
793 
794 	altr_create_edacdev_dbgfs(dci, drvdata->data);
795 
796 	devres_close_group(&pdev->dev, NULL);
797 
798 	return 0;
799 
800 fail1:
801 	edac_device_free_ctl_info(dci);
802 fail:
803 	devres_release_group(&pdev->dev, NULL);
804 	edac_printk(KERN_ERR, EDAC_DEVICE,
805 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
806 
807 	return res;
808 }
809 
810 static int altr_edac_device_remove(struct platform_device *pdev)
811 {
812 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
813 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
814 
815 	debugfs_remove_recursive(drvdata->debugfs_dir);
816 	edac_device_del_device(&pdev->dev);
817 	edac_device_free_ctl_info(dci);
818 
819 	return 0;
820 }
821 
822 static struct platform_driver altr_edac_device_driver = {
823 	.probe =  altr_edac_device_probe,
824 	.remove = altr_edac_device_remove,
825 	.driver = {
826 		.name = "altr_edac_device",
827 		.of_match_table = altr_edac_device_of_match,
828 	},
829 };
830 module_platform_driver(altr_edac_device_driver);
831 
832 /******************* Arria10 Device ECC Shared Functions *****************/
833 
834 /*
835  *  Test for memory's ECC dependencies upon entry because platform specific
836  *  startup should have initialized the memory and enabled the ECC.
837  *  Can't turn on ECC here because accessing un-initialized memory will
838  *  cause CE/UE errors possibly causing an ABORT.
839  */
840 static int __maybe_unused
841 altr_check_ecc_deps(struct altr_edac_device_dev *device)
842 {
843 	void __iomem  *base = device->base;
844 	const struct edac_device_prv_data *prv = device->data;
845 
846 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
847 		return 0;
848 
849 	edac_printk(KERN_ERR, EDAC_DEVICE,
850 		    "%s: No ECC present or ECC disabled.\n",
851 		    device->edac_dev_name);
852 	return -ENODEV;
853 }
854 
855 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
856 {
857 	struct altr_edac_device_dev *dci = dev_id;
858 	void __iomem  *base = dci->base;
859 
860 	if (irq == dci->sb_irq) {
861 		writel(ALTR_A10_ECC_SERRPENA,
862 		       base + ALTR_A10_ECC_INTSTAT_OFST);
863 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
864 
865 		return IRQ_HANDLED;
866 	} else if (irq == dci->db_irq) {
867 		writel(ALTR_A10_ECC_DERRPENA,
868 		       base + ALTR_A10_ECC_INTSTAT_OFST);
869 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
870 		if (dci->data->panic)
871 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
872 
873 		return IRQ_HANDLED;
874 	}
875 
876 	WARN_ON(1);
877 
878 	return IRQ_NONE;
879 }
880 
881 /******************* Arria10 Memory Buffer Functions *********************/
882 
883 static inline int a10_get_irq_mask(struct device_node *np)
884 {
885 	int irq;
886 	const u32 *handle = of_get_property(np, "interrupts", NULL);
887 
888 	if (!handle)
889 		return -ENODEV;
890 	irq = be32_to_cpup(handle);
891 	return irq;
892 }
893 
894 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
895 {
896 	u32 value = readl(ioaddr);
897 
898 	value |= bit_mask;
899 	writel(value, ioaddr);
900 }
901 
902 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
903 {
904 	u32 value = readl(ioaddr);
905 
906 	value &= ~bit_mask;
907 	writel(value, ioaddr);
908 }
909 
910 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
911 {
912 	u32 value = readl(ioaddr);
913 
914 	return (value & bit_mask) ? 1 : 0;
915 }
916 
917 /*
918  * This function uses the memory initialization block in the Arria10 ECC
919  * controller to initialize/clear the entire memory data and ECC data.
920  */
921 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
922 {
923 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
924 	u32 init_mask, stat_mask, clear_mask;
925 	int ret = 0;
926 
927 	if (port) {
928 		init_mask = ALTR_A10_ECC_INITB;
929 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
930 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
931 	} else {
932 		init_mask = ALTR_A10_ECC_INITA;
933 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
934 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
935 	}
936 
937 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
938 	while (limit--) {
939 		if (ecc_test_bits(stat_mask,
940 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
941 			break;
942 		udelay(1);
943 	}
944 	if (limit < 0)
945 		ret = -EBUSY;
946 
947 	/* Clear any pending ECC interrupts */
948 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
949 
950 	return ret;
951 }
952 
953 static __init int __maybe_unused
954 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
955 			u32 ecc_ctrl_en_mask, bool dual_port)
956 {
957 	int ret = 0;
958 	void __iomem *ecc_block_base;
959 	struct regmap *ecc_mgr_map;
960 	char *ecc_name;
961 	struct device_node *np_eccmgr;
962 
963 	ecc_name = (char *)np->name;
964 
965 	/* Get the ECC Manager - parent of the device EDACs */
966 	np_eccmgr = of_get_parent(np);
967 	ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
968 						      "altr,sysmgr-syscon");
969 	of_node_put(np_eccmgr);
970 	if (IS_ERR(ecc_mgr_map)) {
971 		edac_printk(KERN_ERR, EDAC_DEVICE,
972 			    "Unable to get syscon altr,sysmgr-syscon\n");
973 		return -ENODEV;
974 	}
975 
976 	/* Map the ECC Block */
977 	ecc_block_base = of_iomap(np, 0);
978 	if (!ecc_block_base) {
979 		edac_printk(KERN_ERR, EDAC_DEVICE,
980 			    "Unable to map %s ECC block\n", ecc_name);
981 		return -ENODEV;
982 	}
983 
984 	/* Disable ECC */
985 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
986 	writel(ALTR_A10_ECC_SERRINTEN,
987 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
988 	ecc_clear_bits(ecc_ctrl_en_mask,
989 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
990 	/* Ensure all writes complete */
991 	wmb();
992 	/* Use HW initialization block to initialize memory for ECC */
993 	ret = altr_init_memory_port(ecc_block_base, 0);
994 	if (ret) {
995 		edac_printk(KERN_ERR, EDAC_DEVICE,
996 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
997 		goto out;
998 	}
999 
1000 	if (dual_port) {
1001 		ret = altr_init_memory_port(ecc_block_base, 1);
1002 		if (ret) {
1003 			edac_printk(KERN_ERR, EDAC_DEVICE,
1004 				    "ECC: cannot init %s PORTB memory\n",
1005 				    ecc_name);
1006 			goto out;
1007 		}
1008 	}
1009 
1010 	/* Interrupt mode set to every SBERR */
1011 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1012 		     ALTR_A10_ECC_INTMODE);
1013 	/* Enable ECC */
1014 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1015 					ALTR_A10_ECC_CTRL_OFST));
1016 	writel(ALTR_A10_ECC_SERRINTEN,
1017 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1018 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1019 	/* Ensure all writes complete */
1020 	wmb();
1021 out:
1022 	iounmap(ecc_block_base);
1023 	return ret;
1024 }
1025 
1026 static int validate_parent_available(struct device_node *np);
1027 static const struct of_device_id altr_edac_a10_device_of_match[];
1028 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1029 {
1030 	int irq;
1031 	struct device_node *child, *np = of_find_compatible_node(NULL, NULL,
1032 					"altr,socfpga-a10-ecc-manager");
1033 	if (!np) {
1034 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1035 		return -ENODEV;
1036 	}
1037 
1038 	for_each_child_of_node(np, child) {
1039 		const struct of_device_id *pdev_id;
1040 		const struct edac_device_prv_data *prv;
1041 
1042 		if (!of_device_is_available(child))
1043 			continue;
1044 		if (!of_device_is_compatible(child, compat))
1045 			continue;
1046 
1047 		if (validate_parent_available(child))
1048 			continue;
1049 
1050 		irq = a10_get_irq_mask(child);
1051 		if (irq < 0)
1052 			continue;
1053 
1054 		/* Get matching node and check for valid result */
1055 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1056 		if (IS_ERR_OR_NULL(pdev_id))
1057 			continue;
1058 
1059 		/* Validate private data pointer before dereferencing */
1060 		prv = pdev_id->data;
1061 		if (!prv)
1062 			continue;
1063 
1064 		altr_init_a10_ecc_block(child, BIT(irq),
1065 					prv->ecc_enable_mask, 0);
1066 	}
1067 
1068 	of_node_put(np);
1069 	return 0;
1070 }
1071 
1072 /*********************** OCRAM EDAC Device Functions *********************/
1073 
1074 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1075 
1076 static void *ocram_alloc_mem(size_t size, void **other)
1077 {
1078 	struct device_node *np;
1079 	struct gen_pool *gp;
1080 	void *sram_addr;
1081 
1082 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1083 	if (!np)
1084 		return NULL;
1085 
1086 	gp = of_gen_pool_get(np, "iram", 0);
1087 	of_node_put(np);
1088 	if (!gp)
1089 		return NULL;
1090 
1091 	sram_addr = (void *)gen_pool_alloc(gp, size);
1092 	if (!sram_addr)
1093 		return NULL;
1094 
1095 	memset(sram_addr, 0, size);
1096 	/* Ensure data is written out */
1097 	wmb();
1098 
1099 	/* Remember this handle for freeing  later */
1100 	*other = gp;
1101 
1102 	return sram_addr;
1103 }
1104 
1105 static void ocram_free_mem(void *p, size_t size, void *other)
1106 {
1107 	gen_pool_free((struct gen_pool *)other, (u32)p, size);
1108 }
1109 
1110 static const struct edac_device_prv_data ocramecc_data = {
1111 	.setup = altr_check_ecc_deps,
1112 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1113 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1114 	.alloc_mem = ocram_alloc_mem,
1115 	.free_mem = ocram_free_mem,
1116 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1117 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1118 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1119 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1120 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1121 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1122 	.inject_fops = &altr_edac_device_inject_fops,
1123 };
1124 
1125 static const struct edac_device_prv_data a10_ocramecc_data = {
1126 	.setup = altr_check_ecc_deps,
1127 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1128 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1129 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1130 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1131 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1132 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1133 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1134 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1135 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1136 	.inject_fops = &altr_edac_a10_device_inject_fops,
1137 	/*
1138 	 * OCRAM panic on uncorrectable error because sleep/resume
1139 	 * functions and FPGA contents are stored in OCRAM. Prefer
1140 	 * a kernel panic over executing/loading corrupted data.
1141 	 */
1142 	.panic = true,
1143 };
1144 
1145 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1146 
1147 /********************* L2 Cache EDAC Device Functions ********************/
1148 
1149 #ifdef CONFIG_EDAC_ALTERA_L2C
1150 
1151 static void *l2_alloc_mem(size_t size, void **other)
1152 {
1153 	struct device *dev = *other;
1154 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1155 
1156 	if (!ptemp)
1157 		return NULL;
1158 
1159 	/* Make sure everything is written out */
1160 	wmb();
1161 
1162 	/*
1163 	 * Clean all cache levels up to LoC (includes L2)
1164 	 * This ensures the corrupted data is written into
1165 	 * L2 cache for readback test (which causes ECC error).
1166 	 */
1167 	flush_cache_all();
1168 
1169 	return ptemp;
1170 }
1171 
1172 static void l2_free_mem(void *p, size_t size, void *other)
1173 {
1174 	struct device *dev = other;
1175 
1176 	if (dev && p)
1177 		devm_kfree(dev, p);
1178 }
1179 
1180 /*
1181  * altr_l2_check_deps()
1182  *	Test for L2 cache ECC dependencies upon entry because
1183  *	platform specific startup should have initialized the L2
1184  *	memory and enabled the ECC.
1185  *	Bail if ECC is not enabled.
1186  *	Note that L2 Cache Enable is forced at build time.
1187  */
1188 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1189 {
1190 	void __iomem *base = device->base;
1191 	const struct edac_device_prv_data *prv = device->data;
1192 
1193 	if ((readl(base) & prv->ecc_enable_mask) ==
1194 	     prv->ecc_enable_mask)
1195 		return 0;
1196 
1197 	edac_printk(KERN_ERR, EDAC_DEVICE,
1198 		    "L2: No ECC present, or ECC disabled\n");
1199 	return -ENODEV;
1200 }
1201 
1202 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1203 {
1204 	struct altr_edac_device_dev *dci = dev_id;
1205 
1206 	if (irq == dci->sb_irq) {
1207 		regmap_write(dci->edac->ecc_mgr_map,
1208 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1209 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1210 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1211 
1212 		return IRQ_HANDLED;
1213 	} else if (irq == dci->db_irq) {
1214 		regmap_write(dci->edac->ecc_mgr_map,
1215 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1216 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1217 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1218 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1219 
1220 		return IRQ_HANDLED;
1221 	}
1222 
1223 	WARN_ON(1);
1224 
1225 	return IRQ_NONE;
1226 }
1227 
1228 static const struct edac_device_prv_data l2ecc_data = {
1229 	.setup = altr_l2_check_deps,
1230 	.ce_clear_mask = 0,
1231 	.ue_clear_mask = 0,
1232 	.alloc_mem = l2_alloc_mem,
1233 	.free_mem = l2_free_mem,
1234 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1235 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1236 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1237 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1238 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1239 	.inject_fops = &altr_edac_device_inject_fops,
1240 };
1241 
1242 static const struct edac_device_prv_data a10_l2ecc_data = {
1243 	.setup = altr_l2_check_deps,
1244 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1245 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1246 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1247 	.alloc_mem = l2_alloc_mem,
1248 	.free_mem = l2_free_mem,
1249 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1250 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1251 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1252 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1253 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1254 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1255 	.inject_fops = &altr_edac_device_inject_fops,
1256 };
1257 
1258 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1259 
1260 /********************* Ethernet Device Functions ********************/
1261 
1262 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1263 
1264 static const struct edac_device_prv_data a10_enetecc_data = {
1265 	.setup = altr_check_ecc_deps,
1266 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1267 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1268 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1269 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1270 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1271 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1272 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1273 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1274 	.inject_fops = &altr_edac_a10_device_inject_fops,
1275 };
1276 
1277 static int __init socfpga_init_ethernet_ecc(void)
1278 {
1279 	return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1280 }
1281 
1282 early_initcall(socfpga_init_ethernet_ecc);
1283 
1284 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1285 
1286 /********************** NAND Device Functions **********************/
1287 
1288 #ifdef CONFIG_EDAC_ALTERA_NAND
1289 
1290 static const struct edac_device_prv_data a10_nandecc_data = {
1291 	.setup = altr_check_ecc_deps,
1292 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1293 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1294 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1295 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1296 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1297 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1298 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1299 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1300 	.inject_fops = &altr_edac_a10_device_inject_fops,
1301 };
1302 
1303 static int __init socfpga_init_nand_ecc(void)
1304 {
1305 	return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1306 }
1307 
1308 early_initcall(socfpga_init_nand_ecc);
1309 
1310 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1311 
1312 /********************** DMA Device Functions **********************/
1313 
1314 #ifdef CONFIG_EDAC_ALTERA_DMA
1315 
1316 static const struct edac_device_prv_data a10_dmaecc_data = {
1317 	.setup = altr_check_ecc_deps,
1318 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1319 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1320 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1321 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1322 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1323 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1324 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1325 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1326 	.inject_fops = &altr_edac_a10_device_inject_fops,
1327 };
1328 
1329 static int __init socfpga_init_dma_ecc(void)
1330 {
1331 	return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1332 }
1333 
1334 early_initcall(socfpga_init_dma_ecc);
1335 
1336 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1337 
1338 /********************** USB Device Functions **********************/
1339 
1340 #ifdef CONFIG_EDAC_ALTERA_USB
1341 
1342 static const struct edac_device_prv_data a10_usbecc_data = {
1343 	.setup = altr_check_ecc_deps,
1344 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1345 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1346 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1347 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1348 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1349 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1350 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1351 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1352 	.inject_fops = &altr_edac_a10_device_inject_fops,
1353 };
1354 
1355 static int __init socfpga_init_usb_ecc(void)
1356 {
1357 	return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1358 }
1359 
1360 early_initcall(socfpga_init_usb_ecc);
1361 
1362 #endif	/* CONFIG_EDAC_ALTERA_USB */
1363 
1364 /********************** QSPI Device Functions **********************/
1365 
1366 #ifdef CONFIG_EDAC_ALTERA_QSPI
1367 
1368 static const struct edac_device_prv_data a10_qspiecc_data = {
1369 	.setup = altr_check_ecc_deps,
1370 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1371 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1372 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1373 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1374 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1375 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1376 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1377 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1378 	.inject_fops = &altr_edac_a10_device_inject_fops,
1379 };
1380 
1381 static int __init socfpga_init_qspi_ecc(void)
1382 {
1383 	return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1384 }
1385 
1386 early_initcall(socfpga_init_qspi_ecc);
1387 
1388 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1389 
1390 /********************* SDMMC Device Functions **********************/
1391 
1392 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1393 
1394 static const struct edac_device_prv_data a10_sdmmceccb_data;
1395 static int altr_portb_setup(struct altr_edac_device_dev *device)
1396 {
1397 	struct edac_device_ctl_info *dci;
1398 	struct altr_edac_device_dev *altdev;
1399 	char *ecc_name = "sdmmcb-ecc";
1400 	int edac_idx, rc;
1401 	struct device_node *np;
1402 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1403 
1404 	rc = altr_check_ecc_deps(device);
1405 	if (rc)
1406 		return rc;
1407 
1408 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1409 	if (!np) {
1410 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1411 		return -ENODEV;
1412 	}
1413 
1414 	/* Create the PortB EDAC device */
1415 	edac_idx = edac_device_alloc_index();
1416 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1417 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1418 	if (!dci) {
1419 		edac_printk(KERN_ERR, EDAC_DEVICE,
1420 			    "%s: Unable to allocate PortB EDAC device\n",
1421 			    ecc_name);
1422 		return -ENOMEM;
1423 	}
1424 
1425 	/* Initialize the PortB EDAC device structure from PortA structure */
1426 	altdev = dci->pvt_info;
1427 	*altdev = *device;
1428 
1429 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1430 		return -ENOMEM;
1431 
1432 	/* Update PortB specific values */
1433 	altdev->edac_dev_name = ecc_name;
1434 	altdev->edac_idx = edac_idx;
1435 	altdev->edac_dev = dci;
1436 	altdev->data = prv;
1437 	dci->dev = &altdev->ddev;
1438 	dci->ctl_name = "Altera ECC Manager";
1439 	dci->mod_name = ecc_name;
1440 	dci->dev_name = ecc_name;
1441 
1442 	/* Update the IRQs for PortB */
1443 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1444 	if (!altdev->sb_irq) {
1445 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1446 		rc = -ENODEV;
1447 		goto err_release_group_1;
1448 	}
1449 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1450 			      prv->ecc_irq_handler,
1451 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1452 			      ecc_name, altdev);
1453 	if (rc) {
1454 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1455 		goto err_release_group_1;
1456 	}
1457 
1458 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1459 	if (!altdev->db_irq) {
1460 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1461 		rc = -ENODEV;
1462 		goto err_release_group_1;
1463 	}
1464 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1465 			      prv->ecc_irq_handler,
1466 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1467 			      ecc_name, altdev);
1468 	if (rc) {
1469 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1470 		goto err_release_group_1;
1471 	}
1472 
1473 	rc = edac_device_add_device(dci);
1474 	if (rc) {
1475 		edac_printk(KERN_ERR, EDAC_DEVICE,
1476 			    "edac_device_add_device portB failed\n");
1477 		rc = -ENOMEM;
1478 		goto err_release_group_1;
1479 	}
1480 	altr_create_edacdev_dbgfs(dci, prv);
1481 
1482 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1483 
1484 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1485 
1486 	return 0;
1487 
1488 err_release_group_1:
1489 	edac_device_free_ctl_info(dci);
1490 	devres_release_group(&altdev->ddev, altr_portb_setup);
1491 	edac_printk(KERN_ERR, EDAC_DEVICE,
1492 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1493 	return rc;
1494 }
1495 
1496 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1497 {
1498 	struct altr_edac_device_dev *ad = dev_id;
1499 	void __iomem  *base = ad->base;
1500 	const struct edac_device_prv_data *priv = ad->data;
1501 
1502 	if (irq == ad->sb_irq) {
1503 		writel(priv->ce_clear_mask,
1504 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1505 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1506 		return IRQ_HANDLED;
1507 	} else if (irq == ad->db_irq) {
1508 		writel(priv->ue_clear_mask,
1509 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1510 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1511 		return IRQ_HANDLED;
1512 	}
1513 
1514 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1515 
1516 	return IRQ_NONE;
1517 }
1518 
1519 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1520 	.setup = altr_portb_setup,
1521 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1522 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1523 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1524 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1525 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1526 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1527 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1528 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1529 	.inject_fops = &altr_edac_a10_device_inject_fops,
1530 };
1531 
1532 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1533 	.setup = altr_portb_setup,
1534 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1535 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1536 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1537 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1538 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1539 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1540 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1541 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1542 	.inject_fops = &altr_edac_a10_device_inject_fops,
1543 };
1544 
1545 static int __init socfpga_init_sdmmc_ecc(void)
1546 {
1547 	int rc = -ENODEV;
1548 	struct device_node *child = of_find_compatible_node(NULL, NULL,
1549 						"altr,socfpga-sdmmc-ecc");
1550 	if (!child) {
1551 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1552 		return -ENODEV;
1553 	}
1554 
1555 	if (!of_device_is_available(child))
1556 		goto exit;
1557 
1558 	if (validate_parent_available(child))
1559 		goto exit;
1560 
1561 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1562 				     a10_sdmmcecca_data.ecc_enable_mask, 1);
1563 exit:
1564 	of_node_put(child);
1565 	return rc;
1566 }
1567 
1568 early_initcall(socfpga_init_sdmmc_ecc);
1569 
1570 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1571 
1572 /********************* Arria10 EDAC Device Functions *************************/
1573 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1574 #ifdef CONFIG_EDAC_ALTERA_L2C
1575 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1576 #endif
1577 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1578 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1579 	  .data = &a10_ocramecc_data },
1580 #endif
1581 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1582 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1583 	  .data = &a10_enetecc_data },
1584 #endif
1585 #ifdef CONFIG_EDAC_ALTERA_NAND
1586 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1587 #endif
1588 #ifdef CONFIG_EDAC_ALTERA_DMA
1589 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1590 #endif
1591 #ifdef CONFIG_EDAC_ALTERA_USB
1592 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1593 #endif
1594 #ifdef CONFIG_EDAC_ALTERA_QSPI
1595 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1596 #endif
1597 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1598 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1599 #endif
1600 	{},
1601 };
1602 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1603 
1604 /*
1605  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1606  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1607  * manager manages the IRQs and the children.
1608  * Based on xgene_edac.c peripheral code.
1609  */
1610 
1611 static ssize_t altr_edac_a10_device_trig(struct file *file,
1612 					 const char __user *user_buf,
1613 					 size_t count, loff_t *ppos)
1614 {
1615 	struct edac_device_ctl_info *edac_dci = file->private_data;
1616 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1617 	const struct edac_device_prv_data *priv = drvdata->data;
1618 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1619 	unsigned long flags;
1620 	u8 trig_type;
1621 
1622 	if (!user_buf || get_user(trig_type, user_buf))
1623 		return -EFAULT;
1624 
1625 	local_irq_save(flags);
1626 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1627 		writel(priv->ue_set_mask, set_addr);
1628 	else
1629 		writel(priv->ce_set_mask, set_addr);
1630 	/* Ensure the interrupt test bits are set */
1631 	wmb();
1632 	local_irq_restore(flags);
1633 
1634 	return count;
1635 }
1636 
1637 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1638 {
1639 	int dberr, bit, sm_offset, irq_status;
1640 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1641 	struct irq_chip *chip = irq_desc_get_chip(desc);
1642 	int irq = irq_desc_get_irq(desc);
1643 
1644 	dberr = (irq == edac->db_irq) ? 1 : 0;
1645 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1646 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1647 
1648 	chained_irq_enter(chip, desc);
1649 
1650 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1651 
1652 	for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1653 		irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1654 		if (irq)
1655 			generic_handle_irq(irq);
1656 	}
1657 
1658 	chained_irq_exit(chip, desc);
1659 }
1660 
1661 static int validate_parent_available(struct device_node *np)
1662 {
1663 	struct device_node *parent;
1664 	int ret = 0;
1665 
1666 	/* Ensure parent device is enabled if parent node exists */
1667 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1668 	if (parent && !of_device_is_available(parent))
1669 		ret = -ENODEV;
1670 
1671 	of_node_put(parent);
1672 	return ret;
1673 }
1674 
1675 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1676 				    struct device_node *np)
1677 {
1678 	struct edac_device_ctl_info *dci;
1679 	struct altr_edac_device_dev *altdev;
1680 	char *ecc_name = (char *)np->name;
1681 	struct resource res;
1682 	int edac_idx;
1683 	int rc = 0;
1684 	const struct edac_device_prv_data *prv;
1685 	/* Get matching node and check for valid result */
1686 	const struct of_device_id *pdev_id =
1687 		of_match_node(altr_edac_a10_device_of_match, np);
1688 	if (IS_ERR_OR_NULL(pdev_id))
1689 		return -ENODEV;
1690 
1691 	/* Get driver specific data for this EDAC device */
1692 	prv = pdev_id->data;
1693 	if (IS_ERR_OR_NULL(prv))
1694 		return -ENODEV;
1695 
1696 	if (validate_parent_available(np))
1697 		return -ENODEV;
1698 
1699 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1700 		return -ENOMEM;
1701 
1702 	rc = of_address_to_resource(np, 0, &res);
1703 	if (rc < 0) {
1704 		edac_printk(KERN_ERR, EDAC_DEVICE,
1705 			    "%s: no resource address\n", ecc_name);
1706 		goto err_release_group;
1707 	}
1708 
1709 	edac_idx = edac_device_alloc_index();
1710 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1711 					 1, ecc_name, 1, 0, NULL, 0,
1712 					 edac_idx);
1713 
1714 	if (!dci) {
1715 		edac_printk(KERN_ERR, EDAC_DEVICE,
1716 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1717 		rc = -ENOMEM;
1718 		goto err_release_group;
1719 	}
1720 
1721 	altdev = dci->pvt_info;
1722 	dci->dev = edac->dev;
1723 	altdev->edac_dev_name = ecc_name;
1724 	altdev->edac_idx = edac_idx;
1725 	altdev->edac = edac;
1726 	altdev->edac_dev = dci;
1727 	altdev->data = prv;
1728 	altdev->ddev = *edac->dev;
1729 	dci->dev = &altdev->ddev;
1730 	dci->ctl_name = "Altera ECC Manager";
1731 	dci->mod_name = ecc_name;
1732 	dci->dev_name = ecc_name;
1733 
1734 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1735 	if (IS_ERR(altdev->base)) {
1736 		rc = PTR_ERR(altdev->base);
1737 		goto err_release_group1;
1738 	}
1739 
1740 	/* Check specific dependencies for the module */
1741 	if (altdev->data->setup) {
1742 		rc = altdev->data->setup(altdev);
1743 		if (rc)
1744 			goto err_release_group1;
1745 	}
1746 
1747 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1748 	if (!altdev->sb_irq) {
1749 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1750 		rc = -ENODEV;
1751 		goto err_release_group1;
1752 	}
1753 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1754 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1755 			      ecc_name, altdev);
1756 	if (rc) {
1757 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1758 		goto err_release_group1;
1759 	}
1760 
1761 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1762 	if (!altdev->db_irq) {
1763 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1764 		rc = -ENODEV;
1765 		goto err_release_group1;
1766 	}
1767 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1768 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1769 			      ecc_name, altdev);
1770 	if (rc) {
1771 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1772 		goto err_release_group1;
1773 	}
1774 
1775 	rc = edac_device_add_device(dci);
1776 	if (rc) {
1777 		dev_err(edac->dev, "edac_device_add_device failed\n");
1778 		rc = -ENOMEM;
1779 		goto err_release_group1;
1780 	}
1781 
1782 	altr_create_edacdev_dbgfs(dci, prv);
1783 
1784 	list_add(&altdev->next, &edac->a10_ecc_devices);
1785 
1786 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
1787 
1788 	return 0;
1789 
1790 err_release_group1:
1791 	edac_device_free_ctl_info(dci);
1792 err_release_group:
1793 	devres_release_group(edac->dev, NULL);
1794 	edac_printk(KERN_ERR, EDAC_DEVICE,
1795 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1796 
1797 	return rc;
1798 }
1799 
1800 static void a10_eccmgr_irq_mask(struct irq_data *d)
1801 {
1802 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1803 
1804 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
1805 		     BIT(d->hwirq));
1806 }
1807 
1808 static void a10_eccmgr_irq_unmask(struct irq_data *d)
1809 {
1810 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1811 
1812 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
1813 		     BIT(d->hwirq));
1814 }
1815 
1816 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
1817 				    irq_hw_number_t hwirq)
1818 {
1819 	struct altr_arria10_edac *edac = d->host_data;
1820 
1821 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
1822 	irq_set_chip_data(irq, edac);
1823 	irq_set_noprobe(irq);
1824 
1825 	return 0;
1826 }
1827 
1828 static struct irq_domain_ops a10_eccmgr_ic_ops = {
1829 	.map = a10_eccmgr_irqdomain_map,
1830 	.xlate = irq_domain_xlate_twocell,
1831 };
1832 
1833 static int altr_edac_a10_probe(struct platform_device *pdev)
1834 {
1835 	struct altr_arria10_edac *edac;
1836 	struct device_node *child;
1837 
1838 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
1839 	if (!edac)
1840 		return -ENOMEM;
1841 
1842 	edac->dev = &pdev->dev;
1843 	platform_set_drvdata(pdev, edac);
1844 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
1845 
1846 	edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
1847 							"altr,sysmgr-syscon");
1848 	if (IS_ERR(edac->ecc_mgr_map)) {
1849 		edac_printk(KERN_ERR, EDAC_DEVICE,
1850 			    "Unable to get syscon altr,sysmgr-syscon\n");
1851 		return PTR_ERR(edac->ecc_mgr_map);
1852 	}
1853 
1854 	edac->irq_chip.name = pdev->dev.of_node->name;
1855 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
1856 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
1857 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
1858 					     &a10_eccmgr_ic_ops, edac);
1859 	if (!edac->domain) {
1860 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
1861 		return -ENOMEM;
1862 	}
1863 
1864 	edac->sb_irq = platform_get_irq(pdev, 0);
1865 	if (edac->sb_irq < 0) {
1866 		dev_err(&pdev->dev, "No SBERR IRQ resource\n");
1867 		return edac->sb_irq;
1868 	}
1869 
1870 	irq_set_chained_handler_and_data(edac->sb_irq,
1871 					 altr_edac_a10_irq_handler,
1872 					 edac);
1873 
1874 	edac->db_irq = platform_get_irq(pdev, 1);
1875 	if (edac->db_irq < 0) {
1876 		dev_err(&pdev->dev, "No DBERR IRQ resource\n");
1877 		return edac->db_irq;
1878 	}
1879 	irq_set_chained_handler_and_data(edac->db_irq,
1880 					 altr_edac_a10_irq_handler,
1881 					 edac);
1882 
1883 	for_each_child_of_node(pdev->dev.of_node, child) {
1884 		if (!of_device_is_available(child))
1885 			continue;
1886 
1887 		if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
1888 		    of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
1889 		    of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
1890 		    of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
1891 		    of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
1892 		    of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
1893 		    of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
1894 		    of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
1895 
1896 			altr_edac_a10_device_add(edac, child);
1897 
1898 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
1899 			of_platform_populate(pdev->dev.of_node,
1900 					     altr_sdram_ctrl_of_match,
1901 					     NULL, &pdev->dev);
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 static const struct of_device_id altr_edac_a10_of_match[] = {
1908 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
1909 	{},
1910 };
1911 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
1912 
1913 static struct platform_driver altr_edac_a10_driver = {
1914 	.probe =  altr_edac_a10_probe,
1915 	.driver = {
1916 		.name = "socfpga_a10_ecc_manager",
1917 		.of_match_table = altr_edac_a10_of_match,
1918 	},
1919 };
1920 module_platform_driver(altr_edac_a10_driver);
1921 
1922 MODULE_LICENSE("GPL v2");
1923 MODULE_AUTHOR("Thor Thayer");
1924 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
1925