1 /* 2 * Copyright Altera Corporation (C) 2014-2016. All rights reserved. 3 * Copyright 2011-2012 Calxeda, Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * Adapted from the highbank_mc_edac driver. 18 */ 19 20 #include <asm/cacheflush.h> 21 #include <linux/ctype.h> 22 #include <linux/delay.h> 23 #include <linux/edac.h> 24 #include <linux/genalloc.h> 25 #include <linux/interrupt.h> 26 #include <linux/irqchip/chained_irq.h> 27 #include <linux/kernel.h> 28 #include <linux/mfd/syscon.h> 29 #include <linux/of_address.h> 30 #include <linux/of_irq.h> 31 #include <linux/of_platform.h> 32 #include <linux/platform_device.h> 33 #include <linux/regmap.h> 34 #include <linux/types.h> 35 #include <linux/uaccess.h> 36 37 #include "altera_edac.h" 38 #include "edac_module.h" 39 40 #define EDAC_MOD_STR "altera_edac" 41 #define EDAC_DEVICE "Altera" 42 43 static const struct altr_sdram_prv_data c5_data = { 44 .ecc_ctrl_offset = CV_CTLCFG_OFST, 45 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN, 46 .ecc_stat_offset = CV_DRAMSTS_OFST, 47 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR, 48 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR, 49 .ecc_saddr_offset = CV_ERRADDR_OFST, 50 .ecc_daddr_offset = CV_ERRADDR_OFST, 51 .ecc_cecnt_offset = CV_SBECOUNT_OFST, 52 .ecc_uecnt_offset = CV_DBECOUNT_OFST, 53 .ecc_irq_en_offset = CV_DRAMINTR_OFST, 54 .ecc_irq_en_mask = CV_DRAMINTR_INTREN, 55 .ecc_irq_clr_offset = CV_DRAMINTR_OFST, 56 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN), 57 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST, 58 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR, 59 .ce_ue_trgr_offset = CV_CTLCFG_OFST, 60 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR, 61 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR, 62 }; 63 64 static const struct altr_sdram_prv_data a10_data = { 65 .ecc_ctrl_offset = A10_ECCCTRL1_OFST, 66 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN, 67 .ecc_stat_offset = A10_INTSTAT_OFST, 68 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR, 69 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR, 70 .ecc_saddr_offset = A10_SERRADDR_OFST, 71 .ecc_daddr_offset = A10_DERRADDR_OFST, 72 .ecc_irq_en_offset = A10_ERRINTEN_OFST, 73 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK, 74 .ecc_irq_clr_offset = A10_INTSTAT_OFST, 75 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR), 76 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST, 77 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK, 78 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST, 79 .ce_set_mask = A10_DIAGINT_TSERRA_MASK, 80 .ue_set_mask = A10_DIAGINT_TDERRA_MASK, 81 }; 82 83 /*********************** EDAC Memory Controller Functions ****************/ 84 85 /* The SDRAM controller uses the EDAC Memory Controller framework. */ 86 87 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id) 88 { 89 struct mem_ctl_info *mci = dev_id; 90 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 91 const struct altr_sdram_prv_data *priv = drvdata->data; 92 u32 status, err_count = 1, err_addr; 93 94 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status); 95 96 if (status & priv->ecc_stat_ue_mask) { 97 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset, 98 &err_addr); 99 if (priv->ecc_uecnt_offset) 100 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset, 101 &err_count); 102 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n", 103 err_count, err_addr); 104 } 105 if (status & priv->ecc_stat_ce_mask) { 106 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset, 107 &err_addr); 108 if (priv->ecc_uecnt_offset) 109 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset, 110 &err_count); 111 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count, 112 err_addr >> PAGE_SHIFT, 113 err_addr & ~PAGE_MASK, 0, 114 0, 0, -1, mci->ctl_name, ""); 115 /* Clear IRQ to resume */ 116 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset, 117 priv->ecc_irq_clr_mask); 118 119 return IRQ_HANDLED; 120 } 121 return IRQ_NONE; 122 } 123 124 static ssize_t altr_sdr_mc_err_inject_write(struct file *file, 125 const char __user *data, 126 size_t count, loff_t *ppos) 127 { 128 struct mem_ctl_info *mci = file->private_data; 129 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 130 const struct altr_sdram_prv_data *priv = drvdata->data; 131 u32 *ptemp; 132 dma_addr_t dma_handle; 133 u32 reg, read_reg; 134 135 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL); 136 if (!ptemp) { 137 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); 138 edac_printk(KERN_ERR, EDAC_MC, 139 "Inject: Buffer Allocation error\n"); 140 return -ENOMEM; 141 } 142 143 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 144 &read_reg); 145 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask); 146 147 /* Error are injected by writing a word while the SBE or DBE 148 * bit in the CTLCFG register is set. Reading the word will 149 * trigger the SBE or DBE error and the corresponding IRQ. 150 */ 151 if (count == 3) { 152 edac_printk(KERN_ALERT, EDAC_MC, 153 "Inject Double bit error\n"); 154 local_irq_disable(); 155 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 156 (read_reg | priv->ue_set_mask)); 157 local_irq_enable(); 158 } else { 159 edac_printk(KERN_ALERT, EDAC_MC, 160 "Inject Single bit error\n"); 161 local_irq_disable(); 162 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 163 (read_reg | priv->ce_set_mask)); 164 local_irq_enable(); 165 } 166 167 ptemp[0] = 0x5A5A5A5A; 168 ptemp[1] = 0xA5A5A5A5; 169 170 /* Clear the error injection bits */ 171 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg); 172 /* Ensure it has been written out */ 173 wmb(); 174 175 /* 176 * To trigger the error, we need to read the data back 177 * (the data was written with errors above). 178 * The READ_ONCE macros and printk are used to prevent the 179 * the compiler optimizing these reads out. 180 */ 181 reg = READ_ONCE(ptemp[0]); 182 read_reg = READ_ONCE(ptemp[1]); 183 /* Force Read */ 184 rmb(); 185 186 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n", 187 reg, read_reg); 188 189 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); 190 191 return count; 192 } 193 194 static const struct file_operations altr_sdr_mc_debug_inject_fops = { 195 .open = simple_open, 196 .write = altr_sdr_mc_err_inject_write, 197 .llseek = generic_file_llseek, 198 }; 199 200 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci) 201 { 202 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 203 return; 204 205 if (!mci->debugfs) 206 return; 207 208 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci, 209 &altr_sdr_mc_debug_inject_fops); 210 } 211 212 /* Get total memory size from Open Firmware DTB */ 213 static unsigned long get_total_mem(void) 214 { 215 struct device_node *np = NULL; 216 struct resource res; 217 int ret; 218 unsigned long total_mem = 0; 219 220 for_each_node_by_type(np, "memory") { 221 ret = of_address_to_resource(np, 0, &res); 222 if (ret) 223 continue; 224 225 total_mem += resource_size(&res); 226 } 227 edac_dbg(0, "total_mem 0x%lx\n", total_mem); 228 return total_mem; 229 } 230 231 static const struct of_device_id altr_sdram_ctrl_of_match[] = { 232 { .compatible = "altr,sdram-edac", .data = &c5_data}, 233 { .compatible = "altr,sdram-edac-a10", .data = &a10_data}, 234 {}, 235 }; 236 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match); 237 238 static int a10_init(struct regmap *mc_vbase) 239 { 240 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST, 241 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) { 242 edac_printk(KERN_ERR, EDAC_MC, 243 "Error setting SB IRQ mode\n"); 244 return -ENODEV; 245 } 246 247 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) { 248 edac_printk(KERN_ERR, EDAC_MC, 249 "Error setting trigger count\n"); 250 return -ENODEV; 251 } 252 253 return 0; 254 } 255 256 static int a10_unmask_irq(struct platform_device *pdev, u32 mask) 257 { 258 void __iomem *sm_base; 259 int ret = 0; 260 261 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32), 262 dev_name(&pdev->dev))) { 263 edac_printk(KERN_ERR, EDAC_MC, 264 "Unable to request mem region\n"); 265 return -EBUSY; 266 } 267 268 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 269 if (!sm_base) { 270 edac_printk(KERN_ERR, EDAC_MC, 271 "Unable to ioremap device\n"); 272 273 ret = -ENOMEM; 274 goto release; 275 } 276 277 iowrite32(mask, sm_base); 278 279 iounmap(sm_base); 280 281 release: 282 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 283 284 return ret; 285 } 286 287 static int altr_sdram_probe(struct platform_device *pdev) 288 { 289 const struct of_device_id *id; 290 struct edac_mc_layer layers[2]; 291 struct mem_ctl_info *mci; 292 struct altr_sdram_mc_data *drvdata; 293 const struct altr_sdram_prv_data *priv; 294 struct regmap *mc_vbase; 295 struct dimm_info *dimm; 296 u32 read_reg; 297 int irq, irq2, res = 0; 298 unsigned long mem_size, irqflags = 0; 299 300 id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev); 301 if (!id) 302 return -ENODEV; 303 304 /* Grab the register range from the sdr controller in device tree */ 305 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 306 "altr,sdr-syscon"); 307 if (IS_ERR(mc_vbase)) { 308 edac_printk(KERN_ERR, EDAC_MC, 309 "regmap for altr,sdr-syscon lookup failed.\n"); 310 return -ENODEV; 311 } 312 313 /* Check specific dependencies for the module */ 314 priv = of_match_node(altr_sdram_ctrl_of_match, 315 pdev->dev.of_node)->data; 316 317 /* Validate the SDRAM controller has ECC enabled */ 318 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) || 319 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) { 320 edac_printk(KERN_ERR, EDAC_MC, 321 "No ECC/ECC disabled [0x%08X]\n", read_reg); 322 return -ENODEV; 323 } 324 325 /* Grab memory size from device tree. */ 326 mem_size = get_total_mem(); 327 if (!mem_size) { 328 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n"); 329 return -ENODEV; 330 } 331 332 /* Ensure the SDRAM Interrupt is disabled */ 333 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset, 334 priv->ecc_irq_en_mask, 0)) { 335 edac_printk(KERN_ERR, EDAC_MC, 336 "Error disabling SDRAM ECC IRQ\n"); 337 return -ENODEV; 338 } 339 340 /* Toggle to clear the SDRAM Error count */ 341 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 342 priv->ecc_cnt_rst_mask, 343 priv->ecc_cnt_rst_mask)) { 344 edac_printk(KERN_ERR, EDAC_MC, 345 "Error clearing SDRAM ECC count\n"); 346 return -ENODEV; 347 } 348 349 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 350 priv->ecc_cnt_rst_mask, 0)) { 351 edac_printk(KERN_ERR, EDAC_MC, 352 "Error clearing SDRAM ECC count\n"); 353 return -ENODEV; 354 } 355 356 irq = platform_get_irq(pdev, 0); 357 if (irq < 0) { 358 edac_printk(KERN_ERR, EDAC_MC, 359 "No irq %d in DT\n", irq); 360 return -ENODEV; 361 } 362 363 /* Arria10 has a 2nd IRQ */ 364 irq2 = platform_get_irq(pdev, 1); 365 366 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 367 layers[0].size = 1; 368 layers[0].is_virt_csrow = true; 369 layers[1].type = EDAC_MC_LAYER_CHANNEL; 370 layers[1].size = 1; 371 layers[1].is_virt_csrow = false; 372 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 373 sizeof(struct altr_sdram_mc_data)); 374 if (!mci) 375 return -ENOMEM; 376 377 mci->pdev = &pdev->dev; 378 drvdata = mci->pvt_info; 379 drvdata->mc_vbase = mc_vbase; 380 drvdata->data = priv; 381 platform_set_drvdata(pdev, mci); 382 383 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 384 edac_printk(KERN_ERR, EDAC_MC, 385 "Unable to get managed device resource\n"); 386 res = -ENOMEM; 387 goto free; 388 } 389 390 mci->mtype_cap = MEM_FLAG_DDR3; 391 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; 392 mci->edac_cap = EDAC_FLAG_SECDED; 393 mci->mod_name = EDAC_MOD_STR; 394 mci->ctl_name = dev_name(&pdev->dev); 395 mci->scrub_mode = SCRUB_SW_SRC; 396 mci->dev_name = dev_name(&pdev->dev); 397 398 dimm = *mci->dimms; 399 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1; 400 dimm->grain = 8; 401 dimm->dtype = DEV_X8; 402 dimm->mtype = MEM_DDR3; 403 dimm->edac_mode = EDAC_SECDED; 404 405 res = edac_mc_add_mc(mci); 406 if (res < 0) 407 goto err; 408 409 /* Only the Arria10 has separate IRQs */ 410 if (irq2 > 0) { 411 /* Arria10 specific initialization */ 412 res = a10_init(mc_vbase); 413 if (res < 0) 414 goto err2; 415 416 res = devm_request_irq(&pdev->dev, irq2, 417 altr_sdram_mc_err_handler, 418 IRQF_SHARED, dev_name(&pdev->dev), mci); 419 if (res < 0) { 420 edac_mc_printk(mci, KERN_ERR, 421 "Unable to request irq %d\n", irq2); 422 res = -ENODEV; 423 goto err2; 424 } 425 426 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK); 427 if (res < 0) 428 goto err2; 429 430 irqflags = IRQF_SHARED; 431 } 432 433 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler, 434 irqflags, dev_name(&pdev->dev), mci); 435 if (res < 0) { 436 edac_mc_printk(mci, KERN_ERR, 437 "Unable to request irq %d\n", irq); 438 res = -ENODEV; 439 goto err2; 440 } 441 442 /* Infrastructure ready - enable the IRQ */ 443 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset, 444 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) { 445 edac_mc_printk(mci, KERN_ERR, 446 "Error enabling SDRAM ECC IRQ\n"); 447 res = -ENODEV; 448 goto err2; 449 } 450 451 altr_sdr_mc_create_debugfs_nodes(mci); 452 453 devres_close_group(&pdev->dev, NULL); 454 455 return 0; 456 457 err2: 458 edac_mc_del_mc(&pdev->dev); 459 err: 460 devres_release_group(&pdev->dev, NULL); 461 free: 462 edac_mc_free(mci); 463 edac_printk(KERN_ERR, EDAC_MC, 464 "EDAC Probe Failed; Error %d\n", res); 465 466 return res; 467 } 468 469 static int altr_sdram_remove(struct platform_device *pdev) 470 { 471 struct mem_ctl_info *mci = platform_get_drvdata(pdev); 472 473 edac_mc_del_mc(&pdev->dev); 474 edac_mc_free(mci); 475 platform_set_drvdata(pdev, NULL); 476 477 return 0; 478 } 479 480 /* 481 * If you want to suspend, need to disable EDAC by removing it 482 * from the device tree or defconfig. 483 */ 484 #ifdef CONFIG_PM 485 static int altr_sdram_prepare(struct device *dev) 486 { 487 pr_err("Suspend not allowed when EDAC is enabled.\n"); 488 489 return -EPERM; 490 } 491 492 static const struct dev_pm_ops altr_sdram_pm_ops = { 493 .prepare = altr_sdram_prepare, 494 }; 495 #endif 496 497 static struct platform_driver altr_sdram_edac_driver = { 498 .probe = altr_sdram_probe, 499 .remove = altr_sdram_remove, 500 .driver = { 501 .name = "altr_sdram_edac", 502 #ifdef CONFIG_PM 503 .pm = &altr_sdram_pm_ops, 504 #endif 505 .of_match_table = altr_sdram_ctrl_of_match, 506 }, 507 }; 508 509 module_platform_driver(altr_sdram_edac_driver); 510 511 /************************* EDAC Parent Probe *************************/ 512 513 static const struct of_device_id altr_edac_device_of_match[]; 514 515 static const struct of_device_id altr_edac_of_match[] = { 516 { .compatible = "altr,socfpga-ecc-manager" }, 517 {}, 518 }; 519 MODULE_DEVICE_TABLE(of, altr_edac_of_match); 520 521 static int altr_edac_probe(struct platform_device *pdev) 522 { 523 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match, 524 NULL, &pdev->dev); 525 return 0; 526 } 527 528 static struct platform_driver altr_edac_driver = { 529 .probe = altr_edac_probe, 530 .driver = { 531 .name = "socfpga_ecc_manager", 532 .of_match_table = altr_edac_of_match, 533 }, 534 }; 535 module_platform_driver(altr_edac_driver); 536 537 /************************* EDAC Device Functions *************************/ 538 539 /* 540 * EDAC Device Functions (shared between various IPs). 541 * The discrete memories use the EDAC Device framework. The probe 542 * and error handling functions are very similar between memories 543 * so they are shared. The memory allocation and freeing for EDAC 544 * trigger testing are different for each memory. 545 */ 546 547 static const struct edac_device_prv_data ocramecc_data; 548 static const struct edac_device_prv_data l2ecc_data; 549 static const struct edac_device_prv_data a10_ocramecc_data; 550 static const struct edac_device_prv_data a10_l2ecc_data; 551 552 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id) 553 { 554 irqreturn_t ret_value = IRQ_NONE; 555 struct edac_device_ctl_info *dci = dev_id; 556 struct altr_edac_device_dev *drvdata = dci->pvt_info; 557 const struct edac_device_prv_data *priv = drvdata->data; 558 559 if (irq == drvdata->sb_irq) { 560 if (priv->ce_clear_mask) 561 writel(priv->ce_clear_mask, drvdata->base); 562 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name); 563 ret_value = IRQ_HANDLED; 564 } else if (irq == drvdata->db_irq) { 565 if (priv->ue_clear_mask) 566 writel(priv->ue_clear_mask, drvdata->base); 567 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name); 568 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 569 ret_value = IRQ_HANDLED; 570 } else { 571 WARN_ON(1); 572 } 573 574 return ret_value; 575 } 576 577 static ssize_t altr_edac_device_trig(struct file *file, 578 const char __user *user_buf, 579 size_t count, loff_t *ppos) 580 581 { 582 u32 *ptemp, i, error_mask; 583 int result = 0; 584 u8 trig_type; 585 unsigned long flags; 586 struct edac_device_ctl_info *edac_dci = file->private_data; 587 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 588 const struct edac_device_prv_data *priv = drvdata->data; 589 void *generic_ptr = edac_dci->dev; 590 591 if (!user_buf || get_user(trig_type, user_buf)) 592 return -EFAULT; 593 594 if (!priv->alloc_mem) 595 return -ENOMEM; 596 597 /* 598 * Note that generic_ptr is initialized to the device * but in 599 * some alloc_functions, this is overridden and returns data. 600 */ 601 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr); 602 if (!ptemp) { 603 edac_printk(KERN_ERR, EDAC_DEVICE, 604 "Inject: Buffer Allocation error\n"); 605 return -ENOMEM; 606 } 607 608 if (trig_type == ALTR_UE_TRIGGER_CHAR) 609 error_mask = priv->ue_set_mask; 610 else 611 error_mask = priv->ce_set_mask; 612 613 edac_printk(KERN_ALERT, EDAC_DEVICE, 614 "Trigger Error Mask (0x%X)\n", error_mask); 615 616 local_irq_save(flags); 617 /* write ECC corrupted data out. */ 618 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) { 619 /* Read data so we're in the correct state */ 620 rmb(); 621 if (READ_ONCE(ptemp[i])) 622 result = -1; 623 /* Toggle Error bit (it is latched), leave ECC enabled */ 624 writel(error_mask, (drvdata->base + priv->set_err_ofst)); 625 writel(priv->ecc_enable_mask, (drvdata->base + 626 priv->set_err_ofst)); 627 ptemp[i] = i; 628 } 629 /* Ensure it has been written out */ 630 wmb(); 631 local_irq_restore(flags); 632 633 if (result) 634 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n"); 635 636 /* Read out written data. ECC error caused here */ 637 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++) 638 if (READ_ONCE(ptemp[i]) != i) 639 edac_printk(KERN_ERR, EDAC_DEVICE, 640 "Read doesn't match written data\n"); 641 642 if (priv->free_mem) 643 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr); 644 645 return count; 646 } 647 648 static const struct file_operations altr_edac_device_inject_fops = { 649 .open = simple_open, 650 .write = altr_edac_device_trig, 651 .llseek = generic_file_llseek, 652 }; 653 654 static ssize_t altr_edac_a10_device_trig(struct file *file, 655 const char __user *user_buf, 656 size_t count, loff_t *ppos); 657 658 static const struct file_operations altr_edac_a10_device_inject_fops = { 659 .open = simple_open, 660 .write = altr_edac_a10_device_trig, 661 .llseek = generic_file_llseek, 662 }; 663 664 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci, 665 const struct edac_device_prv_data *priv) 666 { 667 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 668 669 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 670 return; 671 672 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name); 673 if (!drvdata->debugfs_dir) 674 return; 675 676 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR, 677 drvdata->debugfs_dir, edac_dci, 678 priv->inject_fops)) 679 debugfs_remove_recursive(drvdata->debugfs_dir); 680 } 681 682 static const struct of_device_id altr_edac_device_of_match[] = { 683 #ifdef CONFIG_EDAC_ALTERA_L2C 684 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data }, 685 #endif 686 #ifdef CONFIG_EDAC_ALTERA_OCRAM 687 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data }, 688 #endif 689 {}, 690 }; 691 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match); 692 693 /* 694 * altr_edac_device_probe() 695 * This is a generic EDAC device driver that will support 696 * various Altera memory devices such as the L2 cache ECC and 697 * OCRAM ECC as well as the memories for other peripherals. 698 * Module specific initialization is done by passing the 699 * function index in the device tree. 700 */ 701 static int altr_edac_device_probe(struct platform_device *pdev) 702 { 703 struct edac_device_ctl_info *dci; 704 struct altr_edac_device_dev *drvdata; 705 struct resource *r; 706 int res = 0; 707 struct device_node *np = pdev->dev.of_node; 708 char *ecc_name = (char *)np->name; 709 static int dev_instance; 710 711 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 712 edac_printk(KERN_ERR, EDAC_DEVICE, 713 "Unable to open devm\n"); 714 return -ENOMEM; 715 } 716 717 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 718 if (!r) { 719 edac_printk(KERN_ERR, EDAC_DEVICE, 720 "Unable to get mem resource\n"); 721 res = -ENODEV; 722 goto fail; 723 } 724 725 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r), 726 dev_name(&pdev->dev))) { 727 edac_printk(KERN_ERR, EDAC_DEVICE, 728 "%s:Error requesting mem region\n", ecc_name); 729 res = -EBUSY; 730 goto fail; 731 } 732 733 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name, 734 1, ecc_name, 1, 0, NULL, 0, 735 dev_instance++); 736 737 if (!dci) { 738 edac_printk(KERN_ERR, EDAC_DEVICE, 739 "%s: Unable to allocate EDAC device\n", ecc_name); 740 res = -ENOMEM; 741 goto fail; 742 } 743 744 drvdata = dci->pvt_info; 745 dci->dev = &pdev->dev; 746 platform_set_drvdata(pdev, dci); 747 drvdata->edac_dev_name = ecc_name; 748 749 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r)); 750 if (!drvdata->base) { 751 res = -ENOMEM; 752 goto fail1; 753 } 754 755 /* Get driver specific data for this EDAC device */ 756 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data; 757 758 /* Check specific dependencies for the module */ 759 if (drvdata->data->setup) { 760 res = drvdata->data->setup(drvdata); 761 if (res) 762 goto fail1; 763 } 764 765 drvdata->sb_irq = platform_get_irq(pdev, 0); 766 res = devm_request_irq(&pdev->dev, drvdata->sb_irq, 767 altr_edac_device_handler, 768 0, dev_name(&pdev->dev), dci); 769 if (res) 770 goto fail1; 771 772 drvdata->db_irq = platform_get_irq(pdev, 1); 773 res = devm_request_irq(&pdev->dev, drvdata->db_irq, 774 altr_edac_device_handler, 775 0, dev_name(&pdev->dev), dci); 776 if (res) 777 goto fail1; 778 779 dci->mod_name = "Altera ECC Manager"; 780 dci->dev_name = drvdata->edac_dev_name; 781 782 res = edac_device_add_device(dci); 783 if (res) 784 goto fail1; 785 786 altr_create_edacdev_dbgfs(dci, drvdata->data); 787 788 devres_close_group(&pdev->dev, NULL); 789 790 return 0; 791 792 fail1: 793 edac_device_free_ctl_info(dci); 794 fail: 795 devres_release_group(&pdev->dev, NULL); 796 edac_printk(KERN_ERR, EDAC_DEVICE, 797 "%s:Error setting up EDAC device: %d\n", ecc_name, res); 798 799 return res; 800 } 801 802 static int altr_edac_device_remove(struct platform_device *pdev) 803 { 804 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev); 805 struct altr_edac_device_dev *drvdata = dci->pvt_info; 806 807 debugfs_remove_recursive(drvdata->debugfs_dir); 808 edac_device_del_device(&pdev->dev); 809 edac_device_free_ctl_info(dci); 810 811 return 0; 812 } 813 814 static struct platform_driver altr_edac_device_driver = { 815 .probe = altr_edac_device_probe, 816 .remove = altr_edac_device_remove, 817 .driver = { 818 .name = "altr_edac_device", 819 .of_match_table = altr_edac_device_of_match, 820 }, 821 }; 822 module_platform_driver(altr_edac_device_driver); 823 824 /******************* Arria10 Device ECC Shared Functions *****************/ 825 826 /* 827 * Test for memory's ECC dependencies upon entry because platform specific 828 * startup should have initialized the memory and enabled the ECC. 829 * Can't turn on ECC here because accessing un-initialized memory will 830 * cause CE/UE errors possibly causing an ABORT. 831 */ 832 static int __maybe_unused 833 altr_check_ecc_deps(struct altr_edac_device_dev *device) 834 { 835 void __iomem *base = device->base; 836 const struct edac_device_prv_data *prv = device->data; 837 838 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask) 839 return 0; 840 841 edac_printk(KERN_ERR, EDAC_DEVICE, 842 "%s: No ECC present or ECC disabled.\n", 843 device->edac_dev_name); 844 return -ENODEV; 845 } 846 847 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id) 848 { 849 struct altr_edac_device_dev *dci = dev_id; 850 void __iomem *base = dci->base; 851 852 if (irq == dci->sb_irq) { 853 writel(ALTR_A10_ECC_SERRPENA, 854 base + ALTR_A10_ECC_INTSTAT_OFST); 855 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 856 857 return IRQ_HANDLED; 858 } else if (irq == dci->db_irq) { 859 writel(ALTR_A10_ECC_DERRPENA, 860 base + ALTR_A10_ECC_INTSTAT_OFST); 861 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 862 if (dci->data->panic) 863 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 864 865 return IRQ_HANDLED; 866 } 867 868 WARN_ON(1); 869 870 return IRQ_NONE; 871 } 872 873 /******************* Arria10 Memory Buffer Functions *********************/ 874 875 static inline int a10_get_irq_mask(struct device_node *np) 876 { 877 int irq; 878 const u32 *handle = of_get_property(np, "interrupts", NULL); 879 880 if (!handle) 881 return -ENODEV; 882 irq = be32_to_cpup(handle); 883 return irq; 884 } 885 886 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr) 887 { 888 u32 value = readl(ioaddr); 889 890 value |= bit_mask; 891 writel(value, ioaddr); 892 } 893 894 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr) 895 { 896 u32 value = readl(ioaddr); 897 898 value &= ~bit_mask; 899 writel(value, ioaddr); 900 } 901 902 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr) 903 { 904 u32 value = readl(ioaddr); 905 906 return (value & bit_mask) ? 1 : 0; 907 } 908 909 /* 910 * This function uses the memory initialization block in the Arria10 ECC 911 * controller to initialize/clear the entire memory data and ECC data. 912 */ 913 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port) 914 { 915 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US; 916 u32 init_mask, stat_mask, clear_mask; 917 int ret = 0; 918 919 if (port) { 920 init_mask = ALTR_A10_ECC_INITB; 921 stat_mask = ALTR_A10_ECC_INITCOMPLETEB; 922 clear_mask = ALTR_A10_ECC_ERRPENB_MASK; 923 } else { 924 init_mask = ALTR_A10_ECC_INITA; 925 stat_mask = ALTR_A10_ECC_INITCOMPLETEA; 926 clear_mask = ALTR_A10_ECC_ERRPENA_MASK; 927 } 928 929 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST)); 930 while (limit--) { 931 if (ecc_test_bits(stat_mask, 932 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST))) 933 break; 934 udelay(1); 935 } 936 if (limit < 0) 937 ret = -EBUSY; 938 939 /* Clear any pending ECC interrupts */ 940 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST)); 941 942 return ret; 943 } 944 945 static __init int __maybe_unused 946 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask, 947 u32 ecc_ctrl_en_mask, bool dual_port) 948 { 949 int ret = 0; 950 void __iomem *ecc_block_base; 951 struct regmap *ecc_mgr_map; 952 char *ecc_name; 953 struct device_node *np_eccmgr; 954 955 ecc_name = (char *)np->name; 956 957 /* Get the ECC Manager - parent of the device EDACs */ 958 np_eccmgr = of_get_parent(np); 959 ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr, 960 "altr,sysmgr-syscon"); 961 of_node_put(np_eccmgr); 962 if (IS_ERR(ecc_mgr_map)) { 963 edac_printk(KERN_ERR, EDAC_DEVICE, 964 "Unable to get syscon altr,sysmgr-syscon\n"); 965 return -ENODEV; 966 } 967 968 /* Map the ECC Block */ 969 ecc_block_base = of_iomap(np, 0); 970 if (!ecc_block_base) { 971 edac_printk(KERN_ERR, EDAC_DEVICE, 972 "Unable to map %s ECC block\n", ecc_name); 973 return -ENODEV; 974 } 975 976 /* Disable ECC */ 977 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask); 978 writel(ALTR_A10_ECC_SERRINTEN, 979 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST)); 980 ecc_clear_bits(ecc_ctrl_en_mask, 981 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST)); 982 /* Ensure all writes complete */ 983 wmb(); 984 /* Use HW initialization block to initialize memory for ECC */ 985 ret = altr_init_memory_port(ecc_block_base, 0); 986 if (ret) { 987 edac_printk(KERN_ERR, EDAC_DEVICE, 988 "ECC: cannot init %s PORTA memory\n", ecc_name); 989 goto out; 990 } 991 992 if (dual_port) { 993 ret = altr_init_memory_port(ecc_block_base, 1); 994 if (ret) { 995 edac_printk(KERN_ERR, EDAC_DEVICE, 996 "ECC: cannot init %s PORTB memory\n", 997 ecc_name); 998 goto out; 999 } 1000 } 1001 1002 /* Interrupt mode set to every SBERR */ 1003 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST, 1004 ALTR_A10_ECC_INTMODE); 1005 /* Enable ECC */ 1006 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base + 1007 ALTR_A10_ECC_CTRL_OFST)); 1008 writel(ALTR_A10_ECC_SERRINTEN, 1009 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST)); 1010 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask); 1011 /* Ensure all writes complete */ 1012 wmb(); 1013 out: 1014 iounmap(ecc_block_base); 1015 return ret; 1016 } 1017 1018 static int socfpga_is_a10(void) 1019 { 1020 return of_machine_is_compatible("altr,socfpga-arria10"); 1021 } 1022 1023 static int validate_parent_available(struct device_node *np); 1024 static const struct of_device_id altr_edac_a10_device_of_match[]; 1025 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat) 1026 { 1027 int irq; 1028 struct device_node *child, *np; 1029 1030 if (!socfpga_is_a10()) 1031 return -ENODEV; 1032 1033 np = of_find_compatible_node(NULL, NULL, 1034 "altr,socfpga-a10-ecc-manager"); 1035 if (!np) { 1036 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n"); 1037 return -ENODEV; 1038 } 1039 1040 for_each_child_of_node(np, child) { 1041 const struct of_device_id *pdev_id; 1042 const struct edac_device_prv_data *prv; 1043 1044 if (!of_device_is_available(child)) 1045 continue; 1046 if (!of_device_is_compatible(child, compat)) 1047 continue; 1048 1049 if (validate_parent_available(child)) 1050 continue; 1051 1052 irq = a10_get_irq_mask(child); 1053 if (irq < 0) 1054 continue; 1055 1056 /* Get matching node and check for valid result */ 1057 pdev_id = of_match_node(altr_edac_a10_device_of_match, child); 1058 if (IS_ERR_OR_NULL(pdev_id)) 1059 continue; 1060 1061 /* Validate private data pointer before dereferencing */ 1062 prv = pdev_id->data; 1063 if (!prv) 1064 continue; 1065 1066 altr_init_a10_ecc_block(child, BIT(irq), 1067 prv->ecc_enable_mask, 0); 1068 } 1069 1070 of_node_put(np); 1071 return 0; 1072 } 1073 1074 /*********************** OCRAM EDAC Device Functions *********************/ 1075 1076 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1077 1078 static void *ocram_alloc_mem(size_t size, void **other) 1079 { 1080 struct device_node *np; 1081 struct gen_pool *gp; 1082 void *sram_addr; 1083 1084 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc"); 1085 if (!np) 1086 return NULL; 1087 1088 gp = of_gen_pool_get(np, "iram", 0); 1089 of_node_put(np); 1090 if (!gp) 1091 return NULL; 1092 1093 sram_addr = (void *)gen_pool_alloc(gp, size); 1094 if (!sram_addr) 1095 return NULL; 1096 1097 memset(sram_addr, 0, size); 1098 /* Ensure data is written out */ 1099 wmb(); 1100 1101 /* Remember this handle for freeing later */ 1102 *other = gp; 1103 1104 return sram_addr; 1105 } 1106 1107 static void ocram_free_mem(void *p, size_t size, void *other) 1108 { 1109 gen_pool_free((struct gen_pool *)other, (u32)p, size); 1110 } 1111 1112 static const struct edac_device_prv_data ocramecc_data = { 1113 .setup = altr_check_ecc_deps, 1114 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR), 1115 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR), 1116 .alloc_mem = ocram_alloc_mem, 1117 .free_mem = ocram_free_mem, 1118 .ecc_enable_mask = ALTR_OCR_ECC_EN, 1119 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET, 1120 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS), 1121 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD), 1122 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET, 1123 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE, 1124 .inject_fops = &altr_edac_device_inject_fops, 1125 }; 1126 1127 static const struct edac_device_prv_data a10_ocramecc_data = { 1128 .setup = altr_check_ecc_deps, 1129 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1130 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1131 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM, 1132 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL, 1133 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1134 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1135 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1136 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1137 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1138 .inject_fops = &altr_edac_a10_device_inject_fops, 1139 /* 1140 * OCRAM panic on uncorrectable error because sleep/resume 1141 * functions and FPGA contents are stored in OCRAM. Prefer 1142 * a kernel panic over executing/loading corrupted data. 1143 */ 1144 .panic = true, 1145 }; 1146 1147 #endif /* CONFIG_EDAC_ALTERA_OCRAM */ 1148 1149 /********************* L2 Cache EDAC Device Functions ********************/ 1150 1151 #ifdef CONFIG_EDAC_ALTERA_L2C 1152 1153 static void *l2_alloc_mem(size_t size, void **other) 1154 { 1155 struct device *dev = *other; 1156 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL); 1157 1158 if (!ptemp) 1159 return NULL; 1160 1161 /* Make sure everything is written out */ 1162 wmb(); 1163 1164 /* 1165 * Clean all cache levels up to LoC (includes L2) 1166 * This ensures the corrupted data is written into 1167 * L2 cache for readback test (which causes ECC error). 1168 */ 1169 flush_cache_all(); 1170 1171 return ptemp; 1172 } 1173 1174 static void l2_free_mem(void *p, size_t size, void *other) 1175 { 1176 struct device *dev = other; 1177 1178 if (dev && p) 1179 devm_kfree(dev, p); 1180 } 1181 1182 /* 1183 * altr_l2_check_deps() 1184 * Test for L2 cache ECC dependencies upon entry because 1185 * platform specific startup should have initialized the L2 1186 * memory and enabled the ECC. 1187 * Bail if ECC is not enabled. 1188 * Note that L2 Cache Enable is forced at build time. 1189 */ 1190 static int altr_l2_check_deps(struct altr_edac_device_dev *device) 1191 { 1192 void __iomem *base = device->base; 1193 const struct edac_device_prv_data *prv = device->data; 1194 1195 if ((readl(base) & prv->ecc_enable_mask) == 1196 prv->ecc_enable_mask) 1197 return 0; 1198 1199 edac_printk(KERN_ERR, EDAC_DEVICE, 1200 "L2: No ECC present, or ECC disabled\n"); 1201 return -ENODEV; 1202 } 1203 1204 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id) 1205 { 1206 struct altr_edac_device_dev *dci = dev_id; 1207 1208 if (irq == dci->sb_irq) { 1209 regmap_write(dci->edac->ecc_mgr_map, 1210 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1211 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB); 1212 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 1213 1214 return IRQ_HANDLED; 1215 } else if (irq == dci->db_irq) { 1216 regmap_write(dci->edac->ecc_mgr_map, 1217 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1218 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB); 1219 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 1220 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 1221 1222 return IRQ_HANDLED; 1223 } 1224 1225 WARN_ON(1); 1226 1227 return IRQ_NONE; 1228 } 1229 1230 static const struct edac_device_prv_data l2ecc_data = { 1231 .setup = altr_l2_check_deps, 1232 .ce_clear_mask = 0, 1233 .ue_clear_mask = 0, 1234 .alloc_mem = l2_alloc_mem, 1235 .free_mem = l2_free_mem, 1236 .ecc_enable_mask = ALTR_L2_ECC_EN, 1237 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS), 1238 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD), 1239 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET, 1240 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1241 .inject_fops = &altr_edac_device_inject_fops, 1242 }; 1243 1244 static const struct edac_device_prv_data a10_l2ecc_data = { 1245 .setup = altr_l2_check_deps, 1246 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR, 1247 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR, 1248 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2, 1249 .alloc_mem = l2_alloc_mem, 1250 .free_mem = l2_free_mem, 1251 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL, 1252 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK, 1253 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK, 1254 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST, 1255 .ecc_irq_handler = altr_edac_a10_l2_irq, 1256 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1257 .inject_fops = &altr_edac_device_inject_fops, 1258 }; 1259 1260 #endif /* CONFIG_EDAC_ALTERA_L2C */ 1261 1262 /********************* Ethernet Device Functions ********************/ 1263 1264 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1265 1266 static const struct edac_device_prv_data a10_enetecc_data = { 1267 .setup = altr_check_ecc_deps, 1268 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1269 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1270 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1271 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1272 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1273 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1274 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1275 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1276 .inject_fops = &altr_edac_a10_device_inject_fops, 1277 }; 1278 1279 static int __init socfpga_init_ethernet_ecc(void) 1280 { 1281 return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc"); 1282 } 1283 1284 early_initcall(socfpga_init_ethernet_ecc); 1285 1286 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */ 1287 1288 /********************** NAND Device Functions **********************/ 1289 1290 #ifdef CONFIG_EDAC_ALTERA_NAND 1291 1292 static const struct edac_device_prv_data a10_nandecc_data = { 1293 .setup = altr_check_ecc_deps, 1294 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1295 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1296 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1297 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1298 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1299 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1300 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1301 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1302 .inject_fops = &altr_edac_a10_device_inject_fops, 1303 }; 1304 1305 static int __init socfpga_init_nand_ecc(void) 1306 { 1307 return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc"); 1308 } 1309 1310 early_initcall(socfpga_init_nand_ecc); 1311 1312 #endif /* CONFIG_EDAC_ALTERA_NAND */ 1313 1314 /********************** DMA Device Functions **********************/ 1315 1316 #ifdef CONFIG_EDAC_ALTERA_DMA 1317 1318 static const struct edac_device_prv_data a10_dmaecc_data = { 1319 .setup = altr_check_ecc_deps, 1320 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1321 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1322 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1323 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1324 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1325 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1326 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1327 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1328 .inject_fops = &altr_edac_a10_device_inject_fops, 1329 }; 1330 1331 static int __init socfpga_init_dma_ecc(void) 1332 { 1333 return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc"); 1334 } 1335 1336 early_initcall(socfpga_init_dma_ecc); 1337 1338 #endif /* CONFIG_EDAC_ALTERA_DMA */ 1339 1340 /********************** USB Device Functions **********************/ 1341 1342 #ifdef CONFIG_EDAC_ALTERA_USB 1343 1344 static const struct edac_device_prv_data a10_usbecc_data = { 1345 .setup = altr_check_ecc_deps, 1346 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1347 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1348 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1349 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1350 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1351 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1352 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1353 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1354 .inject_fops = &altr_edac_a10_device_inject_fops, 1355 }; 1356 1357 static int __init socfpga_init_usb_ecc(void) 1358 { 1359 return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc"); 1360 } 1361 1362 early_initcall(socfpga_init_usb_ecc); 1363 1364 #endif /* CONFIG_EDAC_ALTERA_USB */ 1365 1366 /********************** QSPI Device Functions **********************/ 1367 1368 #ifdef CONFIG_EDAC_ALTERA_QSPI 1369 1370 static const struct edac_device_prv_data a10_qspiecc_data = { 1371 .setup = altr_check_ecc_deps, 1372 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1373 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1374 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1375 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1376 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1377 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1378 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1379 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1380 .inject_fops = &altr_edac_a10_device_inject_fops, 1381 }; 1382 1383 static int __init socfpga_init_qspi_ecc(void) 1384 { 1385 return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc"); 1386 } 1387 1388 early_initcall(socfpga_init_qspi_ecc); 1389 1390 #endif /* CONFIG_EDAC_ALTERA_QSPI */ 1391 1392 /********************* SDMMC Device Functions **********************/ 1393 1394 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1395 1396 static const struct edac_device_prv_data a10_sdmmceccb_data; 1397 static int altr_portb_setup(struct altr_edac_device_dev *device) 1398 { 1399 struct edac_device_ctl_info *dci; 1400 struct altr_edac_device_dev *altdev; 1401 char *ecc_name = "sdmmcb-ecc"; 1402 int edac_idx, rc; 1403 struct device_node *np; 1404 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data; 1405 1406 rc = altr_check_ecc_deps(device); 1407 if (rc) 1408 return rc; 1409 1410 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1411 if (!np) { 1412 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); 1413 return -ENODEV; 1414 } 1415 1416 /* Create the PortB EDAC device */ 1417 edac_idx = edac_device_alloc_index(); 1418 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1, 1419 ecc_name, 1, 0, NULL, 0, edac_idx); 1420 if (!dci) { 1421 edac_printk(KERN_ERR, EDAC_DEVICE, 1422 "%s: Unable to allocate PortB EDAC device\n", 1423 ecc_name); 1424 return -ENOMEM; 1425 } 1426 1427 /* Initialize the PortB EDAC device structure from PortA structure */ 1428 altdev = dci->pvt_info; 1429 *altdev = *device; 1430 1431 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL)) 1432 return -ENOMEM; 1433 1434 /* Update PortB specific values */ 1435 altdev->edac_dev_name = ecc_name; 1436 altdev->edac_idx = edac_idx; 1437 altdev->edac_dev = dci; 1438 altdev->data = prv; 1439 dci->dev = &altdev->ddev; 1440 dci->ctl_name = "Altera ECC Manager"; 1441 dci->mod_name = ecc_name; 1442 dci->dev_name = ecc_name; 1443 1444 /* Update the IRQs for PortB */ 1445 altdev->sb_irq = irq_of_parse_and_map(np, 2); 1446 if (!altdev->sb_irq) { 1447 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n"); 1448 rc = -ENODEV; 1449 goto err_release_group_1; 1450 } 1451 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq, 1452 prv->ecc_irq_handler, 1453 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1454 ecc_name, altdev); 1455 if (rc) { 1456 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n"); 1457 goto err_release_group_1; 1458 } 1459 1460 altdev->db_irq = irq_of_parse_and_map(np, 3); 1461 if (!altdev->db_irq) { 1462 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n"); 1463 rc = -ENODEV; 1464 goto err_release_group_1; 1465 } 1466 rc = devm_request_irq(&altdev->ddev, altdev->db_irq, 1467 prv->ecc_irq_handler, 1468 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1469 ecc_name, altdev); 1470 if (rc) { 1471 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n"); 1472 goto err_release_group_1; 1473 } 1474 1475 rc = edac_device_add_device(dci); 1476 if (rc) { 1477 edac_printk(KERN_ERR, EDAC_DEVICE, 1478 "edac_device_add_device portB failed\n"); 1479 rc = -ENOMEM; 1480 goto err_release_group_1; 1481 } 1482 altr_create_edacdev_dbgfs(dci, prv); 1483 1484 list_add(&altdev->next, &altdev->edac->a10_ecc_devices); 1485 1486 devres_remove_group(&altdev->ddev, altr_portb_setup); 1487 1488 return 0; 1489 1490 err_release_group_1: 1491 edac_device_free_ctl_info(dci); 1492 devres_release_group(&altdev->ddev, altr_portb_setup); 1493 edac_printk(KERN_ERR, EDAC_DEVICE, 1494 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 1495 return rc; 1496 } 1497 1498 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id) 1499 { 1500 struct altr_edac_device_dev *ad = dev_id; 1501 void __iomem *base = ad->base; 1502 const struct edac_device_prv_data *priv = ad->data; 1503 1504 if (irq == ad->sb_irq) { 1505 writel(priv->ce_clear_mask, 1506 base + ALTR_A10_ECC_INTSTAT_OFST); 1507 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name); 1508 return IRQ_HANDLED; 1509 } else if (irq == ad->db_irq) { 1510 writel(priv->ue_clear_mask, 1511 base + ALTR_A10_ECC_INTSTAT_OFST); 1512 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name); 1513 return IRQ_HANDLED; 1514 } 1515 1516 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq); 1517 1518 return IRQ_NONE; 1519 } 1520 1521 static const struct edac_device_prv_data a10_sdmmcecca_data = { 1522 .setup = altr_portb_setup, 1523 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1524 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1525 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1526 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1527 .ce_set_mask = ALTR_A10_ECC_SERRPENA, 1528 .ue_set_mask = ALTR_A10_ECC_DERRPENA, 1529 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1530 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1531 .inject_fops = &altr_edac_a10_device_inject_fops, 1532 }; 1533 1534 static const struct edac_device_prv_data a10_sdmmceccb_data = { 1535 .setup = altr_portb_setup, 1536 .ce_clear_mask = ALTR_A10_ECC_SERRPENB, 1537 .ue_clear_mask = ALTR_A10_ECC_DERRPENB, 1538 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1539 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1540 .ce_set_mask = ALTR_A10_ECC_TSERRB, 1541 .ue_set_mask = ALTR_A10_ECC_TDERRB, 1542 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1543 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb, 1544 .inject_fops = &altr_edac_a10_device_inject_fops, 1545 }; 1546 1547 static int __init socfpga_init_sdmmc_ecc(void) 1548 { 1549 int rc = -ENODEV; 1550 struct device_node *child; 1551 1552 if (!socfpga_is_a10()) 1553 return -ENODEV; 1554 1555 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1556 if (!child) { 1557 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); 1558 return -ENODEV; 1559 } 1560 1561 if (!of_device_is_available(child)) 1562 goto exit; 1563 1564 if (validate_parent_available(child)) 1565 goto exit; 1566 1567 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK, 1568 a10_sdmmcecca_data.ecc_enable_mask, 1); 1569 exit: 1570 of_node_put(child); 1571 return rc; 1572 } 1573 1574 early_initcall(socfpga_init_sdmmc_ecc); 1575 1576 #endif /* CONFIG_EDAC_ALTERA_SDMMC */ 1577 1578 /********************* Arria10 EDAC Device Functions *************************/ 1579 static const struct of_device_id altr_edac_a10_device_of_match[] = { 1580 #ifdef CONFIG_EDAC_ALTERA_L2C 1581 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data }, 1582 #endif 1583 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1584 { .compatible = "altr,socfpga-a10-ocram-ecc", 1585 .data = &a10_ocramecc_data }, 1586 #endif 1587 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1588 { .compatible = "altr,socfpga-eth-mac-ecc", 1589 .data = &a10_enetecc_data }, 1590 #endif 1591 #ifdef CONFIG_EDAC_ALTERA_NAND 1592 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data }, 1593 #endif 1594 #ifdef CONFIG_EDAC_ALTERA_DMA 1595 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data }, 1596 #endif 1597 #ifdef CONFIG_EDAC_ALTERA_USB 1598 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data }, 1599 #endif 1600 #ifdef CONFIG_EDAC_ALTERA_QSPI 1601 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data }, 1602 #endif 1603 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1604 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data }, 1605 #endif 1606 {}, 1607 }; 1608 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match); 1609 1610 /* 1611 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5 1612 * because 2 IRQs are shared among the all ECC peripherals. The ECC 1613 * manager manages the IRQs and the children. 1614 * Based on xgene_edac.c peripheral code. 1615 */ 1616 1617 static ssize_t altr_edac_a10_device_trig(struct file *file, 1618 const char __user *user_buf, 1619 size_t count, loff_t *ppos) 1620 { 1621 struct edac_device_ctl_info *edac_dci = file->private_data; 1622 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 1623 const struct edac_device_prv_data *priv = drvdata->data; 1624 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); 1625 unsigned long flags; 1626 u8 trig_type; 1627 1628 if (!user_buf || get_user(trig_type, user_buf)) 1629 return -EFAULT; 1630 1631 local_irq_save(flags); 1632 if (trig_type == ALTR_UE_TRIGGER_CHAR) 1633 writel(priv->ue_set_mask, set_addr); 1634 else 1635 writel(priv->ce_set_mask, set_addr); 1636 /* Ensure the interrupt test bits are set */ 1637 wmb(); 1638 local_irq_restore(flags); 1639 1640 return count; 1641 } 1642 1643 static void altr_edac_a10_irq_handler(struct irq_desc *desc) 1644 { 1645 int dberr, bit, sm_offset, irq_status; 1646 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc); 1647 struct irq_chip *chip = irq_desc_get_chip(desc); 1648 int irq = irq_desc_get_irq(desc); 1649 1650 dberr = (irq == edac->db_irq) ? 1 : 0; 1651 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST : 1652 A10_SYSMGR_ECC_INTSTAT_SERR_OFST; 1653 1654 chained_irq_enter(chip, desc); 1655 1656 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status); 1657 1658 for_each_set_bit(bit, (unsigned long *)&irq_status, 32) { 1659 irq = irq_linear_revmap(edac->domain, dberr * 32 + bit); 1660 if (irq) 1661 generic_handle_irq(irq); 1662 } 1663 1664 chained_irq_exit(chip, desc); 1665 } 1666 1667 static int validate_parent_available(struct device_node *np) 1668 { 1669 struct device_node *parent; 1670 int ret = 0; 1671 1672 /* Ensure parent device is enabled if parent node exists */ 1673 parent = of_parse_phandle(np, "altr,ecc-parent", 0); 1674 if (parent && !of_device_is_available(parent)) 1675 ret = -ENODEV; 1676 1677 of_node_put(parent); 1678 return ret; 1679 } 1680 1681 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac, 1682 struct device_node *np) 1683 { 1684 struct edac_device_ctl_info *dci; 1685 struct altr_edac_device_dev *altdev; 1686 char *ecc_name = (char *)np->name; 1687 struct resource res; 1688 int edac_idx; 1689 int rc = 0; 1690 const struct edac_device_prv_data *prv; 1691 /* Get matching node and check for valid result */ 1692 const struct of_device_id *pdev_id = 1693 of_match_node(altr_edac_a10_device_of_match, np); 1694 if (IS_ERR_OR_NULL(pdev_id)) 1695 return -ENODEV; 1696 1697 /* Get driver specific data for this EDAC device */ 1698 prv = pdev_id->data; 1699 if (IS_ERR_OR_NULL(prv)) 1700 return -ENODEV; 1701 1702 if (validate_parent_available(np)) 1703 return -ENODEV; 1704 1705 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL)) 1706 return -ENOMEM; 1707 1708 rc = of_address_to_resource(np, 0, &res); 1709 if (rc < 0) { 1710 edac_printk(KERN_ERR, EDAC_DEVICE, 1711 "%s: no resource address\n", ecc_name); 1712 goto err_release_group; 1713 } 1714 1715 edac_idx = edac_device_alloc_index(); 1716 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1717 1, ecc_name, 1, 0, NULL, 0, 1718 edac_idx); 1719 1720 if (!dci) { 1721 edac_printk(KERN_ERR, EDAC_DEVICE, 1722 "%s: Unable to allocate EDAC device\n", ecc_name); 1723 rc = -ENOMEM; 1724 goto err_release_group; 1725 } 1726 1727 altdev = dci->pvt_info; 1728 dci->dev = edac->dev; 1729 altdev->edac_dev_name = ecc_name; 1730 altdev->edac_idx = edac_idx; 1731 altdev->edac = edac; 1732 altdev->edac_dev = dci; 1733 altdev->data = prv; 1734 altdev->ddev = *edac->dev; 1735 dci->dev = &altdev->ddev; 1736 dci->ctl_name = "Altera ECC Manager"; 1737 dci->mod_name = ecc_name; 1738 dci->dev_name = ecc_name; 1739 1740 altdev->base = devm_ioremap_resource(edac->dev, &res); 1741 if (IS_ERR(altdev->base)) { 1742 rc = PTR_ERR(altdev->base); 1743 goto err_release_group1; 1744 } 1745 1746 /* Check specific dependencies for the module */ 1747 if (altdev->data->setup) { 1748 rc = altdev->data->setup(altdev); 1749 if (rc) 1750 goto err_release_group1; 1751 } 1752 1753 altdev->sb_irq = irq_of_parse_and_map(np, 0); 1754 if (!altdev->sb_irq) { 1755 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n"); 1756 rc = -ENODEV; 1757 goto err_release_group1; 1758 } 1759 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler, 1760 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1761 ecc_name, altdev); 1762 if (rc) { 1763 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n"); 1764 goto err_release_group1; 1765 } 1766 1767 altdev->db_irq = irq_of_parse_and_map(np, 1); 1768 if (!altdev->db_irq) { 1769 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n"); 1770 rc = -ENODEV; 1771 goto err_release_group1; 1772 } 1773 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler, 1774 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1775 ecc_name, altdev); 1776 if (rc) { 1777 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n"); 1778 goto err_release_group1; 1779 } 1780 1781 rc = edac_device_add_device(dci); 1782 if (rc) { 1783 dev_err(edac->dev, "edac_device_add_device failed\n"); 1784 rc = -ENOMEM; 1785 goto err_release_group1; 1786 } 1787 1788 altr_create_edacdev_dbgfs(dci, prv); 1789 1790 list_add(&altdev->next, &edac->a10_ecc_devices); 1791 1792 devres_remove_group(edac->dev, altr_edac_a10_device_add); 1793 1794 return 0; 1795 1796 err_release_group1: 1797 edac_device_free_ctl_info(dci); 1798 err_release_group: 1799 devres_release_group(edac->dev, NULL); 1800 edac_printk(KERN_ERR, EDAC_DEVICE, 1801 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 1802 1803 return rc; 1804 } 1805 1806 static void a10_eccmgr_irq_mask(struct irq_data *d) 1807 { 1808 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 1809 1810 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, 1811 BIT(d->hwirq)); 1812 } 1813 1814 static void a10_eccmgr_irq_unmask(struct irq_data *d) 1815 { 1816 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 1817 1818 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, 1819 BIT(d->hwirq)); 1820 } 1821 1822 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq, 1823 irq_hw_number_t hwirq) 1824 { 1825 struct altr_arria10_edac *edac = d->host_data; 1826 1827 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq); 1828 irq_set_chip_data(irq, edac); 1829 irq_set_noprobe(irq); 1830 1831 return 0; 1832 } 1833 1834 static const struct irq_domain_ops a10_eccmgr_ic_ops = { 1835 .map = a10_eccmgr_irqdomain_map, 1836 .xlate = irq_domain_xlate_twocell, 1837 }; 1838 1839 static int altr_edac_a10_probe(struct platform_device *pdev) 1840 { 1841 struct altr_arria10_edac *edac; 1842 struct device_node *child; 1843 1844 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL); 1845 if (!edac) 1846 return -ENOMEM; 1847 1848 edac->dev = &pdev->dev; 1849 platform_set_drvdata(pdev, edac); 1850 INIT_LIST_HEAD(&edac->a10_ecc_devices); 1851 1852 edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 1853 "altr,sysmgr-syscon"); 1854 if (IS_ERR(edac->ecc_mgr_map)) { 1855 edac_printk(KERN_ERR, EDAC_DEVICE, 1856 "Unable to get syscon altr,sysmgr-syscon\n"); 1857 return PTR_ERR(edac->ecc_mgr_map); 1858 } 1859 1860 edac->irq_chip.name = pdev->dev.of_node->name; 1861 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask; 1862 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask; 1863 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64, 1864 &a10_eccmgr_ic_ops, edac); 1865 if (!edac->domain) { 1866 dev_err(&pdev->dev, "Error adding IRQ domain\n"); 1867 return -ENOMEM; 1868 } 1869 1870 edac->sb_irq = platform_get_irq(pdev, 0); 1871 if (edac->sb_irq < 0) { 1872 dev_err(&pdev->dev, "No SBERR IRQ resource\n"); 1873 return edac->sb_irq; 1874 } 1875 1876 irq_set_chained_handler_and_data(edac->sb_irq, 1877 altr_edac_a10_irq_handler, 1878 edac); 1879 1880 edac->db_irq = platform_get_irq(pdev, 1); 1881 if (edac->db_irq < 0) { 1882 dev_err(&pdev->dev, "No DBERR IRQ resource\n"); 1883 return edac->db_irq; 1884 } 1885 irq_set_chained_handler_and_data(edac->db_irq, 1886 altr_edac_a10_irq_handler, 1887 edac); 1888 1889 for_each_child_of_node(pdev->dev.of_node, child) { 1890 if (!of_device_is_available(child)) 1891 continue; 1892 1893 if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") || 1894 of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") || 1895 of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") || 1896 of_device_is_compatible(child, "altr,socfpga-nand-ecc") || 1897 of_device_is_compatible(child, "altr,socfpga-dma-ecc") || 1898 of_device_is_compatible(child, "altr,socfpga-usb-ecc") || 1899 of_device_is_compatible(child, "altr,socfpga-qspi-ecc") || 1900 of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc")) 1901 1902 altr_edac_a10_device_add(edac, child); 1903 1904 else if (of_device_is_compatible(child, "altr,sdram-edac-a10")) 1905 of_platform_populate(pdev->dev.of_node, 1906 altr_sdram_ctrl_of_match, 1907 NULL, &pdev->dev); 1908 } 1909 1910 return 0; 1911 } 1912 1913 static const struct of_device_id altr_edac_a10_of_match[] = { 1914 { .compatible = "altr,socfpga-a10-ecc-manager" }, 1915 {}, 1916 }; 1917 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match); 1918 1919 static struct platform_driver altr_edac_a10_driver = { 1920 .probe = altr_edac_a10_probe, 1921 .driver = { 1922 .name = "socfpga_a10_ecc_manager", 1923 .of_match_table = altr_edac_a10_of_match, 1924 }, 1925 }; 1926 module_platform_driver(altr_edac_a10_driver); 1927 1928 MODULE_LICENSE("GPL v2"); 1929 MODULE_AUTHOR("Thor Thayer"); 1930 MODULE_DESCRIPTION("EDAC Driver for Altera Memories"); 1931