1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017-2018, Intel Corporation. All rights reserved 4 * Copyright Altera Corporation (C) 2014-2016. All rights reserved. 5 * Copyright 2011-2012 Calxeda, Inc. 6 */ 7 8 #include <asm/cacheflush.h> 9 #include <linux/ctype.h> 10 #include <linux/delay.h> 11 #include <linux/edac.h> 12 #include <linux/firmware/intel/stratix10-smc.h> 13 #include <linux/genalloc.h> 14 #include <linux/interrupt.h> 15 #include <linux/irqchip/chained_irq.h> 16 #include <linux/kernel.h> 17 #include <linux/mfd/altera-sysmgr.h> 18 #include <linux/mfd/syscon.h> 19 #include <linux/notifier.h> 20 #include <linux/of_address.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_platform.h> 23 #include <linux/panic_notifier.h> 24 #include <linux/platform_device.h> 25 #include <linux/property.h> 26 #include <linux/regmap.h> 27 #include <linux/types.h> 28 #include <linux/uaccess.h> 29 30 #include "altera_edac.h" 31 #include "edac_module.h" 32 33 #define EDAC_MOD_STR "altera_edac" 34 #define EDAC_DEVICE "Altera" 35 36 #ifdef CONFIG_EDAC_ALTERA_SDRAM 37 static const struct altr_sdram_prv_data c5_data = { 38 .ecc_ctrl_offset = CV_CTLCFG_OFST, 39 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN, 40 .ecc_stat_offset = CV_DRAMSTS_OFST, 41 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR, 42 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR, 43 .ecc_saddr_offset = CV_ERRADDR_OFST, 44 .ecc_daddr_offset = CV_ERRADDR_OFST, 45 .ecc_cecnt_offset = CV_SBECOUNT_OFST, 46 .ecc_uecnt_offset = CV_DBECOUNT_OFST, 47 .ecc_irq_en_offset = CV_DRAMINTR_OFST, 48 .ecc_irq_en_mask = CV_DRAMINTR_INTREN, 49 .ecc_irq_clr_offset = CV_DRAMINTR_OFST, 50 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN), 51 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST, 52 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR, 53 .ce_ue_trgr_offset = CV_CTLCFG_OFST, 54 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR, 55 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR, 56 }; 57 58 static const struct altr_sdram_prv_data a10_data = { 59 .ecc_ctrl_offset = A10_ECCCTRL1_OFST, 60 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN, 61 .ecc_stat_offset = A10_INTSTAT_OFST, 62 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR, 63 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR, 64 .ecc_saddr_offset = A10_SERRADDR_OFST, 65 .ecc_daddr_offset = A10_DERRADDR_OFST, 66 .ecc_irq_en_offset = A10_ERRINTEN_OFST, 67 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK, 68 .ecc_irq_clr_offset = A10_INTSTAT_OFST, 69 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR), 70 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST, 71 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK, 72 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST, 73 .ce_set_mask = A10_DIAGINT_TSERRA_MASK, 74 .ue_set_mask = A10_DIAGINT_TDERRA_MASK, 75 }; 76 77 /*********************** EDAC Memory Controller Functions ****************/ 78 79 /* The SDRAM controller uses the EDAC Memory Controller framework. */ 80 81 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id) 82 { 83 struct mem_ctl_info *mci = dev_id; 84 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 85 const struct altr_sdram_prv_data *priv = drvdata->data; 86 u32 status, err_count = 1, err_addr; 87 88 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status); 89 90 if (status & priv->ecc_stat_ue_mask) { 91 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset, 92 &err_addr); 93 if (priv->ecc_uecnt_offset) 94 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset, 95 &err_count); 96 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n", 97 err_count, err_addr); 98 } 99 if (status & priv->ecc_stat_ce_mask) { 100 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset, 101 &err_addr); 102 if (priv->ecc_cecnt_offset) 103 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset, 104 &err_count); 105 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count, 106 err_addr >> PAGE_SHIFT, 107 err_addr & ~PAGE_MASK, 0, 108 0, 0, -1, mci->ctl_name, ""); 109 /* Clear IRQ to resume */ 110 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset, 111 priv->ecc_irq_clr_mask); 112 113 return IRQ_HANDLED; 114 } 115 return IRQ_NONE; 116 } 117 118 static ssize_t altr_sdr_mc_err_inject_write(struct file *file, 119 const char __user *data, 120 size_t count, loff_t *ppos) 121 { 122 struct mem_ctl_info *mci = file->private_data; 123 struct altr_sdram_mc_data *drvdata = mci->pvt_info; 124 const struct altr_sdram_prv_data *priv = drvdata->data; 125 u32 *ptemp; 126 dma_addr_t dma_handle; 127 u32 reg, read_reg; 128 129 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL); 130 if (!ptemp) { 131 edac_printk(KERN_ERR, EDAC_MC, 132 "Inject: Buffer Allocation error\n"); 133 return -ENOMEM; 134 } 135 136 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 137 &read_reg); 138 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask); 139 140 /* Error are injected by writing a word while the SBE or DBE 141 * bit in the CTLCFG register is set. Reading the word will 142 * trigger the SBE or DBE error and the corresponding IRQ. 143 */ 144 if (count == 3) { 145 edac_printk(KERN_ALERT, EDAC_MC, 146 "Inject Double bit error\n"); 147 local_irq_disable(); 148 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 149 (read_reg | priv->ue_set_mask)); 150 local_irq_enable(); 151 } else { 152 edac_printk(KERN_ALERT, EDAC_MC, 153 "Inject Single bit error\n"); 154 local_irq_disable(); 155 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, 156 (read_reg | priv->ce_set_mask)); 157 local_irq_enable(); 158 } 159 160 ptemp[0] = 0x5A5A5A5A; 161 ptemp[1] = 0xA5A5A5A5; 162 163 /* Clear the error injection bits */ 164 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg); 165 /* Ensure it has been written out */ 166 wmb(); 167 168 /* 169 * To trigger the error, we need to read the data back 170 * (the data was written with errors above). 171 * The READ_ONCE macros and printk are used to prevent the 172 * the compiler optimizing these reads out. 173 */ 174 reg = READ_ONCE(ptemp[0]); 175 read_reg = READ_ONCE(ptemp[1]); 176 /* Force Read */ 177 rmb(); 178 179 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n", 180 reg, read_reg); 181 182 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); 183 184 return count; 185 } 186 187 static const struct file_operations altr_sdr_mc_debug_inject_fops = { 188 .open = simple_open, 189 .write = altr_sdr_mc_err_inject_write, 190 .llseek = generic_file_llseek, 191 }; 192 193 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci) 194 { 195 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 196 return; 197 198 if (!mci->debugfs) 199 return; 200 201 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci, 202 &altr_sdr_mc_debug_inject_fops); 203 } 204 205 /* Get total memory size from Open Firmware DTB */ 206 static unsigned long get_total_mem(void) 207 { 208 struct device_node *np = NULL; 209 struct resource res; 210 int ret; 211 unsigned long total_mem = 0; 212 213 for_each_node_by_type(np, "memory") { 214 ret = of_address_to_resource(np, 0, &res); 215 if (ret) 216 continue; 217 218 total_mem += resource_size(&res); 219 } 220 edac_dbg(0, "total_mem 0x%lx\n", total_mem); 221 return total_mem; 222 } 223 224 static const struct of_device_id altr_sdram_ctrl_of_match[] = { 225 { .compatible = "altr,sdram-edac", .data = &c5_data}, 226 { .compatible = "altr,sdram-edac-a10", .data = &a10_data}, 227 {}, 228 }; 229 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match); 230 231 static int a10_init(struct regmap *mc_vbase) 232 { 233 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST, 234 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) { 235 edac_printk(KERN_ERR, EDAC_MC, 236 "Error setting SB IRQ mode\n"); 237 return -ENODEV; 238 } 239 240 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) { 241 edac_printk(KERN_ERR, EDAC_MC, 242 "Error setting trigger count\n"); 243 return -ENODEV; 244 } 245 246 return 0; 247 } 248 249 static int a10_unmask_irq(struct platform_device *pdev, u32 mask) 250 { 251 void __iomem *sm_base; 252 int ret = 0; 253 254 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32), 255 dev_name(&pdev->dev))) { 256 edac_printk(KERN_ERR, EDAC_MC, 257 "Unable to request mem region\n"); 258 return -EBUSY; 259 } 260 261 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 262 if (!sm_base) { 263 edac_printk(KERN_ERR, EDAC_MC, 264 "Unable to ioremap device\n"); 265 266 ret = -ENOMEM; 267 goto release; 268 } 269 270 iowrite32(mask, sm_base); 271 272 iounmap(sm_base); 273 274 release: 275 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32)); 276 277 return ret; 278 } 279 280 static int altr_sdram_probe(struct platform_device *pdev) 281 { 282 struct edac_mc_layer layers[2]; 283 struct mem_ctl_info *mci; 284 struct altr_sdram_mc_data *drvdata; 285 const struct altr_sdram_prv_data *priv; 286 struct regmap *mc_vbase; 287 struct dimm_info *dimm; 288 u32 read_reg; 289 int irq, irq2, res = 0; 290 unsigned long mem_size, irqflags = 0; 291 292 /* Grab the register range from the sdr controller in device tree */ 293 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, 294 "altr,sdr-syscon"); 295 if (IS_ERR(mc_vbase)) { 296 edac_printk(KERN_ERR, EDAC_MC, 297 "regmap for altr,sdr-syscon lookup failed.\n"); 298 return -ENODEV; 299 } 300 301 /* Check specific dependencies for the module */ 302 priv = device_get_match_data(&pdev->dev); 303 304 /* Validate the SDRAM controller has ECC enabled */ 305 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) || 306 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) { 307 edac_printk(KERN_ERR, EDAC_MC, 308 "No ECC/ECC disabled [0x%08X]\n", read_reg); 309 return -ENODEV; 310 } 311 312 /* Grab memory size from device tree. */ 313 mem_size = get_total_mem(); 314 if (!mem_size) { 315 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n"); 316 return -ENODEV; 317 } 318 319 /* Ensure the SDRAM Interrupt is disabled */ 320 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset, 321 priv->ecc_irq_en_mask, 0)) { 322 edac_printk(KERN_ERR, EDAC_MC, 323 "Error disabling SDRAM ECC IRQ\n"); 324 return -ENODEV; 325 } 326 327 /* Toggle to clear the SDRAM Error count */ 328 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 329 priv->ecc_cnt_rst_mask, 330 priv->ecc_cnt_rst_mask)) { 331 edac_printk(KERN_ERR, EDAC_MC, 332 "Error clearing SDRAM ECC count\n"); 333 return -ENODEV; 334 } 335 336 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, 337 priv->ecc_cnt_rst_mask, 0)) { 338 edac_printk(KERN_ERR, EDAC_MC, 339 "Error clearing SDRAM ECC count\n"); 340 return -ENODEV; 341 } 342 343 irq = platform_get_irq(pdev, 0); 344 if (irq < 0) { 345 edac_printk(KERN_ERR, EDAC_MC, 346 "No irq %d in DT\n", irq); 347 return irq; 348 } 349 350 /* Arria10 has a 2nd IRQ */ 351 irq2 = platform_get_irq(pdev, 1); 352 353 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 354 layers[0].size = 1; 355 layers[0].is_virt_csrow = true; 356 layers[1].type = EDAC_MC_LAYER_CHANNEL; 357 layers[1].size = 1; 358 layers[1].is_virt_csrow = false; 359 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 360 sizeof(struct altr_sdram_mc_data)); 361 if (!mci) 362 return -ENOMEM; 363 364 mci->pdev = &pdev->dev; 365 drvdata = mci->pvt_info; 366 drvdata->mc_vbase = mc_vbase; 367 drvdata->data = priv; 368 platform_set_drvdata(pdev, mci); 369 370 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 371 edac_printk(KERN_ERR, EDAC_MC, 372 "Unable to get managed device resource\n"); 373 res = -ENOMEM; 374 goto free; 375 } 376 377 mci->mtype_cap = MEM_FLAG_DDR3; 378 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; 379 mci->edac_cap = EDAC_FLAG_SECDED; 380 mci->mod_name = EDAC_MOD_STR; 381 mci->ctl_name = dev_name(&pdev->dev); 382 mci->scrub_mode = SCRUB_SW_SRC; 383 mci->dev_name = dev_name(&pdev->dev); 384 385 dimm = *mci->dimms; 386 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1; 387 dimm->grain = 8; 388 dimm->dtype = DEV_X8; 389 dimm->mtype = MEM_DDR3; 390 dimm->edac_mode = EDAC_SECDED; 391 392 res = edac_mc_add_mc(mci); 393 if (res < 0) 394 goto err; 395 396 /* Only the Arria10 has separate IRQs */ 397 if (of_machine_is_compatible("altr,socfpga-arria10")) { 398 /* Arria10 specific initialization */ 399 res = a10_init(mc_vbase); 400 if (res < 0) 401 goto err2; 402 403 res = devm_request_irq(&pdev->dev, irq2, 404 altr_sdram_mc_err_handler, 405 IRQF_SHARED, dev_name(&pdev->dev), mci); 406 if (res < 0) { 407 edac_mc_printk(mci, KERN_ERR, 408 "Unable to request irq %d\n", irq2); 409 res = -ENODEV; 410 goto err2; 411 } 412 413 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK); 414 if (res < 0) 415 goto err2; 416 417 irqflags = IRQF_SHARED; 418 } 419 420 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler, 421 irqflags, dev_name(&pdev->dev), mci); 422 if (res < 0) { 423 edac_mc_printk(mci, KERN_ERR, 424 "Unable to request irq %d\n", irq); 425 res = -ENODEV; 426 goto err2; 427 } 428 429 /* Infrastructure ready - enable the IRQ */ 430 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset, 431 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) { 432 edac_mc_printk(mci, KERN_ERR, 433 "Error enabling SDRAM ECC IRQ\n"); 434 res = -ENODEV; 435 goto err2; 436 } 437 438 altr_sdr_mc_create_debugfs_nodes(mci); 439 440 devres_close_group(&pdev->dev, NULL); 441 442 return 0; 443 444 err2: 445 edac_mc_del_mc(&pdev->dev); 446 err: 447 devres_release_group(&pdev->dev, NULL); 448 free: 449 edac_mc_free(mci); 450 edac_printk(KERN_ERR, EDAC_MC, 451 "EDAC Probe Failed; Error %d\n", res); 452 453 return res; 454 } 455 456 static void altr_sdram_remove(struct platform_device *pdev) 457 { 458 struct mem_ctl_info *mci = platform_get_drvdata(pdev); 459 460 edac_mc_del_mc(&pdev->dev); 461 edac_mc_free(mci); 462 platform_set_drvdata(pdev, NULL); 463 } 464 465 /* 466 * If you want to suspend, need to disable EDAC by removing it 467 * from the device tree or defconfig. 468 */ 469 #ifdef CONFIG_PM 470 static int altr_sdram_prepare(struct device *dev) 471 { 472 pr_err("Suspend not allowed when EDAC is enabled.\n"); 473 474 return -EPERM; 475 } 476 477 static const struct dev_pm_ops altr_sdram_pm_ops = { 478 .prepare = altr_sdram_prepare, 479 }; 480 #endif 481 482 static struct platform_driver altr_sdram_edac_driver = { 483 .probe = altr_sdram_probe, 484 .remove = altr_sdram_remove, 485 .driver = { 486 .name = "altr_sdram_edac", 487 #ifdef CONFIG_PM 488 .pm = &altr_sdram_pm_ops, 489 #endif 490 .of_match_table = altr_sdram_ctrl_of_match, 491 }, 492 }; 493 494 module_platform_driver(altr_sdram_edac_driver); 495 496 #endif /* CONFIG_EDAC_ALTERA_SDRAM */ 497 498 /************************* EDAC Parent Probe *************************/ 499 500 static const struct of_device_id altr_edac_device_of_match[]; 501 502 static const struct of_device_id altr_edac_of_match[] = { 503 { .compatible = "altr,socfpga-ecc-manager" }, 504 {}, 505 }; 506 MODULE_DEVICE_TABLE(of, altr_edac_of_match); 507 508 static int altr_edac_probe(struct platform_device *pdev) 509 { 510 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match, 511 NULL, &pdev->dev); 512 return 0; 513 } 514 515 static struct platform_driver altr_edac_driver = { 516 .probe = altr_edac_probe, 517 .driver = { 518 .name = "socfpga_ecc_manager", 519 .of_match_table = altr_edac_of_match, 520 }, 521 }; 522 module_platform_driver(altr_edac_driver); 523 524 /************************* EDAC Device Functions *************************/ 525 526 /* 527 * EDAC Device Functions (shared between various IPs). 528 * The discrete memories use the EDAC Device framework. The probe 529 * and error handling functions are very similar between memories 530 * so they are shared. The memory allocation and freeing for EDAC 531 * trigger testing are different for each memory. 532 */ 533 534 #ifdef CONFIG_EDAC_ALTERA_OCRAM 535 static const struct edac_device_prv_data ocramecc_data; 536 #endif 537 #ifdef CONFIG_EDAC_ALTERA_L2C 538 static const struct edac_device_prv_data l2ecc_data; 539 #endif 540 #ifdef CONFIG_EDAC_ALTERA_OCRAM 541 static const struct edac_device_prv_data a10_ocramecc_data; 542 #endif 543 #ifdef CONFIG_EDAC_ALTERA_L2C 544 static const struct edac_device_prv_data a10_l2ecc_data; 545 #endif 546 547 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id) 548 { 549 irqreturn_t ret_value = IRQ_NONE; 550 struct edac_device_ctl_info *dci = dev_id; 551 struct altr_edac_device_dev *drvdata = dci->pvt_info; 552 const struct edac_device_prv_data *priv = drvdata->data; 553 554 if (irq == drvdata->sb_irq) { 555 if (priv->ce_clear_mask) 556 writel(priv->ce_clear_mask, drvdata->base); 557 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name); 558 ret_value = IRQ_HANDLED; 559 } else if (irq == drvdata->db_irq) { 560 if (priv->ue_clear_mask) 561 writel(priv->ue_clear_mask, drvdata->base); 562 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name); 563 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 564 ret_value = IRQ_HANDLED; 565 } else { 566 WARN_ON(1); 567 } 568 569 return ret_value; 570 } 571 572 static ssize_t __maybe_unused 573 altr_edac_device_trig(struct file *file, const char __user *user_buf, 574 size_t count, loff_t *ppos) 575 576 { 577 u32 *ptemp, i, error_mask; 578 int result = 0; 579 u8 trig_type; 580 unsigned long flags; 581 struct edac_device_ctl_info *edac_dci = file->private_data; 582 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 583 const struct edac_device_prv_data *priv = drvdata->data; 584 void *generic_ptr = edac_dci->dev; 585 586 if (!user_buf || get_user(trig_type, user_buf)) 587 return -EFAULT; 588 589 if (!priv->alloc_mem) 590 return -ENOMEM; 591 592 /* 593 * Note that generic_ptr is initialized to the device * but in 594 * some alloc_functions, this is overridden and returns data. 595 */ 596 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr); 597 if (!ptemp) { 598 edac_printk(KERN_ERR, EDAC_DEVICE, 599 "Inject: Buffer Allocation error\n"); 600 return -ENOMEM; 601 } 602 603 if (trig_type == ALTR_UE_TRIGGER_CHAR) 604 error_mask = priv->ue_set_mask; 605 else 606 error_mask = priv->ce_set_mask; 607 608 edac_printk(KERN_ALERT, EDAC_DEVICE, 609 "Trigger Error Mask (0x%X)\n", error_mask); 610 611 local_irq_save(flags); 612 /* write ECC corrupted data out. */ 613 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) { 614 /* Read data so we're in the correct state */ 615 rmb(); 616 if (READ_ONCE(ptemp[i])) 617 result = -1; 618 /* Toggle Error bit (it is latched), leave ECC enabled */ 619 writel(error_mask, (drvdata->base + priv->set_err_ofst)); 620 writel(priv->ecc_enable_mask, (drvdata->base + 621 priv->set_err_ofst)); 622 ptemp[i] = i; 623 } 624 /* Ensure it has been written out */ 625 wmb(); 626 local_irq_restore(flags); 627 628 if (result) 629 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n"); 630 631 /* Read out written data. ECC error caused here */ 632 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++) 633 if (READ_ONCE(ptemp[i]) != i) 634 edac_printk(KERN_ERR, EDAC_DEVICE, 635 "Read doesn't match written data\n"); 636 637 if (priv->free_mem) 638 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr); 639 640 return count; 641 } 642 643 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = { 644 .open = simple_open, 645 .write = altr_edac_device_trig, 646 .llseek = generic_file_llseek, 647 }; 648 649 static ssize_t __maybe_unused 650 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, 651 size_t count, loff_t *ppos); 652 653 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = { 654 .open = simple_open, 655 .write = altr_edac_a10_device_trig, 656 .llseek = generic_file_llseek, 657 }; 658 659 static ssize_t __maybe_unused 660 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, 661 size_t count, loff_t *ppos); 662 663 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = { 664 .open = simple_open, 665 .write = altr_edac_a10_device_trig2, 666 .llseek = generic_file_llseek, 667 }; 668 669 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci, 670 const struct edac_device_prv_data *priv) 671 { 672 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 673 674 if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) 675 return; 676 677 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name); 678 if (!drvdata->debugfs_dir) 679 return; 680 681 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR, 682 drvdata->debugfs_dir, edac_dci, 683 priv->inject_fops)) 684 debugfs_remove_recursive(drvdata->debugfs_dir); 685 } 686 687 static const struct of_device_id altr_edac_device_of_match[] = { 688 #ifdef CONFIG_EDAC_ALTERA_L2C 689 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data }, 690 #endif 691 #ifdef CONFIG_EDAC_ALTERA_OCRAM 692 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data }, 693 #endif 694 {}, 695 }; 696 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match); 697 698 /* 699 * altr_edac_device_probe() 700 * This is a generic EDAC device driver that will support 701 * various Altera memory devices such as the L2 cache ECC and 702 * OCRAM ECC as well as the memories for other peripherals. 703 * Module specific initialization is done by passing the 704 * function index in the device tree. 705 */ 706 static int altr_edac_device_probe(struct platform_device *pdev) 707 { 708 struct edac_device_ctl_info *dci; 709 struct altr_edac_device_dev *drvdata; 710 struct resource *r; 711 int res = 0; 712 struct device_node *np = pdev->dev.of_node; 713 char *ecc_name = (char *)np->name; 714 static int dev_instance; 715 716 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { 717 edac_printk(KERN_ERR, EDAC_DEVICE, 718 "Unable to open devm\n"); 719 return -ENOMEM; 720 } 721 722 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 723 if (!r) { 724 edac_printk(KERN_ERR, EDAC_DEVICE, 725 "Unable to get mem resource\n"); 726 res = -ENODEV; 727 goto fail; 728 } 729 730 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r), 731 dev_name(&pdev->dev))) { 732 edac_printk(KERN_ERR, EDAC_DEVICE, 733 "%s:Error requesting mem region\n", ecc_name); 734 res = -EBUSY; 735 goto fail; 736 } 737 738 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name, 739 1, ecc_name, 1, 0, dev_instance++); 740 741 if (!dci) { 742 edac_printk(KERN_ERR, EDAC_DEVICE, 743 "%s: Unable to allocate EDAC device\n", ecc_name); 744 res = -ENOMEM; 745 goto fail; 746 } 747 748 drvdata = dci->pvt_info; 749 dci->dev = &pdev->dev; 750 platform_set_drvdata(pdev, dci); 751 drvdata->edac_dev_name = ecc_name; 752 753 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r)); 754 if (!drvdata->base) { 755 res = -ENOMEM; 756 goto fail1; 757 } 758 759 /* Get driver specific data for this EDAC device */ 760 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data; 761 762 /* Check specific dependencies for the module */ 763 if (drvdata->data->setup) { 764 res = drvdata->data->setup(drvdata); 765 if (res) 766 goto fail1; 767 } 768 769 drvdata->sb_irq = platform_get_irq(pdev, 0); 770 res = devm_request_irq(&pdev->dev, drvdata->sb_irq, 771 altr_edac_device_handler, 772 0, dev_name(&pdev->dev), dci); 773 if (res) 774 goto fail1; 775 776 drvdata->db_irq = platform_get_irq(pdev, 1); 777 res = devm_request_irq(&pdev->dev, drvdata->db_irq, 778 altr_edac_device_handler, 779 0, dev_name(&pdev->dev), dci); 780 if (res) 781 goto fail1; 782 783 dci->mod_name = "Altera ECC Manager"; 784 dci->dev_name = drvdata->edac_dev_name; 785 786 res = edac_device_add_device(dci); 787 if (res) 788 goto fail1; 789 790 altr_create_edacdev_dbgfs(dci, drvdata->data); 791 792 devres_close_group(&pdev->dev, NULL); 793 794 return 0; 795 796 fail1: 797 edac_device_free_ctl_info(dci); 798 fail: 799 devres_release_group(&pdev->dev, NULL); 800 edac_printk(KERN_ERR, EDAC_DEVICE, 801 "%s:Error setting up EDAC device: %d\n", ecc_name, res); 802 803 return res; 804 } 805 806 static void altr_edac_device_remove(struct platform_device *pdev) 807 { 808 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev); 809 struct altr_edac_device_dev *drvdata = dci->pvt_info; 810 811 debugfs_remove_recursive(drvdata->debugfs_dir); 812 edac_device_del_device(&pdev->dev); 813 edac_device_free_ctl_info(dci); 814 } 815 816 static struct platform_driver altr_edac_device_driver = { 817 .probe = altr_edac_device_probe, 818 .remove = altr_edac_device_remove, 819 .driver = { 820 .name = "altr_edac_device", 821 .of_match_table = altr_edac_device_of_match, 822 }, 823 }; 824 module_platform_driver(altr_edac_device_driver); 825 826 /******************* Arria10 Device ECC Shared Functions *****************/ 827 828 /* 829 * Test for memory's ECC dependencies upon entry because platform specific 830 * startup should have initialized the memory and enabled the ECC. 831 * Can't turn on ECC here because accessing un-initialized memory will 832 * cause CE/UE errors possibly causing an ABORT. 833 */ 834 static int __maybe_unused 835 altr_check_ecc_deps(struct altr_edac_device_dev *device) 836 { 837 void __iomem *base = device->base; 838 const struct edac_device_prv_data *prv = device->data; 839 840 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask) 841 return 0; 842 843 edac_printk(KERN_ERR, EDAC_DEVICE, 844 "%s: No ECC present or ECC disabled.\n", 845 device->edac_dev_name); 846 return -ENODEV; 847 } 848 849 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id) 850 { 851 struct altr_edac_device_dev *dci = dev_id; 852 void __iomem *base = dci->base; 853 854 if (irq == dci->sb_irq) { 855 writel(ALTR_A10_ECC_SERRPENA, 856 base + ALTR_A10_ECC_INTSTAT_OFST); 857 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 858 859 return IRQ_HANDLED; 860 } else if (irq == dci->db_irq) { 861 writel(ALTR_A10_ECC_DERRPENA, 862 base + ALTR_A10_ECC_INTSTAT_OFST); 863 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 864 if (dci->data->panic) 865 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 866 867 return IRQ_HANDLED; 868 } 869 870 WARN_ON(1); 871 872 return IRQ_NONE; 873 } 874 875 /******************* Arria10 Memory Buffer Functions *********************/ 876 877 static inline int a10_get_irq_mask(struct device_node *np) 878 { 879 int irq; 880 const u32 *handle = of_get_property(np, "interrupts", NULL); 881 882 if (!handle) 883 return -ENODEV; 884 irq = be32_to_cpup(handle); 885 return irq; 886 } 887 888 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr) 889 { 890 u32 value = readl(ioaddr); 891 892 value |= bit_mask; 893 writel(value, ioaddr); 894 } 895 896 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr) 897 { 898 u32 value = readl(ioaddr); 899 900 value &= ~bit_mask; 901 writel(value, ioaddr); 902 } 903 904 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr) 905 { 906 u32 value = readl(ioaddr); 907 908 return (value & bit_mask) ? 1 : 0; 909 } 910 911 /* 912 * This function uses the memory initialization block in the Arria10 ECC 913 * controller to initialize/clear the entire memory data and ECC data. 914 */ 915 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port) 916 { 917 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US; 918 u32 init_mask, stat_mask, clear_mask; 919 int ret = 0; 920 921 if (port) { 922 init_mask = ALTR_A10_ECC_INITB; 923 stat_mask = ALTR_A10_ECC_INITCOMPLETEB; 924 clear_mask = ALTR_A10_ECC_ERRPENB_MASK; 925 } else { 926 init_mask = ALTR_A10_ECC_INITA; 927 stat_mask = ALTR_A10_ECC_INITCOMPLETEA; 928 clear_mask = ALTR_A10_ECC_ERRPENA_MASK; 929 } 930 931 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST)); 932 while (limit--) { 933 if (ecc_test_bits(stat_mask, 934 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST))) 935 break; 936 udelay(1); 937 } 938 if (limit < 0) 939 ret = -EBUSY; 940 941 /* Clear any pending ECC interrupts */ 942 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST)); 943 944 return ret; 945 } 946 947 static __init int __maybe_unused 948 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask, 949 u32 ecc_ctrl_en_mask, bool dual_port) 950 { 951 int ret = 0; 952 void __iomem *ecc_block_base; 953 struct regmap *ecc_mgr_map; 954 char *ecc_name; 955 struct device_node *np_eccmgr; 956 957 ecc_name = (char *)np->name; 958 959 /* Get the ECC Manager - parent of the device EDACs */ 960 np_eccmgr = of_get_parent(np); 961 962 ecc_mgr_map = 963 altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr, 964 "altr,sysmgr-syscon"); 965 966 of_node_put(np_eccmgr); 967 if (IS_ERR(ecc_mgr_map)) { 968 edac_printk(KERN_ERR, EDAC_DEVICE, 969 "Unable to get syscon altr,sysmgr-syscon\n"); 970 return -ENODEV; 971 } 972 973 /* Map the ECC Block */ 974 ecc_block_base = of_iomap(np, 0); 975 if (!ecc_block_base) { 976 edac_printk(KERN_ERR, EDAC_DEVICE, 977 "Unable to map %s ECC block\n", ecc_name); 978 return -ENODEV; 979 } 980 981 /* Disable ECC */ 982 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask); 983 writel(ALTR_A10_ECC_SERRINTEN, 984 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST)); 985 ecc_clear_bits(ecc_ctrl_en_mask, 986 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST)); 987 /* Ensure all writes complete */ 988 wmb(); 989 /* Use HW initialization block to initialize memory for ECC */ 990 ret = altr_init_memory_port(ecc_block_base, 0); 991 if (ret) { 992 edac_printk(KERN_ERR, EDAC_DEVICE, 993 "ECC: cannot init %s PORTA memory\n", ecc_name); 994 goto out; 995 } 996 997 if (dual_port) { 998 ret = altr_init_memory_port(ecc_block_base, 1); 999 if (ret) { 1000 edac_printk(KERN_ERR, EDAC_DEVICE, 1001 "ECC: cannot init %s PORTB memory\n", 1002 ecc_name); 1003 goto out; 1004 } 1005 } 1006 1007 /* Enable ECC */ 1008 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base + 1009 ALTR_A10_ECC_CTRL_OFST)); 1010 writel(ALTR_A10_ECC_SERRINTEN, 1011 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST)); 1012 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask); 1013 /* Ensure all writes complete */ 1014 wmb(); 1015 out: 1016 iounmap(ecc_block_base); 1017 return ret; 1018 } 1019 1020 static int validate_parent_available(struct device_node *np); 1021 static const struct of_device_id altr_edac_a10_device_of_match[]; 1022 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat) 1023 { 1024 int irq; 1025 struct device_node *child, *np; 1026 1027 np = of_find_compatible_node(NULL, NULL, 1028 "altr,socfpga-a10-ecc-manager"); 1029 if (!np) { 1030 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n"); 1031 return -ENODEV; 1032 } 1033 1034 for_each_child_of_node(np, child) { 1035 const struct of_device_id *pdev_id; 1036 const struct edac_device_prv_data *prv; 1037 1038 if (!of_device_is_available(child)) 1039 continue; 1040 if (!of_device_is_compatible(child, compat)) 1041 continue; 1042 1043 if (validate_parent_available(child)) 1044 continue; 1045 1046 irq = a10_get_irq_mask(child); 1047 if (irq < 0) 1048 continue; 1049 1050 /* Get matching node and check for valid result */ 1051 pdev_id = of_match_node(altr_edac_a10_device_of_match, child); 1052 if (IS_ERR_OR_NULL(pdev_id)) 1053 continue; 1054 1055 /* Validate private data pointer before dereferencing */ 1056 prv = pdev_id->data; 1057 if (!prv) 1058 continue; 1059 1060 altr_init_a10_ecc_block(child, BIT(irq), 1061 prv->ecc_enable_mask, 0); 1062 } 1063 1064 of_node_put(np); 1065 return 0; 1066 } 1067 1068 /*********************** SDRAM EDAC Device Functions *********************/ 1069 1070 #ifdef CONFIG_EDAC_ALTERA_SDRAM 1071 1072 /* 1073 * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable 1074 * register if ECC is enabled. Linux checks the ECC Enable register to 1075 * determine ECC status. 1076 * Use an SMC call (which always works) to determine ECC enablement. 1077 */ 1078 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device) 1079 { 1080 const struct edac_device_prv_data *prv = device->data; 1081 unsigned long sdram_ecc_addr; 1082 struct arm_smccc_res result; 1083 struct device_node *np; 1084 phys_addr_t sdram_addr; 1085 u32 read_reg; 1086 int ret; 1087 1088 np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl"); 1089 if (!np) 1090 goto sdram_err; 1091 1092 sdram_addr = of_translate_address(np, of_get_address(np, 0, 1093 NULL, NULL)); 1094 of_node_put(np); 1095 sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst; 1096 arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr, 1097 0, 0, 0, 0, 0, 0, &result); 1098 read_reg = (unsigned int)result.a1; 1099 ret = (int)result.a0; 1100 if (!ret && (read_reg & prv->ecc_enable_mask)) 1101 return 0; 1102 1103 sdram_err: 1104 edac_printk(KERN_ERR, EDAC_DEVICE, 1105 "%s: No ECC present or ECC disabled.\n", 1106 device->edac_dev_name); 1107 return -ENODEV; 1108 } 1109 1110 static const struct edac_device_prv_data s10_sdramecc_data = { 1111 .setup = altr_s10_sdram_check_ecc_deps, 1112 .ce_clear_mask = ALTR_S10_ECC_SERRPENA, 1113 .ue_clear_mask = ALTR_S10_ECC_DERRPENA, 1114 .ecc_enable_mask = ALTR_S10_ECC_EN, 1115 .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST, 1116 .ce_set_mask = ALTR_S10_ECC_TSERRA, 1117 .ue_set_mask = ALTR_S10_ECC_TDERRA, 1118 .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST, 1119 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1120 .inject_fops = &altr_edac_a10_device_inject_fops, 1121 }; 1122 #endif /* CONFIG_EDAC_ALTERA_SDRAM */ 1123 1124 /*********************** OCRAM EDAC Device Functions *********************/ 1125 1126 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1127 1128 static void *ocram_alloc_mem(size_t size, void **other) 1129 { 1130 struct device_node *np; 1131 struct gen_pool *gp; 1132 void *sram_addr; 1133 1134 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc"); 1135 if (!np) 1136 return NULL; 1137 1138 gp = of_gen_pool_get(np, "iram", 0); 1139 of_node_put(np); 1140 if (!gp) 1141 return NULL; 1142 1143 sram_addr = (void *)gen_pool_alloc(gp, size); 1144 if (!sram_addr) 1145 return NULL; 1146 1147 memset(sram_addr, 0, size); 1148 /* Ensure data is written out */ 1149 wmb(); 1150 1151 /* Remember this handle for freeing later */ 1152 *other = gp; 1153 1154 return sram_addr; 1155 } 1156 1157 static void ocram_free_mem(void *p, size_t size, void *other) 1158 { 1159 gen_pool_free((struct gen_pool *)other, (unsigned long)p, size); 1160 } 1161 1162 static const struct edac_device_prv_data ocramecc_data = { 1163 .setup = altr_check_ecc_deps, 1164 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR), 1165 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR), 1166 .alloc_mem = ocram_alloc_mem, 1167 .free_mem = ocram_free_mem, 1168 .ecc_enable_mask = ALTR_OCR_ECC_EN, 1169 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET, 1170 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS), 1171 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD), 1172 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET, 1173 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE, 1174 .inject_fops = &altr_edac_device_inject_fops, 1175 }; 1176 1177 static int __maybe_unused 1178 altr_check_ocram_deps_init(struct altr_edac_device_dev *device) 1179 { 1180 void __iomem *base = device->base; 1181 int ret; 1182 1183 ret = altr_check_ecc_deps(device); 1184 if (ret) 1185 return ret; 1186 1187 /* Verify OCRAM has been initialized */ 1188 if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA, 1189 (base + ALTR_A10_ECC_INITSTAT_OFST))) 1190 return -ENODEV; 1191 1192 /* Enable IRQ on Single Bit Error */ 1193 writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST)); 1194 /* Ensure all writes complete */ 1195 wmb(); 1196 1197 return 0; 1198 } 1199 1200 static const struct edac_device_prv_data a10_ocramecc_data = { 1201 .setup = altr_check_ocram_deps_init, 1202 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1203 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1204 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM, 1205 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL, 1206 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1207 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1208 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1209 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1210 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1211 .inject_fops = &altr_edac_a10_device_inject2_fops, 1212 /* 1213 * OCRAM panic on uncorrectable error because sleep/resume 1214 * functions and FPGA contents are stored in OCRAM. Prefer 1215 * a kernel panic over executing/loading corrupted data. 1216 */ 1217 .panic = true, 1218 }; 1219 1220 #endif /* CONFIG_EDAC_ALTERA_OCRAM */ 1221 1222 /********************* L2 Cache EDAC Device Functions ********************/ 1223 1224 #ifdef CONFIG_EDAC_ALTERA_L2C 1225 1226 static void *l2_alloc_mem(size_t size, void **other) 1227 { 1228 struct device *dev = *other; 1229 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL); 1230 1231 if (!ptemp) 1232 return NULL; 1233 1234 /* Make sure everything is written out */ 1235 wmb(); 1236 1237 /* 1238 * Clean all cache levels up to LoC (includes L2) 1239 * This ensures the corrupted data is written into 1240 * L2 cache for readback test (which causes ECC error). 1241 */ 1242 flush_cache_all(); 1243 1244 return ptemp; 1245 } 1246 1247 static void l2_free_mem(void *p, size_t size, void *other) 1248 { 1249 struct device *dev = other; 1250 1251 if (dev && p) 1252 devm_kfree(dev, p); 1253 } 1254 1255 /* 1256 * altr_l2_check_deps() 1257 * Test for L2 cache ECC dependencies upon entry because 1258 * platform specific startup should have initialized the L2 1259 * memory and enabled the ECC. 1260 * Bail if ECC is not enabled. 1261 * Note that L2 Cache Enable is forced at build time. 1262 */ 1263 static int altr_l2_check_deps(struct altr_edac_device_dev *device) 1264 { 1265 void __iomem *base = device->base; 1266 const struct edac_device_prv_data *prv = device->data; 1267 1268 if ((readl(base) & prv->ecc_enable_mask) == 1269 prv->ecc_enable_mask) 1270 return 0; 1271 1272 edac_printk(KERN_ERR, EDAC_DEVICE, 1273 "L2: No ECC present, or ECC disabled\n"); 1274 return -ENODEV; 1275 } 1276 1277 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id) 1278 { 1279 struct altr_edac_device_dev *dci = dev_id; 1280 1281 if (irq == dci->sb_irq) { 1282 regmap_write(dci->edac->ecc_mgr_map, 1283 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1284 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB); 1285 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); 1286 1287 return IRQ_HANDLED; 1288 } else if (irq == dci->db_irq) { 1289 regmap_write(dci->edac->ecc_mgr_map, 1290 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, 1291 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB); 1292 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); 1293 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); 1294 1295 return IRQ_HANDLED; 1296 } 1297 1298 WARN_ON(1); 1299 1300 return IRQ_NONE; 1301 } 1302 1303 static const struct edac_device_prv_data l2ecc_data = { 1304 .setup = altr_l2_check_deps, 1305 .ce_clear_mask = 0, 1306 .ue_clear_mask = 0, 1307 .alloc_mem = l2_alloc_mem, 1308 .free_mem = l2_free_mem, 1309 .ecc_enable_mask = ALTR_L2_ECC_EN, 1310 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS), 1311 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD), 1312 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET, 1313 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1314 .inject_fops = &altr_edac_device_inject_fops, 1315 }; 1316 1317 static const struct edac_device_prv_data a10_l2ecc_data = { 1318 .setup = altr_l2_check_deps, 1319 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR, 1320 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR, 1321 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2, 1322 .alloc_mem = l2_alloc_mem, 1323 .free_mem = l2_free_mem, 1324 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL, 1325 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK, 1326 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK, 1327 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST, 1328 .ecc_irq_handler = altr_edac_a10_l2_irq, 1329 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, 1330 .inject_fops = &altr_edac_device_inject_fops, 1331 }; 1332 1333 #endif /* CONFIG_EDAC_ALTERA_L2C */ 1334 1335 /********************* Ethernet Device Functions ********************/ 1336 1337 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1338 1339 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev) 1340 { 1341 int ret; 1342 1343 ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc"); 1344 if (ret) 1345 return ret; 1346 1347 return altr_check_ecc_deps(dev); 1348 } 1349 1350 static const struct edac_device_prv_data a10_enetecc_data = { 1351 .setup = socfpga_init_ethernet_ecc, 1352 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1353 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1354 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1355 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1356 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1357 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1358 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1359 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1360 .inject_fops = &altr_edac_a10_device_inject2_fops, 1361 }; 1362 1363 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */ 1364 1365 /********************** NAND Device Functions **********************/ 1366 1367 #ifdef CONFIG_EDAC_ALTERA_NAND 1368 1369 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device) 1370 { 1371 int ret; 1372 1373 ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc"); 1374 if (ret) 1375 return ret; 1376 1377 return altr_check_ecc_deps(device); 1378 } 1379 1380 static const struct edac_device_prv_data a10_nandecc_data = { 1381 .setup = socfpga_init_nand_ecc, 1382 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1383 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1384 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1385 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1386 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1387 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1388 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1389 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1390 .inject_fops = &altr_edac_a10_device_inject_fops, 1391 }; 1392 1393 #endif /* CONFIG_EDAC_ALTERA_NAND */ 1394 1395 /********************** DMA Device Functions **********************/ 1396 1397 #ifdef CONFIG_EDAC_ALTERA_DMA 1398 1399 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device) 1400 { 1401 int ret; 1402 1403 ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc"); 1404 if (ret) 1405 return ret; 1406 1407 return altr_check_ecc_deps(device); 1408 } 1409 1410 static const struct edac_device_prv_data a10_dmaecc_data = { 1411 .setup = socfpga_init_dma_ecc, 1412 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1413 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1414 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1415 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1416 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1417 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1418 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1419 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1420 .inject_fops = &altr_edac_a10_device_inject_fops, 1421 }; 1422 1423 #endif /* CONFIG_EDAC_ALTERA_DMA */ 1424 1425 /********************** USB Device Functions **********************/ 1426 1427 #ifdef CONFIG_EDAC_ALTERA_USB 1428 1429 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device) 1430 { 1431 int ret; 1432 1433 ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc"); 1434 if (ret) 1435 return ret; 1436 1437 return altr_check_ecc_deps(device); 1438 } 1439 1440 static const struct edac_device_prv_data a10_usbecc_data = { 1441 .setup = socfpga_init_usb_ecc, 1442 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1443 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1444 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1445 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1446 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1447 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1448 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1449 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1450 .inject_fops = &altr_edac_a10_device_inject2_fops, 1451 }; 1452 1453 #endif /* CONFIG_EDAC_ALTERA_USB */ 1454 1455 /********************** QSPI Device Functions **********************/ 1456 1457 #ifdef CONFIG_EDAC_ALTERA_QSPI 1458 1459 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device) 1460 { 1461 int ret; 1462 1463 ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc"); 1464 if (ret) 1465 return ret; 1466 1467 return altr_check_ecc_deps(device); 1468 } 1469 1470 static const struct edac_device_prv_data a10_qspiecc_data = { 1471 .setup = socfpga_init_qspi_ecc, 1472 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1473 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1474 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1475 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1476 .ce_set_mask = ALTR_A10_ECC_TSERRA, 1477 .ue_set_mask = ALTR_A10_ECC_TDERRA, 1478 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1479 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1480 .inject_fops = &altr_edac_a10_device_inject_fops, 1481 }; 1482 1483 #endif /* CONFIG_EDAC_ALTERA_QSPI */ 1484 1485 /********************* SDMMC Device Functions **********************/ 1486 1487 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1488 1489 static const struct edac_device_prv_data a10_sdmmceccb_data; 1490 static int altr_portb_setup(struct altr_edac_device_dev *device) 1491 { 1492 struct edac_device_ctl_info *dci; 1493 struct altr_edac_device_dev *altdev; 1494 char *ecc_name = "sdmmcb-ecc"; 1495 int edac_idx, rc; 1496 struct device_node *np; 1497 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data; 1498 1499 rc = altr_check_ecc_deps(device); 1500 if (rc) 1501 return rc; 1502 1503 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1504 if (!np) { 1505 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); 1506 return -ENODEV; 1507 } 1508 1509 /* Create the PortB EDAC device */ 1510 edac_idx = edac_device_alloc_index(); 1511 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1, 1512 ecc_name, 1, 0, edac_idx); 1513 if (!dci) { 1514 edac_printk(KERN_ERR, EDAC_DEVICE, 1515 "%s: Unable to allocate PortB EDAC device\n", 1516 ecc_name); 1517 return -ENOMEM; 1518 } 1519 1520 /* Initialize the PortB EDAC device structure from PortA structure */ 1521 altdev = dci->pvt_info; 1522 *altdev = *device; 1523 1524 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL)) 1525 return -ENOMEM; 1526 1527 /* Update PortB specific values */ 1528 altdev->edac_dev_name = ecc_name; 1529 altdev->edac_idx = edac_idx; 1530 altdev->edac_dev = dci; 1531 altdev->data = prv; 1532 dci->dev = &altdev->ddev; 1533 dci->ctl_name = "Altera ECC Manager"; 1534 dci->mod_name = ecc_name; 1535 dci->dev_name = ecc_name; 1536 1537 /* 1538 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly 1539 * 1540 * FIXME: Instead of ifdefs with different architectures the driver 1541 * should properly use compatibles. 1542 */ 1543 #ifdef CONFIG_64BIT 1544 altdev->sb_irq = irq_of_parse_and_map(np, 1); 1545 #else 1546 altdev->sb_irq = irq_of_parse_and_map(np, 2); 1547 #endif 1548 if (!altdev->sb_irq) { 1549 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n"); 1550 rc = -ENODEV; 1551 goto err_release_group_1; 1552 } 1553 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq, 1554 prv->ecc_irq_handler, 1555 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1556 ecc_name, altdev); 1557 if (rc) { 1558 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n"); 1559 goto err_release_group_1; 1560 } 1561 1562 #ifdef CONFIG_64BIT 1563 /* Use IRQ to determine SError origin instead of assigning IRQ */ 1564 rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq); 1565 if (rc) { 1566 edac_printk(KERN_ERR, EDAC_DEVICE, 1567 "Error PortB DBIRQ alloc\n"); 1568 goto err_release_group_1; 1569 } 1570 #else 1571 altdev->db_irq = irq_of_parse_and_map(np, 3); 1572 if (!altdev->db_irq) { 1573 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n"); 1574 rc = -ENODEV; 1575 goto err_release_group_1; 1576 } 1577 rc = devm_request_irq(&altdev->ddev, altdev->db_irq, 1578 prv->ecc_irq_handler, 1579 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1580 ecc_name, altdev); 1581 if (rc) { 1582 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n"); 1583 goto err_release_group_1; 1584 } 1585 #endif 1586 1587 rc = edac_device_add_device(dci); 1588 if (rc) { 1589 edac_printk(KERN_ERR, EDAC_DEVICE, 1590 "edac_device_add_device portB failed\n"); 1591 rc = -ENOMEM; 1592 goto err_release_group_1; 1593 } 1594 altr_create_edacdev_dbgfs(dci, prv); 1595 1596 list_add(&altdev->next, &altdev->edac->a10_ecc_devices); 1597 1598 devres_remove_group(&altdev->ddev, altr_portb_setup); 1599 1600 return 0; 1601 1602 err_release_group_1: 1603 edac_device_free_ctl_info(dci); 1604 devres_release_group(&altdev->ddev, altr_portb_setup); 1605 edac_printk(KERN_ERR, EDAC_DEVICE, 1606 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 1607 return rc; 1608 } 1609 1610 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device) 1611 { 1612 int rc = -ENODEV; 1613 struct device_node *child; 1614 1615 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); 1616 if (!child) 1617 return -ENODEV; 1618 1619 if (!of_device_is_available(child)) 1620 goto exit; 1621 1622 if (validate_parent_available(child)) 1623 goto exit; 1624 1625 /* Init portB */ 1626 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK, 1627 a10_sdmmceccb_data.ecc_enable_mask, 1); 1628 if (rc) 1629 goto exit; 1630 1631 /* Setup portB */ 1632 return altr_portb_setup(device); 1633 1634 exit: 1635 of_node_put(child); 1636 return rc; 1637 } 1638 1639 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id) 1640 { 1641 struct altr_edac_device_dev *ad = dev_id; 1642 void __iomem *base = ad->base; 1643 const struct edac_device_prv_data *priv = ad->data; 1644 1645 if (irq == ad->sb_irq) { 1646 writel(priv->ce_clear_mask, 1647 base + ALTR_A10_ECC_INTSTAT_OFST); 1648 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name); 1649 return IRQ_HANDLED; 1650 } else if (irq == ad->db_irq) { 1651 writel(priv->ue_clear_mask, 1652 base + ALTR_A10_ECC_INTSTAT_OFST); 1653 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name); 1654 return IRQ_HANDLED; 1655 } 1656 1657 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq); 1658 1659 return IRQ_NONE; 1660 } 1661 1662 static const struct edac_device_prv_data a10_sdmmcecca_data = { 1663 .setup = socfpga_init_sdmmc_ecc, 1664 .ce_clear_mask = ALTR_A10_ECC_SERRPENA, 1665 .ue_clear_mask = ALTR_A10_ECC_DERRPENA, 1666 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1667 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1668 .ce_set_mask = ALTR_A10_ECC_SERRPENA, 1669 .ue_set_mask = ALTR_A10_ECC_DERRPENA, 1670 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1671 .ecc_irq_handler = altr_edac_a10_ecc_irq, 1672 .inject_fops = &altr_edac_a10_device_inject_fops, 1673 }; 1674 1675 static const struct edac_device_prv_data a10_sdmmceccb_data = { 1676 .setup = socfpga_init_sdmmc_ecc, 1677 .ce_clear_mask = ALTR_A10_ECC_SERRPENB, 1678 .ue_clear_mask = ALTR_A10_ECC_DERRPENB, 1679 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, 1680 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, 1681 .ce_set_mask = ALTR_A10_ECC_TSERRB, 1682 .ue_set_mask = ALTR_A10_ECC_TDERRB, 1683 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, 1684 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb, 1685 .inject_fops = &altr_edac_a10_device_inject_fops, 1686 }; 1687 1688 #endif /* CONFIG_EDAC_ALTERA_SDMMC */ 1689 1690 /********************* Arria10 EDAC Device Functions *************************/ 1691 static const struct of_device_id altr_edac_a10_device_of_match[] = { 1692 #ifdef CONFIG_EDAC_ALTERA_L2C 1693 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data }, 1694 #endif 1695 #ifdef CONFIG_EDAC_ALTERA_OCRAM 1696 { .compatible = "altr,socfpga-a10-ocram-ecc", 1697 .data = &a10_ocramecc_data }, 1698 #endif 1699 #ifdef CONFIG_EDAC_ALTERA_ETHERNET 1700 { .compatible = "altr,socfpga-eth-mac-ecc", 1701 .data = &a10_enetecc_data }, 1702 #endif 1703 #ifdef CONFIG_EDAC_ALTERA_NAND 1704 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data }, 1705 #endif 1706 #ifdef CONFIG_EDAC_ALTERA_DMA 1707 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data }, 1708 #endif 1709 #ifdef CONFIG_EDAC_ALTERA_USB 1710 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data }, 1711 #endif 1712 #ifdef CONFIG_EDAC_ALTERA_QSPI 1713 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data }, 1714 #endif 1715 #ifdef CONFIG_EDAC_ALTERA_SDMMC 1716 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data }, 1717 #endif 1718 #ifdef CONFIG_EDAC_ALTERA_SDRAM 1719 { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data }, 1720 #endif 1721 {}, 1722 }; 1723 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match); 1724 1725 /* 1726 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5 1727 * because 2 IRQs are shared among the all ECC peripherals. The ECC 1728 * manager manages the IRQs and the children. 1729 * Based on xgene_edac.c peripheral code. 1730 */ 1731 1732 static ssize_t __maybe_unused 1733 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, 1734 size_t count, loff_t *ppos) 1735 { 1736 struct edac_device_ctl_info *edac_dci = file->private_data; 1737 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 1738 const struct edac_device_prv_data *priv = drvdata->data; 1739 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); 1740 unsigned long flags; 1741 u8 trig_type; 1742 1743 if (!user_buf || get_user(trig_type, user_buf)) 1744 return -EFAULT; 1745 1746 local_irq_save(flags); 1747 if (trig_type == ALTR_UE_TRIGGER_CHAR) 1748 writew(priv->ue_set_mask, set_addr); 1749 else 1750 writew(priv->ce_set_mask, set_addr); 1751 1752 /* Ensure the interrupt test bits are set */ 1753 wmb(); 1754 local_irq_restore(flags); 1755 1756 return count; 1757 } 1758 1759 /* 1760 * The Stratix10 EDAC Error Injection Functions differ from Arria10 1761 * slightly. A few Arria10 peripherals can use this injection function. 1762 * Inject the error into the memory and then readback to trigger the IRQ. 1763 */ 1764 static ssize_t __maybe_unused 1765 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, 1766 size_t count, loff_t *ppos) 1767 { 1768 struct edac_device_ctl_info *edac_dci = file->private_data; 1769 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; 1770 const struct edac_device_prv_data *priv = drvdata->data; 1771 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); 1772 unsigned long flags; 1773 u8 trig_type; 1774 1775 if (!user_buf || get_user(trig_type, user_buf)) 1776 return -EFAULT; 1777 1778 local_irq_save(flags); 1779 if (trig_type == ALTR_UE_TRIGGER_CHAR) { 1780 writew(priv->ue_set_mask, set_addr); 1781 } else { 1782 /* Setup read/write of 4 bytes */ 1783 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST); 1784 /* Setup Address to 0 */ 1785 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST); 1786 /* Setup accctrl to read & ecc & data override */ 1787 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1788 /* Kick it. */ 1789 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1790 /* Setup write for single bit change */ 1791 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1, 1792 drvdata->base + ECC_BLK_WDATA0_OFST); 1793 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST), 1794 drvdata->base + ECC_BLK_WDATA1_OFST); 1795 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST), 1796 drvdata->base + ECC_BLK_WDATA2_OFST); 1797 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST), 1798 drvdata->base + ECC_BLK_WDATA3_OFST); 1799 1800 /* Copy Read ECC to Write ECC */ 1801 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST), 1802 drvdata->base + ECC_BLK_WECC0_OFST); 1803 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST), 1804 drvdata->base + ECC_BLK_WECC1_OFST); 1805 /* Setup accctrl to write & ecc override & data override */ 1806 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1807 /* Kick it. */ 1808 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1809 /* Setup accctrl to read & ecc overwrite & data overwrite */ 1810 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); 1811 /* Kick it. */ 1812 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); 1813 } 1814 1815 /* Ensure the interrupt test bits are set */ 1816 wmb(); 1817 local_irq_restore(flags); 1818 1819 return count; 1820 } 1821 1822 static void altr_edac_a10_irq_handler(struct irq_desc *desc) 1823 { 1824 int dberr, bit, sm_offset, irq_status; 1825 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc); 1826 struct irq_chip *chip = irq_desc_get_chip(desc); 1827 int irq = irq_desc_get_irq(desc); 1828 unsigned long bits; 1829 1830 dberr = (irq == edac->db_irq) ? 1 : 0; 1831 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST : 1832 A10_SYSMGR_ECC_INTSTAT_SERR_OFST; 1833 1834 chained_irq_enter(chip, desc); 1835 1836 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status); 1837 1838 bits = irq_status; 1839 for_each_set_bit(bit, &bits, 32) 1840 generic_handle_domain_irq(edac->domain, dberr * 32 + bit); 1841 1842 chained_irq_exit(chip, desc); 1843 } 1844 1845 static int validate_parent_available(struct device_node *np) 1846 { 1847 struct device_node *parent; 1848 int ret = 0; 1849 1850 /* SDRAM must be present for Linux (implied parent) */ 1851 if (of_device_is_compatible(np, "altr,sdram-edac-s10")) 1852 return 0; 1853 1854 /* Ensure parent device is enabled if parent node exists */ 1855 parent = of_parse_phandle(np, "altr,ecc-parent", 0); 1856 if (parent && !of_device_is_available(parent)) 1857 ret = -ENODEV; 1858 1859 of_node_put(parent); 1860 return ret; 1861 } 1862 1863 static int get_s10_sdram_edac_resource(struct device_node *np, 1864 struct resource *res) 1865 { 1866 struct device_node *parent; 1867 int ret; 1868 1869 parent = of_parse_phandle(np, "altr,sdr-syscon", 0); 1870 if (!parent) 1871 return -ENODEV; 1872 1873 ret = of_address_to_resource(parent, 0, res); 1874 of_node_put(parent); 1875 1876 return ret; 1877 } 1878 1879 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac, 1880 struct device_node *np) 1881 { 1882 struct edac_device_ctl_info *dci; 1883 struct altr_edac_device_dev *altdev; 1884 char *ecc_name = (char *)np->name; 1885 struct resource res; 1886 int edac_idx; 1887 int rc = 0; 1888 const struct edac_device_prv_data *prv; 1889 /* Get matching node and check for valid result */ 1890 const struct of_device_id *pdev_id = 1891 of_match_node(altr_edac_a10_device_of_match, np); 1892 if (IS_ERR_OR_NULL(pdev_id)) 1893 return -ENODEV; 1894 1895 /* Get driver specific data for this EDAC device */ 1896 prv = pdev_id->data; 1897 if (IS_ERR_OR_NULL(prv)) 1898 return -ENODEV; 1899 1900 if (validate_parent_available(np)) 1901 return -ENODEV; 1902 1903 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL)) 1904 return -ENOMEM; 1905 1906 if (of_device_is_compatible(np, "altr,sdram-edac-s10")) 1907 rc = get_s10_sdram_edac_resource(np, &res); 1908 else 1909 rc = of_address_to_resource(np, 0, &res); 1910 1911 if (rc < 0) { 1912 edac_printk(KERN_ERR, EDAC_DEVICE, 1913 "%s: no resource address\n", ecc_name); 1914 goto err_release_group; 1915 } 1916 1917 edac_idx = edac_device_alloc_index(); 1918 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1919 1, ecc_name, 1, 0, edac_idx); 1920 1921 if (!dci) { 1922 edac_printk(KERN_ERR, EDAC_DEVICE, 1923 "%s: Unable to allocate EDAC device\n", ecc_name); 1924 rc = -ENOMEM; 1925 goto err_release_group; 1926 } 1927 1928 altdev = dci->pvt_info; 1929 dci->dev = edac->dev; 1930 altdev->edac_dev_name = ecc_name; 1931 altdev->edac_idx = edac_idx; 1932 altdev->edac = edac; 1933 altdev->edac_dev = dci; 1934 altdev->data = prv; 1935 altdev->ddev = *edac->dev; 1936 dci->dev = &altdev->ddev; 1937 dci->ctl_name = "Altera ECC Manager"; 1938 dci->mod_name = ecc_name; 1939 dci->dev_name = ecc_name; 1940 1941 altdev->base = devm_ioremap_resource(edac->dev, &res); 1942 if (IS_ERR(altdev->base)) { 1943 rc = PTR_ERR(altdev->base); 1944 goto err_release_group1; 1945 } 1946 1947 /* Check specific dependencies for the module */ 1948 if (altdev->data->setup) { 1949 rc = altdev->data->setup(altdev); 1950 if (rc) 1951 goto err_release_group1; 1952 } 1953 1954 altdev->sb_irq = irq_of_parse_and_map(np, 0); 1955 if (!altdev->sb_irq) { 1956 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n"); 1957 rc = -ENODEV; 1958 goto err_release_group1; 1959 } 1960 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler, 1961 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1962 ecc_name, altdev); 1963 if (rc) { 1964 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n"); 1965 goto err_release_group1; 1966 } 1967 1968 #ifdef CONFIG_64BIT 1969 /* Use IRQ to determine SError origin instead of assigning IRQ */ 1970 rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq); 1971 if (rc) { 1972 edac_printk(KERN_ERR, EDAC_DEVICE, 1973 "Unable to parse DB IRQ index\n"); 1974 goto err_release_group1; 1975 } 1976 #else 1977 altdev->db_irq = irq_of_parse_and_map(np, 1); 1978 if (!altdev->db_irq) { 1979 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n"); 1980 rc = -ENODEV; 1981 goto err_release_group1; 1982 } 1983 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler, 1984 IRQF_ONESHOT | IRQF_TRIGGER_HIGH, 1985 ecc_name, altdev); 1986 if (rc) { 1987 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n"); 1988 goto err_release_group1; 1989 } 1990 #endif 1991 1992 rc = edac_device_add_device(dci); 1993 if (rc) { 1994 dev_err(edac->dev, "edac_device_add_device failed\n"); 1995 rc = -ENOMEM; 1996 goto err_release_group1; 1997 } 1998 1999 altr_create_edacdev_dbgfs(dci, prv); 2000 2001 list_add(&altdev->next, &edac->a10_ecc_devices); 2002 2003 devres_remove_group(edac->dev, altr_edac_a10_device_add); 2004 2005 return 0; 2006 2007 err_release_group1: 2008 edac_device_free_ctl_info(dci); 2009 err_release_group: 2010 devres_release_group(edac->dev, NULL); 2011 edac_printk(KERN_ERR, EDAC_DEVICE, 2012 "%s:Error setting up EDAC device: %d\n", ecc_name, rc); 2013 2014 return rc; 2015 } 2016 2017 static void a10_eccmgr_irq_mask(struct irq_data *d) 2018 { 2019 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 2020 2021 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, 2022 BIT(d->hwirq)); 2023 } 2024 2025 static void a10_eccmgr_irq_unmask(struct irq_data *d) 2026 { 2027 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); 2028 2029 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, 2030 BIT(d->hwirq)); 2031 } 2032 2033 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq, 2034 irq_hw_number_t hwirq) 2035 { 2036 struct altr_arria10_edac *edac = d->host_data; 2037 2038 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq); 2039 irq_set_chip_data(irq, edac); 2040 irq_set_noprobe(irq); 2041 2042 return 0; 2043 } 2044 2045 static const struct irq_domain_ops a10_eccmgr_ic_ops = { 2046 .map = a10_eccmgr_irqdomain_map, 2047 .xlate = irq_domain_xlate_twocell, 2048 }; 2049 2050 /************** Stratix 10 EDAC Double Bit Error Handler ************/ 2051 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m) 2052 2053 #ifdef CONFIG_64BIT 2054 /* panic routine issues reboot on non-zero panic_timeout */ 2055 extern int panic_timeout; 2056 2057 /* 2058 * The double bit error is handled through SError which is fatal. This is 2059 * called as a panic notifier to printout ECC error info as part of the panic. 2060 */ 2061 static int s10_edac_dberr_handler(struct notifier_block *this, 2062 unsigned long event, void *ptr) 2063 { 2064 struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier); 2065 int err_addr, dberror; 2066 2067 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST, 2068 &dberror); 2069 regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror); 2070 if (dberror & S10_DBE_IRQ_MASK) { 2071 struct list_head *position; 2072 struct altr_edac_device_dev *ed; 2073 struct arm_smccc_res result; 2074 2075 /* Find the matching DBE in the list of devices */ 2076 list_for_each(position, &edac->a10_ecc_devices) { 2077 ed = list_entry(position, struct altr_edac_device_dev, 2078 next); 2079 if (!(BIT(ed->db_irq) & dberror)) 2080 continue; 2081 2082 writel(ALTR_A10_ECC_DERRPENA, 2083 ed->base + ALTR_A10_ECC_INTSTAT_OFST); 2084 err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST); 2085 regmap_write(edac->ecc_mgr_map, 2086 S10_SYSMGR_UE_ADDR_OFST, err_addr); 2087 edac_printk(KERN_ERR, EDAC_DEVICE, 2088 "EDAC: [Fatal DBE on %s @ 0x%08X]\n", 2089 ed->edac_dev_name, err_addr); 2090 break; 2091 } 2092 /* Notify the System through SMC. Reboot delay = 1 second */ 2093 panic_timeout = 1; 2094 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0, 2095 0, 0, &result); 2096 } 2097 2098 return NOTIFY_DONE; 2099 } 2100 #endif 2101 2102 /****************** Arria 10 EDAC Probe Function *********************/ 2103 static int altr_edac_a10_probe(struct platform_device *pdev) 2104 { 2105 struct altr_arria10_edac *edac; 2106 struct device_node *child; 2107 2108 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL); 2109 if (!edac) 2110 return -ENOMEM; 2111 2112 edac->dev = &pdev->dev; 2113 platform_set_drvdata(pdev, edac); 2114 INIT_LIST_HEAD(&edac->a10_ecc_devices); 2115 2116 edac->ecc_mgr_map = 2117 altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node, 2118 "altr,sysmgr-syscon"); 2119 2120 if (IS_ERR(edac->ecc_mgr_map)) { 2121 edac_printk(KERN_ERR, EDAC_DEVICE, 2122 "Unable to get syscon altr,sysmgr-syscon\n"); 2123 return PTR_ERR(edac->ecc_mgr_map); 2124 } 2125 2126 /* Set irq mask for DDR SBE to avoid any pending irq before registration */ 2127 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, 2128 (A10_SYSMGR_ECC_INTMASK_SDMMCB | A10_SYSMGR_ECC_INTMASK_DDR0)); 2129 2130 edac->irq_chip.name = pdev->dev.of_node->name; 2131 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask; 2132 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask; 2133 edac->domain = irq_domain_create_linear(of_fwnode_handle(pdev->dev.of_node), 2134 64, &a10_eccmgr_ic_ops, edac); 2135 if (!edac->domain) { 2136 dev_err(&pdev->dev, "Error adding IRQ domain\n"); 2137 return -ENOMEM; 2138 } 2139 2140 edac->sb_irq = platform_get_irq(pdev, 0); 2141 if (edac->sb_irq < 0) 2142 return edac->sb_irq; 2143 2144 irq_set_chained_handler_and_data(edac->sb_irq, 2145 altr_edac_a10_irq_handler, 2146 edac); 2147 2148 #ifdef CONFIG_64BIT 2149 { 2150 int dberror, err_addr; 2151 2152 edac->panic_notifier.notifier_call = s10_edac_dberr_handler; 2153 atomic_notifier_chain_register(&panic_notifier_list, 2154 &edac->panic_notifier); 2155 2156 /* Printout a message if uncorrectable error previously. */ 2157 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, 2158 &dberror); 2159 if (dberror) { 2160 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST, 2161 &err_addr); 2162 edac_printk(KERN_ERR, EDAC_DEVICE, 2163 "Previous Boot UE detected[0x%X] @ 0x%X\n", 2164 dberror, err_addr); 2165 /* Reset the sticky registers */ 2166 regmap_write(edac->ecc_mgr_map, 2167 S10_SYSMGR_UE_VAL_OFST, 0); 2168 regmap_write(edac->ecc_mgr_map, 2169 S10_SYSMGR_UE_ADDR_OFST, 0); 2170 } 2171 } 2172 #else 2173 edac->db_irq = platform_get_irq(pdev, 1); 2174 if (edac->db_irq < 0) 2175 return edac->db_irq; 2176 2177 irq_set_chained_handler_and_data(edac->db_irq, 2178 altr_edac_a10_irq_handler, edac); 2179 #endif 2180 2181 for_each_child_of_node(pdev->dev.of_node, child) { 2182 if (!of_device_is_available(child)) 2183 continue; 2184 2185 if (of_match_node(altr_edac_a10_device_of_match, child)) 2186 altr_edac_a10_device_add(edac, child); 2187 2188 #ifdef CONFIG_EDAC_ALTERA_SDRAM 2189 else if (of_device_is_compatible(child, "altr,sdram-edac-a10")) 2190 of_platform_populate(pdev->dev.of_node, 2191 altr_sdram_ctrl_of_match, 2192 NULL, &pdev->dev); 2193 #endif 2194 } 2195 2196 return 0; 2197 } 2198 2199 static const struct of_device_id altr_edac_a10_of_match[] = { 2200 { .compatible = "altr,socfpga-a10-ecc-manager" }, 2201 { .compatible = "altr,socfpga-s10-ecc-manager" }, 2202 {}, 2203 }; 2204 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match); 2205 2206 static struct platform_driver altr_edac_a10_driver = { 2207 .probe = altr_edac_a10_probe, 2208 .driver = { 2209 .name = "socfpga_a10_ecc_manager", 2210 .of_match_table = altr_edac_a10_of_match, 2211 }, 2212 }; 2213 module_platform_driver(altr_edac_a10_driver); 2214 2215 MODULE_AUTHOR("Thor Thayer"); 2216 MODULE_DESCRIPTION("EDAC Driver for Altera Memories"); 2217