1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017-2018, Intel Corporation. All rights reserved 4 * Copyright Altera Corporation (C) 2014-2016. All rights reserved. 5 * Copyright 2011-2012 Calxeda, Inc. 6 */ 7 8 #include <asm/cacheflush.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/edac.h> 12 #include <linux/firmware/intel/stratix10-smc.h> 13 #include <linux/genalloc.h> 14 #include <linux/interrupt.h> 15 #include <linux/irqchip/chained_irq.h> 16 #include <linux/kernel.h> 17 #include <linux/mfd/altera-sysmgr.h> 18 #include <linux/mfd/syscon.h> 19 #include <linux/notifier.h> 20 #include <linux/of_address.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_platform.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/platform_device.h> 25 #include <linux/property.h> 26 #include <linux/regmap.h> 27 #include <linux/types.h> 28 #include <linux/uaccess.h> 29 30 #include "altera_edac.h" 31 #include "edac_module.h" 32 33 #define EDAC_MOD_STR "altera_edac" 34 #define EDAC_DEVICE "Altera" 35 36 #ifdef CONFIG_EDAC_ALTERA_SDRAM 37 static const struct altr_sdram_prv_data c5_data = { 38 .ecc_ctrl_offset = CV_CTLCFG_OFST, 39 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN, 40 .ecc_stat_offset = CV_DRAMSTS_OFST, 41 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR, 42 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR, 43 .ecc_saddr_offset = CV_ERRADDR_OFST, 44 .ecc_daddr_offset = CV_ERRADDR_OFST, 45 .ecc_cecnt_offset = CV_SBECOUNT_OFST, 46 .ecc_uecnt_offset = CV_DBECOUNT_OFST, 47 .ecc_irq_en_offset = CV_DRAMINTR_OFST, 48 .ecc_irq_en_mask = CV_DRAMINTR_INTREN, 49 .ecc_irq_clr_offset = CV_DRAMINTR_OFST, 50 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN), 51 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST, 52 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR, 53 .ce_ue_trgr_offset = CV_CTLCFG_OFST, 54 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR, 55 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR, 56 }; 57 58 static const struct altr_sdram_prv_data a10_data = { 59 .ecc_ctrl_offset = A10_ECCCTRL1_OFST, 60 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN, 61 .ecc_stat_offset = A10_INTSTAT_OFST, 62 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR, 63 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR, 64 .ecc_saddr_offset = A10_SERRADDR_OFST, 65 .ecc_daddr_offset = A10_DERRADDR_OFST, 66 .ecc_irq_en_offset = A10_ERRINTEN_OFST, 67 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK, 68 .ecc_irq_clr_offset = A10_INTSTAT_OFST, 69 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR), 70 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST, 71 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK, 72 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST, 73 .ce_set_mask = A10_DIAGINT_TSERRA_MASK, 74 .ue_set_mask = A10_DIAGINT_TDERRA_MASK, 75 }; 76 77 /*********************** EDAC Memory Controller Functions ****************/ 78 79 /* The SDRAM controller uses the EDAC Memory Controller framework. */ 80 81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id) 82 { 83 struct mem_ctl_info *mci = dev_id; 84 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 85 const struct altr_sdram_prv_data *priv = drvdata->data; 86 u32 status, err_count = 1, err_addr; 87 88 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status); 89 90 if (status & priv->ecc_stat_ue_mask) { 91 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset, 92 &err_addr); 93 if (priv->ecc_uecnt_offset) 94 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset, 95 &err_count); 96 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n", 97 err_count, err_addr); 98 } 99 if (status & priv->ecc_stat_ce_mask) { 100 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset, 101 &err_addr); 102 if (priv->ecc_uecnt_offset) 103 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset, 104 &err_count); 105 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count, 106 err_addr >> PAGE_SHIFT, 107 err_addr & ~PAGE_MASK, 0, 108 0, 0, -1, mci->ctl_name, ""); 109 /* Clear IRQ to resume */ 110 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset, 111 priv->ecc_irq_clr_mask); 112 113 return IRQ_HANDLED; 114 } 115 return IRQ_NONE; 116 } 117 118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file, 119 const char __user *data, 120 size_t count, loff_t *ppos) 121 { 122 struct mem_ctl_info *mci = file->private_data; 123 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 124 const struct altr_sdram_prv_data *priv = drvdata->data; 125 u32 *ptemp; 126 dma_addr_t dma_handle; 127 u32 reg, read_reg; 128 129 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL); 130 if (!ptemp) { 131 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); 132 edac_printk(KERN_ERR, EDAC_MC, 133 "Inject: Buffer Allocation error\n"); 134 return -ENOMEM; 135 } 136 137 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 138 &read_reg); 139 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask); 140 141 /* Error are injected by writing a word while the SBE or DBE 142 * bit in the CTLCFG register is set. Reading the word will 143 * trigger the SBE or DBE error and the corresponding IRQ. 144 */ 145 if (count == 3) { 146 edac_printk(KERN_ALERT, EDAC_MC, 147 "Inject Double bit error\n"); 148 local_irq_disable(); 149 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 150 (read_reg | priv->ue_set_mask)); 151 local_irq_enable(); 152 } else { 153 edac_printk(KERN_ALERT, EDAC_MC, 154 "Inject Single bit error\n"); 155 local_irq_disable(); 156 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 157 (read_reg | priv->ce_set_mask)); 158 local_irq_enable(); 159 } 160 161 ptemp[0] = 0x5A5A5A5A; 162 ptemp[1] = 0xA5A5A5A5; 163 164 /* Clear the error injection bits */ 165 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg); 166 /* Ensure it has been written out */ 167 wmb(); 168 169 /* 170 * To trigger the error, we need to read the data back 171 * (the data was written with errors above). 172 * The READ_ONCE macros and printk are used to prevent the 173 * the compiler optimizing these reads out. 174 */ 175 reg = READ_ONCE(ptemp[0]); 176 read_reg = READ_ONCE(ptemp[1]); 177 /* Force Read */ 178 rmb(); 179 180 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n", 181 reg, read_reg); 182 183 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); 184 185 return count; 186 } 187 188 static const struct file_operations altr_sdr_mc_debug_inject_fops = { 189 .open = simple_open, 190 .write = altr_sdr_mc_err_inject_write, 191 .llseek = generic_file_llseek, 192 }; 193 194 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci) 195 { 196 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 197 return; 198 199 if (!mci->debugfs) 200 return; 201 202 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci, 203 &altr_sdr_mc_debug_inject_fops); 204 } 205 206 /* Get total memory size from Open Firmware DTB */ 207 static unsigned long get_total_mem(void) 208 { 209 struct device_node *np = NULL; 210 struct resource res; 211 int ret; 212 unsigned long total_mem = 0; 213 214 for_each_node_by_type(np, "memory") { 215 ret = of_address_to_resource(np, 0, &res); 216 if (ret) 217 continue; 218 219 total_mem += resource_size(&res); 220 } 221 edac_dbg(0, "total_mem 0x%lx\n", total_mem); 222 return total_mem; 223 } 224 225 static const struct of_device_id altr_sdram_ctrl_of_match[] = { 226 { .compatible = "altr,sdram-edac", .data = &c5_data}, 227 { .compatible = "altr,sdram-edac-a10", .data = &a10_data}, 228 {}, 229 }; 230 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match); 231 232 static int a10_init(struct regmap *mc_vbase) 233 { 234 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST, 235 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) { 236 edac_printk(KERN_ERR, EDAC_MC, 237 "Error setting SB IRQ mode\n"); 238 return -ENODEV; 239 } 240 241 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) { 242 edac_printk(KERN_ERR, EDAC_MC, 243 "Error setting trigger count\n"); 244 return -ENODEV; 245 } 246 247 return 0; 248 } 249 250 static int a10_unmask_irq(struct platform_device *pdev, u32 mask) 251 { 252 void __iomem *sm_base; 253 int ret = 0; 254 255 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32), 256 dev_name(&pdev->dev))) { 257 edac_printk(KERN_ERR, EDAC_MC, 258 "Unable to request mem region\n"); 259 return -EBUSY; 260 } 261 262 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 263 if (!sm_base) { 264 edac_printk(KERN_ERR, EDAC_MC, 265 "Unable to ioremap device\n"); 266 267 ret = -ENOMEM; 268 goto release; 269 } 270 271 iowrite32(mask, sm_base); 272 273 iounmap(sm_base); 274 275 release: 276 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 277 278 return ret; 279 } 280 281 static int altr_sdram_probe(struct platform_device *pdev) 282 { 283 struct edac_mc_layer layers[2]; 284 struct mem_ctl_info *mci; 285 struct altr_sdram_mc_data *drvdata; 286 const struct altr_sdram_prv_data *priv; 287 struct regmap *mc_vbase; 288 struct dimm_info *dimm; 289 u32 read_reg; 290 int irq, irq2, res = 0; 291 unsigned long mem_size, irqflags = 0; 292 293 /* Grab the register range from the sdr controller in device tree */ 294 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 295 "altr,sdr-syscon"); 296 if (IS_ERR(mc_vbase)) { 297 edac_printk(KERN_ERR, EDAC_MC, 298 "regmap for altr,sdr-syscon lookup failed.\n"); 299 return -ENODEV; 300 } 301 302 /* Check specific dependencies for the module */ 303 priv = device_get_match_data(&pdev->dev); 304 305 /* Validate the SDRAM controller has ECC enabled */ 306 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) || 307 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) { 308 edac_printk(KERN_ERR, EDAC_MC, 309 "No ECC/ECC disabled [0x%08X]\n", read_reg); 310 return -ENODEV; 311 } 312 313 /* Grab memory size from device tree. */ 314 mem_size = get_total_mem(); 315 if (!mem_size) { 316 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n"); 317 return -ENODEV; 318 } 319 320 /* Ensure the SDRAM Interrupt is disabled */ 321 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset, 322 priv->ecc_irq_en_mask, 0)) { 323 edac_printk(KERN_ERR, EDAC_MC, 324 "Error disabling SDRAM ECC IRQ\n"); 325 return -ENODEV; 326 } 327 328 /* Toggle to clear the SDRAM Error count */ 329 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 330 priv->ecc_cnt_rst_mask, 331 priv->ecc_cnt_rst_mask)) { 332 edac_printk(KERN_ERR, EDAC_MC, 333 "Error clearing SDRAM ECC count\n"); 334 return -ENODEV; 335 } 336 337 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 338 priv->ecc_cnt_rst_mask, 0)) { 339 edac_printk(KERN_ERR, EDAC_MC, 340 "Error clearing SDRAM ECC count\n"); 341 return -ENODEV; 342 } 343 344 irq = platform_get_irq(pdev, 0); 345 if (irq < 0) { 346 edac_printk(KERN_ERR, EDAC_MC, 347 "No irq %d in DT\n", irq); 348 return irq; 349 } 350 351 /* Arria10 has a 2nd IRQ */ 352 irq2 = platform_get_irq(pdev, 1); 353 354 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 355 layers[0].size = 1; 356 layers[0].is_virt_csrow = true; 357 layers[1].type = EDAC_MC_LAYER_CHANNEL; 358 layers[1].size = 1; 359 layers[1].is_virt_csrow = false; 360 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 361 sizeof(struct altr_sdram_mc_data)); 362 if (!mci) 363 return -ENOMEM; 364 365 mci->pdev = &pdev->dev; 366 drvdata = mci->pvt_info; 367 drvdata->mc_vbase = mc_vbase; 368 drvdata->data = priv; 369 platform_set_drvdata(pdev, mci); 370 371 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 372 edac_printk(KERN_ERR, EDAC_MC, 373 "Unable to get managed device resource\n"); 374 res = -ENOMEM; 375 goto free; 376 } 377 378 mci->mtype_cap = MEM_FLAG_DDR3; 379 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; 380 mci->edac_cap = EDAC_FLAG_SECDED; 381 mci->mod_name = EDAC_MOD_STR; 382 mci->ctl_name = dev_name(&pdev->dev); 383 mci->scrub_mode = SCRUB_SW_SRC; 384 mci->dev_name = dev_name(&pdev->dev); 385 386 dimm = *mci->dimms; 387 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1; 388 dimm->grain = 8; 389 dimm->dtype = DEV_X8; 390 dimm->mtype = MEM_DDR3; 391 dimm->edac_mode = EDAC_SECDED; 392 393 res = edac_mc_add_mc(mci); 394 if (res < 0) 395 goto err; 396 397 /* Only the Arria10 has separate IRQs */ 398 if (of_machine_is_compatible("altr,socfpga-arria10")) { 399 /* Arria10 specific initialization */ 400 res = a10_init(mc_vbase); 401 if (res < 0) 402 goto err2; 403 404 res = devm_request_irq(&pdev->dev, irq2, 405 altr_sdram_mc_err_handler, 406 IRQF_SHARED, dev_name(&pdev->dev), mci); 407 if (res < 0) { 408 edac_mc_printk(mci, KERN_ERR, 409 "Unable to request irq %d\n", irq2); 410 res = -ENODEV; 411 goto err2; 412 } 413 414 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK); 415 if (res < 0) 416 goto err2; 417 418 irqflags = IRQF_SHARED; 419 } 420 421 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler, 422 irqflags, dev_name(&pdev->dev), mci); 423 if (res < 0) { 424 edac_mc_printk(mci, KERN_ERR, 425 "Unable to request irq %d\n", irq); 426 res = -ENODEV; 427 goto err2; 428 } 429 430 /* Infrastructure ready - enable the IRQ */ 431 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset, 432 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) { 433 edac_mc_printk(mci, KERN_ERR, 434 "Error enabling SDRAM ECC IRQ\n"); 435 res = -ENODEV; 436 goto err2; 437 } 438 439 altr_sdr_mc_create_debugfs_nodes(mci); 440 441 devres_close_group(&pdev->dev, NULL); 442 443 return 0; 444 445 err2: 446 edac_mc_del_mc(&pdev->dev); 447 err: 448 devres_release_group(&pdev->dev, NULL); 449 free: 450 edac_mc_free(mci); 451 edac_printk(KERN_ERR, EDAC_MC, 452 "EDAC Probe Failed; Error %d\n", res); 453 454 return res; 455 } 456 457 static void altr_sdram_remove(struct platform_device *pdev) 458 { 459 struct mem_ctl_info *mci = platform_get_drvdata(pdev); 460 461 edac_mc_del_mc(&pdev->dev); 462 edac_mc_free(mci); 463 platform_set_drvdata(pdev, NULL); 464 } 465 466 /* 467 * If you want to suspend, need to disable EDAC by removing it 468 * from the device tree or defconfig. 469 */ 470 #ifdef CONFIG_PM 471 static int altr_sdram_prepare(struct device *dev) 472 { 473 pr_err("Suspend not allowed when EDAC is enabled.\n"); 474 475 return -EPERM; 476 } 477 478 static const struct dev_pm_ops altr_sdram_pm_ops = { 479 .prepare = altr_sdram_prepare, 480 }; 481 #endif 482 483 static struct platform_driver altr_sdram_edac_driver = { 484 .probe = altr_sdram_probe, 485 .remove = altr_sdram_remove, 486 .driver = { 487 .name = "altr_sdram_edac", 488 #ifdef CONFIG_PM 489 .pm = &altr_sdram_pm_ops, 490 #endif 491 .of_match_table = altr_sdram_ctrl_of_match, 492 }, 493 }; 494 495 module_platform_driver(altr_sdram_edac_driver); 496 497 #endif /* CONFIG_EDAC_ALTERA_SDRAM */ 498 499 /************************* EDAC Parent Probe *************************/ 500 501 static const struct of_device_id altr_edac_device_of_match[]; 502 503 static const struct of_device_id altr_edac_of_match[] = { 504 { .compatible = "altr,socfpga-ecc-manager" }, 505 {}, 506 }; 507 MODULE_DEVICE_TABLE(of, altr_edac_of_match); 508 509 static int altr_edac_probe(struct platform_device *pdev) 510 { 511 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match, 512 NULL, &pdev->dev); 513 return 0; 514 } 515 516 static struct platform_driver altr_edac_driver = { 517 .probe = altr_edac_probe, 518 .driver = { 519 .name = "socfpga_ecc_manager", 520 .of_match_table = altr_edac_of_match, 521 }, 522 }; 523 module_platform_driver(altr_edac_driver); 524 525 /************************* EDAC Device Functions *************************/ 526 527 /* 528 * EDAC Device Functions (shared between various IPs). 529 * The discrete memories use the EDAC Device framework. The probe 530 * and error handling functions are very similar between memories 531 * so they are shared. The memory allocation and freeing for EDAC 532 * trigger testing are different for each memory. 533 */ 534 535 #ifdef CONFIG_EDAC_ALTERA_OCRAM 536 static const struct edac_device_prv_data ocramecc_data; 537 #endif 538 #ifdef CONFIG_EDAC_ALTERA_L2C 539 static const struct edac_device_prv_data l2ecc_data; 540 #endif 541 #ifdef CONFIG_EDAC_ALTERA_OCRAM 542 static const struct edac_device_prv_data a10_ocramecc_data; 543 #endif 544 #ifdef CONFIG_EDAC_ALTERA_L2C 545 static const struct edac_device_prv_data a10_l2ecc_data; 546 #endif 547 548 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id) 549 { 550 irqreturn_t ret_value = IRQ_NONE; 551 struct edac_device_ctl_info *dci = dev_id; 552 struct altr_edac_device_dev *drvdata = dci->pvt_info; 553 const struct edac_device_prv_data *priv = drvdata->data; 554 555 if (irq == drvdata->sb_irq) { 556 if (priv->ce_clear_mask) 557 writel(priv->ce_clear_mask, drvdata->base); 558 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name); 559 ret_value = IRQ_HANDLED; 560 } else if (irq == drvdata->db_irq) { 561 if (priv->ue_clear_mask) 562 writel(priv->ue_clear_mask, drvdata->base); 563 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name); 564 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 565 ret_value = IRQ_HANDLED; 566 } else { 567 WARN_ON(1); 568 } 569 570 return ret_value; 571 } 572 573 static ssize_t __maybe_unused 574 altr_edac_device_trig(struct file *file, const char __user *user_buf, 575 size_t count, loff_t *ppos) 576 577 { 578 u32 *ptemp, i, error_mask; 579 int result = 0; 580 u8 trig_type; 581 unsigned long flags; 582 struct edac_device_ctl_info *edac_dci = file->private_data; 583 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 584 const struct edac_device_prv_data *priv = drvdata->data; 585 void *generic_ptr = edac_dci->dev; 586 587 if (!user_buf || get_user(trig_type, user_buf)) 588 return -EFAULT; 589 590 if (!priv->alloc_mem) 591 return -ENOMEM; 592 593 /* 594 * Note that generic_ptr is initialized to the device * but in 595 * some alloc_functions, this is overridden and returns data. 596 */ 597 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr); 598 if (!ptemp) { 599 edac_printk(KERN_ERR, EDAC_DEVICE, 600 "Inject: Buffer Allocation error\n"); 601 return -ENOMEM; 602 } 603 604 if (trig_type == ALTR_UE_TRIGGER_CHAR) 605 error_mask = priv->ue_set_mask; 606 else 607 error_mask = priv->ce_set_mask; 608 609 edac_printk(KERN_ALERT, EDAC_DEVICE, 610 "Trigger Error Mask (0x%X)\n", error_mask); 611 612 local_irq_save(flags); 613 /* write ECC corrupted data out. */ 614 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) { 615 /* Read data so we're in the correct state */ 616 rmb(); 617 if (READ_ONCE(ptemp[i])) 618 result = -1; 619 /* Toggle Error bit (it is latched), leave ECC enabled */ 620 writel(error_mask, (drvdata->base + priv->set_err_ofst)); 621 writel(priv->ecc_enable_mask, (drvdata->base + 622 priv->set_err_ofst)); 623 ptemp[i] = i; 624 } 625 /* Ensure it has been written out */ 626 wmb(); 627 local_irq_restore(flags); 628 629 if (result) 630 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n"); 631 632 /* Read out written data. ECC error caused here */ 633 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++) 634 if (READ_ONCE(ptemp[i]) != i) 635 edac_printk(KERN_ERR, EDAC_DEVICE, 636 "Read doesn't match written data\n"); 637 638 if (priv->free_mem) 639 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr); 640 641 return count; 642 } 643 644 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = { 645 .open = simple_open, 646 .write = altr_edac_device_trig, 647 .llseek = generic_file_llseek, 648 }; 649 650 static ssize_t __maybe_unused 651 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, 652 size_t count, loff_t *ppos); 653 654 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = { 655 .open = simple_open, 656 .write = altr_edac_a10_device_trig, 657 .llseek = generic_file_llseek, 658 }; 659 660 static ssize_t __maybe_unused 661 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, 662 size_t count, loff_t *ppos); 663 664 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = { 665 .open = simple_open, 666 .write = altr_edac_a10_device_trig2, 667 .llseek = generic_file_llseek, 668 }; 669 670 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci, 671 const struct edac_device_prv_data *priv) 672 { 673 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 674 675 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 676 return; 677 678 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name); 679 if (!drvdata->debugfs_dir) 680 return; 681 682 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR, 683 drvdata->debugfs_dir, edac_dci, 684 priv->inject_fops)) 685 debugfs_remove_recursive(drvdata->debugfs_dir); 686 } 687 688 static const struct of_device_id altr_edac_device_of_match[] = { 689 #ifdef CONFIG_EDAC_ALTERA_L2C 690 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data }, 691 #endif 692 #ifdef CONFIG_EDAC_ALTERA_OCRAM 693 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data }, 694 #endif 695 {}, 696 }; 697 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match); 698 699 /* 700 * altr_edac_device_probe() 701 * This is a generic EDAC device driver that will support 702 * various Altera memory devices such as the L2 cache ECC and 703 * OCRAM ECC as well as the memories for other peripherals. 704 * Module specific initialization is done by passing the 705 * function index in the device tree. 706 */ 707 static int altr_edac_device_probe(struct platform_device *pdev) 708 { 709 struct edac_device_ctl_info *dci; 710 struct altr_edac_device_dev *drvdata; 711 struct resource *r; 712 int res = 0; 713 struct device_node *np = pdev->dev.of_node; 714 char *ecc_name = (char *)np->name; 715 static int dev_instance; 716 717 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 718 edac_printk(KERN_ERR, EDAC_DEVICE, 719 "Unable to open devm\n"); 720 return -ENOMEM; 721 } 722 723 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 724 if (!r) { 725 edac_printk(KERN_ERR, EDAC_DEVICE, 726 "Unable to get mem resource\n"); 727 res = -ENODEV; 728 goto fail; 729 } 730 731 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r), 732 dev_name(&pdev->dev))) { 733 edac_printk(KERN_ERR, EDAC_DEVICE, 734 "%s:Error requesting mem region\n", ecc_name); 735 res = -EBUSY; 736 goto fail; 737 } 738 739 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name, 740 1, ecc_name, 1, 0, dev_instance++); 741 742 if (!dci) { 743 edac_printk(KERN_ERR, EDAC_DEVICE, 744 "%s: Unable to allocate EDAC device\n", ecc_name); 745 res = -ENOMEM; 746 goto fail; 747 } 748 749 drvdata = dci->pvt_info; 750 dci->dev = &pdev->dev; 751 platform_set_drvdata(pdev, dci); 752 drvdata->edac_dev_name = ecc_name; 753 754 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r)); 755 if (!drvdata->base) { 756 res = -ENOMEM; 757 goto fail1; 758 } 759 760 /* Get driver specific data for this EDAC device */ 761 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data; 762 763 /* Check specific dependencies for the module */ 764 if (drvdata->data->setup) { 765 res = drvdata->data->setup(drvdata); 766 if (res) 767 goto fail1; 768 } 769 770 drvdata->sb_irq = platform_get_irq(pdev, 0); 771 res = devm_request_irq(&pdev->dev, drvdata->sb_irq, 772 altr_edac_device_handler, 773 0, dev_name(&pdev->dev), dci); 774 if (res) 775 goto fail1; 776 777 drvdata->db_irq = platform_get_irq(pdev, 1); 778 res = devm_request_irq(&pdev->dev, drvdata->db_irq, 779 altr_edac_device_handler, 780 0, dev_name(&pdev->dev), dci); 781 if (res) 782 goto fail1; 783 784 dci->mod_name = "Altera ECC Manager"; 785 dci->dev_name = drvdata->edac_dev_name; 786 787 res = edac_device_add_device(dci); 788 if (res) 789 goto fail1; 790 791 altr_create_edacdev_dbgfs(dci, drvdata->data); 792 793 devres_close_group(&pdev->dev, NULL); 794 795 return 0; 796 797 fail1: 798 edac_device_free_ctl_info(dci); 799 fail: 800 devres_release_group(&pdev->dev, NULL); 801 edac_printk(KERN_ERR, EDAC_DEVICE, 802 "%s:Error setting up EDAC device: %d\n", ecc_name, res); 803 804 return res; 805 } 806 807 static void altr_edac_device_remove(struct platform_device *pdev) 808 { 809 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev); 810 struct altr_edac_device_dev *drvdata = dci->pvt_info; 811 812 debugfs_remove_recursive(drvdata->debugfs_dir); 813 edac_device_del_device(&pdev->dev); 814 edac_device_free_ctl_info(dci); 815 } 816 817 static struct platform_driver altr_edac_device_driver = { 818 .probe = altr_edac_device_probe, 819 .remove = altr_edac_device_remove, 820 .driver = { 821 .name = "altr_edac_device", 822 .of_match_table = altr_edac_device_of_match, 823 }, 824 }; 825 module_platform_driver(altr_edac_device_driver); 826 827 /******************* Arria10 Device ECC Shared Functions *****************/ 828 829 /* 830 * Test for memory's ECC dependencies upon entry because platform specific 831 * startup should have initialized the memory and enabled the ECC. 832 * Can't turn on ECC here because accessing un-initialized memory will 833 * cause CE/UE errors possibly causing an ABORT. 834 */ 835 static int __maybe_unused 836 altr_check_ecc_deps(struct altr_edac_device_dev *device) 837 { 838 void __iomem *base = device->base; 839 const struct edac_device_prv_data *prv = device->data; 840 841 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask) 842 return 0; 843 844 edac_printk(KERN_ERR, EDAC_DEVICE, 845 "%s: No ECC present or ECC disabled.\n", 846 device->edac_dev_name); 847 return -ENODEV; 848 } 849 850 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id) 851 { 852 struct altr_edac_device_dev *dci = dev_id; 853 void __iomem *base = dci->base; 854 855 if (irq == dci->sb_irq) { 856 writel(ALTR_A10_ECC_SERRPENA, 857 base + ALTR_A10_ECC_INTSTAT_OFST); 858 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 859 860 return IRQ_HANDLED; 861 } else if (irq == dci->db_irq) { 862 writel(ALTR_A10_ECC_DERRPENA, 863 base + ALTR_A10_ECC_INTSTAT_OFST); 864 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 865 if (dci->data->panic) 866 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 867 868 return IRQ_HANDLED; 869 } 870 871 WARN_ON(1); 872 873 return IRQ_NONE; 874 } 875 876 /******************* Arria10 Memory Buffer Functions *********************/ 877 878 static inline int a10_get_irq_mask(struct device_node *np) 879 { 880 int irq; 881 const u32 *handle = of_get_property(np, "interrupts", NULL); 882 883 if (!handle) 884 return -ENODEV; 885 irq = be32_to_cpup(handle); 886 return irq; 887 } 888 889 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr) 890 { 891 u32 value = readl(ioaddr); 892 893 value |= bit_mask; 894 writel(value, ioaddr); 895 } 896 897 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr) 898 { 899 u32 value = readl(ioaddr); 900 901 value &= ~bit_mask; 902 writel(value, ioaddr); 903 } 904 905 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr) 906 { 907 u32 value = readl(ioaddr); 908 909 return (value & bit_mask) ? 1 : 0; 910 } 911 912 /* 913 * This function uses the memory initialization block in the Arria10 ECC 914 * controller to initialize/clear the entire memory data and ECC data. 915 */ 916 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port) 917 { 918 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US; 919 u32 init_mask, stat_mask, clear_mask; 920 int ret = 0; 921 922 if (port) { 923 init_mask = ALTR_A10_ECC_INITB; 924 stat_mask = ALTR_A10_ECC_INITCOMPLETEB; 925 clear_mask = ALTR_A10_ECC_ERRPENB_MASK; 926 } else { 927 init_mask = ALTR_A10_ECC_INITA; 928 stat_mask = ALTR_A10_ECC_INITCOMPLETEA; 929 clear_mask = ALTR_A10_ECC_ERRPENA_MASK; 930 } 931 932 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST)); 933 while (limit--) { 934 if (ecc_test_bits(stat_mask, 935 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST))) 936 break; 937 udelay(1); 938 } 939 if (limit < 0) 940 ret = -EBUSY; 941 942 /* Clear any pending ECC interrupts */ 943 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST)); 944 945 return ret; 946 } 947 948 static __init int __maybe_unused 949 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask, 950 u32 ecc_ctrl_en_mask, bool dual_port) 951 { 952 int ret = 0; 953 void __iomem *ecc_block_base; 954 struct regmap *ecc_mgr_map; 955 char *ecc_name; 956 struct device_node *np_eccmgr; 957 958 ecc_name = (char *)np->name; 959 960 /* Get the ECC Manager - parent of the device EDACs */ 961 np_eccmgr = of_get_parent(np); 962 963 ecc_mgr_map = 964 altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr, 965 "altr,sysmgr-syscon"); 966 967 of_node_put(np_eccmgr); 968 if (IS_ERR(ecc_mgr_map)) { 969 edac_printk(KERN_ERR, EDAC_DEVICE, 970 "Unable to get syscon altr,sysmgr-syscon\n"); 971 return -ENODEV; 972 } 973 974 /* Map the ECC Block */ 975 ecc_block_base = of_iomap(np, 0); 976 if (!ecc_block_base) { 977 edac_printk(KERN_ERR, EDAC_DEVICE, 978 "Unable to map %s ECC block\n", ecc_name); 979 return -ENODEV; 980 } 981 982 /* Disable ECC */ 983 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask); 984 writel(ALTR_A10_ECC_SERRINTEN, 985 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST)); 986 ecc_clear_bits(ecc_ctrl_en_mask, 987 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST)); 988 /* Ensure all writes complete */ 989 wmb(); 990 /* Use HW initialization block to initialize memory for ECC */ 991 ret = altr_init_memory_port(ecc_block_base, 0); 992 if (ret) { 993 edac_printk(KERN_ERR, EDAC_DEVICE, 994 "ECC: cannot init %s PORTA memory\n", ecc_name); 995 goto out; 996 } 997 998 if (dual_port) { 999 ret = altr_init_memory_port(ecc_block_base, 1); 1000 if (ret) { 1001 edac_printk(KERN_ERR, EDAC_DEVICE, 1002 "ECC: cannot init %s PORTB memory\n", 1003 ecc_name); 1004 goto out; 1005 } 1006 } 1007 1008 /* Interrupt mode set to every SBERR */ 1009 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST, 1010 ALTR_A10_ECC_INTMODE); 1011 /* Enable ECC */ 1012 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base + 1013 ALTR_A10_ECC_CTRL_OFST)); 1014 writel(ALTR_A10_ECC_SERRINTEN, 1015 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST)); 1016 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask); 1017 /* Ensure all writes complete */ 1018 wmb(); 1019 out: 1020 iounmap(ecc_block_base); 1021 return ret; 1022 } 1023 1024 static int validate_parent_available(struct device_node *np); 1025 static const struct of_device_id altr_edac_a10_device_of_match[]; 1026 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat) 1027 { 1028 int irq; 1029 struct device_node *child, *np; 1030 1031 np = of_find_compatible_node(NULL, NULL, 1032 "altr,socfpga-a10-ecc-manager"); 1033 if (!np) { 1034 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n"); 1035 return -ENODEV; 1036 } 1037 1038 for_each_child_of_node(np, child) { 1039 const struct of_device_id *pdev_id; 1040 const struct edac_device_prv_data *prv; 1041 1042 if (!of_device_is_available(child)) 1043 continue; 1044 if (!of_device_is_compatible(child, compat)) 1045 continue; 1046 1047 if (validate_parent_available(child)) 1048 continue; 1049 1050 irq = a10_get_irq_mask(child); 1051 if (irq < 0) 1052 continue; 1053 1054 /* Get matching node and check for valid result */ 1055 pdev_id = of_match_node(altr_edac_a10_device_of_match, child); 1056 if (IS_ERR_OR_NULL(pdev_id)) 1057 continue; 1058 1059 /* Validate private data pointer before dereferencing */ 1060 prv = pdev_id->data; 1061 if (!prv) 1062 continue; 1063 1064 altr_init_a10_ecc_block(child, BIT(irq), 1065 prv->ecc_enable_mask, 0); 1066 } 1067 1068 of_node_put(np); 1069 return 0; 1070 } 1071 1072 /*********************** SDRAM EDAC Device Functions *********************/ 1073 1074 #ifdef CONFIG_EDAC_ALTERA_SDRAM 1075 1076 /* 1077 * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable 1078 * register if ECC is enabled. Linux checks the ECC Enable register to 1079 * determine ECC status. 1080 * Use an SMC call (which always works) to determine ECC enablement. 1081 */ 1082 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device) 1083 { 1084 const struct edac_device_prv_data *prv = device->data; 1085 unsigned long sdram_ecc_addr; 1086 struct arm_smccc_res result; 1087 struct device_node *np; 1088 phys_addr_t sdram_addr; 1089 u32 read_reg; 1090 int ret; 1091 1092 np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl"); 1093 if (!np) 1094 goto sdram_err; 1095 1096 sdram_addr = of_translate_address(np, of_get_address(np, 0, 1097 NULL, NULL)); 1098 of_node_put(np); 1099 sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst; 1100 arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr, 1101 0, 0, 0, 0, 0, 0, &result); 1102 read_reg = (unsigned int)result.a1; 1103 ret = (int)result.a0; 1104 if (!ret && (read_reg & prv->ecc_enable_mask)) 1105 return 0; 1106 1107 sdram_err: 1108 edac_printk(KERN_ERR, EDAC_DEVICE, 1109 "%s: No ECC present or ECC disabled.\n", 1110 device->edac_dev_name); 1111 return -ENODEV; 1112 } 1113 1114 static const struct edac_device_prv_data s10_sdramecc_data = { 1115 .setup = altr_s10_sdram_check_ecc_deps, 1116 .ce_clear_mask = ALTR_S10_ECC_SERRPENA, 1117 .ue_clear_mask = ALTR_S10_ECC_DERRPENA, 1118 .ecc_enable_mask = ALTR_S10_ECC_EN, 1119 .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST, 1120 .ce_set_mask = ALTR_S10_ECC_TSERRA, 1121 .ue_set_mask = ALTR_S10_ECC_TDERRA, 1122 .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST, 1123 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1124 .inject_fops = &altr_edac_a10_device_inject_fops, 1125 }; 1126 #endif /* CONFIG_EDAC_ALTERA_SDRAM */ 1127 1128 /*********************** OCRAM EDAC Device Functions *********************/ 1129 1130 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1131 1132 static void *ocram_alloc_mem(size_t size, void **other) 1133 { 1134 struct device_node *np; 1135 struct gen_pool *gp; 1136 void *sram_addr; 1137 1138 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc"); 1139 if (!np) 1140 return NULL; 1141 1142 gp = of_gen_pool_get(np, "iram", 0); 1143 of_node_put(np); 1144 if (!gp) 1145 return NULL; 1146 1147 sram_addr = (void *)gen_pool_alloc(gp, size); 1148 if (!sram_addr) 1149 return NULL; 1150 1151 memset(sram_addr, 0, size); 1152 /* Ensure data is written out */ 1153 wmb(); 1154 1155 /* Remember this handle for freeing later */ 1156 *other = gp; 1157 1158 return sram_addr; 1159 } 1160 1161 static void ocram_free_mem(void *p, size_t size, void *other) 1162 { 1163 gen_pool_free((struct gen_pool *)other, (unsigned long)p, size); 1164 } 1165 1166 static const struct edac_device_prv_data ocramecc_data = { 1167 .setup = altr_check_ecc_deps, 1168 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR), 1169 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR), 1170 .alloc_mem = ocram_alloc_mem, 1171 .free_mem = ocram_free_mem, 1172 .ecc_enable_mask = ALTR_OCR_ECC_EN, 1173 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET, 1174 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS), 1175 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD), 1176 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET, 1177 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE, 1178 .inject_fops = &altr_edac_device_inject_fops, 1179 }; 1180 1181 static int __maybe_unused 1182 altr_check_ocram_deps_init(struct altr_edac_device_dev *device) 1183 { 1184 void __iomem *base = device->base; 1185 int ret; 1186 1187 ret = altr_check_ecc_deps(device); 1188 if (ret) 1189 return ret; 1190 1191 /* Verify OCRAM has been initialized */ 1192 if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA, 1193 (base + ALTR_A10_ECC_INITSTAT_OFST))) 1194 return -ENODEV; 1195 1196 /* Enable IRQ on Single Bit Error */ 1197 writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST)); 1198 /* Ensure all writes complete */ 1199 wmb(); 1200 1201 return 0; 1202 } 1203 1204 static const struct edac_device_prv_data a10_ocramecc_data = { 1205 .setup = altr_check_ocram_deps_init, 1206 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1207 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1208 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM, 1209 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL, 1210 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1211 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1212 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1213 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1214 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1215 .inject_fops = &altr_edac_a10_device_inject2_fops, 1216 /* 1217 * OCRAM panic on uncorrectable error because sleep/resume 1218 * functions and FPGA contents are stored in OCRAM. Prefer 1219 * a kernel panic over executing/loading corrupted data. 1220 */ 1221 .panic = true, 1222 }; 1223 1224 #endif /* CONFIG_EDAC_ALTERA_OCRAM */ 1225 1226 /********************* L2 Cache EDAC Device Functions ********************/ 1227 1228 #ifdef CONFIG_EDAC_ALTERA_L2C 1229 1230 static void *l2_alloc_mem(size_t size, void **other) 1231 { 1232 struct device *dev = *other; 1233 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL); 1234 1235 if (!ptemp) 1236 return NULL; 1237 1238 /* Make sure everything is written out */ 1239 wmb(); 1240 1241 /* 1242 * Clean all cache levels up to LoC (includes L2) 1243 * This ensures the corrupted data is written into 1244 * L2 cache for readback test (which causes ECC error). 1245 */ 1246 flush_cache_all(); 1247 1248 return ptemp; 1249 } 1250 1251 static void l2_free_mem(void *p, size_t size, void *other) 1252 { 1253 struct device *dev = other; 1254 1255 if (dev && p) 1256 devm_kfree(dev, p); 1257 } 1258 1259 /* 1260 * altr_l2_check_deps() 1261 * Test for L2 cache ECC dependencies upon entry because 1262 * platform specific startup should have initialized the L2 1263 * memory and enabled the ECC. 1264 * Bail if ECC is not enabled. 1265 * Note that L2 Cache Enable is forced at build time. 1266 */ 1267 static int altr_l2_check_deps(struct altr_edac_device_dev *device) 1268 { 1269 void __iomem *base = device->base; 1270 const struct edac_device_prv_data *prv = device->data; 1271 1272 if ((readl(base) & prv->ecc_enable_mask) == 1273 prv->ecc_enable_mask) 1274 return 0; 1275 1276 edac_printk(KERN_ERR, EDAC_DEVICE, 1277 "L2: No ECC present, or ECC disabled\n"); 1278 return -ENODEV; 1279 } 1280 1281 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id) 1282 { 1283 struct altr_edac_device_dev *dci = dev_id; 1284 1285 if (irq == dci->sb_irq) { 1286 regmap_write(dci->edac->ecc_mgr_map, 1287 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1288 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB); 1289 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 1290 1291 return IRQ_HANDLED; 1292 } else if (irq == dci->db_irq) { 1293 regmap_write(dci->edac->ecc_mgr_map, 1294 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1295 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB); 1296 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 1297 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 1298 1299 return IRQ_HANDLED; 1300 } 1301 1302 WARN_ON(1); 1303 1304 return IRQ_NONE; 1305 } 1306 1307 static const struct edac_device_prv_data l2ecc_data = { 1308 .setup = altr_l2_check_deps, 1309 .ce_clear_mask = 0, 1310 .ue_clear_mask = 0, 1311 .alloc_mem = l2_alloc_mem, 1312 .free_mem = l2_free_mem, 1313 .ecc_enable_mask = ALTR_L2_ECC_EN, 1314 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS), 1315 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD), 1316 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET, 1317 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1318 .inject_fops = &altr_edac_device_inject_fops, 1319 }; 1320 1321 static const struct edac_device_prv_data a10_l2ecc_data = { 1322 .setup = altr_l2_check_deps, 1323 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR, 1324 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR, 1325 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2, 1326 .alloc_mem = l2_alloc_mem, 1327 .free_mem = l2_free_mem, 1328 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL, 1329 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK, 1330 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK, 1331 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST, 1332 .ecc_irq_handler = altr_edac_a10_l2_irq, 1333 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1334 .inject_fops = &altr_edac_device_inject_fops, 1335 }; 1336 1337 #endif /* CONFIG_EDAC_ALTERA_L2C */ 1338 1339 /********************* Ethernet Device Functions ********************/ 1340 1341 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1342 1343 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev) 1344 { 1345 int ret; 1346 1347 ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc"); 1348 if (ret) 1349 return ret; 1350 1351 return altr_check_ecc_deps(dev); 1352 } 1353 1354 static const struct edac_device_prv_data a10_enetecc_data = { 1355 .setup = socfpga_init_ethernet_ecc, 1356 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1357 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1358 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1359 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1360 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1361 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1362 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1363 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1364 .inject_fops = &altr_edac_a10_device_inject2_fops, 1365 }; 1366 1367 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */ 1368 1369 /********************** NAND Device Functions **********************/ 1370 1371 #ifdef CONFIG_EDAC_ALTERA_NAND 1372 1373 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device) 1374 { 1375 int ret; 1376 1377 ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc"); 1378 if (ret) 1379 return ret; 1380 1381 return altr_check_ecc_deps(device); 1382 } 1383 1384 static const struct edac_device_prv_data a10_nandecc_data = { 1385 .setup = socfpga_init_nand_ecc, 1386 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1387 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1388 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1389 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1390 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1391 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1392 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1393 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1394 .inject_fops = &altr_edac_a10_device_inject_fops, 1395 }; 1396 1397 #endif /* CONFIG_EDAC_ALTERA_NAND */ 1398 1399 /********************** DMA Device Functions **********************/ 1400 1401 #ifdef CONFIG_EDAC_ALTERA_DMA 1402 1403 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device) 1404 { 1405 int ret; 1406 1407 ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc"); 1408 if (ret) 1409 return ret; 1410 1411 return altr_check_ecc_deps(device); 1412 } 1413 1414 static const struct edac_device_prv_data a10_dmaecc_data = { 1415 .setup = socfpga_init_dma_ecc, 1416 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1417 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1418 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1419 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1420 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1421 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1422 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1423 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1424 .inject_fops = &altr_edac_a10_device_inject_fops, 1425 }; 1426 1427 #endif /* CONFIG_EDAC_ALTERA_DMA */ 1428 1429 /********************** USB Device Functions **********************/ 1430 1431 #ifdef CONFIG_EDAC_ALTERA_USB 1432 1433 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device) 1434 { 1435 int ret; 1436 1437 ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc"); 1438 if (ret) 1439 return ret; 1440 1441 return altr_check_ecc_deps(device); 1442 } 1443 1444 static const struct edac_device_prv_data a10_usbecc_data = { 1445 .setup = socfpga_init_usb_ecc, 1446 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1447 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1448 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1449 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1450 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1451 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1452 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1453 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1454 .inject_fops = &altr_edac_a10_device_inject2_fops, 1455 }; 1456 1457 #endif /* CONFIG_EDAC_ALTERA_USB */ 1458 1459 /********************** QSPI Device Functions **********************/ 1460 1461 #ifdef CONFIG_EDAC_ALTERA_QSPI 1462 1463 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device) 1464 { 1465 int ret; 1466 1467 ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc"); 1468 if (ret) 1469 return ret; 1470 1471 return altr_check_ecc_deps(device); 1472 } 1473 1474 static const struct edac_device_prv_data a10_qspiecc_data = { 1475 .setup = socfpga_init_qspi_ecc, 1476 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1477 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1478 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1479 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1480 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1481 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1482 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1483 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1484 .inject_fops = &altr_edac_a10_device_inject_fops, 1485 }; 1486 1487 #endif /* CONFIG_EDAC_ALTERA_QSPI */ 1488 1489 /********************* SDMMC Device Functions **********************/ 1490 1491 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1492 1493 static const struct edac_device_prv_data a10_sdmmceccb_data; 1494 static int altr_portb_setup(struct altr_edac_device_dev *device) 1495 { 1496 struct edac_device_ctl_info *dci; 1497 struct altr_edac_device_dev *altdev; 1498 char *ecc_name = "sdmmcb-ecc"; 1499 int edac_idx, rc; 1500 struct device_node *np; 1501 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data; 1502 1503 rc = altr_check_ecc_deps(device); 1504 if (rc) 1505 return rc; 1506 1507 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1508 if (!np) { 1509 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); 1510 return -ENODEV; 1511 } 1512 1513 /* Create the PortB EDAC device */ 1514 edac_idx = edac_device_alloc_index(); 1515 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1, 1516 ecc_name, 1, 0, edac_idx); 1517 if (!dci) { 1518 edac_printk(KERN_ERR, EDAC_DEVICE, 1519 "%s: Unable to allocate PortB EDAC device\n", 1520 ecc_name); 1521 return -ENOMEM; 1522 } 1523 1524 /* Initialize the PortB EDAC device structure from PortA structure */ 1525 altdev = dci->pvt_info; 1526 *altdev = *device; 1527 1528 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL)) 1529 return -ENOMEM; 1530 1531 /* Update PortB specific values */ 1532 altdev->edac_dev_name = ecc_name; 1533 altdev->edac_idx = edac_idx; 1534 altdev->edac_dev = dci; 1535 altdev->data = prv; 1536 dci->dev = &altdev->ddev; 1537 dci->ctl_name = "Altera ECC Manager"; 1538 dci->mod_name = ecc_name; 1539 dci->dev_name = ecc_name; 1540 1541 /* 1542 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly 1543 * 1544 * FIXME: Instead of ifdefs with different architectures the driver 1545 * should properly use compatibles. 1546 */ 1547 #ifdef CONFIG_64BIT 1548 altdev->sb_irq = irq_of_parse_and_map(np, 1); 1549 #else 1550 altdev->sb_irq = irq_of_parse_and_map(np, 2); 1551 #endif 1552 if (!altdev->sb_irq) { 1553 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n"); 1554 rc = -ENODEV; 1555 goto err_release_group_1; 1556 } 1557 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq, 1558 prv->ecc_irq_handler, 1559 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1560 ecc_name, altdev); 1561 if (rc) { 1562 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n"); 1563 goto err_release_group_1; 1564 } 1565 1566 #ifdef CONFIG_64BIT 1567 /* Use IRQ to determine SError origin instead of assigning IRQ */ 1568 rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq); 1569 if (rc) { 1570 edac_printk(KERN_ERR, EDAC_DEVICE, 1571 "Error PortB DBIRQ alloc\n"); 1572 goto err_release_group_1; 1573 } 1574 #else 1575 altdev->db_irq = irq_of_parse_and_map(np, 3); 1576 if (!altdev->db_irq) { 1577 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n"); 1578 rc = -ENODEV; 1579 goto err_release_group_1; 1580 } 1581 rc = devm_request_irq(&altdev->ddev, altdev->db_irq, 1582 prv->ecc_irq_handler, 1583 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1584 ecc_name, altdev); 1585 if (rc) { 1586 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n"); 1587 goto err_release_group_1; 1588 } 1589 #endif 1590 1591 rc = edac_device_add_device(dci); 1592 if (rc) { 1593 edac_printk(KERN_ERR, EDAC_DEVICE, 1594 "edac_device_add_device portB failed\n"); 1595 rc = -ENOMEM; 1596 goto err_release_group_1; 1597 } 1598 altr_create_edacdev_dbgfs(dci, prv); 1599 1600 list_add(&altdev->next, &altdev->edac->a10_ecc_devices); 1601 1602 devres_remove_group(&altdev->ddev, altr_portb_setup); 1603 1604 return 0; 1605 1606 err_release_group_1: 1607 edac_device_free_ctl_info(dci); 1608 devres_release_group(&altdev->ddev, altr_portb_setup); 1609 edac_printk(KERN_ERR, EDAC_DEVICE, 1610 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 1611 return rc; 1612 } 1613 1614 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device) 1615 { 1616 int rc = -ENODEV; 1617 struct device_node *child; 1618 1619 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1620 if (!child) 1621 return -ENODEV; 1622 1623 if (!of_device_is_available(child)) 1624 goto exit; 1625 1626 if (validate_parent_available(child)) 1627 goto exit; 1628 1629 /* Init portB */ 1630 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK, 1631 a10_sdmmceccb_data.ecc_enable_mask, 1); 1632 if (rc) 1633 goto exit; 1634 1635 /* Setup portB */ 1636 return altr_portb_setup(device); 1637 1638 exit: 1639 of_node_put(child); 1640 return rc; 1641 } 1642 1643 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id) 1644 { 1645 struct altr_edac_device_dev *ad = dev_id; 1646 void __iomem *base = ad->base; 1647 const struct edac_device_prv_data *priv = ad->data; 1648 1649 if (irq == ad->sb_irq) { 1650 writel(priv->ce_clear_mask, 1651 base + ALTR_A10_ECC_INTSTAT_OFST); 1652 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name); 1653 return IRQ_HANDLED; 1654 } else if (irq == ad->db_irq) { 1655 writel(priv->ue_clear_mask, 1656 base + ALTR_A10_ECC_INTSTAT_OFST); 1657 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name); 1658 return IRQ_HANDLED; 1659 } 1660 1661 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq); 1662 1663 return IRQ_NONE; 1664 } 1665 1666 static const struct edac_device_prv_data a10_sdmmcecca_data = { 1667 .setup = socfpga_init_sdmmc_ecc, 1668 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1669 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1670 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1671 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1672 .ce_set_mask = ALTR_A10_ECC_SERRPENA, 1673 .ue_set_mask = ALTR_A10_ECC_DERRPENA, 1674 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1675 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1676 .inject_fops = &altr_edac_a10_device_inject_fops, 1677 }; 1678 1679 static const struct edac_device_prv_data a10_sdmmceccb_data = { 1680 .setup = socfpga_init_sdmmc_ecc, 1681 .ce_clear_mask = ALTR_A10_ECC_SERRPENB, 1682 .ue_clear_mask = ALTR_A10_ECC_DERRPENB, 1683 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1684 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1685 .ce_set_mask = ALTR_A10_ECC_TSERRB, 1686 .ue_set_mask = ALTR_A10_ECC_TDERRB, 1687 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1688 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb, 1689 .inject_fops = &altr_edac_a10_device_inject_fops, 1690 }; 1691 1692 #endif /* CONFIG_EDAC_ALTERA_SDMMC */ 1693 1694 /********************* Arria10 EDAC Device Functions *************************/ 1695 static const struct of_device_id altr_edac_a10_device_of_match[] = { 1696 #ifdef CONFIG_EDAC_ALTERA_L2C 1697 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data }, 1698 #endif 1699 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1700 { .compatible = "altr,socfpga-a10-ocram-ecc", 1701 .data = &a10_ocramecc_data }, 1702 #endif 1703 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1704 { .compatible = "altr,socfpga-eth-mac-ecc", 1705 .data = &a10_enetecc_data }, 1706 #endif 1707 #ifdef CONFIG_EDAC_ALTERA_NAND 1708 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data }, 1709 #endif 1710 #ifdef CONFIG_EDAC_ALTERA_DMA 1711 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data }, 1712 #endif 1713 #ifdef CONFIG_EDAC_ALTERA_USB 1714 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data }, 1715 #endif 1716 #ifdef CONFIG_EDAC_ALTERA_QSPI 1717 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data }, 1718 #endif 1719 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1720 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data }, 1721 #endif 1722 #ifdef CONFIG_EDAC_ALTERA_SDRAM 1723 { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data }, 1724 #endif 1725 {}, 1726 }; 1727 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match); 1728 1729 /* 1730 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5 1731 * because 2 IRQs are shared among the all ECC peripherals. The ECC 1732 * manager manages the IRQs and the children. 1733 * Based on xgene_edac.c peripheral code. 1734 */ 1735 1736 static ssize_t __maybe_unused 1737 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, 1738 size_t count, loff_t *ppos) 1739 { 1740 struct edac_device_ctl_info *edac_dci = file->private_data; 1741 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 1742 const struct edac_device_prv_data *priv = drvdata->data; 1743 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); 1744 unsigned long flags; 1745 u8 trig_type; 1746 1747 if (!user_buf || get_user(trig_type, user_buf)) 1748 return -EFAULT; 1749 1750 local_irq_save(flags); 1751 if (trig_type == ALTR_UE_TRIGGER_CHAR) 1752 writel(priv->ue_set_mask, set_addr); 1753 else 1754 writel(priv->ce_set_mask, set_addr); 1755 1756 /* Ensure the interrupt test bits are set */ 1757 wmb(); 1758 local_irq_restore(flags); 1759 1760 return count; 1761 } 1762 1763 /* 1764 * The Stratix10 EDAC Error Injection Functions differ from Arria10 1765 * slightly. A few Arria10 peripherals can use this injection function. 1766 * Inject the error into the memory and then readback to trigger the IRQ. 1767 */ 1768 static ssize_t __maybe_unused 1769 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, 1770 size_t count, loff_t *ppos) 1771 { 1772 struct edac_device_ctl_info *edac_dci = file->private_data; 1773 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 1774 const struct edac_device_prv_data *priv = drvdata->data; 1775 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); 1776 unsigned long flags; 1777 u8 trig_type; 1778 1779 if (!user_buf || get_user(trig_type, user_buf)) 1780 return -EFAULT; 1781 1782 local_irq_save(flags); 1783 if (trig_type == ALTR_UE_TRIGGER_CHAR) { 1784 writel(priv->ue_set_mask, set_addr); 1785 } else { 1786 /* Setup read/write of 4 bytes */ 1787 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST); 1788 /* Setup Address to 0 */ 1789 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST); 1790 /* Setup accctrl to read & ecc & data override */ 1791 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1792 /* Kick it. */ 1793 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1794 /* Setup write for single bit change */ 1795 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1, 1796 drvdata->base + ECC_BLK_WDATA0_OFST); 1797 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST), 1798 drvdata->base + ECC_BLK_WDATA1_OFST); 1799 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST), 1800 drvdata->base + ECC_BLK_WDATA2_OFST); 1801 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST), 1802 drvdata->base + ECC_BLK_WDATA3_OFST); 1803 1804 /* Copy Read ECC to Write ECC */ 1805 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST), 1806 drvdata->base + ECC_BLK_WECC0_OFST); 1807 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST), 1808 drvdata->base + ECC_BLK_WECC1_OFST); 1809 /* Setup accctrl to write & ecc override & data override */ 1810 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1811 /* Kick it. */ 1812 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1813 /* Setup accctrl to read & ecc overwrite & data overwrite */ 1814 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1815 /* Kick it. */ 1816 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1817 } 1818 1819 /* Ensure the interrupt test bits are set */ 1820 wmb(); 1821 local_irq_restore(flags); 1822 1823 return count; 1824 } 1825 1826 static void altr_edac_a10_irq_handler(struct irq_desc *desc) 1827 { 1828 int dberr, bit, sm_offset, irq_status; 1829 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc); 1830 struct irq_chip *chip = irq_desc_get_chip(desc); 1831 int irq = irq_desc_get_irq(desc); 1832 unsigned long bits; 1833 1834 dberr = (irq == edac->db_irq) ? 1 : 0; 1835 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST : 1836 A10_SYSMGR_ECC_INTSTAT_SERR_OFST; 1837 1838 chained_irq_enter(chip, desc); 1839 1840 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status); 1841 1842 bits = irq_status; 1843 for_each_set_bit(bit, &bits, 32) 1844 generic_handle_domain_irq(edac->domain, dberr * 32 + bit); 1845 1846 chained_irq_exit(chip, desc); 1847 } 1848 1849 static int validate_parent_available(struct device_node *np) 1850 { 1851 struct device_node *parent; 1852 int ret = 0; 1853 1854 /* SDRAM must be present for Linux (implied parent) */ 1855 if (of_device_is_compatible(np, "altr,sdram-edac-s10")) 1856 return 0; 1857 1858 /* Ensure parent device is enabled if parent node exists */ 1859 parent = of_parse_phandle(np, "altr,ecc-parent", 0); 1860 if (parent && !of_device_is_available(parent)) 1861 ret = -ENODEV; 1862 1863 of_node_put(parent); 1864 return ret; 1865 } 1866 1867 static int get_s10_sdram_edac_resource(struct device_node *np, 1868 struct resource *res) 1869 { 1870 struct device_node *parent; 1871 int ret; 1872 1873 parent = of_parse_phandle(np, "altr,sdr-syscon", 0); 1874 if (!parent) 1875 return -ENODEV; 1876 1877 ret = of_address_to_resource(parent, 0, res); 1878 of_node_put(parent); 1879 1880 return ret; 1881 } 1882 1883 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac, 1884 struct device_node *np) 1885 { 1886 struct edac_device_ctl_info *dci; 1887 struct altr_edac_device_dev *altdev; 1888 char *ecc_name = (char *)np->name; 1889 struct resource res; 1890 int edac_idx; 1891 int rc = 0; 1892 const struct edac_device_prv_data *prv; 1893 /* Get matching node and check for valid result */ 1894 const struct of_device_id *pdev_id = 1895 of_match_node(altr_edac_a10_device_of_match, np); 1896 if (IS_ERR_OR_NULL(pdev_id)) 1897 return -ENODEV; 1898 1899 /* Get driver specific data for this EDAC device */ 1900 prv = pdev_id->data; 1901 if (IS_ERR_OR_NULL(prv)) 1902 return -ENODEV; 1903 1904 if (validate_parent_available(np)) 1905 return -ENODEV; 1906 1907 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL)) 1908 return -ENOMEM; 1909 1910 if (of_device_is_compatible(np, "altr,sdram-edac-s10")) 1911 rc = get_s10_sdram_edac_resource(np, &res); 1912 else 1913 rc = of_address_to_resource(np, 0, &res); 1914 1915 if (rc < 0) { 1916 edac_printk(KERN_ERR, EDAC_DEVICE, 1917 "%s: no resource address\n", ecc_name); 1918 goto err_release_group; 1919 } 1920 1921 edac_idx = edac_device_alloc_index(); 1922 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1923 1, ecc_name, 1, 0, edac_idx); 1924 1925 if (!dci) { 1926 edac_printk(KERN_ERR, EDAC_DEVICE, 1927 "%s: Unable to allocate EDAC device\n", ecc_name); 1928 rc = -ENOMEM; 1929 goto err_release_group; 1930 } 1931 1932 altdev = dci->pvt_info; 1933 dci->dev = edac->dev; 1934 altdev->edac_dev_name = ecc_name; 1935 altdev->edac_idx = edac_idx; 1936 altdev->edac = edac; 1937 altdev->edac_dev = dci; 1938 altdev->data = prv; 1939 altdev->ddev = *edac->dev; 1940 dci->dev = &altdev->ddev; 1941 dci->ctl_name = "Altera ECC Manager"; 1942 dci->mod_name = ecc_name; 1943 dci->dev_name = ecc_name; 1944 1945 altdev->base = devm_ioremap_resource(edac->dev, &res); 1946 if (IS_ERR(altdev->base)) { 1947 rc = PTR_ERR(altdev->base); 1948 goto err_release_group1; 1949 } 1950 1951 /* Check specific dependencies for the module */ 1952 if (altdev->data->setup) { 1953 rc = altdev->data->setup(altdev); 1954 if (rc) 1955 goto err_release_group1; 1956 } 1957 1958 altdev->sb_irq = irq_of_parse_and_map(np, 0); 1959 if (!altdev->sb_irq) { 1960 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n"); 1961 rc = -ENODEV; 1962 goto err_release_group1; 1963 } 1964 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler, 1965 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1966 ecc_name, altdev); 1967 if (rc) { 1968 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n"); 1969 goto err_release_group1; 1970 } 1971 1972 #ifdef CONFIG_64BIT 1973 /* Use IRQ to determine SError origin instead of assigning IRQ */ 1974 rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq); 1975 if (rc) { 1976 edac_printk(KERN_ERR, EDAC_DEVICE, 1977 "Unable to parse DB IRQ index\n"); 1978 goto err_release_group1; 1979 } 1980 #else 1981 altdev->db_irq = irq_of_parse_and_map(np, 1); 1982 if (!altdev->db_irq) { 1983 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n"); 1984 rc = -ENODEV; 1985 goto err_release_group1; 1986 } 1987 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler, 1988 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1989 ecc_name, altdev); 1990 if (rc) { 1991 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n"); 1992 goto err_release_group1; 1993 } 1994 #endif 1995 1996 rc = edac_device_add_device(dci); 1997 if (rc) { 1998 dev_err(edac->dev, "edac_device_add_device failed\n"); 1999 rc = -ENOMEM; 2000 goto err_release_group1; 2001 } 2002 2003 altr_create_edacdev_dbgfs(dci, prv); 2004 2005 list_add(&altdev->next, &edac->a10_ecc_devices); 2006 2007 devres_remove_group(edac->dev, altr_edac_a10_device_add); 2008 2009 return 0; 2010 2011 err_release_group1: 2012 edac_device_free_ctl_info(dci); 2013 err_release_group: 2014 devres_release_group(edac->dev, NULL); 2015 edac_printk(KERN_ERR, EDAC_DEVICE, 2016 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 2017 2018 return rc; 2019 } 2020 2021 static void a10_eccmgr_irq_mask(struct irq_data *d) 2022 { 2023 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 2024 2025 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, 2026 BIT(d->hwirq)); 2027 } 2028 2029 static void a10_eccmgr_irq_unmask(struct irq_data *d) 2030 { 2031 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 2032 2033 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, 2034 BIT(d->hwirq)); 2035 } 2036 2037 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq, 2038 irq_hw_number_t hwirq) 2039 { 2040 struct altr_arria10_edac *edac = d->host_data; 2041 2042 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq); 2043 irq_set_chip_data(irq, edac); 2044 irq_set_noprobe(irq); 2045 2046 return 0; 2047 } 2048 2049 static const struct irq_domain_ops a10_eccmgr_ic_ops = { 2050 .map = a10_eccmgr_irqdomain_map, 2051 .xlate = irq_domain_xlate_twocell, 2052 }; 2053 2054 /************** Stratix 10 EDAC Double Bit Error Handler ************/ 2055 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m) 2056 2057 #ifdef CONFIG_64BIT 2058 /* panic routine issues reboot on non-zero panic_timeout */ 2059 extern int panic_timeout; 2060 2061 /* 2062 * The double bit error is handled through SError which is fatal. This is 2063 * called as a panic notifier to printout ECC error info as part of the panic. 2064 */ 2065 static int s10_edac_dberr_handler(struct notifier_block *this, 2066 unsigned long event, void *ptr) 2067 { 2068 struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier); 2069 int err_addr, dberror; 2070 2071 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST, 2072 &dberror); 2073 regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror); 2074 if (dberror & S10_DBE_IRQ_MASK) { 2075 struct list_head *position; 2076 struct altr_edac_device_dev *ed; 2077 struct arm_smccc_res result; 2078 2079 /* Find the matching DBE in the list of devices */ 2080 list_for_each(position, &edac->a10_ecc_devices) { 2081 ed = list_entry(position, struct altr_edac_device_dev, 2082 next); 2083 if (!(BIT(ed->db_irq) & dberror)) 2084 continue; 2085 2086 writel(ALTR_A10_ECC_DERRPENA, 2087 ed->base + ALTR_A10_ECC_INTSTAT_OFST); 2088 err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST); 2089 regmap_write(edac->ecc_mgr_map, 2090 S10_SYSMGR_UE_ADDR_OFST, err_addr); 2091 edac_printk(KERN_ERR, EDAC_DEVICE, 2092 "EDAC: [Fatal DBE on %s @ 0x%08X]\n", 2093 ed->edac_dev_name, err_addr); 2094 break; 2095 } 2096 /* Notify the System through SMC. Reboot delay = 1 second */ 2097 panic_timeout = 1; 2098 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0, 2099 0, 0, &result); 2100 } 2101 2102 return NOTIFY_DONE; 2103 } 2104 #endif 2105 2106 /****************** Arria 10 EDAC Probe Function *********************/ 2107 static int altr_edac_a10_probe(struct platform_device *pdev) 2108 { 2109 struct altr_arria10_edac *edac; 2110 struct device_node *child; 2111 2112 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL); 2113 if (!edac) 2114 return -ENOMEM; 2115 2116 edac->dev = &pdev->dev; 2117 platform_set_drvdata(pdev, edac); 2118 INIT_LIST_HEAD(&edac->a10_ecc_devices); 2119 2120 edac->ecc_mgr_map = 2121 altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node, 2122 "altr,sysmgr-syscon"); 2123 2124 if (IS_ERR(edac->ecc_mgr_map)) { 2125 edac_printk(KERN_ERR, EDAC_DEVICE, 2126 "Unable to get syscon altr,sysmgr-syscon\n"); 2127 return PTR_ERR(edac->ecc_mgr_map); 2128 } 2129 2130 edac->irq_chip.name = pdev->dev.of_node->name; 2131 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask; 2132 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask; 2133 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64, 2134 &a10_eccmgr_ic_ops, edac); 2135 if (!edac->domain) { 2136 dev_err(&pdev->dev, "Error adding IRQ domain\n"); 2137 return -ENOMEM; 2138 } 2139 2140 edac->sb_irq = platform_get_irq(pdev, 0); 2141 if (edac->sb_irq < 0) 2142 return edac->sb_irq; 2143 2144 irq_set_chained_handler_and_data(edac->sb_irq, 2145 altr_edac_a10_irq_handler, 2146 edac); 2147 2148 #ifdef CONFIG_64BIT 2149 { 2150 int dberror, err_addr; 2151 2152 edac->panic_notifier.notifier_call = s10_edac_dberr_handler; 2153 atomic_notifier_chain_register(&panic_notifier_list, 2154 &edac->panic_notifier); 2155 2156 /* Printout a message if uncorrectable error previously. */ 2157 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, 2158 &dberror); 2159 if (dberror) { 2160 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST, 2161 &err_addr); 2162 edac_printk(KERN_ERR, EDAC_DEVICE, 2163 "Previous Boot UE detected[0x%X] @ 0x%X\n", 2164 dberror, err_addr); 2165 /* Reset the sticky registers */ 2166 regmap_write(edac->ecc_mgr_map, 2167 S10_SYSMGR_UE_VAL_OFST, 0); 2168 regmap_write(edac->ecc_mgr_map, 2169 S10_SYSMGR_UE_ADDR_OFST, 0); 2170 } 2171 } 2172 #else 2173 edac->db_irq = platform_get_irq(pdev, 1); 2174 if (edac->db_irq < 0) 2175 return edac->db_irq; 2176 2177 irq_set_chained_handler_and_data(edac->db_irq, 2178 altr_edac_a10_irq_handler, edac); 2179 #endif 2180 2181 for_each_child_of_node(pdev->dev.of_node, child) { 2182 if (!of_device_is_available(child)) 2183 continue; 2184 2185 if (of_match_node(altr_edac_a10_device_of_match, child)) 2186 altr_edac_a10_device_add(edac, child); 2187 2188 #ifdef CONFIG_EDAC_ALTERA_SDRAM 2189 else if (of_device_is_compatible(child, "altr,sdram-edac-a10")) 2190 of_platform_populate(pdev->dev.of_node, 2191 altr_sdram_ctrl_of_match, 2192 NULL, &pdev->dev); 2193 #endif 2194 } 2195 2196 return 0; 2197 } 2198 2199 static const struct of_device_id altr_edac_a10_of_match[] = { 2200 { .compatible = "altr,socfpga-a10-ecc-manager" }, 2201 { .compatible = "altr,socfpga-s10-ecc-manager" }, 2202 {}, 2203 }; 2204 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match); 2205 2206 static struct platform_driver altr_edac_a10_driver = { 2207 .probe = altr_edac_a10_probe, 2208 .driver = { 2209 .name = "socfpga_a10_ecc_manager", 2210 .of_match_table = altr_edac_a10_of_match, 2211 }, 2212 }; 2213 module_platform_driver(altr_edac_a10_driver); 2214 2215 MODULE_AUTHOR("Thor Thayer"); 2216 MODULE_DESCRIPTION("EDAC Driver for Altera Memories"); 2217