xref: /linux/drivers/edac/altera_edac.c (revision 2fcea44e1ba16c55f4602948d2d43f3a365d6070)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/property.h>
26 #include <linux/regmap.h>
27 #include <linux/types.h>
28 #include <linux/uaccess.h>
29 
30 #include "altera_edac.h"
31 #include "edac_module.h"
32 
33 #define EDAC_MOD_STR		"altera_edac"
34 #define EDAC_DEVICE		"Altera"
35 
36 #ifdef CONFIG_EDAC_ALTERA_SDRAM
37 static const struct altr_sdram_prv_data c5_data = {
38 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
39 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
40 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
41 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
42 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
43 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
44 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
45 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
46 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
47 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
48 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
49 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
50 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
51 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
52 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
53 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
54 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
55 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
56 };
57 
58 static const struct altr_sdram_prv_data a10_data = {
59 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
60 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
61 	.ecc_stat_offset    = A10_INTSTAT_OFST,
62 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
63 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
64 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
65 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
66 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
67 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
68 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
69 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
70 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
71 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
72 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
73 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
74 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
75 };
76 
77 /*********************** EDAC Memory Controller Functions ****************/
78 
79 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
80 
81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
82 {
83 	struct mem_ctl_info *mci = dev_id;
84 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
85 	const struct altr_sdram_prv_data *priv = drvdata->data;
86 	u32 status, err_count = 1, err_addr;
87 
88 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
89 
90 	if (status & priv->ecc_stat_ue_mask) {
91 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
92 			    &err_addr);
93 		if (priv->ecc_uecnt_offset)
94 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
95 				    &err_count);
96 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
97 		      err_count, err_addr);
98 	}
99 	if (status & priv->ecc_stat_ce_mask) {
100 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
101 			    &err_addr);
102 		if (priv->ecc_uecnt_offset)
103 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
104 				    &err_count);
105 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
106 				     err_addr >> PAGE_SHIFT,
107 				     err_addr & ~PAGE_MASK, 0,
108 				     0, 0, -1, mci->ctl_name, "");
109 		/* Clear IRQ to resume */
110 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
111 			     priv->ecc_irq_clr_mask);
112 
113 		return IRQ_HANDLED;
114 	}
115 	return IRQ_NONE;
116 }
117 
118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
119 					    const char __user *data,
120 					    size_t count, loff_t *ppos)
121 {
122 	struct mem_ctl_info *mci = file->private_data;
123 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
124 	const struct altr_sdram_prv_data *priv = drvdata->data;
125 	u32 *ptemp;
126 	dma_addr_t dma_handle;
127 	u32 reg, read_reg;
128 
129 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
130 	if (!ptemp) {
131 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
132 		edac_printk(KERN_ERR, EDAC_MC,
133 			    "Inject: Buffer Allocation error\n");
134 		return -ENOMEM;
135 	}
136 
137 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
138 		    &read_reg);
139 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
140 
141 	/* Error are injected by writing a word while the SBE or DBE
142 	 * bit in the CTLCFG register is set. Reading the word will
143 	 * trigger the SBE or DBE error and the corresponding IRQ.
144 	 */
145 	if (count == 3) {
146 		edac_printk(KERN_ALERT, EDAC_MC,
147 			    "Inject Double bit error\n");
148 		local_irq_disable();
149 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
150 			     (read_reg | priv->ue_set_mask));
151 		local_irq_enable();
152 	} else {
153 		edac_printk(KERN_ALERT, EDAC_MC,
154 			    "Inject Single bit error\n");
155 		local_irq_disable();
156 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
157 			     (read_reg | priv->ce_set_mask));
158 		local_irq_enable();
159 	}
160 
161 	ptemp[0] = 0x5A5A5A5A;
162 	ptemp[1] = 0xA5A5A5A5;
163 
164 	/* Clear the error injection bits */
165 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
166 	/* Ensure it has been written out */
167 	wmb();
168 
169 	/*
170 	 * To trigger the error, we need to read the data back
171 	 * (the data was written with errors above).
172 	 * The READ_ONCE macros and printk are used to prevent the
173 	 * the compiler optimizing these reads out.
174 	 */
175 	reg = READ_ONCE(ptemp[0]);
176 	read_reg = READ_ONCE(ptemp[1]);
177 	/* Force Read */
178 	rmb();
179 
180 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
181 		    reg, read_reg);
182 
183 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
184 
185 	return count;
186 }
187 
188 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
189 	.open = simple_open,
190 	.write = altr_sdr_mc_err_inject_write,
191 	.llseek = generic_file_llseek,
192 };
193 
194 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
195 {
196 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
197 		return;
198 
199 	if (!mci->debugfs)
200 		return;
201 
202 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
203 				 &altr_sdr_mc_debug_inject_fops);
204 }
205 
206 /* Get total memory size from Open Firmware DTB */
207 static unsigned long get_total_mem(void)
208 {
209 	struct device_node *np = NULL;
210 	struct resource res;
211 	int ret;
212 	unsigned long total_mem = 0;
213 
214 	for_each_node_by_type(np, "memory") {
215 		ret = of_address_to_resource(np, 0, &res);
216 		if (ret)
217 			continue;
218 
219 		total_mem += resource_size(&res);
220 	}
221 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
222 	return total_mem;
223 }
224 
225 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
226 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
227 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
228 	{},
229 };
230 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
231 
232 static int a10_init(struct regmap *mc_vbase)
233 {
234 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
235 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
236 		edac_printk(KERN_ERR, EDAC_MC,
237 			    "Error setting SB IRQ mode\n");
238 		return -ENODEV;
239 	}
240 
241 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
242 		edac_printk(KERN_ERR, EDAC_MC,
243 			    "Error setting trigger count\n");
244 		return -ENODEV;
245 	}
246 
247 	return 0;
248 }
249 
250 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
251 {
252 	void __iomem  *sm_base;
253 	int  ret = 0;
254 
255 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
256 				dev_name(&pdev->dev))) {
257 		edac_printk(KERN_ERR, EDAC_MC,
258 			    "Unable to request mem region\n");
259 		return -EBUSY;
260 	}
261 
262 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
263 	if (!sm_base) {
264 		edac_printk(KERN_ERR, EDAC_MC,
265 			    "Unable to ioremap device\n");
266 
267 		ret = -ENOMEM;
268 		goto release;
269 	}
270 
271 	iowrite32(mask, sm_base);
272 
273 	iounmap(sm_base);
274 
275 release:
276 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
277 
278 	return ret;
279 }
280 
281 static int altr_sdram_probe(struct platform_device *pdev)
282 {
283 	struct edac_mc_layer layers[2];
284 	struct mem_ctl_info *mci;
285 	struct altr_sdram_mc_data *drvdata;
286 	const struct altr_sdram_prv_data *priv;
287 	struct regmap *mc_vbase;
288 	struct dimm_info *dimm;
289 	u32 read_reg;
290 	int irq, irq2, res = 0;
291 	unsigned long mem_size, irqflags = 0;
292 
293 	/* Grab the register range from the sdr controller in device tree */
294 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
295 						   "altr,sdr-syscon");
296 	if (IS_ERR(mc_vbase)) {
297 		edac_printk(KERN_ERR, EDAC_MC,
298 			    "regmap for altr,sdr-syscon lookup failed.\n");
299 		return -ENODEV;
300 	}
301 
302 	/* Check specific dependencies for the module */
303 	priv = device_get_match_data(&pdev->dev);
304 
305 	/* Validate the SDRAM controller has ECC enabled */
306 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
307 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
308 		edac_printk(KERN_ERR, EDAC_MC,
309 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
310 		return -ENODEV;
311 	}
312 
313 	/* Grab memory size from device tree. */
314 	mem_size = get_total_mem();
315 	if (!mem_size) {
316 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
317 		return -ENODEV;
318 	}
319 
320 	/* Ensure the SDRAM Interrupt is disabled */
321 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
322 			       priv->ecc_irq_en_mask, 0)) {
323 		edac_printk(KERN_ERR, EDAC_MC,
324 			    "Error disabling SDRAM ECC IRQ\n");
325 		return -ENODEV;
326 	}
327 
328 	/* Toggle to clear the SDRAM Error count */
329 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
330 			       priv->ecc_cnt_rst_mask,
331 			       priv->ecc_cnt_rst_mask)) {
332 		edac_printk(KERN_ERR, EDAC_MC,
333 			    "Error clearing SDRAM ECC count\n");
334 		return -ENODEV;
335 	}
336 
337 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
338 			       priv->ecc_cnt_rst_mask, 0)) {
339 		edac_printk(KERN_ERR, EDAC_MC,
340 			    "Error clearing SDRAM ECC count\n");
341 		return -ENODEV;
342 	}
343 
344 	irq = platform_get_irq(pdev, 0);
345 	if (irq < 0) {
346 		edac_printk(KERN_ERR, EDAC_MC,
347 			    "No irq %d in DT\n", irq);
348 		return irq;
349 	}
350 
351 	/* Arria10 has a 2nd IRQ */
352 	irq2 = platform_get_irq(pdev, 1);
353 
354 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
355 	layers[0].size = 1;
356 	layers[0].is_virt_csrow = true;
357 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
358 	layers[1].size = 1;
359 	layers[1].is_virt_csrow = false;
360 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
361 			    sizeof(struct altr_sdram_mc_data));
362 	if (!mci)
363 		return -ENOMEM;
364 
365 	mci->pdev = &pdev->dev;
366 	drvdata = mci->pvt_info;
367 	drvdata->mc_vbase = mc_vbase;
368 	drvdata->data = priv;
369 	platform_set_drvdata(pdev, mci);
370 
371 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
372 		edac_printk(KERN_ERR, EDAC_MC,
373 			    "Unable to get managed device resource\n");
374 		res = -ENOMEM;
375 		goto free;
376 	}
377 
378 	mci->mtype_cap = MEM_FLAG_DDR3;
379 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
380 	mci->edac_cap = EDAC_FLAG_SECDED;
381 	mci->mod_name = EDAC_MOD_STR;
382 	mci->ctl_name = dev_name(&pdev->dev);
383 	mci->scrub_mode = SCRUB_SW_SRC;
384 	mci->dev_name = dev_name(&pdev->dev);
385 
386 	dimm = *mci->dimms;
387 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
388 	dimm->grain = 8;
389 	dimm->dtype = DEV_X8;
390 	dimm->mtype = MEM_DDR3;
391 	dimm->edac_mode = EDAC_SECDED;
392 
393 	res = edac_mc_add_mc(mci);
394 	if (res < 0)
395 		goto err;
396 
397 	/* Only the Arria10 has separate IRQs */
398 	if (of_machine_is_compatible("altr,socfpga-arria10")) {
399 		/* Arria10 specific initialization */
400 		res = a10_init(mc_vbase);
401 		if (res < 0)
402 			goto err2;
403 
404 		res = devm_request_irq(&pdev->dev, irq2,
405 				       altr_sdram_mc_err_handler,
406 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
407 		if (res < 0) {
408 			edac_mc_printk(mci, KERN_ERR,
409 				       "Unable to request irq %d\n", irq2);
410 			res = -ENODEV;
411 			goto err2;
412 		}
413 
414 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
415 		if (res < 0)
416 			goto err2;
417 
418 		irqflags = IRQF_SHARED;
419 	}
420 
421 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
422 			       irqflags, dev_name(&pdev->dev), mci);
423 	if (res < 0) {
424 		edac_mc_printk(mci, KERN_ERR,
425 			       "Unable to request irq %d\n", irq);
426 		res = -ENODEV;
427 		goto err2;
428 	}
429 
430 	/* Infrastructure ready - enable the IRQ */
431 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
432 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
433 		edac_mc_printk(mci, KERN_ERR,
434 			       "Error enabling SDRAM ECC IRQ\n");
435 		res = -ENODEV;
436 		goto err2;
437 	}
438 
439 	altr_sdr_mc_create_debugfs_nodes(mci);
440 
441 	devres_close_group(&pdev->dev, NULL);
442 
443 	return 0;
444 
445 err2:
446 	edac_mc_del_mc(&pdev->dev);
447 err:
448 	devres_release_group(&pdev->dev, NULL);
449 free:
450 	edac_mc_free(mci);
451 	edac_printk(KERN_ERR, EDAC_MC,
452 		    "EDAC Probe Failed; Error %d\n", res);
453 
454 	return res;
455 }
456 
457 static void altr_sdram_remove(struct platform_device *pdev)
458 {
459 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
460 
461 	edac_mc_del_mc(&pdev->dev);
462 	edac_mc_free(mci);
463 	platform_set_drvdata(pdev, NULL);
464 }
465 
466 /*
467  * If you want to suspend, need to disable EDAC by removing it
468  * from the device tree or defconfig.
469  */
470 #ifdef CONFIG_PM
471 static int altr_sdram_prepare(struct device *dev)
472 {
473 	pr_err("Suspend not allowed when EDAC is enabled.\n");
474 
475 	return -EPERM;
476 }
477 
478 static const struct dev_pm_ops altr_sdram_pm_ops = {
479 	.prepare = altr_sdram_prepare,
480 };
481 #endif
482 
483 static struct platform_driver altr_sdram_edac_driver = {
484 	.probe = altr_sdram_probe,
485 	.remove_new = altr_sdram_remove,
486 	.driver = {
487 		.name = "altr_sdram_edac",
488 #ifdef CONFIG_PM
489 		.pm = &altr_sdram_pm_ops,
490 #endif
491 		.of_match_table = altr_sdram_ctrl_of_match,
492 	},
493 };
494 
495 module_platform_driver(altr_sdram_edac_driver);
496 
497 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
498 
499 /************************* EDAC Parent Probe *************************/
500 
501 static const struct of_device_id altr_edac_device_of_match[];
502 
503 static const struct of_device_id altr_edac_of_match[] = {
504 	{ .compatible = "altr,socfpga-ecc-manager" },
505 	{},
506 };
507 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
508 
509 static int altr_edac_probe(struct platform_device *pdev)
510 {
511 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
512 			     NULL, &pdev->dev);
513 	return 0;
514 }
515 
516 static struct platform_driver altr_edac_driver = {
517 	.probe =  altr_edac_probe,
518 	.driver = {
519 		.name = "socfpga_ecc_manager",
520 		.of_match_table = altr_edac_of_match,
521 	},
522 };
523 module_platform_driver(altr_edac_driver);
524 
525 /************************* EDAC Device Functions *************************/
526 
527 /*
528  * EDAC Device Functions (shared between various IPs).
529  * The discrete memories use the EDAC Device framework. The probe
530  * and error handling functions are very similar between memories
531  * so they are shared. The memory allocation and freeing for EDAC
532  * trigger testing are different for each memory.
533  */
534 
535 #ifdef CONFIG_EDAC_ALTERA_OCRAM
536 static const struct edac_device_prv_data ocramecc_data;
537 #endif
538 #ifdef CONFIG_EDAC_ALTERA_L2C
539 static const struct edac_device_prv_data l2ecc_data;
540 #endif
541 #ifdef CONFIG_EDAC_ALTERA_OCRAM
542 static const struct edac_device_prv_data a10_ocramecc_data;
543 #endif
544 #ifdef CONFIG_EDAC_ALTERA_L2C
545 static const struct edac_device_prv_data a10_l2ecc_data;
546 #endif
547 
548 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
549 {
550 	irqreturn_t ret_value = IRQ_NONE;
551 	struct edac_device_ctl_info *dci = dev_id;
552 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
553 	const struct edac_device_prv_data *priv = drvdata->data;
554 
555 	if (irq == drvdata->sb_irq) {
556 		if (priv->ce_clear_mask)
557 			writel(priv->ce_clear_mask, drvdata->base);
558 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
559 		ret_value = IRQ_HANDLED;
560 	} else if (irq == drvdata->db_irq) {
561 		if (priv->ue_clear_mask)
562 			writel(priv->ue_clear_mask, drvdata->base);
563 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
564 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
565 		ret_value = IRQ_HANDLED;
566 	} else {
567 		WARN_ON(1);
568 	}
569 
570 	return ret_value;
571 }
572 
573 static ssize_t __maybe_unused
574 altr_edac_device_trig(struct file *file, const char __user *user_buf,
575 		      size_t count, loff_t *ppos)
576 
577 {
578 	u32 *ptemp, i, error_mask;
579 	int result = 0;
580 	u8 trig_type;
581 	unsigned long flags;
582 	struct edac_device_ctl_info *edac_dci = file->private_data;
583 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
584 	const struct edac_device_prv_data *priv = drvdata->data;
585 	void *generic_ptr = edac_dci->dev;
586 
587 	if (!user_buf || get_user(trig_type, user_buf))
588 		return -EFAULT;
589 
590 	if (!priv->alloc_mem)
591 		return -ENOMEM;
592 
593 	/*
594 	 * Note that generic_ptr is initialized to the device * but in
595 	 * some alloc_functions, this is overridden and returns data.
596 	 */
597 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
598 	if (!ptemp) {
599 		edac_printk(KERN_ERR, EDAC_DEVICE,
600 			    "Inject: Buffer Allocation error\n");
601 		return -ENOMEM;
602 	}
603 
604 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
605 		error_mask = priv->ue_set_mask;
606 	else
607 		error_mask = priv->ce_set_mask;
608 
609 	edac_printk(KERN_ALERT, EDAC_DEVICE,
610 		    "Trigger Error Mask (0x%X)\n", error_mask);
611 
612 	local_irq_save(flags);
613 	/* write ECC corrupted data out. */
614 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
615 		/* Read data so we're in the correct state */
616 		rmb();
617 		if (READ_ONCE(ptemp[i]))
618 			result = -1;
619 		/* Toggle Error bit (it is latched), leave ECC enabled */
620 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
621 		writel(priv->ecc_enable_mask, (drvdata->base +
622 					       priv->set_err_ofst));
623 		ptemp[i] = i;
624 	}
625 	/* Ensure it has been written out */
626 	wmb();
627 	local_irq_restore(flags);
628 
629 	if (result)
630 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
631 
632 	/* Read out written data. ECC error caused here */
633 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
634 		if (READ_ONCE(ptemp[i]) != i)
635 			edac_printk(KERN_ERR, EDAC_DEVICE,
636 				    "Read doesn't match written data\n");
637 
638 	if (priv->free_mem)
639 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
640 
641 	return count;
642 }
643 
644 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
645 	.open = simple_open,
646 	.write = altr_edac_device_trig,
647 	.llseek = generic_file_llseek,
648 };
649 
650 static ssize_t __maybe_unused
651 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
652 			  size_t count, loff_t *ppos);
653 
654 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
655 	.open = simple_open,
656 	.write = altr_edac_a10_device_trig,
657 	.llseek = generic_file_llseek,
658 };
659 
660 static ssize_t __maybe_unused
661 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
662 			   size_t count, loff_t *ppos);
663 
664 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
665 	.open = simple_open,
666 	.write = altr_edac_a10_device_trig2,
667 	.llseek = generic_file_llseek,
668 };
669 
670 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
671 				      const struct edac_device_prv_data *priv)
672 {
673 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
674 
675 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
676 		return;
677 
678 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
679 	if (!drvdata->debugfs_dir)
680 		return;
681 
682 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
683 				      drvdata->debugfs_dir, edac_dci,
684 				      priv->inject_fops))
685 		debugfs_remove_recursive(drvdata->debugfs_dir);
686 }
687 
688 static const struct of_device_id altr_edac_device_of_match[] = {
689 #ifdef CONFIG_EDAC_ALTERA_L2C
690 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
691 #endif
692 #ifdef CONFIG_EDAC_ALTERA_OCRAM
693 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
694 #endif
695 	{},
696 };
697 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
698 
699 /*
700  * altr_edac_device_probe()
701  *	This is a generic EDAC device driver that will support
702  *	various Altera memory devices such as the L2 cache ECC and
703  *	OCRAM ECC as well as the memories for other peripherals.
704  *	Module specific initialization is done by passing the
705  *	function index in the device tree.
706  */
707 static int altr_edac_device_probe(struct platform_device *pdev)
708 {
709 	struct edac_device_ctl_info *dci;
710 	struct altr_edac_device_dev *drvdata;
711 	struct resource *r;
712 	int res = 0;
713 	struct device_node *np = pdev->dev.of_node;
714 	char *ecc_name = (char *)np->name;
715 	static int dev_instance;
716 
717 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
718 		edac_printk(KERN_ERR, EDAC_DEVICE,
719 			    "Unable to open devm\n");
720 		return -ENOMEM;
721 	}
722 
723 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
724 	if (!r) {
725 		edac_printk(KERN_ERR, EDAC_DEVICE,
726 			    "Unable to get mem resource\n");
727 		res = -ENODEV;
728 		goto fail;
729 	}
730 
731 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
732 				     dev_name(&pdev->dev))) {
733 		edac_printk(KERN_ERR, EDAC_DEVICE,
734 			    "%s:Error requesting mem region\n", ecc_name);
735 		res = -EBUSY;
736 		goto fail;
737 	}
738 
739 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
740 					 1, ecc_name, 1, 0, dev_instance++);
741 
742 	if (!dci) {
743 		edac_printk(KERN_ERR, EDAC_DEVICE,
744 			    "%s: Unable to allocate EDAC device\n", ecc_name);
745 		res = -ENOMEM;
746 		goto fail;
747 	}
748 
749 	drvdata = dci->pvt_info;
750 	dci->dev = &pdev->dev;
751 	platform_set_drvdata(pdev, dci);
752 	drvdata->edac_dev_name = ecc_name;
753 
754 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
755 	if (!drvdata->base) {
756 		res = -ENOMEM;
757 		goto fail1;
758 	}
759 
760 	/* Get driver specific data for this EDAC device */
761 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
762 
763 	/* Check specific dependencies for the module */
764 	if (drvdata->data->setup) {
765 		res = drvdata->data->setup(drvdata);
766 		if (res)
767 			goto fail1;
768 	}
769 
770 	drvdata->sb_irq = platform_get_irq(pdev, 0);
771 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
772 			       altr_edac_device_handler,
773 			       0, dev_name(&pdev->dev), dci);
774 	if (res)
775 		goto fail1;
776 
777 	drvdata->db_irq = platform_get_irq(pdev, 1);
778 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
779 			       altr_edac_device_handler,
780 			       0, dev_name(&pdev->dev), dci);
781 	if (res)
782 		goto fail1;
783 
784 	dci->mod_name = "Altera ECC Manager";
785 	dci->dev_name = drvdata->edac_dev_name;
786 
787 	res = edac_device_add_device(dci);
788 	if (res)
789 		goto fail1;
790 
791 	altr_create_edacdev_dbgfs(dci, drvdata->data);
792 
793 	devres_close_group(&pdev->dev, NULL);
794 
795 	return 0;
796 
797 fail1:
798 	edac_device_free_ctl_info(dci);
799 fail:
800 	devres_release_group(&pdev->dev, NULL);
801 	edac_printk(KERN_ERR, EDAC_DEVICE,
802 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
803 
804 	return res;
805 }
806 
807 static void altr_edac_device_remove(struct platform_device *pdev)
808 {
809 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
810 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
811 
812 	debugfs_remove_recursive(drvdata->debugfs_dir);
813 	edac_device_del_device(&pdev->dev);
814 	edac_device_free_ctl_info(dci);
815 }
816 
817 static struct platform_driver altr_edac_device_driver = {
818 	.probe =  altr_edac_device_probe,
819 	.remove_new = altr_edac_device_remove,
820 	.driver = {
821 		.name = "altr_edac_device",
822 		.of_match_table = altr_edac_device_of_match,
823 	},
824 };
825 module_platform_driver(altr_edac_device_driver);
826 
827 /******************* Arria10 Device ECC Shared Functions *****************/
828 
829 /*
830  *  Test for memory's ECC dependencies upon entry because platform specific
831  *  startup should have initialized the memory and enabled the ECC.
832  *  Can't turn on ECC here because accessing un-initialized memory will
833  *  cause CE/UE errors possibly causing an ABORT.
834  */
835 static int __maybe_unused
836 altr_check_ecc_deps(struct altr_edac_device_dev *device)
837 {
838 	void __iomem  *base = device->base;
839 	const struct edac_device_prv_data *prv = device->data;
840 
841 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
842 		return 0;
843 
844 	edac_printk(KERN_ERR, EDAC_DEVICE,
845 		    "%s: No ECC present or ECC disabled.\n",
846 		    device->edac_dev_name);
847 	return -ENODEV;
848 }
849 
850 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
851 {
852 	struct altr_edac_device_dev *dci = dev_id;
853 	void __iomem  *base = dci->base;
854 
855 	if (irq == dci->sb_irq) {
856 		writel(ALTR_A10_ECC_SERRPENA,
857 		       base + ALTR_A10_ECC_INTSTAT_OFST);
858 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
859 
860 		return IRQ_HANDLED;
861 	} else if (irq == dci->db_irq) {
862 		writel(ALTR_A10_ECC_DERRPENA,
863 		       base + ALTR_A10_ECC_INTSTAT_OFST);
864 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
865 		if (dci->data->panic)
866 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
867 
868 		return IRQ_HANDLED;
869 	}
870 
871 	WARN_ON(1);
872 
873 	return IRQ_NONE;
874 }
875 
876 /******************* Arria10 Memory Buffer Functions *********************/
877 
878 static inline int a10_get_irq_mask(struct device_node *np)
879 {
880 	int irq;
881 	const u32 *handle = of_get_property(np, "interrupts", NULL);
882 
883 	if (!handle)
884 		return -ENODEV;
885 	irq = be32_to_cpup(handle);
886 	return irq;
887 }
888 
889 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
890 {
891 	u32 value = readl(ioaddr);
892 
893 	value |= bit_mask;
894 	writel(value, ioaddr);
895 }
896 
897 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
898 {
899 	u32 value = readl(ioaddr);
900 
901 	value &= ~bit_mask;
902 	writel(value, ioaddr);
903 }
904 
905 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
906 {
907 	u32 value = readl(ioaddr);
908 
909 	return (value & bit_mask) ? 1 : 0;
910 }
911 
912 /*
913  * This function uses the memory initialization block in the Arria10 ECC
914  * controller to initialize/clear the entire memory data and ECC data.
915  */
916 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
917 {
918 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
919 	u32 init_mask, stat_mask, clear_mask;
920 	int ret = 0;
921 
922 	if (port) {
923 		init_mask = ALTR_A10_ECC_INITB;
924 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
925 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
926 	} else {
927 		init_mask = ALTR_A10_ECC_INITA;
928 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
929 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
930 	}
931 
932 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
933 	while (limit--) {
934 		if (ecc_test_bits(stat_mask,
935 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
936 			break;
937 		udelay(1);
938 	}
939 	if (limit < 0)
940 		ret = -EBUSY;
941 
942 	/* Clear any pending ECC interrupts */
943 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
944 
945 	return ret;
946 }
947 
948 static __init int __maybe_unused
949 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
950 			u32 ecc_ctrl_en_mask, bool dual_port)
951 {
952 	int ret = 0;
953 	void __iomem *ecc_block_base;
954 	struct regmap *ecc_mgr_map;
955 	char *ecc_name;
956 	struct device_node *np_eccmgr;
957 
958 	ecc_name = (char *)np->name;
959 
960 	/* Get the ECC Manager - parent of the device EDACs */
961 	np_eccmgr = of_get_parent(np);
962 
963 	ecc_mgr_map =
964 		altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
965 						     "altr,sysmgr-syscon");
966 
967 	of_node_put(np_eccmgr);
968 	if (IS_ERR(ecc_mgr_map)) {
969 		edac_printk(KERN_ERR, EDAC_DEVICE,
970 			    "Unable to get syscon altr,sysmgr-syscon\n");
971 		return -ENODEV;
972 	}
973 
974 	/* Map the ECC Block */
975 	ecc_block_base = of_iomap(np, 0);
976 	if (!ecc_block_base) {
977 		edac_printk(KERN_ERR, EDAC_DEVICE,
978 			    "Unable to map %s ECC block\n", ecc_name);
979 		return -ENODEV;
980 	}
981 
982 	/* Disable ECC */
983 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
984 	writel(ALTR_A10_ECC_SERRINTEN,
985 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
986 	ecc_clear_bits(ecc_ctrl_en_mask,
987 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
988 	/* Ensure all writes complete */
989 	wmb();
990 	/* Use HW initialization block to initialize memory for ECC */
991 	ret = altr_init_memory_port(ecc_block_base, 0);
992 	if (ret) {
993 		edac_printk(KERN_ERR, EDAC_DEVICE,
994 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
995 		goto out;
996 	}
997 
998 	if (dual_port) {
999 		ret = altr_init_memory_port(ecc_block_base, 1);
1000 		if (ret) {
1001 			edac_printk(KERN_ERR, EDAC_DEVICE,
1002 				    "ECC: cannot init %s PORTB memory\n",
1003 				    ecc_name);
1004 			goto out;
1005 		}
1006 	}
1007 
1008 	/* Interrupt mode set to every SBERR */
1009 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1010 		     ALTR_A10_ECC_INTMODE);
1011 	/* Enable ECC */
1012 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1013 					ALTR_A10_ECC_CTRL_OFST));
1014 	writel(ALTR_A10_ECC_SERRINTEN,
1015 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1016 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1017 	/* Ensure all writes complete */
1018 	wmb();
1019 out:
1020 	iounmap(ecc_block_base);
1021 	return ret;
1022 }
1023 
1024 static int validate_parent_available(struct device_node *np);
1025 static const struct of_device_id altr_edac_a10_device_of_match[];
1026 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1027 {
1028 	int irq;
1029 	struct device_node *child, *np;
1030 
1031 	np = of_find_compatible_node(NULL, NULL,
1032 				     "altr,socfpga-a10-ecc-manager");
1033 	if (!np) {
1034 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1035 		return -ENODEV;
1036 	}
1037 
1038 	for_each_child_of_node(np, child) {
1039 		const struct of_device_id *pdev_id;
1040 		const struct edac_device_prv_data *prv;
1041 
1042 		if (!of_device_is_available(child))
1043 			continue;
1044 		if (!of_device_is_compatible(child, compat))
1045 			continue;
1046 
1047 		if (validate_parent_available(child))
1048 			continue;
1049 
1050 		irq = a10_get_irq_mask(child);
1051 		if (irq < 0)
1052 			continue;
1053 
1054 		/* Get matching node and check for valid result */
1055 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1056 		if (IS_ERR_OR_NULL(pdev_id))
1057 			continue;
1058 
1059 		/* Validate private data pointer before dereferencing */
1060 		prv = pdev_id->data;
1061 		if (!prv)
1062 			continue;
1063 
1064 		altr_init_a10_ecc_block(child, BIT(irq),
1065 					prv->ecc_enable_mask, 0);
1066 	}
1067 
1068 	of_node_put(np);
1069 	return 0;
1070 }
1071 
1072 /*********************** SDRAM EDAC Device Functions *********************/
1073 
1074 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1075 
1076 /*
1077  * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1078  * register if ECC is enabled. Linux checks the ECC Enable register to
1079  * determine ECC status.
1080  * Use an SMC call (which always works) to determine ECC enablement.
1081  */
1082 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1083 {
1084 	const struct edac_device_prv_data *prv = device->data;
1085 	unsigned long sdram_ecc_addr;
1086 	struct arm_smccc_res result;
1087 	struct device_node *np;
1088 	phys_addr_t sdram_addr;
1089 	u32 read_reg;
1090 	int ret;
1091 
1092 	np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1093 	if (!np)
1094 		goto sdram_err;
1095 
1096 	sdram_addr = of_translate_address(np, of_get_address(np, 0,
1097 							     NULL, NULL));
1098 	of_node_put(np);
1099 	sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1100 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1101 		      0, 0, 0, 0, 0, 0, &result);
1102 	read_reg = (unsigned int)result.a1;
1103 	ret = (int)result.a0;
1104 	if (!ret && (read_reg & prv->ecc_enable_mask))
1105 		return 0;
1106 
1107 sdram_err:
1108 	edac_printk(KERN_ERR, EDAC_DEVICE,
1109 		    "%s: No ECC present or ECC disabled.\n",
1110 		    device->edac_dev_name);
1111 	return -ENODEV;
1112 }
1113 
1114 static const struct edac_device_prv_data s10_sdramecc_data = {
1115 	.setup = altr_s10_sdram_check_ecc_deps,
1116 	.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1117 	.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1118 	.ecc_enable_mask = ALTR_S10_ECC_EN,
1119 	.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1120 	.ce_set_mask = ALTR_S10_ECC_TSERRA,
1121 	.ue_set_mask = ALTR_S10_ECC_TDERRA,
1122 	.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1123 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1124 	.inject_fops = &altr_edac_a10_device_inject_fops,
1125 };
1126 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1127 
1128 /*********************** OCRAM EDAC Device Functions *********************/
1129 
1130 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1131 
1132 static void *ocram_alloc_mem(size_t size, void **other)
1133 {
1134 	struct device_node *np;
1135 	struct gen_pool *gp;
1136 	void *sram_addr;
1137 
1138 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1139 	if (!np)
1140 		return NULL;
1141 
1142 	gp = of_gen_pool_get(np, "iram", 0);
1143 	of_node_put(np);
1144 	if (!gp)
1145 		return NULL;
1146 
1147 	sram_addr = (void *)gen_pool_alloc(gp, size);
1148 	if (!sram_addr)
1149 		return NULL;
1150 
1151 	memset(sram_addr, 0, size);
1152 	/* Ensure data is written out */
1153 	wmb();
1154 
1155 	/* Remember this handle for freeing  later */
1156 	*other = gp;
1157 
1158 	return sram_addr;
1159 }
1160 
1161 static void ocram_free_mem(void *p, size_t size, void *other)
1162 {
1163 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1164 }
1165 
1166 static const struct edac_device_prv_data ocramecc_data = {
1167 	.setup = altr_check_ecc_deps,
1168 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1169 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1170 	.alloc_mem = ocram_alloc_mem,
1171 	.free_mem = ocram_free_mem,
1172 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1173 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1174 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1175 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1176 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1177 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1178 	.inject_fops = &altr_edac_device_inject_fops,
1179 };
1180 
1181 static int __maybe_unused
1182 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1183 {
1184 	void __iomem  *base = device->base;
1185 	int ret;
1186 
1187 	ret = altr_check_ecc_deps(device);
1188 	if (ret)
1189 		return ret;
1190 
1191 	/* Verify OCRAM has been initialized */
1192 	if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1193 			   (base + ALTR_A10_ECC_INITSTAT_OFST)))
1194 		return -ENODEV;
1195 
1196 	/* Enable IRQ on Single Bit Error */
1197 	writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1198 	/* Ensure all writes complete */
1199 	wmb();
1200 
1201 	return 0;
1202 }
1203 
1204 static const struct edac_device_prv_data a10_ocramecc_data = {
1205 	.setup = altr_check_ocram_deps_init,
1206 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1207 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1208 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1209 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1210 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1211 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1212 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1213 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1214 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1215 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1216 	/*
1217 	 * OCRAM panic on uncorrectable error because sleep/resume
1218 	 * functions and FPGA contents are stored in OCRAM. Prefer
1219 	 * a kernel panic over executing/loading corrupted data.
1220 	 */
1221 	.panic = true,
1222 };
1223 
1224 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1225 
1226 /********************* L2 Cache EDAC Device Functions ********************/
1227 
1228 #ifdef CONFIG_EDAC_ALTERA_L2C
1229 
1230 static void *l2_alloc_mem(size_t size, void **other)
1231 {
1232 	struct device *dev = *other;
1233 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1234 
1235 	if (!ptemp)
1236 		return NULL;
1237 
1238 	/* Make sure everything is written out */
1239 	wmb();
1240 
1241 	/*
1242 	 * Clean all cache levels up to LoC (includes L2)
1243 	 * This ensures the corrupted data is written into
1244 	 * L2 cache for readback test (which causes ECC error).
1245 	 */
1246 	flush_cache_all();
1247 
1248 	return ptemp;
1249 }
1250 
1251 static void l2_free_mem(void *p, size_t size, void *other)
1252 {
1253 	struct device *dev = other;
1254 
1255 	if (dev && p)
1256 		devm_kfree(dev, p);
1257 }
1258 
1259 /*
1260  * altr_l2_check_deps()
1261  *	Test for L2 cache ECC dependencies upon entry because
1262  *	platform specific startup should have initialized the L2
1263  *	memory and enabled the ECC.
1264  *	Bail if ECC is not enabled.
1265  *	Note that L2 Cache Enable is forced at build time.
1266  */
1267 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1268 {
1269 	void __iomem *base = device->base;
1270 	const struct edac_device_prv_data *prv = device->data;
1271 
1272 	if ((readl(base) & prv->ecc_enable_mask) ==
1273 	     prv->ecc_enable_mask)
1274 		return 0;
1275 
1276 	edac_printk(KERN_ERR, EDAC_DEVICE,
1277 		    "L2: No ECC present, or ECC disabled\n");
1278 	return -ENODEV;
1279 }
1280 
1281 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1282 {
1283 	struct altr_edac_device_dev *dci = dev_id;
1284 
1285 	if (irq == dci->sb_irq) {
1286 		regmap_write(dci->edac->ecc_mgr_map,
1287 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1288 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1289 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1290 
1291 		return IRQ_HANDLED;
1292 	} else if (irq == dci->db_irq) {
1293 		regmap_write(dci->edac->ecc_mgr_map,
1294 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1295 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1296 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1297 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1298 
1299 		return IRQ_HANDLED;
1300 	}
1301 
1302 	WARN_ON(1);
1303 
1304 	return IRQ_NONE;
1305 }
1306 
1307 static const struct edac_device_prv_data l2ecc_data = {
1308 	.setup = altr_l2_check_deps,
1309 	.ce_clear_mask = 0,
1310 	.ue_clear_mask = 0,
1311 	.alloc_mem = l2_alloc_mem,
1312 	.free_mem = l2_free_mem,
1313 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1314 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1315 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1316 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1317 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1318 	.inject_fops = &altr_edac_device_inject_fops,
1319 };
1320 
1321 static const struct edac_device_prv_data a10_l2ecc_data = {
1322 	.setup = altr_l2_check_deps,
1323 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1324 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1325 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1326 	.alloc_mem = l2_alloc_mem,
1327 	.free_mem = l2_free_mem,
1328 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1329 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1330 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1331 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1332 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1333 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1334 	.inject_fops = &altr_edac_device_inject_fops,
1335 };
1336 
1337 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1338 
1339 /********************* Ethernet Device Functions ********************/
1340 
1341 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1342 
1343 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1344 {
1345 	int ret;
1346 
1347 	ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1348 	if (ret)
1349 		return ret;
1350 
1351 	return altr_check_ecc_deps(dev);
1352 }
1353 
1354 static const struct edac_device_prv_data a10_enetecc_data = {
1355 	.setup = socfpga_init_ethernet_ecc,
1356 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1357 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1358 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1359 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1360 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1361 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1362 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1363 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1364 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1365 };
1366 
1367 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1368 
1369 /********************** NAND Device Functions **********************/
1370 
1371 #ifdef CONFIG_EDAC_ALTERA_NAND
1372 
1373 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1374 {
1375 	int ret;
1376 
1377 	ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1378 	if (ret)
1379 		return ret;
1380 
1381 	return altr_check_ecc_deps(device);
1382 }
1383 
1384 static const struct edac_device_prv_data a10_nandecc_data = {
1385 	.setup = socfpga_init_nand_ecc,
1386 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1387 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1388 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1389 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1390 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1391 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1392 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1393 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1394 	.inject_fops = &altr_edac_a10_device_inject_fops,
1395 };
1396 
1397 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1398 
1399 /********************** DMA Device Functions **********************/
1400 
1401 #ifdef CONFIG_EDAC_ALTERA_DMA
1402 
1403 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1404 {
1405 	int ret;
1406 
1407 	ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1408 	if (ret)
1409 		return ret;
1410 
1411 	return altr_check_ecc_deps(device);
1412 }
1413 
1414 static const struct edac_device_prv_data a10_dmaecc_data = {
1415 	.setup = socfpga_init_dma_ecc,
1416 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1417 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1418 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1419 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1420 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1421 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1422 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1423 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1424 	.inject_fops = &altr_edac_a10_device_inject_fops,
1425 };
1426 
1427 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1428 
1429 /********************** USB Device Functions **********************/
1430 
1431 #ifdef CONFIG_EDAC_ALTERA_USB
1432 
1433 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1434 {
1435 	int ret;
1436 
1437 	ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1438 	if (ret)
1439 		return ret;
1440 
1441 	return altr_check_ecc_deps(device);
1442 }
1443 
1444 static const struct edac_device_prv_data a10_usbecc_data = {
1445 	.setup = socfpga_init_usb_ecc,
1446 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1447 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1448 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1449 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1450 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1451 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1452 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1453 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1454 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1455 };
1456 
1457 #endif	/* CONFIG_EDAC_ALTERA_USB */
1458 
1459 /********************** QSPI Device Functions **********************/
1460 
1461 #ifdef CONFIG_EDAC_ALTERA_QSPI
1462 
1463 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1464 {
1465 	int ret;
1466 
1467 	ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1468 	if (ret)
1469 		return ret;
1470 
1471 	return altr_check_ecc_deps(device);
1472 }
1473 
1474 static const struct edac_device_prv_data a10_qspiecc_data = {
1475 	.setup = socfpga_init_qspi_ecc,
1476 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1477 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1478 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1479 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1480 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1481 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1482 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1483 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1484 	.inject_fops = &altr_edac_a10_device_inject_fops,
1485 };
1486 
1487 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1488 
1489 /********************* SDMMC Device Functions **********************/
1490 
1491 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1492 
1493 static const struct edac_device_prv_data a10_sdmmceccb_data;
1494 static int altr_portb_setup(struct altr_edac_device_dev *device)
1495 {
1496 	struct edac_device_ctl_info *dci;
1497 	struct altr_edac_device_dev *altdev;
1498 	char *ecc_name = "sdmmcb-ecc";
1499 	int edac_idx, rc;
1500 	struct device_node *np;
1501 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1502 
1503 	rc = altr_check_ecc_deps(device);
1504 	if (rc)
1505 		return rc;
1506 
1507 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1508 	if (!np) {
1509 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1510 		return -ENODEV;
1511 	}
1512 
1513 	/* Create the PortB EDAC device */
1514 	edac_idx = edac_device_alloc_index();
1515 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1516 					 ecc_name, 1, 0, edac_idx);
1517 	if (!dci) {
1518 		edac_printk(KERN_ERR, EDAC_DEVICE,
1519 			    "%s: Unable to allocate PortB EDAC device\n",
1520 			    ecc_name);
1521 		return -ENOMEM;
1522 	}
1523 
1524 	/* Initialize the PortB EDAC device structure from PortA structure */
1525 	altdev = dci->pvt_info;
1526 	*altdev = *device;
1527 
1528 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1529 		return -ENOMEM;
1530 
1531 	/* Update PortB specific values */
1532 	altdev->edac_dev_name = ecc_name;
1533 	altdev->edac_idx = edac_idx;
1534 	altdev->edac_dev = dci;
1535 	altdev->data = prv;
1536 	dci->dev = &altdev->ddev;
1537 	dci->ctl_name = "Altera ECC Manager";
1538 	dci->mod_name = ecc_name;
1539 	dci->dev_name = ecc_name;
1540 
1541 	/*
1542 	 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1543 	 *
1544 	 * FIXME: Instead of ifdefs with different architectures the driver
1545 	 *        should properly use compatibles.
1546 	 */
1547 #ifdef CONFIG_64BIT
1548 	altdev->sb_irq = irq_of_parse_and_map(np, 1);
1549 #else
1550 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1551 #endif
1552 	if (!altdev->sb_irq) {
1553 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1554 		rc = -ENODEV;
1555 		goto err_release_group_1;
1556 	}
1557 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1558 			      prv->ecc_irq_handler,
1559 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1560 			      ecc_name, altdev);
1561 	if (rc) {
1562 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1563 		goto err_release_group_1;
1564 	}
1565 
1566 #ifdef CONFIG_64BIT
1567 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1568 	rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1569 	if (rc) {
1570 		edac_printk(KERN_ERR, EDAC_DEVICE,
1571 			    "Error PortB DBIRQ alloc\n");
1572 		goto err_release_group_1;
1573 	}
1574 #else
1575 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1576 	if (!altdev->db_irq) {
1577 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1578 		rc = -ENODEV;
1579 		goto err_release_group_1;
1580 	}
1581 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1582 			      prv->ecc_irq_handler,
1583 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1584 			      ecc_name, altdev);
1585 	if (rc) {
1586 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1587 		goto err_release_group_1;
1588 	}
1589 #endif
1590 
1591 	rc = edac_device_add_device(dci);
1592 	if (rc) {
1593 		edac_printk(KERN_ERR, EDAC_DEVICE,
1594 			    "edac_device_add_device portB failed\n");
1595 		rc = -ENOMEM;
1596 		goto err_release_group_1;
1597 	}
1598 	altr_create_edacdev_dbgfs(dci, prv);
1599 
1600 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1601 
1602 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1603 
1604 	return 0;
1605 
1606 err_release_group_1:
1607 	edac_device_free_ctl_info(dci);
1608 	devres_release_group(&altdev->ddev, altr_portb_setup);
1609 	edac_printk(KERN_ERR, EDAC_DEVICE,
1610 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1611 	return rc;
1612 }
1613 
1614 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1615 {
1616 	int rc = -ENODEV;
1617 	struct device_node *child;
1618 
1619 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1620 	if (!child)
1621 		return -ENODEV;
1622 
1623 	if (!of_device_is_available(child))
1624 		goto exit;
1625 
1626 	if (validate_parent_available(child))
1627 		goto exit;
1628 
1629 	/* Init portB */
1630 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1631 				     a10_sdmmceccb_data.ecc_enable_mask, 1);
1632 	if (rc)
1633 		goto exit;
1634 
1635 	/* Setup portB */
1636 	return altr_portb_setup(device);
1637 
1638 exit:
1639 	of_node_put(child);
1640 	return rc;
1641 }
1642 
1643 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1644 {
1645 	struct altr_edac_device_dev *ad = dev_id;
1646 	void __iomem  *base = ad->base;
1647 	const struct edac_device_prv_data *priv = ad->data;
1648 
1649 	if (irq == ad->sb_irq) {
1650 		writel(priv->ce_clear_mask,
1651 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1652 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1653 		return IRQ_HANDLED;
1654 	} else if (irq == ad->db_irq) {
1655 		writel(priv->ue_clear_mask,
1656 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1657 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1658 		return IRQ_HANDLED;
1659 	}
1660 
1661 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1662 
1663 	return IRQ_NONE;
1664 }
1665 
1666 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1667 	.setup = socfpga_init_sdmmc_ecc,
1668 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1669 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1670 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1671 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1672 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1673 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1674 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1675 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1676 	.inject_fops = &altr_edac_a10_device_inject_fops,
1677 };
1678 
1679 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1680 	.setup = socfpga_init_sdmmc_ecc,
1681 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1682 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1683 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1684 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1685 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1686 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1687 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1688 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1689 	.inject_fops = &altr_edac_a10_device_inject_fops,
1690 };
1691 
1692 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1693 
1694 /********************* Arria10 EDAC Device Functions *************************/
1695 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1696 #ifdef CONFIG_EDAC_ALTERA_L2C
1697 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1698 #endif
1699 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1700 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1701 	  .data = &a10_ocramecc_data },
1702 #endif
1703 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1704 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1705 	  .data = &a10_enetecc_data },
1706 #endif
1707 #ifdef CONFIG_EDAC_ALTERA_NAND
1708 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1709 #endif
1710 #ifdef CONFIG_EDAC_ALTERA_DMA
1711 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1712 #endif
1713 #ifdef CONFIG_EDAC_ALTERA_USB
1714 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1715 #endif
1716 #ifdef CONFIG_EDAC_ALTERA_QSPI
1717 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1718 #endif
1719 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1720 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1721 #endif
1722 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1723 	{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1724 #endif
1725 	{},
1726 };
1727 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1728 
1729 /*
1730  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1731  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1732  * manager manages the IRQs and the children.
1733  * Based on xgene_edac.c peripheral code.
1734  */
1735 
1736 static ssize_t __maybe_unused
1737 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1738 			  size_t count, loff_t *ppos)
1739 {
1740 	struct edac_device_ctl_info *edac_dci = file->private_data;
1741 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1742 	const struct edac_device_prv_data *priv = drvdata->data;
1743 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1744 	unsigned long flags;
1745 	u8 trig_type;
1746 
1747 	if (!user_buf || get_user(trig_type, user_buf))
1748 		return -EFAULT;
1749 
1750 	local_irq_save(flags);
1751 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1752 		writel(priv->ue_set_mask, set_addr);
1753 	else
1754 		writel(priv->ce_set_mask, set_addr);
1755 
1756 	/* Ensure the interrupt test bits are set */
1757 	wmb();
1758 	local_irq_restore(flags);
1759 
1760 	return count;
1761 }
1762 
1763 /*
1764  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1765  * slightly. A few Arria10 peripherals can use this injection function.
1766  * Inject the error into the memory and then readback to trigger the IRQ.
1767  */
1768 static ssize_t __maybe_unused
1769 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1770 			   size_t count, loff_t *ppos)
1771 {
1772 	struct edac_device_ctl_info *edac_dci = file->private_data;
1773 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1774 	const struct edac_device_prv_data *priv = drvdata->data;
1775 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1776 	unsigned long flags;
1777 	u8 trig_type;
1778 
1779 	if (!user_buf || get_user(trig_type, user_buf))
1780 		return -EFAULT;
1781 
1782 	local_irq_save(flags);
1783 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1784 		writel(priv->ue_set_mask, set_addr);
1785 	} else {
1786 		/* Setup read/write of 4 bytes */
1787 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1788 		/* Setup Address to 0 */
1789 		writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1790 		/* Setup accctrl to read & ecc & data override */
1791 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1792 		/* Kick it. */
1793 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1794 		/* Setup write for single bit change */
1795 		writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1796 		       drvdata->base + ECC_BLK_WDATA0_OFST);
1797 		writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1798 		       drvdata->base + ECC_BLK_WDATA1_OFST);
1799 		writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1800 		       drvdata->base + ECC_BLK_WDATA2_OFST);
1801 		writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1802 		       drvdata->base + ECC_BLK_WDATA3_OFST);
1803 
1804 		/* Copy Read ECC to Write ECC */
1805 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1806 		       drvdata->base + ECC_BLK_WECC0_OFST);
1807 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1808 		       drvdata->base + ECC_BLK_WECC1_OFST);
1809 		/* Setup accctrl to write & ecc override & data override */
1810 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1811 		/* Kick it. */
1812 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1813 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1814 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1815 		/* Kick it. */
1816 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1817 	}
1818 
1819 	/* Ensure the interrupt test bits are set */
1820 	wmb();
1821 	local_irq_restore(flags);
1822 
1823 	return count;
1824 }
1825 
1826 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1827 {
1828 	int dberr, bit, sm_offset, irq_status;
1829 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1830 	struct irq_chip *chip = irq_desc_get_chip(desc);
1831 	int irq = irq_desc_get_irq(desc);
1832 	unsigned long bits;
1833 
1834 	dberr = (irq == edac->db_irq) ? 1 : 0;
1835 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1836 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1837 
1838 	chained_irq_enter(chip, desc);
1839 
1840 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1841 
1842 	bits = irq_status;
1843 	for_each_set_bit(bit, &bits, 32)
1844 		generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1845 
1846 	chained_irq_exit(chip, desc);
1847 }
1848 
1849 static int validate_parent_available(struct device_node *np)
1850 {
1851 	struct device_node *parent;
1852 	int ret = 0;
1853 
1854 	/* SDRAM must be present for Linux (implied parent) */
1855 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1856 		return 0;
1857 
1858 	/* Ensure parent device is enabled if parent node exists */
1859 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1860 	if (parent && !of_device_is_available(parent))
1861 		ret = -ENODEV;
1862 
1863 	of_node_put(parent);
1864 	return ret;
1865 }
1866 
1867 static int get_s10_sdram_edac_resource(struct device_node *np,
1868 				       struct resource *res)
1869 {
1870 	struct device_node *parent;
1871 	int ret;
1872 
1873 	parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1874 	if (!parent)
1875 		return -ENODEV;
1876 
1877 	ret = of_address_to_resource(parent, 0, res);
1878 	of_node_put(parent);
1879 
1880 	return ret;
1881 }
1882 
1883 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1884 				    struct device_node *np)
1885 {
1886 	struct edac_device_ctl_info *dci;
1887 	struct altr_edac_device_dev *altdev;
1888 	char *ecc_name = (char *)np->name;
1889 	struct resource res;
1890 	int edac_idx;
1891 	int rc = 0;
1892 	const struct edac_device_prv_data *prv;
1893 	/* Get matching node and check for valid result */
1894 	const struct of_device_id *pdev_id =
1895 		of_match_node(altr_edac_a10_device_of_match, np);
1896 	if (IS_ERR_OR_NULL(pdev_id))
1897 		return -ENODEV;
1898 
1899 	/* Get driver specific data for this EDAC device */
1900 	prv = pdev_id->data;
1901 	if (IS_ERR_OR_NULL(prv))
1902 		return -ENODEV;
1903 
1904 	if (validate_parent_available(np))
1905 		return -ENODEV;
1906 
1907 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1908 		return -ENOMEM;
1909 
1910 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1911 		rc = get_s10_sdram_edac_resource(np, &res);
1912 	else
1913 		rc = of_address_to_resource(np, 0, &res);
1914 
1915 	if (rc < 0) {
1916 		edac_printk(KERN_ERR, EDAC_DEVICE,
1917 			    "%s: no resource address\n", ecc_name);
1918 		goto err_release_group;
1919 	}
1920 
1921 	edac_idx = edac_device_alloc_index();
1922 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1923 					 1, ecc_name, 1, 0, edac_idx);
1924 
1925 	if (!dci) {
1926 		edac_printk(KERN_ERR, EDAC_DEVICE,
1927 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1928 		rc = -ENOMEM;
1929 		goto err_release_group;
1930 	}
1931 
1932 	altdev = dci->pvt_info;
1933 	dci->dev = edac->dev;
1934 	altdev->edac_dev_name = ecc_name;
1935 	altdev->edac_idx = edac_idx;
1936 	altdev->edac = edac;
1937 	altdev->edac_dev = dci;
1938 	altdev->data = prv;
1939 	altdev->ddev = *edac->dev;
1940 	dci->dev = &altdev->ddev;
1941 	dci->ctl_name = "Altera ECC Manager";
1942 	dci->mod_name = ecc_name;
1943 	dci->dev_name = ecc_name;
1944 
1945 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1946 	if (IS_ERR(altdev->base)) {
1947 		rc = PTR_ERR(altdev->base);
1948 		goto err_release_group1;
1949 	}
1950 
1951 	/* Check specific dependencies for the module */
1952 	if (altdev->data->setup) {
1953 		rc = altdev->data->setup(altdev);
1954 		if (rc)
1955 			goto err_release_group1;
1956 	}
1957 
1958 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1959 	if (!altdev->sb_irq) {
1960 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1961 		rc = -ENODEV;
1962 		goto err_release_group1;
1963 	}
1964 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1965 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1966 			      ecc_name, altdev);
1967 	if (rc) {
1968 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1969 		goto err_release_group1;
1970 	}
1971 
1972 #ifdef CONFIG_64BIT
1973 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1974 	rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1975 	if (rc) {
1976 		edac_printk(KERN_ERR, EDAC_DEVICE,
1977 			    "Unable to parse DB IRQ index\n");
1978 		goto err_release_group1;
1979 	}
1980 #else
1981 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1982 	if (!altdev->db_irq) {
1983 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1984 		rc = -ENODEV;
1985 		goto err_release_group1;
1986 	}
1987 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1988 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1989 			      ecc_name, altdev);
1990 	if (rc) {
1991 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1992 		goto err_release_group1;
1993 	}
1994 #endif
1995 
1996 	rc = edac_device_add_device(dci);
1997 	if (rc) {
1998 		dev_err(edac->dev, "edac_device_add_device failed\n");
1999 		rc = -ENOMEM;
2000 		goto err_release_group1;
2001 	}
2002 
2003 	altr_create_edacdev_dbgfs(dci, prv);
2004 
2005 	list_add(&altdev->next, &edac->a10_ecc_devices);
2006 
2007 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
2008 
2009 	return 0;
2010 
2011 err_release_group1:
2012 	edac_device_free_ctl_info(dci);
2013 err_release_group:
2014 	devres_release_group(edac->dev, NULL);
2015 	edac_printk(KERN_ERR, EDAC_DEVICE,
2016 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2017 
2018 	return rc;
2019 }
2020 
2021 static void a10_eccmgr_irq_mask(struct irq_data *d)
2022 {
2023 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2024 
2025 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
2026 		     BIT(d->hwirq));
2027 }
2028 
2029 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2030 {
2031 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2032 
2033 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2034 		     BIT(d->hwirq));
2035 }
2036 
2037 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2038 				    irq_hw_number_t hwirq)
2039 {
2040 	struct altr_arria10_edac *edac = d->host_data;
2041 
2042 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2043 	irq_set_chip_data(irq, edac);
2044 	irq_set_noprobe(irq);
2045 
2046 	return 0;
2047 }
2048 
2049 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2050 	.map = a10_eccmgr_irqdomain_map,
2051 	.xlate = irq_domain_xlate_twocell,
2052 };
2053 
2054 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2055 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2056 
2057 #ifdef CONFIG_64BIT
2058 /* panic routine issues reboot on non-zero panic_timeout */
2059 extern int panic_timeout;
2060 
2061 /*
2062  * The double bit error is handled through SError which is fatal. This is
2063  * called as a panic notifier to printout ECC error info as part of the panic.
2064  */
2065 static int s10_edac_dberr_handler(struct notifier_block *this,
2066 				  unsigned long event, void *ptr)
2067 {
2068 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2069 	int err_addr, dberror;
2070 
2071 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2072 		    &dberror);
2073 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2074 	if (dberror & S10_DBE_IRQ_MASK) {
2075 		struct list_head *position;
2076 		struct altr_edac_device_dev *ed;
2077 		struct arm_smccc_res result;
2078 
2079 		/* Find the matching DBE in the list of devices */
2080 		list_for_each(position, &edac->a10_ecc_devices) {
2081 			ed = list_entry(position, struct altr_edac_device_dev,
2082 					next);
2083 			if (!(BIT(ed->db_irq) & dberror))
2084 				continue;
2085 
2086 			writel(ALTR_A10_ECC_DERRPENA,
2087 			       ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2088 			err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2089 			regmap_write(edac->ecc_mgr_map,
2090 				     S10_SYSMGR_UE_ADDR_OFST, err_addr);
2091 			edac_printk(KERN_ERR, EDAC_DEVICE,
2092 				    "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2093 				    ed->edac_dev_name, err_addr);
2094 			break;
2095 		}
2096 		/* Notify the System through SMC. Reboot delay = 1 second */
2097 		panic_timeout = 1;
2098 		arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2099 			      0, 0, &result);
2100 	}
2101 
2102 	return NOTIFY_DONE;
2103 }
2104 #endif
2105 
2106 /****************** Arria 10 EDAC Probe Function *********************/
2107 static int altr_edac_a10_probe(struct platform_device *pdev)
2108 {
2109 	struct altr_arria10_edac *edac;
2110 	struct device_node *child;
2111 
2112 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2113 	if (!edac)
2114 		return -ENOMEM;
2115 
2116 	edac->dev = &pdev->dev;
2117 	platform_set_drvdata(pdev, edac);
2118 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2119 
2120 	edac->ecc_mgr_map =
2121 		altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2122 						     "altr,sysmgr-syscon");
2123 
2124 	if (IS_ERR(edac->ecc_mgr_map)) {
2125 		edac_printk(KERN_ERR, EDAC_DEVICE,
2126 			    "Unable to get syscon altr,sysmgr-syscon\n");
2127 		return PTR_ERR(edac->ecc_mgr_map);
2128 	}
2129 
2130 	edac->irq_chip.name = pdev->dev.of_node->name;
2131 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2132 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2133 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2134 					     &a10_eccmgr_ic_ops, edac);
2135 	if (!edac->domain) {
2136 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2137 		return -ENOMEM;
2138 	}
2139 
2140 	edac->sb_irq = platform_get_irq(pdev, 0);
2141 	if (edac->sb_irq < 0)
2142 		return edac->sb_irq;
2143 
2144 	irq_set_chained_handler_and_data(edac->sb_irq,
2145 					 altr_edac_a10_irq_handler,
2146 					 edac);
2147 
2148 #ifdef CONFIG_64BIT
2149 	{
2150 		int dberror, err_addr;
2151 
2152 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2153 		atomic_notifier_chain_register(&panic_notifier_list,
2154 					       &edac->panic_notifier);
2155 
2156 		/* Printout a message if uncorrectable error previously. */
2157 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2158 			    &dberror);
2159 		if (dberror) {
2160 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2161 				    &err_addr);
2162 			edac_printk(KERN_ERR, EDAC_DEVICE,
2163 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2164 				    dberror, err_addr);
2165 			/* Reset the sticky registers */
2166 			regmap_write(edac->ecc_mgr_map,
2167 				     S10_SYSMGR_UE_VAL_OFST, 0);
2168 			regmap_write(edac->ecc_mgr_map,
2169 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2170 		}
2171 	}
2172 #else
2173 	edac->db_irq = platform_get_irq(pdev, 1);
2174 	if (edac->db_irq < 0)
2175 		return edac->db_irq;
2176 
2177 	irq_set_chained_handler_and_data(edac->db_irq,
2178 					 altr_edac_a10_irq_handler, edac);
2179 #endif
2180 
2181 	for_each_child_of_node(pdev->dev.of_node, child) {
2182 		if (!of_device_is_available(child))
2183 			continue;
2184 
2185 		if (of_match_node(altr_edac_a10_device_of_match, child))
2186 			altr_edac_a10_device_add(edac, child);
2187 
2188 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2189 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2190 			of_platform_populate(pdev->dev.of_node,
2191 					     altr_sdram_ctrl_of_match,
2192 					     NULL, &pdev->dev);
2193 #endif
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 static const struct of_device_id altr_edac_a10_of_match[] = {
2200 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2201 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2202 	{},
2203 };
2204 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2205 
2206 static struct platform_driver altr_edac_a10_driver = {
2207 	.probe =  altr_edac_a10_probe,
2208 	.driver = {
2209 		.name = "socfpga_a10_ecc_manager",
2210 		.of_match_table = altr_edac_a10_of_match,
2211 	},
2212 };
2213 module_platform_driver(altr_edac_a10_driver);
2214 
2215 MODULE_AUTHOR("Thor Thayer");
2216 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2217