1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017-2018, Intel Corporation. All rights reserved 4 * Copyright Altera Corporation (C) 2014-2016. All rights reserved. 5 * Copyright 2011-2012 Calxeda, Inc. 6 */ 7 8 #include <asm/cacheflush.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/edac.h> 12 #include <linux/firmware/intel/stratix10-smc.h> 13 #include <linux/genalloc.h> 14 #include <linux/interrupt.h> 15 #include <linux/irqchip/chained_irq.h> 16 #include <linux/kernel.h> 17 #include <linux/mfd/altera-sysmgr.h> 18 #include <linux/mfd/syscon.h> 19 #include <linux/notifier.h> 20 #include <linux/of_address.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_platform.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/platform_device.h> 25 #include <linux/property.h> 26 #include <linux/regmap.h> 27 #include <linux/types.h> 28 #include <linux/uaccess.h> 29 30 #include "altera_edac.h" 31 #include "edac_module.h" 32 33 #define EDAC_MOD_STR "altera_edac" 34 #define EDAC_DEVICE "Altera" 35 36 #ifdef CONFIG_EDAC_ALTERA_SDRAM 37 static const struct altr_sdram_prv_data c5_data = { 38 .ecc_ctrl_offset = CV_CTLCFG_OFST, 39 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN, 40 .ecc_stat_offset = CV_DRAMSTS_OFST, 41 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR, 42 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR, 43 .ecc_saddr_offset = CV_ERRADDR_OFST, 44 .ecc_daddr_offset = CV_ERRADDR_OFST, 45 .ecc_cecnt_offset = CV_SBECOUNT_OFST, 46 .ecc_uecnt_offset = CV_DBECOUNT_OFST, 47 .ecc_irq_en_offset = CV_DRAMINTR_OFST, 48 .ecc_irq_en_mask = CV_DRAMINTR_INTREN, 49 .ecc_irq_clr_offset = CV_DRAMINTR_OFST, 50 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN), 51 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST, 52 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR, 53 .ce_ue_trgr_offset = CV_CTLCFG_OFST, 54 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR, 55 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR, 56 }; 57 58 static const struct altr_sdram_prv_data a10_data = { 59 .ecc_ctrl_offset = A10_ECCCTRL1_OFST, 60 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN, 61 .ecc_stat_offset = A10_INTSTAT_OFST, 62 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR, 63 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR, 64 .ecc_saddr_offset = A10_SERRADDR_OFST, 65 .ecc_daddr_offset = A10_DERRADDR_OFST, 66 .ecc_irq_en_offset = A10_ERRINTEN_OFST, 67 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK, 68 .ecc_irq_clr_offset = A10_INTSTAT_OFST, 69 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR), 70 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST, 71 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK, 72 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST, 73 .ce_set_mask = A10_DIAGINT_TSERRA_MASK, 74 .ue_set_mask = A10_DIAGINT_TDERRA_MASK, 75 }; 76 77 /*********************** EDAC Memory Controller Functions ****************/ 78 79 /* The SDRAM controller uses the EDAC Memory Controller framework. */ 80 81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id) 82 { 83 struct mem_ctl_info *mci = dev_id; 84 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 85 const struct altr_sdram_prv_data *priv = drvdata->data; 86 u32 status, err_count = 1, err_addr; 87 88 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status); 89 90 if (status & priv->ecc_stat_ue_mask) { 91 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset, 92 &err_addr); 93 if (priv->ecc_uecnt_offset) 94 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset, 95 &err_count); 96 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n", 97 err_count, err_addr); 98 } 99 if (status & priv->ecc_stat_ce_mask) { 100 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset, 101 &err_addr); 102 if (priv->ecc_cecnt_offset) 103 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset, 104 &err_count); 105 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count, 106 err_addr >> PAGE_SHIFT, 107 err_addr & ~PAGE_MASK, 0, 108 0, 0, -1, mci->ctl_name, ""); 109 /* Clear IRQ to resume */ 110 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset, 111 priv->ecc_irq_clr_mask); 112 113 return IRQ_HANDLED; 114 } 115 return IRQ_NONE; 116 } 117 118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file, 119 const char __user *data, 120 size_t count, loff_t *ppos) 121 { 122 struct mem_ctl_info *mci = file->private_data; 123 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 124 const struct altr_sdram_prv_data *priv = drvdata->data; 125 u32 *ptemp; 126 dma_addr_t dma_handle; 127 u32 reg, read_reg; 128 129 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL); 130 if (!ptemp) { 131 edac_printk(KERN_ERR, EDAC_MC, 132 "Inject: Buffer Allocation error\n"); 133 return -ENOMEM; 134 } 135 136 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 137 &read_reg); 138 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask); 139 140 /* Error are injected by writing a word while the SBE or DBE 141 * bit in the CTLCFG register is set. Reading the word will 142 * trigger the SBE or DBE error and the corresponding IRQ. 143 */ 144 if (count == 3) { 145 edac_printk(KERN_ALERT, EDAC_MC, 146 "Inject Double bit error\n"); 147 local_irq_disable(); 148 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 149 (read_reg | priv->ue_set_mask)); 150 local_irq_enable(); 151 } else { 152 edac_printk(KERN_ALERT, EDAC_MC, 153 "Inject Single bit error\n"); 154 local_irq_disable(); 155 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 156 (read_reg | priv->ce_set_mask)); 157 local_irq_enable(); 158 } 159 160 ptemp[0] = 0x5A5A5A5A; 161 ptemp[1] = 0xA5A5A5A5; 162 163 /* Clear the error injection bits */ 164 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg); 165 /* Ensure it has been written out */ 166 wmb(); 167 168 /* 169 * To trigger the error, we need to read the data back 170 * (the data was written with errors above). 171 * The READ_ONCE macros and printk are used to prevent the 172 * the compiler optimizing these reads out. 173 */ 174 reg = READ_ONCE(ptemp[0]); 175 read_reg = READ_ONCE(ptemp[1]); 176 /* Force Read */ 177 rmb(); 178 179 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n", 180 reg, read_reg); 181 182 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); 183 184 return count; 185 } 186 187 static const struct file_operations altr_sdr_mc_debug_inject_fops = { 188 .open = simple_open, 189 .write = altr_sdr_mc_err_inject_write, 190 .llseek = generic_file_llseek, 191 }; 192 193 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci) 194 { 195 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 196 return; 197 198 if (!mci->debugfs) 199 return; 200 201 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci, 202 &altr_sdr_mc_debug_inject_fops); 203 } 204 205 /* Get total memory size from Open Firmware DTB */ 206 static unsigned long get_total_mem(void) 207 { 208 struct device_node *np = NULL; 209 struct resource res; 210 int ret; 211 unsigned long total_mem = 0; 212 213 for_each_node_by_type(np, "memory") { 214 ret = of_address_to_resource(np, 0, &res); 215 if (ret) 216 continue; 217 218 total_mem += resource_size(&res); 219 } 220 edac_dbg(0, "total_mem 0x%lx\n", total_mem); 221 return total_mem; 222 } 223 224 static const struct of_device_id altr_sdram_ctrl_of_match[] = { 225 { .compatible = "altr,sdram-edac", .data = &c5_data}, 226 { .compatible = "altr,sdram-edac-a10", .data = &a10_data}, 227 {}, 228 }; 229 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match); 230 231 static int a10_init(struct regmap *mc_vbase) 232 { 233 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST, 234 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) { 235 edac_printk(KERN_ERR, EDAC_MC, 236 "Error setting SB IRQ mode\n"); 237 return -ENODEV; 238 } 239 240 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) { 241 edac_printk(KERN_ERR, EDAC_MC, 242 "Error setting trigger count\n"); 243 return -ENODEV; 244 } 245 246 return 0; 247 } 248 249 static int a10_unmask_irq(struct platform_device *pdev, u32 mask) 250 { 251 void __iomem *sm_base; 252 int ret = 0; 253 254 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32), 255 dev_name(&pdev->dev))) { 256 edac_printk(KERN_ERR, EDAC_MC, 257 "Unable to request mem region\n"); 258 return -EBUSY; 259 } 260 261 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 262 if (!sm_base) { 263 edac_printk(KERN_ERR, EDAC_MC, 264 "Unable to ioremap device\n"); 265 266 ret = -ENOMEM; 267 goto release; 268 } 269 270 iowrite32(mask, sm_base); 271 272 iounmap(sm_base); 273 274 release: 275 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 276 277 return ret; 278 } 279 280 static int altr_sdram_probe(struct platform_device *pdev) 281 { 282 struct edac_mc_layer layers[2]; 283 struct mem_ctl_info *mci; 284 struct altr_sdram_mc_data *drvdata; 285 const struct altr_sdram_prv_data *priv; 286 struct regmap *mc_vbase; 287 struct dimm_info *dimm; 288 u32 read_reg; 289 int irq, irq2, res = 0; 290 unsigned long mem_size, irqflags = 0; 291 292 /* Grab the register range from the sdr controller in device tree */ 293 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 294 "altr,sdr-syscon"); 295 if (IS_ERR(mc_vbase)) { 296 edac_printk(KERN_ERR, EDAC_MC, 297 "regmap for altr,sdr-syscon lookup failed.\n"); 298 return -ENODEV; 299 } 300 301 /* Check specific dependencies for the module */ 302 priv = device_get_match_data(&pdev->dev); 303 304 /* Validate the SDRAM controller has ECC enabled */ 305 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) || 306 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) { 307 edac_printk(KERN_ERR, EDAC_MC, 308 "No ECC/ECC disabled [0x%08X]\n", read_reg); 309 return -ENODEV; 310 } 311 312 /* Grab memory size from device tree. */ 313 mem_size = get_total_mem(); 314 if (!mem_size) { 315 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n"); 316 return -ENODEV; 317 } 318 319 /* Ensure the SDRAM Interrupt is disabled */ 320 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset, 321 priv->ecc_irq_en_mask, 0)) { 322 edac_printk(KERN_ERR, EDAC_MC, 323 "Error disabling SDRAM ECC IRQ\n"); 324 return -ENODEV; 325 } 326 327 /* Toggle to clear the SDRAM Error count */ 328 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 329 priv->ecc_cnt_rst_mask, 330 priv->ecc_cnt_rst_mask)) { 331 edac_printk(KERN_ERR, EDAC_MC, 332 "Error clearing SDRAM ECC count\n"); 333 return -ENODEV; 334 } 335 336 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 337 priv->ecc_cnt_rst_mask, 0)) { 338 edac_printk(KERN_ERR, EDAC_MC, 339 "Error clearing SDRAM ECC count\n"); 340 return -ENODEV; 341 } 342 343 irq = platform_get_irq(pdev, 0); 344 if (irq < 0) { 345 edac_printk(KERN_ERR, EDAC_MC, 346 "No irq %d in DT\n", irq); 347 return irq; 348 } 349 350 /* Arria10 has a 2nd IRQ */ 351 irq2 = platform_get_irq(pdev, 1); 352 353 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 354 layers[0].size = 1; 355 layers[0].is_virt_csrow = true; 356 layers[1].type = EDAC_MC_LAYER_CHANNEL; 357 layers[1].size = 1; 358 layers[1].is_virt_csrow = false; 359 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 360 sizeof(struct altr_sdram_mc_data)); 361 if (!mci) 362 return -ENOMEM; 363 364 mci->pdev = &pdev->dev; 365 drvdata = mci->pvt_info; 366 drvdata->mc_vbase = mc_vbase; 367 drvdata->data = priv; 368 platform_set_drvdata(pdev, mci); 369 370 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 371 edac_printk(KERN_ERR, EDAC_MC, 372 "Unable to get managed device resource\n"); 373 res = -ENOMEM; 374 goto free; 375 } 376 377 mci->mtype_cap = MEM_FLAG_DDR3; 378 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; 379 mci->edac_cap = EDAC_FLAG_SECDED; 380 mci->mod_name = EDAC_MOD_STR; 381 mci->ctl_name = dev_name(&pdev->dev); 382 mci->scrub_mode = SCRUB_SW_SRC; 383 mci->dev_name = dev_name(&pdev->dev); 384 385 dimm = *mci->dimms; 386 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1; 387 dimm->grain = 8; 388 dimm->dtype = DEV_X8; 389 dimm->mtype = MEM_DDR3; 390 dimm->edac_mode = EDAC_SECDED; 391 392 res = edac_mc_add_mc(mci); 393 if (res < 0) 394 goto err; 395 396 /* Only the Arria10 has separate IRQs */ 397 if (of_machine_is_compatible("altr,socfpga-arria10")) { 398 /* Arria10 specific initialization */ 399 res = a10_init(mc_vbase); 400 if (res < 0) 401 goto err2; 402 403 res = devm_request_irq(&pdev->dev, irq2, 404 altr_sdram_mc_err_handler, 405 IRQF_SHARED, dev_name(&pdev->dev), mci); 406 if (res < 0) { 407 edac_mc_printk(mci, KERN_ERR, 408 "Unable to request irq %d\n", irq2); 409 res = -ENODEV; 410 goto err2; 411 } 412 413 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK); 414 if (res < 0) 415 goto err2; 416 417 irqflags = IRQF_SHARED; 418 } 419 420 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler, 421 irqflags, dev_name(&pdev->dev), mci); 422 if (res < 0) { 423 edac_mc_printk(mci, KERN_ERR, 424 "Unable to request irq %d\n", irq); 425 res = -ENODEV; 426 goto err2; 427 } 428 429 /* Infrastructure ready - enable the IRQ */ 430 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset, 431 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) { 432 edac_mc_printk(mci, KERN_ERR, 433 "Error enabling SDRAM ECC IRQ\n"); 434 res = -ENODEV; 435 goto err2; 436 } 437 438 altr_sdr_mc_create_debugfs_nodes(mci); 439 440 devres_close_group(&pdev->dev, NULL); 441 442 return 0; 443 444 err2: 445 edac_mc_del_mc(&pdev->dev); 446 err: 447 devres_release_group(&pdev->dev, NULL); 448 free: 449 edac_mc_free(mci); 450 edac_printk(KERN_ERR, EDAC_MC, 451 "EDAC Probe Failed; Error %d\n", res); 452 453 return res; 454 } 455 456 static void altr_sdram_remove(struct platform_device *pdev) 457 { 458 struct mem_ctl_info *mci = platform_get_drvdata(pdev); 459 460 edac_mc_del_mc(&pdev->dev); 461 edac_mc_free(mci); 462 platform_set_drvdata(pdev, NULL); 463 } 464 465 /* 466 * If you want to suspend, need to disable EDAC by removing it 467 * from the device tree or defconfig. 468 */ 469 #ifdef CONFIG_PM 470 static int altr_sdram_prepare(struct device *dev) 471 { 472 pr_err("Suspend not allowed when EDAC is enabled.\n"); 473 474 return -EPERM; 475 } 476 477 static const struct dev_pm_ops altr_sdram_pm_ops = { 478 .prepare = altr_sdram_prepare, 479 }; 480 #endif 481 482 static struct platform_driver altr_sdram_edac_driver = { 483 .probe = altr_sdram_probe, 484 .remove = altr_sdram_remove, 485 .driver = { 486 .name = "altr_sdram_edac", 487 #ifdef CONFIG_PM 488 .pm = &altr_sdram_pm_ops, 489 #endif 490 .of_match_table = altr_sdram_ctrl_of_match, 491 }, 492 }; 493 494 module_platform_driver(altr_sdram_edac_driver); 495 496 #endif /* CONFIG_EDAC_ALTERA_SDRAM */ 497 498 /************************* EDAC Parent Probe *************************/ 499 500 static const struct of_device_id altr_edac_device_of_match[]; 501 502 static const struct of_device_id altr_edac_of_match[] = { 503 { .compatible = "altr,socfpga-ecc-manager" }, 504 {}, 505 }; 506 MODULE_DEVICE_TABLE(of, altr_edac_of_match); 507 508 static int altr_edac_probe(struct platform_device *pdev) 509 { 510 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match, 511 NULL, &pdev->dev); 512 return 0; 513 } 514 515 static struct platform_driver altr_edac_driver = { 516 .probe = altr_edac_probe, 517 .driver = { 518 .name = "socfpga_ecc_manager", 519 .of_match_table = altr_edac_of_match, 520 }, 521 }; 522 module_platform_driver(altr_edac_driver); 523 524 /************************* EDAC Device Functions *************************/ 525 526 /* 527 * EDAC Device Functions (shared between various IPs). 528 * The discrete memories use the EDAC Device framework. The probe 529 * and error handling functions are very similar between memories 530 * so they are shared. The memory allocation and freeing for EDAC 531 * trigger testing are different for each memory. 532 */ 533 534 #ifdef CONFIG_EDAC_ALTERA_OCRAM 535 static const struct edac_device_prv_data ocramecc_data; 536 #endif 537 #ifdef CONFIG_EDAC_ALTERA_L2C 538 static const struct edac_device_prv_data l2ecc_data; 539 #endif 540 #ifdef CONFIG_EDAC_ALTERA_OCRAM 541 static const struct edac_device_prv_data a10_ocramecc_data; 542 #endif 543 #ifdef CONFIG_EDAC_ALTERA_L2C 544 static const struct edac_device_prv_data a10_l2ecc_data; 545 #endif 546 547 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id) 548 { 549 irqreturn_t ret_value = IRQ_NONE; 550 struct edac_device_ctl_info *dci = dev_id; 551 struct altr_edac_device_dev *drvdata = dci->pvt_info; 552 const struct edac_device_prv_data *priv = drvdata->data; 553 554 if (irq == drvdata->sb_irq) { 555 if (priv->ce_clear_mask) 556 writel(priv->ce_clear_mask, drvdata->base); 557 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name); 558 ret_value = IRQ_HANDLED; 559 } else if (irq == drvdata->db_irq) { 560 if (priv->ue_clear_mask) 561 writel(priv->ue_clear_mask, drvdata->base); 562 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name); 563 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 564 ret_value = IRQ_HANDLED; 565 } else { 566 WARN_ON(1); 567 } 568 569 return ret_value; 570 } 571 572 static ssize_t __maybe_unused 573 altr_edac_device_trig(struct file *file, const char __user *user_buf, 574 size_t count, loff_t *ppos) 575 576 { 577 u32 *ptemp, i, error_mask; 578 int result = 0; 579 u8 trig_type; 580 unsigned long flags; 581 struct edac_device_ctl_info *edac_dci = file->private_data; 582 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 583 const struct edac_device_prv_data *priv = drvdata->data; 584 void *generic_ptr = edac_dci->dev; 585 586 if (!user_buf || get_user(trig_type, user_buf)) 587 return -EFAULT; 588 589 if (!priv->alloc_mem) 590 return -ENOMEM; 591 592 /* 593 * Note that generic_ptr is initialized to the device * but in 594 * some alloc_functions, this is overridden and returns data. 595 */ 596 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr); 597 if (!ptemp) { 598 edac_printk(KERN_ERR, EDAC_DEVICE, 599 "Inject: Buffer Allocation error\n"); 600 return -ENOMEM; 601 } 602 603 if (trig_type == ALTR_UE_TRIGGER_CHAR) 604 error_mask = priv->ue_set_mask; 605 else 606 error_mask = priv->ce_set_mask; 607 608 edac_printk(KERN_ALERT, EDAC_DEVICE, 609 "Trigger Error Mask (0x%X)\n", error_mask); 610 611 local_irq_save(flags); 612 /* write ECC corrupted data out. */ 613 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) { 614 /* Read data so we're in the correct state */ 615 rmb(); 616 if (READ_ONCE(ptemp[i])) 617 result = -1; 618 /* Toggle Error bit (it is latched), leave ECC enabled */ 619 writel(error_mask, (drvdata->base + priv->set_err_ofst)); 620 writel(priv->ecc_enable_mask, (drvdata->base + 621 priv->set_err_ofst)); 622 ptemp[i] = i; 623 } 624 /* Ensure it has been written out */ 625 wmb(); 626 local_irq_restore(flags); 627 628 if (result) 629 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n"); 630 631 /* Read out written data. ECC error caused here */ 632 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++) 633 if (READ_ONCE(ptemp[i]) != i) 634 edac_printk(KERN_ERR, EDAC_DEVICE, 635 "Read doesn't match written data\n"); 636 637 if (priv->free_mem) 638 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr); 639 640 return count; 641 } 642 643 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = { 644 .open = simple_open, 645 .write = altr_edac_device_trig, 646 .llseek = generic_file_llseek, 647 }; 648 649 static ssize_t __maybe_unused 650 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, 651 size_t count, loff_t *ppos); 652 653 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = { 654 .open = simple_open, 655 .write = altr_edac_a10_device_trig, 656 .llseek = generic_file_llseek, 657 }; 658 659 static ssize_t __maybe_unused 660 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, 661 size_t count, loff_t *ppos); 662 663 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = { 664 .open = simple_open, 665 .write = altr_edac_a10_device_trig2, 666 .llseek = generic_file_llseek, 667 }; 668 669 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci, 670 const struct edac_device_prv_data *priv) 671 { 672 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 673 674 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 675 return; 676 677 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name); 678 if (!drvdata->debugfs_dir) 679 return; 680 681 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR, 682 drvdata->debugfs_dir, edac_dci, 683 priv->inject_fops)) 684 debugfs_remove_recursive(drvdata->debugfs_dir); 685 } 686 687 static const struct of_device_id altr_edac_device_of_match[] = { 688 #ifdef CONFIG_EDAC_ALTERA_L2C 689 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data }, 690 #endif 691 #ifdef CONFIG_EDAC_ALTERA_OCRAM 692 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data }, 693 #endif 694 {}, 695 }; 696 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match); 697 698 /* 699 * altr_edac_device_probe() 700 * This is a generic EDAC device driver that will support 701 * various Altera memory devices such as the L2 cache ECC and 702 * OCRAM ECC as well as the memories for other peripherals. 703 * Module specific initialization is done by passing the 704 * function index in the device tree. 705 */ 706 static int altr_edac_device_probe(struct platform_device *pdev) 707 { 708 struct edac_device_ctl_info *dci; 709 struct altr_edac_device_dev *drvdata; 710 struct resource *r; 711 int res = 0; 712 struct device_node *np = pdev->dev.of_node; 713 char *ecc_name = (char *)np->name; 714 static int dev_instance; 715 716 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 717 edac_printk(KERN_ERR, EDAC_DEVICE, 718 "Unable to open devm\n"); 719 return -ENOMEM; 720 } 721 722 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 723 if (!r) { 724 edac_printk(KERN_ERR, EDAC_DEVICE, 725 "Unable to get mem resource\n"); 726 res = -ENODEV; 727 goto fail; 728 } 729 730 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r), 731 dev_name(&pdev->dev))) { 732 edac_printk(KERN_ERR, EDAC_DEVICE, 733 "%s:Error requesting mem region\n", ecc_name); 734 res = -EBUSY; 735 goto fail; 736 } 737 738 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name, 739 1, ecc_name, 1, 0, dev_instance++); 740 741 if (!dci) { 742 edac_printk(KERN_ERR, EDAC_DEVICE, 743 "%s: Unable to allocate EDAC device\n", ecc_name); 744 res = -ENOMEM; 745 goto fail; 746 } 747 748 drvdata = dci->pvt_info; 749 dci->dev = &pdev->dev; 750 platform_set_drvdata(pdev, dci); 751 drvdata->edac_dev_name = ecc_name; 752 753 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r)); 754 if (!drvdata->base) { 755 res = -ENOMEM; 756 goto fail1; 757 } 758 759 /* Get driver specific data for this EDAC device */ 760 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data; 761 762 /* Check specific dependencies for the module */ 763 if (drvdata->data->setup) { 764 res = drvdata->data->setup(drvdata); 765 if (res) 766 goto fail1; 767 } 768 769 drvdata->sb_irq = platform_get_irq(pdev, 0); 770 res = devm_request_irq(&pdev->dev, drvdata->sb_irq, 771 altr_edac_device_handler, 772 0, dev_name(&pdev->dev), dci); 773 if (res) 774 goto fail1; 775 776 drvdata->db_irq = platform_get_irq(pdev, 1); 777 res = devm_request_irq(&pdev->dev, drvdata->db_irq, 778 altr_edac_device_handler, 779 0, dev_name(&pdev->dev), dci); 780 if (res) 781 goto fail1; 782 783 dci->mod_name = "Altera ECC Manager"; 784 dci->dev_name = drvdata->edac_dev_name; 785 786 res = edac_device_add_device(dci); 787 if (res) 788 goto fail1; 789 790 altr_create_edacdev_dbgfs(dci, drvdata->data); 791 792 devres_close_group(&pdev->dev, NULL); 793 794 return 0; 795 796 fail1: 797 edac_device_free_ctl_info(dci); 798 fail: 799 devres_release_group(&pdev->dev, NULL); 800 edac_printk(KERN_ERR, EDAC_DEVICE, 801 "%s:Error setting up EDAC device: %d\n", ecc_name, res); 802 803 return res; 804 } 805 806 static void altr_edac_device_remove(struct platform_device *pdev) 807 { 808 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev); 809 struct altr_edac_device_dev *drvdata = dci->pvt_info; 810 811 debugfs_remove_recursive(drvdata->debugfs_dir); 812 edac_device_del_device(&pdev->dev); 813 edac_device_free_ctl_info(dci); 814 } 815 816 static struct platform_driver altr_edac_device_driver = { 817 .probe = altr_edac_device_probe, 818 .remove = altr_edac_device_remove, 819 .driver = { 820 .name = "altr_edac_device", 821 .of_match_table = altr_edac_device_of_match, 822 }, 823 }; 824 module_platform_driver(altr_edac_device_driver); 825 826 /******************* Arria10 Device ECC Shared Functions *****************/ 827 828 /* 829 * Test for memory's ECC dependencies upon entry because platform specific 830 * startup should have initialized the memory and enabled the ECC. 831 * Can't turn on ECC here because accessing un-initialized memory will 832 * cause CE/UE errors possibly causing an ABORT. 833 */ 834 static int __maybe_unused 835 altr_check_ecc_deps(struct altr_edac_device_dev *device) 836 { 837 void __iomem *base = device->base; 838 const struct edac_device_prv_data *prv = device->data; 839 840 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask) 841 return 0; 842 843 edac_printk(KERN_ERR, EDAC_DEVICE, 844 "%s: No ECC present or ECC disabled.\n", 845 device->edac_dev_name); 846 return -ENODEV; 847 } 848 849 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id) 850 { 851 struct altr_edac_device_dev *dci = dev_id; 852 void __iomem *base = dci->base; 853 854 if (irq == dci->sb_irq) { 855 writel(ALTR_A10_ECC_SERRPENA, 856 base + ALTR_A10_ECC_INTSTAT_OFST); 857 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 858 859 return IRQ_HANDLED; 860 } else if (irq == dci->db_irq) { 861 writel(ALTR_A10_ECC_DERRPENA, 862 base + ALTR_A10_ECC_INTSTAT_OFST); 863 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 864 if (dci->data->panic) 865 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 866 867 return IRQ_HANDLED; 868 } 869 870 WARN_ON(1); 871 872 return IRQ_NONE; 873 } 874 875 /******************* Arria10 Memory Buffer Functions *********************/ 876 877 static inline int a10_get_irq_mask(struct device_node *np) 878 { 879 int irq; 880 const u32 *handle = of_get_property(np, "interrupts", NULL); 881 882 if (!handle) 883 return -ENODEV; 884 irq = be32_to_cpup(handle); 885 return irq; 886 } 887 888 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr) 889 { 890 u32 value = readl(ioaddr); 891 892 value |= bit_mask; 893 writel(value, ioaddr); 894 } 895 896 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr) 897 { 898 u32 value = readl(ioaddr); 899 900 value &= ~bit_mask; 901 writel(value, ioaddr); 902 } 903 904 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr) 905 { 906 u32 value = readl(ioaddr); 907 908 return (value & bit_mask) ? 1 : 0; 909 } 910 911 /* 912 * This function uses the memory initialization block in the Arria10 ECC 913 * controller to initialize/clear the entire memory data and ECC data. 914 */ 915 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port) 916 { 917 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US; 918 u32 init_mask, stat_mask, clear_mask; 919 int ret = 0; 920 921 if (port) { 922 init_mask = ALTR_A10_ECC_INITB; 923 stat_mask = ALTR_A10_ECC_INITCOMPLETEB; 924 clear_mask = ALTR_A10_ECC_ERRPENB_MASK; 925 } else { 926 init_mask = ALTR_A10_ECC_INITA; 927 stat_mask = ALTR_A10_ECC_INITCOMPLETEA; 928 clear_mask = ALTR_A10_ECC_ERRPENA_MASK; 929 } 930 931 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST)); 932 while (limit--) { 933 if (ecc_test_bits(stat_mask, 934 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST))) 935 break; 936 udelay(1); 937 } 938 if (limit < 0) 939 ret = -EBUSY; 940 941 /* Clear any pending ECC interrupts */ 942 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST)); 943 944 return ret; 945 } 946 947 static __init int __maybe_unused 948 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask, 949 u32 ecc_ctrl_en_mask, bool dual_port) 950 { 951 int ret = 0; 952 void __iomem *ecc_block_base; 953 struct regmap *ecc_mgr_map; 954 char *ecc_name; 955 struct device_node *np_eccmgr; 956 957 ecc_name = (char *)np->name; 958 959 /* Get the ECC Manager - parent of the device EDACs */ 960 np_eccmgr = of_get_parent(np); 961 962 ecc_mgr_map = 963 altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr, 964 "altr,sysmgr-syscon"); 965 966 of_node_put(np_eccmgr); 967 if (IS_ERR(ecc_mgr_map)) { 968 edac_printk(KERN_ERR, EDAC_DEVICE, 969 "Unable to get syscon altr,sysmgr-syscon\n"); 970 return -ENODEV; 971 } 972 973 /* Map the ECC Block */ 974 ecc_block_base = of_iomap(np, 0); 975 if (!ecc_block_base) { 976 edac_printk(KERN_ERR, EDAC_DEVICE, 977 "Unable to map %s ECC block\n", ecc_name); 978 return -ENODEV; 979 } 980 981 /* Disable ECC */ 982 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask); 983 writel(ALTR_A10_ECC_SERRINTEN, 984 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST)); 985 ecc_clear_bits(ecc_ctrl_en_mask, 986 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST)); 987 /* Ensure all writes complete */ 988 wmb(); 989 /* Use HW initialization block to initialize memory for ECC */ 990 ret = altr_init_memory_port(ecc_block_base, 0); 991 if (ret) { 992 edac_printk(KERN_ERR, EDAC_DEVICE, 993 "ECC: cannot init %s PORTA memory\n", ecc_name); 994 goto out; 995 } 996 997 if (dual_port) { 998 ret = altr_init_memory_port(ecc_block_base, 1); 999 if (ret) { 1000 edac_printk(KERN_ERR, EDAC_DEVICE, 1001 "ECC: cannot init %s PORTB memory\n", 1002 ecc_name); 1003 goto out; 1004 } 1005 } 1006 1007 /* Enable ECC */ 1008 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base + 1009 ALTR_A10_ECC_CTRL_OFST)); 1010 writel(ALTR_A10_ECC_SERRINTEN, 1011 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST)); 1012 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask); 1013 /* Ensure all writes complete */ 1014 wmb(); 1015 out: 1016 iounmap(ecc_block_base); 1017 return ret; 1018 } 1019 1020 static int validate_parent_available(struct device_node *np); 1021 static const struct of_device_id altr_edac_a10_device_of_match[]; 1022 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat) 1023 { 1024 int irq; 1025 struct device_node *child, *np; 1026 1027 np = of_find_compatible_node(NULL, NULL, 1028 "altr,socfpga-a10-ecc-manager"); 1029 if (!np) { 1030 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n"); 1031 return -ENODEV; 1032 } 1033 1034 for_each_child_of_node(np, child) { 1035 const struct of_device_id *pdev_id; 1036 const struct edac_device_prv_data *prv; 1037 1038 if (!of_device_is_available(child)) 1039 continue; 1040 if (!of_device_is_compatible(child, compat)) 1041 continue; 1042 1043 if (validate_parent_available(child)) 1044 continue; 1045 1046 irq = a10_get_irq_mask(child); 1047 if (irq < 0) 1048 continue; 1049 1050 /* Get matching node and check for valid result */ 1051 pdev_id = of_match_node(altr_edac_a10_device_of_match, child); 1052 if (IS_ERR_OR_NULL(pdev_id)) 1053 continue; 1054 1055 /* Validate private data pointer before dereferencing */ 1056 prv = pdev_id->data; 1057 if (!prv) 1058 continue; 1059 1060 altr_init_a10_ecc_block(child, BIT(irq), 1061 prv->ecc_enable_mask, 0); 1062 } 1063 1064 of_node_put(np); 1065 return 0; 1066 } 1067 1068 /*********************** SDRAM EDAC Device Functions *********************/ 1069 1070 #ifdef CONFIG_EDAC_ALTERA_SDRAM 1071 1072 /* 1073 * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable 1074 * register if ECC is enabled. Linux checks the ECC Enable register to 1075 * determine ECC status. 1076 * Use an SMC call (which always works) to determine ECC enablement. 1077 */ 1078 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device) 1079 { 1080 const struct edac_device_prv_data *prv = device->data; 1081 unsigned long sdram_ecc_addr; 1082 struct arm_smccc_res result; 1083 struct device_node *np; 1084 phys_addr_t sdram_addr; 1085 u32 read_reg; 1086 int ret; 1087 1088 np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl"); 1089 if (!np) 1090 goto sdram_err; 1091 1092 sdram_addr = of_translate_address(np, of_get_address(np, 0, 1093 NULL, NULL)); 1094 of_node_put(np); 1095 sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst; 1096 arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr, 1097 0, 0, 0, 0, 0, 0, &result); 1098 read_reg = (unsigned int)result.a1; 1099 ret = (int)result.a0; 1100 if (!ret && (read_reg & prv->ecc_enable_mask)) 1101 return 0; 1102 1103 sdram_err: 1104 edac_printk(KERN_ERR, EDAC_DEVICE, 1105 "%s: No ECC present or ECC disabled.\n", 1106 device->edac_dev_name); 1107 return -ENODEV; 1108 } 1109 1110 static const struct edac_device_prv_data s10_sdramecc_data = { 1111 .setup = altr_s10_sdram_check_ecc_deps, 1112 .ce_clear_mask = ALTR_S10_ECC_SERRPENA, 1113 .ue_clear_mask = ALTR_S10_ECC_DERRPENA, 1114 .ecc_enable_mask = ALTR_S10_ECC_EN, 1115 .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST, 1116 .ce_set_mask = ALTR_S10_ECC_TSERRA, 1117 .ue_set_mask = ALTR_S10_ECC_TDERRA, 1118 .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST, 1119 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1120 .inject_fops = &altr_edac_a10_device_inject_fops, 1121 }; 1122 #endif /* CONFIG_EDAC_ALTERA_SDRAM */ 1123 1124 /*********************** OCRAM EDAC Device Functions *********************/ 1125 1126 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1127 1128 static void *ocram_alloc_mem(size_t size, void **other) 1129 { 1130 struct device_node *np; 1131 struct gen_pool *gp; 1132 void *sram_addr; 1133 1134 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc"); 1135 if (!np) 1136 return NULL; 1137 1138 gp = of_gen_pool_get(np, "iram", 0); 1139 of_node_put(np); 1140 if (!gp) 1141 return NULL; 1142 1143 sram_addr = (void *)gen_pool_alloc(gp, size); 1144 if (!sram_addr) 1145 return NULL; 1146 1147 memset(sram_addr, 0, size); 1148 /* Ensure data is written out */ 1149 wmb(); 1150 1151 /* Remember this handle for freeing later */ 1152 *other = gp; 1153 1154 return sram_addr; 1155 } 1156 1157 static void ocram_free_mem(void *p, size_t size, void *other) 1158 { 1159 gen_pool_free((struct gen_pool *)other, (unsigned long)p, size); 1160 } 1161 1162 static const struct edac_device_prv_data ocramecc_data = { 1163 .setup = altr_check_ecc_deps, 1164 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR), 1165 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR), 1166 .alloc_mem = ocram_alloc_mem, 1167 .free_mem = ocram_free_mem, 1168 .ecc_enable_mask = ALTR_OCR_ECC_EN, 1169 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET, 1170 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS), 1171 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD), 1172 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET, 1173 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE, 1174 .inject_fops = &altr_edac_device_inject_fops, 1175 }; 1176 1177 static int __maybe_unused 1178 altr_check_ocram_deps_init(struct altr_edac_device_dev *device) 1179 { 1180 void __iomem *base = device->base; 1181 int ret; 1182 1183 ret = altr_check_ecc_deps(device); 1184 if (ret) 1185 return ret; 1186 1187 /* 1188 * Verify that OCRAM has been initialized. 1189 * During a warm reset, OCRAM contents are retained, but the control 1190 * and status registers are reset to their default values. Therefore, 1191 * ECC must be explicitly re-enabled in the control register. 1192 * Error condition: if INITCOMPLETEA is clear and ECC_EN is already set. 1193 */ 1194 if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA, 1195 (base + ALTR_A10_ECC_INITSTAT_OFST))) { 1196 if (!ecc_test_bits(ALTR_A10_ECC_EN, 1197 (base + ALTR_A10_ECC_CTRL_OFST))) 1198 ecc_set_bits(ALTR_A10_ECC_EN, 1199 (base + ALTR_A10_ECC_CTRL_OFST)); 1200 else 1201 return -ENODEV; 1202 } 1203 1204 /* Enable IRQ on Single Bit Error */ 1205 writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST)); 1206 /* Ensure all writes complete */ 1207 wmb(); 1208 1209 return 0; 1210 } 1211 1212 static const struct edac_device_prv_data a10_ocramecc_data = { 1213 .setup = altr_check_ocram_deps_init, 1214 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1215 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1216 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM, 1217 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL, 1218 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1219 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1220 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1221 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1222 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1223 .inject_fops = &altr_edac_a10_device_inject2_fops, 1224 /* 1225 * OCRAM panic on uncorrectable error because sleep/resume 1226 * functions and FPGA contents are stored in OCRAM. Prefer 1227 * a kernel panic over executing/loading corrupted data. 1228 */ 1229 .panic = true, 1230 }; 1231 1232 #endif /* CONFIG_EDAC_ALTERA_OCRAM */ 1233 1234 /********************* L2 Cache EDAC Device Functions ********************/ 1235 1236 #ifdef CONFIG_EDAC_ALTERA_L2C 1237 1238 static void *l2_alloc_mem(size_t size, void **other) 1239 { 1240 struct device *dev = *other; 1241 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL); 1242 1243 if (!ptemp) 1244 return NULL; 1245 1246 /* Make sure everything is written out */ 1247 wmb(); 1248 1249 /* 1250 * Clean all cache levels up to LoC (includes L2) 1251 * This ensures the corrupted data is written into 1252 * L2 cache for readback test (which causes ECC error). 1253 */ 1254 flush_cache_all(); 1255 1256 return ptemp; 1257 } 1258 1259 static void l2_free_mem(void *p, size_t size, void *other) 1260 { 1261 struct device *dev = other; 1262 1263 if (dev && p) 1264 devm_kfree(dev, p); 1265 } 1266 1267 /* 1268 * altr_l2_check_deps() 1269 * Test for L2 cache ECC dependencies upon entry because 1270 * platform specific startup should have initialized the L2 1271 * memory and enabled the ECC. 1272 * Bail if ECC is not enabled. 1273 * Note that L2 Cache Enable is forced at build time. 1274 */ 1275 static int altr_l2_check_deps(struct altr_edac_device_dev *device) 1276 { 1277 void __iomem *base = device->base; 1278 const struct edac_device_prv_data *prv = device->data; 1279 1280 if ((readl(base) & prv->ecc_enable_mask) == 1281 prv->ecc_enable_mask) 1282 return 0; 1283 1284 edac_printk(KERN_ERR, EDAC_DEVICE, 1285 "L2: No ECC present, or ECC disabled\n"); 1286 return -ENODEV; 1287 } 1288 1289 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id) 1290 { 1291 struct altr_edac_device_dev *dci = dev_id; 1292 1293 if (irq == dci->sb_irq) { 1294 regmap_write(dci->edac->ecc_mgr_map, 1295 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1296 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB); 1297 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 1298 1299 return IRQ_HANDLED; 1300 } else if (irq == dci->db_irq) { 1301 regmap_write(dci->edac->ecc_mgr_map, 1302 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1303 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB); 1304 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 1305 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 1306 1307 return IRQ_HANDLED; 1308 } 1309 1310 WARN_ON(1); 1311 1312 return IRQ_NONE; 1313 } 1314 1315 static const struct edac_device_prv_data l2ecc_data = { 1316 .setup = altr_l2_check_deps, 1317 .ce_clear_mask = 0, 1318 .ue_clear_mask = 0, 1319 .alloc_mem = l2_alloc_mem, 1320 .free_mem = l2_free_mem, 1321 .ecc_enable_mask = ALTR_L2_ECC_EN, 1322 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS), 1323 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD), 1324 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET, 1325 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1326 .inject_fops = &altr_edac_device_inject_fops, 1327 }; 1328 1329 static const struct edac_device_prv_data a10_l2ecc_data = { 1330 .setup = altr_l2_check_deps, 1331 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR, 1332 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR, 1333 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2, 1334 .alloc_mem = l2_alloc_mem, 1335 .free_mem = l2_free_mem, 1336 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL, 1337 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK, 1338 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK, 1339 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST, 1340 .ecc_irq_handler = altr_edac_a10_l2_irq, 1341 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1342 .inject_fops = &altr_edac_device_inject_fops, 1343 }; 1344 1345 #endif /* CONFIG_EDAC_ALTERA_L2C */ 1346 1347 /********************* Ethernet Device Functions ********************/ 1348 1349 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1350 1351 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev) 1352 { 1353 int ret; 1354 1355 ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc"); 1356 if (ret) 1357 return ret; 1358 1359 return altr_check_ecc_deps(dev); 1360 } 1361 1362 static const struct edac_device_prv_data a10_enetecc_data = { 1363 .setup = socfpga_init_ethernet_ecc, 1364 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1365 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1366 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1367 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1368 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1369 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1370 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1371 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1372 .inject_fops = &altr_edac_a10_device_inject_fops, 1373 }; 1374 1375 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */ 1376 1377 /********************** NAND Device Functions **********************/ 1378 1379 #ifdef CONFIG_EDAC_ALTERA_NAND 1380 1381 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device) 1382 { 1383 int ret; 1384 1385 ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc"); 1386 if (ret) 1387 return ret; 1388 1389 return altr_check_ecc_deps(device); 1390 } 1391 1392 static const struct edac_device_prv_data a10_nandecc_data = { 1393 .setup = socfpga_init_nand_ecc, 1394 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1395 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1396 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1397 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1398 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1399 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1400 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1401 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1402 .inject_fops = &altr_edac_a10_device_inject_fops, 1403 }; 1404 1405 #endif /* CONFIG_EDAC_ALTERA_NAND */ 1406 1407 /********************** DMA Device Functions **********************/ 1408 1409 #ifdef CONFIG_EDAC_ALTERA_DMA 1410 1411 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device) 1412 { 1413 int ret; 1414 1415 ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc"); 1416 if (ret) 1417 return ret; 1418 1419 return altr_check_ecc_deps(device); 1420 } 1421 1422 static const struct edac_device_prv_data a10_dmaecc_data = { 1423 .setup = socfpga_init_dma_ecc, 1424 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1425 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1426 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1427 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1428 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1429 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1430 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1431 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1432 .inject_fops = &altr_edac_a10_device_inject_fops, 1433 }; 1434 1435 #endif /* CONFIG_EDAC_ALTERA_DMA */ 1436 1437 /********************** USB Device Functions **********************/ 1438 1439 #ifdef CONFIG_EDAC_ALTERA_USB 1440 1441 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device) 1442 { 1443 int ret; 1444 1445 ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc"); 1446 if (ret) 1447 return ret; 1448 1449 return altr_check_ecc_deps(device); 1450 } 1451 1452 static const struct edac_device_prv_data a10_usbecc_data = { 1453 .setup = socfpga_init_usb_ecc, 1454 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1455 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1456 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1457 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1458 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1459 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1460 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1461 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1462 .inject_fops = &altr_edac_a10_device_inject_fops, 1463 }; 1464 1465 #endif /* CONFIG_EDAC_ALTERA_USB */ 1466 1467 /********************** QSPI Device Functions **********************/ 1468 1469 #ifdef CONFIG_EDAC_ALTERA_QSPI 1470 1471 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device) 1472 { 1473 int ret; 1474 1475 ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc"); 1476 if (ret) 1477 return ret; 1478 1479 return altr_check_ecc_deps(device); 1480 } 1481 1482 static const struct edac_device_prv_data a10_qspiecc_data = { 1483 .setup = socfpga_init_qspi_ecc, 1484 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1485 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1486 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1487 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1488 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1489 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1490 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1491 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1492 .inject_fops = &altr_edac_a10_device_inject_fops, 1493 }; 1494 1495 #endif /* CONFIG_EDAC_ALTERA_QSPI */ 1496 1497 /********************* SDMMC Device Functions **********************/ 1498 1499 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1500 1501 static const struct edac_device_prv_data a10_sdmmceccb_data; 1502 static int altr_portb_setup(struct altr_edac_device_dev *device) 1503 { 1504 struct edac_device_ctl_info *dci; 1505 struct altr_edac_device_dev *altdev; 1506 char *ecc_name = "sdmmcb-ecc"; 1507 int edac_idx, rc; 1508 struct device_node *np; 1509 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data; 1510 1511 rc = altr_check_ecc_deps(device); 1512 if (rc) 1513 return rc; 1514 1515 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1516 if (!np) { 1517 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); 1518 return -ENODEV; 1519 } 1520 1521 /* Create the PortB EDAC device */ 1522 edac_idx = edac_device_alloc_index(); 1523 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1, 1524 ecc_name, 1, 0, edac_idx); 1525 if (!dci) { 1526 edac_printk(KERN_ERR, EDAC_DEVICE, 1527 "%s: Unable to allocate PortB EDAC device\n", 1528 ecc_name); 1529 return -ENOMEM; 1530 } 1531 1532 /* Initialize the PortB EDAC device structure from PortA structure */ 1533 altdev = dci->pvt_info; 1534 *altdev = *device; 1535 1536 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL)) 1537 return -ENOMEM; 1538 1539 /* Update PortB specific values */ 1540 altdev->edac_dev_name = ecc_name; 1541 altdev->edac_idx = edac_idx; 1542 altdev->edac_dev = dci; 1543 altdev->data = prv; 1544 dci->dev = &altdev->ddev; 1545 dci->ctl_name = "Altera ECC Manager"; 1546 dci->mod_name = ecc_name; 1547 dci->dev_name = ecc_name; 1548 1549 /* 1550 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly 1551 * 1552 * FIXME: Instead of ifdefs with different architectures the driver 1553 * should properly use compatibles. 1554 */ 1555 #ifdef CONFIG_64BIT 1556 altdev->sb_irq = irq_of_parse_and_map(np, 1); 1557 #else 1558 altdev->sb_irq = irq_of_parse_and_map(np, 2); 1559 #endif 1560 if (!altdev->sb_irq) { 1561 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n"); 1562 rc = -ENODEV; 1563 goto err_release_group_1; 1564 } 1565 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq, 1566 prv->ecc_irq_handler, 1567 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1568 ecc_name, altdev); 1569 if (rc) { 1570 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n"); 1571 goto err_release_group_1; 1572 } 1573 1574 #ifdef CONFIG_64BIT 1575 /* Use IRQ to determine SError origin instead of assigning IRQ */ 1576 rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq); 1577 if (rc) { 1578 edac_printk(KERN_ERR, EDAC_DEVICE, 1579 "Error PortB DBIRQ alloc\n"); 1580 goto err_release_group_1; 1581 } 1582 #else 1583 altdev->db_irq = irq_of_parse_and_map(np, 3); 1584 if (!altdev->db_irq) { 1585 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n"); 1586 rc = -ENODEV; 1587 goto err_release_group_1; 1588 } 1589 rc = devm_request_irq(&altdev->ddev, altdev->db_irq, 1590 prv->ecc_irq_handler, 1591 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1592 ecc_name, altdev); 1593 if (rc) { 1594 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n"); 1595 goto err_release_group_1; 1596 } 1597 #endif 1598 1599 rc = edac_device_add_device(dci); 1600 if (rc) { 1601 edac_printk(KERN_ERR, EDAC_DEVICE, 1602 "edac_device_add_device portB failed\n"); 1603 rc = -ENOMEM; 1604 goto err_release_group_1; 1605 } 1606 altr_create_edacdev_dbgfs(dci, prv); 1607 1608 list_add(&altdev->next, &altdev->edac->a10_ecc_devices); 1609 1610 devres_remove_group(&altdev->ddev, altr_portb_setup); 1611 1612 return 0; 1613 1614 err_release_group_1: 1615 edac_device_free_ctl_info(dci); 1616 devres_release_group(&altdev->ddev, altr_portb_setup); 1617 edac_printk(KERN_ERR, EDAC_DEVICE, 1618 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 1619 return rc; 1620 } 1621 1622 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device) 1623 { 1624 int rc = -ENODEV; 1625 struct device_node *child; 1626 1627 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1628 if (!child) 1629 return -ENODEV; 1630 1631 if (!of_device_is_available(child)) 1632 goto exit; 1633 1634 if (validate_parent_available(child)) 1635 goto exit; 1636 1637 /* Init portB */ 1638 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK, 1639 a10_sdmmceccb_data.ecc_enable_mask, 1); 1640 if (rc) 1641 goto exit; 1642 1643 /* Setup portB */ 1644 return altr_portb_setup(device); 1645 1646 exit: 1647 of_node_put(child); 1648 return rc; 1649 } 1650 1651 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id) 1652 { 1653 struct altr_edac_device_dev *ad = dev_id; 1654 void __iomem *base = ad->base; 1655 const struct edac_device_prv_data *priv = ad->data; 1656 1657 if (irq == ad->sb_irq) { 1658 writel(priv->ce_clear_mask, 1659 base + ALTR_A10_ECC_INTSTAT_OFST); 1660 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name); 1661 return IRQ_HANDLED; 1662 } else if (irq == ad->db_irq) { 1663 writel(priv->ue_clear_mask, 1664 base + ALTR_A10_ECC_INTSTAT_OFST); 1665 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name); 1666 return IRQ_HANDLED; 1667 } 1668 1669 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq); 1670 1671 return IRQ_NONE; 1672 } 1673 1674 static const struct edac_device_prv_data a10_sdmmcecca_data = { 1675 .setup = socfpga_init_sdmmc_ecc, 1676 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1677 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1678 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1679 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1680 .ce_set_mask = ALTR_A10_ECC_SERRPENA, 1681 .ue_set_mask = ALTR_A10_ECC_DERRPENA, 1682 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1683 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1684 .inject_fops = &altr_edac_a10_device_inject_fops, 1685 }; 1686 1687 static const struct edac_device_prv_data a10_sdmmceccb_data = { 1688 .setup = socfpga_init_sdmmc_ecc, 1689 .ce_clear_mask = ALTR_A10_ECC_SERRPENB, 1690 .ue_clear_mask = ALTR_A10_ECC_DERRPENB, 1691 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1692 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1693 .ce_set_mask = ALTR_A10_ECC_TSERRB, 1694 .ue_set_mask = ALTR_A10_ECC_TDERRB, 1695 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1696 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb, 1697 .inject_fops = &altr_edac_a10_device_inject_fops, 1698 }; 1699 1700 #endif /* CONFIG_EDAC_ALTERA_SDMMC */ 1701 1702 /********************* Arria10 EDAC Device Functions *************************/ 1703 static const struct of_device_id altr_edac_a10_device_of_match[] = { 1704 #ifdef CONFIG_EDAC_ALTERA_L2C 1705 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data }, 1706 #endif 1707 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1708 { .compatible = "altr,socfpga-a10-ocram-ecc", 1709 .data = &a10_ocramecc_data }, 1710 #endif 1711 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1712 { .compatible = "altr,socfpga-eth-mac-ecc", 1713 .data = &a10_enetecc_data }, 1714 #endif 1715 #ifdef CONFIG_EDAC_ALTERA_NAND 1716 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data }, 1717 #endif 1718 #ifdef CONFIG_EDAC_ALTERA_DMA 1719 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data }, 1720 #endif 1721 #ifdef CONFIG_EDAC_ALTERA_USB 1722 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data }, 1723 #endif 1724 #ifdef CONFIG_EDAC_ALTERA_QSPI 1725 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data }, 1726 #endif 1727 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1728 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data }, 1729 #endif 1730 #ifdef CONFIG_EDAC_ALTERA_SDRAM 1731 { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data }, 1732 #endif 1733 {}, 1734 }; 1735 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match); 1736 1737 /* 1738 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5 1739 * because 2 IRQs are shared among the all ECC peripherals. The ECC 1740 * manager manages the IRQs and the children. 1741 * Based on xgene_edac.c peripheral code. 1742 */ 1743 1744 static ssize_t __maybe_unused 1745 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, 1746 size_t count, loff_t *ppos) 1747 { 1748 struct edac_device_ctl_info *edac_dci = file->private_data; 1749 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 1750 const struct edac_device_prv_data *priv = drvdata->data; 1751 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); 1752 unsigned long flags; 1753 u8 trig_type; 1754 1755 if (!user_buf || get_user(trig_type, user_buf)) 1756 return -EFAULT; 1757 1758 local_irq_save(flags); 1759 if (trig_type == ALTR_UE_TRIGGER_CHAR) 1760 writew(priv->ue_set_mask, set_addr); 1761 else 1762 writew(priv->ce_set_mask, set_addr); 1763 1764 /* Ensure the interrupt test bits are set */ 1765 wmb(); 1766 local_irq_restore(flags); 1767 1768 return count; 1769 } 1770 1771 /* 1772 * The Stratix10 EDAC Error Injection Functions differ from Arria10 1773 * slightly. A few Arria10 peripherals can use this injection function. 1774 * Inject the error into the memory and then readback to trigger the IRQ. 1775 */ 1776 static ssize_t __maybe_unused 1777 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, 1778 size_t count, loff_t *ppos) 1779 { 1780 struct edac_device_ctl_info *edac_dci = file->private_data; 1781 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 1782 const struct edac_device_prv_data *priv = drvdata->data; 1783 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); 1784 unsigned long flags; 1785 u8 trig_type; 1786 1787 if (!user_buf || get_user(trig_type, user_buf)) 1788 return -EFAULT; 1789 1790 local_irq_save(flags); 1791 if (trig_type == ALTR_UE_TRIGGER_CHAR) { 1792 writew(priv->ue_set_mask, set_addr); 1793 } else { 1794 /* Setup read/write of 4 bytes */ 1795 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST); 1796 /* Setup Address to 0 */ 1797 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST); 1798 /* Setup accctrl to read & ecc & data override */ 1799 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1800 /* Kick it. */ 1801 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1802 /* Setup write for single bit change */ 1803 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1, 1804 drvdata->base + ECC_BLK_WDATA0_OFST); 1805 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST), 1806 drvdata->base + ECC_BLK_WDATA1_OFST); 1807 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST), 1808 drvdata->base + ECC_BLK_WDATA2_OFST); 1809 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST), 1810 drvdata->base + ECC_BLK_WDATA3_OFST); 1811 1812 /* Copy Read ECC to Write ECC */ 1813 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST), 1814 drvdata->base + ECC_BLK_WECC0_OFST); 1815 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST), 1816 drvdata->base + ECC_BLK_WECC1_OFST); 1817 /* Setup accctrl to write & ecc override & data override */ 1818 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1819 /* Kick it. */ 1820 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1821 /* Setup accctrl to read & ecc overwrite & data overwrite */ 1822 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1823 /* Kick it. */ 1824 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1825 } 1826 1827 /* Ensure the interrupt test bits are set */ 1828 wmb(); 1829 local_irq_restore(flags); 1830 1831 return count; 1832 } 1833 1834 static void altr_edac_a10_irq_handler(struct irq_desc *desc) 1835 { 1836 int dberr, bit, sm_offset, irq_status; 1837 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc); 1838 struct irq_chip *chip = irq_desc_get_chip(desc); 1839 int irq = irq_desc_get_irq(desc); 1840 unsigned long bits; 1841 1842 dberr = (irq == edac->db_irq) ? 1 : 0; 1843 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST : 1844 A10_SYSMGR_ECC_INTSTAT_SERR_OFST; 1845 1846 chained_irq_enter(chip, desc); 1847 1848 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status); 1849 1850 bits = irq_status; 1851 for_each_set_bit(bit, &bits, 32) 1852 generic_handle_domain_irq(edac->domain, dberr * 32 + bit); 1853 1854 chained_irq_exit(chip, desc); 1855 } 1856 1857 static int validate_parent_available(struct device_node *np) 1858 { 1859 struct device_node *parent; 1860 int ret = 0; 1861 1862 /* SDRAM must be present for Linux (implied parent) */ 1863 if (of_device_is_compatible(np, "altr,sdram-edac-s10")) 1864 return 0; 1865 1866 /* Ensure parent device is enabled if parent node exists */ 1867 parent = of_parse_phandle(np, "altr,ecc-parent", 0); 1868 if (parent && !of_device_is_available(parent)) 1869 ret = -ENODEV; 1870 1871 of_node_put(parent); 1872 return ret; 1873 } 1874 1875 static int get_s10_sdram_edac_resource(struct device_node *np, 1876 struct resource *res) 1877 { 1878 struct device_node *parent; 1879 int ret; 1880 1881 parent = of_parse_phandle(np, "altr,sdr-syscon", 0); 1882 if (!parent) 1883 return -ENODEV; 1884 1885 ret = of_address_to_resource(parent, 0, res); 1886 of_node_put(parent); 1887 1888 return ret; 1889 } 1890 1891 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac, 1892 struct device_node *np) 1893 { 1894 struct edac_device_ctl_info *dci; 1895 struct altr_edac_device_dev *altdev; 1896 char *ecc_name = (char *)np->name; 1897 struct resource res; 1898 int edac_idx; 1899 int rc = 0; 1900 const struct edac_device_prv_data *prv; 1901 /* Get matching node and check for valid result */ 1902 const struct of_device_id *pdev_id = 1903 of_match_node(altr_edac_a10_device_of_match, np); 1904 if (IS_ERR_OR_NULL(pdev_id)) 1905 return -ENODEV; 1906 1907 /* Get driver specific data for this EDAC device */ 1908 prv = pdev_id->data; 1909 if (IS_ERR_OR_NULL(prv)) 1910 return -ENODEV; 1911 1912 if (validate_parent_available(np)) 1913 return -ENODEV; 1914 1915 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL)) 1916 return -ENOMEM; 1917 1918 if (of_device_is_compatible(np, "altr,sdram-edac-s10")) 1919 rc = get_s10_sdram_edac_resource(np, &res); 1920 else 1921 rc = of_address_to_resource(np, 0, &res); 1922 1923 if (rc < 0) { 1924 edac_printk(KERN_ERR, EDAC_DEVICE, 1925 "%s: no resource address\n", ecc_name); 1926 goto err_release_group; 1927 } 1928 1929 edac_idx = edac_device_alloc_index(); 1930 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1931 1, ecc_name, 1, 0, edac_idx); 1932 1933 if (!dci) { 1934 edac_printk(KERN_ERR, EDAC_DEVICE, 1935 "%s: Unable to allocate EDAC device\n", ecc_name); 1936 rc = -ENOMEM; 1937 goto err_release_group; 1938 } 1939 1940 altdev = dci->pvt_info; 1941 dci->dev = edac->dev; 1942 altdev->edac_dev_name = ecc_name; 1943 altdev->edac_idx = edac_idx; 1944 altdev->edac = edac; 1945 altdev->edac_dev = dci; 1946 altdev->data = prv; 1947 altdev->ddev = *edac->dev; 1948 dci->dev = &altdev->ddev; 1949 dci->ctl_name = "Altera ECC Manager"; 1950 dci->mod_name = ecc_name; 1951 dci->dev_name = ecc_name; 1952 1953 altdev->base = devm_ioremap_resource(edac->dev, &res); 1954 if (IS_ERR(altdev->base)) { 1955 rc = PTR_ERR(altdev->base); 1956 goto err_release_group1; 1957 } 1958 1959 /* Check specific dependencies for the module */ 1960 if (altdev->data->setup) { 1961 rc = altdev->data->setup(altdev); 1962 if (rc) 1963 goto err_release_group1; 1964 } 1965 1966 altdev->sb_irq = irq_of_parse_and_map(np, 0); 1967 if (!altdev->sb_irq) { 1968 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n"); 1969 rc = -ENODEV; 1970 goto err_release_group1; 1971 } 1972 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler, 1973 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1974 ecc_name, altdev); 1975 if (rc) { 1976 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n"); 1977 goto err_release_group1; 1978 } 1979 1980 #ifdef CONFIG_64BIT 1981 /* Use IRQ to determine SError origin instead of assigning IRQ */ 1982 rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq); 1983 if (rc) { 1984 edac_printk(KERN_ERR, EDAC_DEVICE, 1985 "Unable to parse DB IRQ index\n"); 1986 goto err_release_group1; 1987 } 1988 #else 1989 altdev->db_irq = irq_of_parse_and_map(np, 1); 1990 if (!altdev->db_irq) { 1991 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n"); 1992 rc = -ENODEV; 1993 goto err_release_group1; 1994 } 1995 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler, 1996 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1997 ecc_name, altdev); 1998 if (rc) { 1999 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n"); 2000 goto err_release_group1; 2001 } 2002 #endif 2003 2004 rc = edac_device_add_device(dci); 2005 if (rc) { 2006 dev_err(edac->dev, "edac_device_add_device failed\n"); 2007 rc = -ENOMEM; 2008 goto err_release_group1; 2009 } 2010 2011 altr_create_edacdev_dbgfs(dci, prv); 2012 2013 list_add(&altdev->next, &edac->a10_ecc_devices); 2014 2015 devres_remove_group(edac->dev, altr_edac_a10_device_add); 2016 2017 return 0; 2018 2019 err_release_group1: 2020 edac_device_free_ctl_info(dci); 2021 err_release_group: 2022 devres_release_group(edac->dev, NULL); 2023 edac_printk(KERN_ERR, EDAC_DEVICE, 2024 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 2025 2026 return rc; 2027 } 2028 2029 static void a10_eccmgr_irq_mask(struct irq_data *d) 2030 { 2031 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 2032 2033 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, 2034 BIT(d->hwirq)); 2035 } 2036 2037 static void a10_eccmgr_irq_unmask(struct irq_data *d) 2038 { 2039 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 2040 2041 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, 2042 BIT(d->hwirq)); 2043 } 2044 2045 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq, 2046 irq_hw_number_t hwirq) 2047 { 2048 struct altr_arria10_edac *edac = d->host_data; 2049 2050 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq); 2051 irq_set_chip_data(irq, edac); 2052 irq_set_noprobe(irq); 2053 2054 return 0; 2055 } 2056 2057 static const struct irq_domain_ops a10_eccmgr_ic_ops = { 2058 .map = a10_eccmgr_irqdomain_map, 2059 .xlate = irq_domain_xlate_twocell, 2060 }; 2061 2062 /************** Stratix 10 EDAC Double Bit Error Handler ************/ 2063 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m) 2064 2065 #ifdef CONFIG_64BIT 2066 /* panic routine issues reboot on non-zero panic_timeout */ 2067 extern int panic_timeout; 2068 2069 /* 2070 * The double bit error is handled through SError which is fatal. This is 2071 * called as a panic notifier to printout ECC error info as part of the panic. 2072 */ 2073 static int s10_edac_dberr_handler(struct notifier_block *this, 2074 unsigned long event, void *ptr) 2075 { 2076 struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier); 2077 int err_addr, dberror; 2078 2079 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST, 2080 &dberror); 2081 regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror); 2082 if (dberror & S10_DBE_IRQ_MASK) { 2083 struct list_head *position; 2084 struct altr_edac_device_dev *ed; 2085 struct arm_smccc_res result; 2086 2087 /* Find the matching DBE in the list of devices */ 2088 list_for_each(position, &edac->a10_ecc_devices) { 2089 ed = list_entry(position, struct altr_edac_device_dev, 2090 next); 2091 if (!(BIT(ed->db_irq) & dberror)) 2092 continue; 2093 2094 writel(ALTR_A10_ECC_DERRPENA, 2095 ed->base + ALTR_A10_ECC_INTSTAT_OFST); 2096 err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST); 2097 regmap_write(edac->ecc_mgr_map, 2098 S10_SYSMGR_UE_ADDR_OFST, err_addr); 2099 edac_printk(KERN_ERR, EDAC_DEVICE, 2100 "EDAC: [Fatal DBE on %s @ 0x%08X]\n", 2101 ed->edac_dev_name, err_addr); 2102 break; 2103 } 2104 /* Notify the System through SMC. Reboot delay = 1 second */ 2105 panic_timeout = 1; 2106 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0, 2107 0, 0, &result); 2108 } 2109 2110 return NOTIFY_DONE; 2111 } 2112 #endif 2113 2114 /****************** Arria 10 EDAC Probe Function *********************/ 2115 static int altr_edac_a10_probe(struct platform_device *pdev) 2116 { 2117 struct altr_arria10_edac *edac; 2118 struct device_node *child; 2119 2120 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL); 2121 if (!edac) 2122 return -ENOMEM; 2123 2124 edac->dev = &pdev->dev; 2125 platform_set_drvdata(pdev, edac); 2126 INIT_LIST_HEAD(&edac->a10_ecc_devices); 2127 2128 edac->ecc_mgr_map = 2129 altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node, 2130 "altr,sysmgr-syscon"); 2131 2132 if (IS_ERR(edac->ecc_mgr_map)) { 2133 edac_printk(KERN_ERR, EDAC_DEVICE, 2134 "Unable to get syscon altr,sysmgr-syscon\n"); 2135 return PTR_ERR(edac->ecc_mgr_map); 2136 } 2137 2138 /* Set irq mask for DDR SBE to avoid any pending irq before registration */ 2139 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, 2140 (A10_SYSMGR_ECC_INTMASK_SDMMCB | A10_SYSMGR_ECC_INTMASK_DDR0)); 2141 2142 edac->irq_chip.name = pdev->dev.of_node->name; 2143 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask; 2144 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask; 2145 edac->domain = irq_domain_create_linear(dev_fwnode(&pdev->dev), 64, &a10_eccmgr_ic_ops, 2146 edac); 2147 if (!edac->domain) { 2148 dev_err(&pdev->dev, "Error adding IRQ domain\n"); 2149 return -ENOMEM; 2150 } 2151 2152 edac->sb_irq = platform_get_irq(pdev, 0); 2153 if (edac->sb_irq < 0) 2154 return edac->sb_irq; 2155 2156 irq_set_chained_handler_and_data(edac->sb_irq, 2157 altr_edac_a10_irq_handler, 2158 edac); 2159 2160 #ifdef CONFIG_64BIT 2161 { 2162 int dberror, err_addr; 2163 2164 edac->panic_notifier.notifier_call = s10_edac_dberr_handler; 2165 atomic_notifier_chain_register(&panic_notifier_list, 2166 &edac->panic_notifier); 2167 2168 /* Printout a message if uncorrectable error previously. */ 2169 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, 2170 &dberror); 2171 if (dberror) { 2172 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST, 2173 &err_addr); 2174 edac_printk(KERN_ERR, EDAC_DEVICE, 2175 "Previous Boot UE detected[0x%X] @ 0x%X\n", 2176 dberror, err_addr); 2177 /* Reset the sticky registers */ 2178 regmap_write(edac->ecc_mgr_map, 2179 S10_SYSMGR_UE_VAL_OFST, 0); 2180 regmap_write(edac->ecc_mgr_map, 2181 S10_SYSMGR_UE_ADDR_OFST, 0); 2182 } 2183 } 2184 #else 2185 edac->db_irq = platform_get_irq(pdev, 1); 2186 if (edac->db_irq < 0) 2187 return edac->db_irq; 2188 2189 irq_set_chained_handler_and_data(edac->db_irq, 2190 altr_edac_a10_irq_handler, edac); 2191 #endif 2192 2193 for_each_child_of_node(pdev->dev.of_node, child) { 2194 if (!of_device_is_available(child)) 2195 continue; 2196 2197 if (of_match_node(altr_edac_a10_device_of_match, child)) 2198 altr_edac_a10_device_add(edac, child); 2199 2200 #ifdef CONFIG_EDAC_ALTERA_SDRAM 2201 else if (of_device_is_compatible(child, "altr,sdram-edac-a10")) 2202 of_platform_populate(pdev->dev.of_node, 2203 altr_sdram_ctrl_of_match, 2204 NULL, &pdev->dev); 2205 #endif 2206 } 2207 2208 return 0; 2209 } 2210 2211 static const struct of_device_id altr_edac_a10_of_match[] = { 2212 { .compatible = "altr,socfpga-a10-ecc-manager" }, 2213 { .compatible = "altr,socfpga-s10-ecc-manager" }, 2214 {}, 2215 }; 2216 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match); 2217 2218 static struct platform_driver altr_edac_a10_driver = { 2219 .probe = altr_edac_a10_probe, 2220 .driver = { 2221 .name = "socfpga_a10_ecc_manager", 2222 .of_match_table = altr_edac_a10_of_match, 2223 }, 2224 }; 2225 module_platform_driver(altr_edac_a10_driver); 2226 2227 MODULE_AUTHOR("Thor Thayer"); 2228 MODULE_DESCRIPTION("EDAC Driver for Altera Memories"); 2229