xref: /linux/drivers/edac/altera_edac.c (revision 06ba8020287f43fc13962b158d8dec2689448a5a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/regmap.h>
26 #include <linux/types.h>
27 #include <linux/uaccess.h>
28 
29 #include "altera_edac.h"
30 #include "edac_module.h"
31 
32 #define EDAC_MOD_STR		"altera_edac"
33 #define EDAC_DEVICE		"Altera"
34 
35 #ifdef CONFIG_EDAC_ALTERA_SDRAM
36 static const struct altr_sdram_prv_data c5_data = {
37 	.ecc_ctrl_offset    = CV_CTLCFG_OFST,
38 	.ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
39 	.ecc_stat_offset    = CV_DRAMSTS_OFST,
40 	.ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
41 	.ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
42 	.ecc_saddr_offset   = CV_ERRADDR_OFST,
43 	.ecc_daddr_offset   = CV_ERRADDR_OFST,
44 	.ecc_cecnt_offset   = CV_SBECOUNT_OFST,
45 	.ecc_uecnt_offset   = CV_DBECOUNT_OFST,
46 	.ecc_irq_en_offset  = CV_DRAMINTR_OFST,
47 	.ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
48 	.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
49 	.ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
50 	.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
51 	.ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
52 	.ce_ue_trgr_offset  = CV_CTLCFG_OFST,
53 	.ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
54 	.ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
55 };
56 
57 static const struct altr_sdram_prv_data a10_data = {
58 	.ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
59 	.ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
60 	.ecc_stat_offset    = A10_INTSTAT_OFST,
61 	.ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
62 	.ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
63 	.ecc_saddr_offset   = A10_SERRADDR_OFST,
64 	.ecc_daddr_offset   = A10_DERRADDR_OFST,
65 	.ecc_irq_en_offset  = A10_ERRINTEN_OFST,
66 	.ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
67 	.ecc_irq_clr_offset = A10_INTSTAT_OFST,
68 	.ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
69 	.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
70 	.ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
71 	.ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
72 	.ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
73 	.ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
74 };
75 
76 /*********************** EDAC Memory Controller Functions ****************/
77 
78 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
79 
80 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
81 {
82 	struct mem_ctl_info *mci = dev_id;
83 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
84 	const struct altr_sdram_prv_data *priv = drvdata->data;
85 	u32 status, err_count = 1, err_addr;
86 
87 	regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
88 
89 	if (status & priv->ecc_stat_ue_mask) {
90 		regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
91 			    &err_addr);
92 		if (priv->ecc_uecnt_offset)
93 			regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
94 				    &err_count);
95 		panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
96 		      err_count, err_addr);
97 	}
98 	if (status & priv->ecc_stat_ce_mask) {
99 		regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
100 			    &err_addr);
101 		if (priv->ecc_uecnt_offset)
102 			regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
103 				    &err_count);
104 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
105 				     err_addr >> PAGE_SHIFT,
106 				     err_addr & ~PAGE_MASK, 0,
107 				     0, 0, -1, mci->ctl_name, "");
108 		/* Clear IRQ to resume */
109 		regmap_write(drvdata->mc_vbase,	priv->ecc_irq_clr_offset,
110 			     priv->ecc_irq_clr_mask);
111 
112 		return IRQ_HANDLED;
113 	}
114 	return IRQ_NONE;
115 }
116 
117 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
118 					    const char __user *data,
119 					    size_t count, loff_t *ppos)
120 {
121 	struct mem_ctl_info *mci = file->private_data;
122 	struct altr_sdram_mc_data *drvdata = mci->pvt_info;
123 	const struct altr_sdram_prv_data *priv = drvdata->data;
124 	u32 *ptemp;
125 	dma_addr_t dma_handle;
126 	u32 reg, read_reg;
127 
128 	ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
129 	if (!ptemp) {
130 		dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
131 		edac_printk(KERN_ERR, EDAC_MC,
132 			    "Inject: Buffer Allocation error\n");
133 		return -ENOMEM;
134 	}
135 
136 	regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
137 		    &read_reg);
138 	read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
139 
140 	/* Error are injected by writing a word while the SBE or DBE
141 	 * bit in the CTLCFG register is set. Reading the word will
142 	 * trigger the SBE or DBE error and the corresponding IRQ.
143 	 */
144 	if (count == 3) {
145 		edac_printk(KERN_ALERT, EDAC_MC,
146 			    "Inject Double bit error\n");
147 		local_irq_disable();
148 		regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
149 			     (read_reg | priv->ue_set_mask));
150 		local_irq_enable();
151 	} else {
152 		edac_printk(KERN_ALERT, EDAC_MC,
153 			    "Inject Single bit error\n");
154 		local_irq_disable();
155 		regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset,
156 			     (read_reg | priv->ce_set_mask));
157 		local_irq_enable();
158 	}
159 
160 	ptemp[0] = 0x5A5A5A5A;
161 	ptemp[1] = 0xA5A5A5A5;
162 
163 	/* Clear the error injection bits */
164 	regmap_write(drvdata->mc_vbase,	priv->ce_ue_trgr_offset, read_reg);
165 	/* Ensure it has been written out */
166 	wmb();
167 
168 	/*
169 	 * To trigger the error, we need to read the data back
170 	 * (the data was written with errors above).
171 	 * The READ_ONCE macros and printk are used to prevent the
172 	 * the compiler optimizing these reads out.
173 	 */
174 	reg = READ_ONCE(ptemp[0]);
175 	read_reg = READ_ONCE(ptemp[1]);
176 	/* Force Read */
177 	rmb();
178 
179 	edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
180 		    reg, read_reg);
181 
182 	dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
183 
184 	return count;
185 }
186 
187 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
188 	.open = simple_open,
189 	.write = altr_sdr_mc_err_inject_write,
190 	.llseek = generic_file_llseek,
191 };
192 
193 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
194 {
195 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
196 		return;
197 
198 	if (!mci->debugfs)
199 		return;
200 
201 	edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
202 				 &altr_sdr_mc_debug_inject_fops);
203 }
204 
205 /* Get total memory size from Open Firmware DTB */
206 static unsigned long get_total_mem(void)
207 {
208 	struct device_node *np = NULL;
209 	struct resource res;
210 	int ret;
211 	unsigned long total_mem = 0;
212 
213 	for_each_node_by_type(np, "memory") {
214 		ret = of_address_to_resource(np, 0, &res);
215 		if (ret)
216 			continue;
217 
218 		total_mem += resource_size(&res);
219 	}
220 	edac_dbg(0, "total_mem 0x%lx\n", total_mem);
221 	return total_mem;
222 }
223 
224 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
225 	{ .compatible = "altr,sdram-edac", .data = &c5_data},
226 	{ .compatible = "altr,sdram-edac-a10", .data = &a10_data},
227 	{},
228 };
229 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
230 
231 static int a10_init(struct regmap *mc_vbase)
232 {
233 	if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
234 			       A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
235 		edac_printk(KERN_ERR, EDAC_MC,
236 			    "Error setting SB IRQ mode\n");
237 		return -ENODEV;
238 	}
239 
240 	if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
241 		edac_printk(KERN_ERR, EDAC_MC,
242 			    "Error setting trigger count\n");
243 		return -ENODEV;
244 	}
245 
246 	return 0;
247 }
248 
249 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
250 {
251 	void __iomem  *sm_base;
252 	int  ret = 0;
253 
254 	if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
255 				dev_name(&pdev->dev))) {
256 		edac_printk(KERN_ERR, EDAC_MC,
257 			    "Unable to request mem region\n");
258 		return -EBUSY;
259 	}
260 
261 	sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
262 	if (!sm_base) {
263 		edac_printk(KERN_ERR, EDAC_MC,
264 			    "Unable to ioremap device\n");
265 
266 		ret = -ENOMEM;
267 		goto release;
268 	}
269 
270 	iowrite32(mask, sm_base);
271 
272 	iounmap(sm_base);
273 
274 release:
275 	release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
276 
277 	return ret;
278 }
279 
280 static int altr_sdram_probe(struct platform_device *pdev)
281 {
282 	const struct of_device_id *id;
283 	struct edac_mc_layer layers[2];
284 	struct mem_ctl_info *mci;
285 	struct altr_sdram_mc_data *drvdata;
286 	const struct altr_sdram_prv_data *priv;
287 	struct regmap *mc_vbase;
288 	struct dimm_info *dimm;
289 	u32 read_reg;
290 	int irq, irq2, res = 0;
291 	unsigned long mem_size, irqflags = 0;
292 
293 	id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
294 	if (!id)
295 		return -ENODEV;
296 
297 	/* Grab the register range from the sdr controller in device tree */
298 	mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
299 						   "altr,sdr-syscon");
300 	if (IS_ERR(mc_vbase)) {
301 		edac_printk(KERN_ERR, EDAC_MC,
302 			    "regmap for altr,sdr-syscon lookup failed.\n");
303 		return -ENODEV;
304 	}
305 
306 	/* Check specific dependencies for the module */
307 	priv = of_match_node(altr_sdram_ctrl_of_match,
308 			     pdev->dev.of_node)->data;
309 
310 	/* Validate the SDRAM controller has ECC enabled */
311 	if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
312 	    ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
313 		edac_printk(KERN_ERR, EDAC_MC,
314 			    "No ECC/ECC disabled [0x%08X]\n", read_reg);
315 		return -ENODEV;
316 	}
317 
318 	/* Grab memory size from device tree. */
319 	mem_size = get_total_mem();
320 	if (!mem_size) {
321 		edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
322 		return -ENODEV;
323 	}
324 
325 	/* Ensure the SDRAM Interrupt is disabled */
326 	if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
327 			       priv->ecc_irq_en_mask, 0)) {
328 		edac_printk(KERN_ERR, EDAC_MC,
329 			    "Error disabling SDRAM ECC IRQ\n");
330 		return -ENODEV;
331 	}
332 
333 	/* Toggle to clear the SDRAM Error count */
334 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
335 			       priv->ecc_cnt_rst_mask,
336 			       priv->ecc_cnt_rst_mask)) {
337 		edac_printk(KERN_ERR, EDAC_MC,
338 			    "Error clearing SDRAM ECC count\n");
339 		return -ENODEV;
340 	}
341 
342 	if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
343 			       priv->ecc_cnt_rst_mask, 0)) {
344 		edac_printk(KERN_ERR, EDAC_MC,
345 			    "Error clearing SDRAM ECC count\n");
346 		return -ENODEV;
347 	}
348 
349 	irq = platform_get_irq(pdev, 0);
350 	if (irq < 0) {
351 		edac_printk(KERN_ERR, EDAC_MC,
352 			    "No irq %d in DT\n", irq);
353 		return irq;
354 	}
355 
356 	/* Arria10 has a 2nd IRQ */
357 	irq2 = platform_get_irq(pdev, 1);
358 
359 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
360 	layers[0].size = 1;
361 	layers[0].is_virt_csrow = true;
362 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
363 	layers[1].size = 1;
364 	layers[1].is_virt_csrow = false;
365 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
366 			    sizeof(struct altr_sdram_mc_data));
367 	if (!mci)
368 		return -ENOMEM;
369 
370 	mci->pdev = &pdev->dev;
371 	drvdata = mci->pvt_info;
372 	drvdata->mc_vbase = mc_vbase;
373 	drvdata->data = priv;
374 	platform_set_drvdata(pdev, mci);
375 
376 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
377 		edac_printk(KERN_ERR, EDAC_MC,
378 			    "Unable to get managed device resource\n");
379 		res = -ENOMEM;
380 		goto free;
381 	}
382 
383 	mci->mtype_cap = MEM_FLAG_DDR3;
384 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
385 	mci->edac_cap = EDAC_FLAG_SECDED;
386 	mci->mod_name = EDAC_MOD_STR;
387 	mci->ctl_name = dev_name(&pdev->dev);
388 	mci->scrub_mode = SCRUB_SW_SRC;
389 	mci->dev_name = dev_name(&pdev->dev);
390 
391 	dimm = *mci->dimms;
392 	dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
393 	dimm->grain = 8;
394 	dimm->dtype = DEV_X8;
395 	dimm->mtype = MEM_DDR3;
396 	dimm->edac_mode = EDAC_SECDED;
397 
398 	res = edac_mc_add_mc(mci);
399 	if (res < 0)
400 		goto err;
401 
402 	/* Only the Arria10 has separate IRQs */
403 	if (of_machine_is_compatible("altr,socfpga-arria10")) {
404 		/* Arria10 specific initialization */
405 		res = a10_init(mc_vbase);
406 		if (res < 0)
407 			goto err2;
408 
409 		res = devm_request_irq(&pdev->dev, irq2,
410 				       altr_sdram_mc_err_handler,
411 				       IRQF_SHARED, dev_name(&pdev->dev), mci);
412 		if (res < 0) {
413 			edac_mc_printk(mci, KERN_ERR,
414 				       "Unable to request irq %d\n", irq2);
415 			res = -ENODEV;
416 			goto err2;
417 		}
418 
419 		res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
420 		if (res < 0)
421 			goto err2;
422 
423 		irqflags = IRQF_SHARED;
424 	}
425 
426 	res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
427 			       irqflags, dev_name(&pdev->dev), mci);
428 	if (res < 0) {
429 		edac_mc_printk(mci, KERN_ERR,
430 			       "Unable to request irq %d\n", irq);
431 		res = -ENODEV;
432 		goto err2;
433 	}
434 
435 	/* Infrastructure ready - enable the IRQ */
436 	if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
437 			       priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
438 		edac_mc_printk(mci, KERN_ERR,
439 			       "Error enabling SDRAM ECC IRQ\n");
440 		res = -ENODEV;
441 		goto err2;
442 	}
443 
444 	altr_sdr_mc_create_debugfs_nodes(mci);
445 
446 	devres_close_group(&pdev->dev, NULL);
447 
448 	return 0;
449 
450 err2:
451 	edac_mc_del_mc(&pdev->dev);
452 err:
453 	devres_release_group(&pdev->dev, NULL);
454 free:
455 	edac_mc_free(mci);
456 	edac_printk(KERN_ERR, EDAC_MC,
457 		    "EDAC Probe Failed; Error %d\n", res);
458 
459 	return res;
460 }
461 
462 static int altr_sdram_remove(struct platform_device *pdev)
463 {
464 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
465 
466 	edac_mc_del_mc(&pdev->dev);
467 	edac_mc_free(mci);
468 	platform_set_drvdata(pdev, NULL);
469 
470 	return 0;
471 }
472 
473 /*
474  * If you want to suspend, need to disable EDAC by removing it
475  * from the device tree or defconfig.
476  */
477 #ifdef CONFIG_PM
478 static int altr_sdram_prepare(struct device *dev)
479 {
480 	pr_err("Suspend not allowed when EDAC is enabled.\n");
481 
482 	return -EPERM;
483 }
484 
485 static const struct dev_pm_ops altr_sdram_pm_ops = {
486 	.prepare = altr_sdram_prepare,
487 };
488 #endif
489 
490 static struct platform_driver altr_sdram_edac_driver = {
491 	.probe = altr_sdram_probe,
492 	.remove = altr_sdram_remove,
493 	.driver = {
494 		.name = "altr_sdram_edac",
495 #ifdef CONFIG_PM
496 		.pm = &altr_sdram_pm_ops,
497 #endif
498 		.of_match_table = altr_sdram_ctrl_of_match,
499 	},
500 };
501 
502 module_platform_driver(altr_sdram_edac_driver);
503 
504 #endif	/* CONFIG_EDAC_ALTERA_SDRAM */
505 
506 /************************* EDAC Parent Probe *************************/
507 
508 static const struct of_device_id altr_edac_device_of_match[];
509 
510 static const struct of_device_id altr_edac_of_match[] = {
511 	{ .compatible = "altr,socfpga-ecc-manager" },
512 	{},
513 };
514 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
515 
516 static int altr_edac_probe(struct platform_device *pdev)
517 {
518 	of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
519 			     NULL, &pdev->dev);
520 	return 0;
521 }
522 
523 static struct platform_driver altr_edac_driver = {
524 	.probe =  altr_edac_probe,
525 	.driver = {
526 		.name = "socfpga_ecc_manager",
527 		.of_match_table = altr_edac_of_match,
528 	},
529 };
530 module_platform_driver(altr_edac_driver);
531 
532 /************************* EDAC Device Functions *************************/
533 
534 /*
535  * EDAC Device Functions (shared between various IPs).
536  * The discrete memories use the EDAC Device framework. The probe
537  * and error handling functions are very similar between memories
538  * so they are shared. The memory allocation and freeing for EDAC
539  * trigger testing are different for each memory.
540  */
541 
542 #ifdef CONFIG_EDAC_ALTERA_OCRAM
543 static const struct edac_device_prv_data ocramecc_data;
544 #endif
545 #ifdef CONFIG_EDAC_ALTERA_L2C
546 static const struct edac_device_prv_data l2ecc_data;
547 #endif
548 #ifdef CONFIG_EDAC_ALTERA_OCRAM
549 static const struct edac_device_prv_data a10_ocramecc_data;
550 #endif
551 #ifdef CONFIG_EDAC_ALTERA_L2C
552 static const struct edac_device_prv_data a10_l2ecc_data;
553 #endif
554 
555 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
556 {
557 	irqreturn_t ret_value = IRQ_NONE;
558 	struct edac_device_ctl_info *dci = dev_id;
559 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
560 	const struct edac_device_prv_data *priv = drvdata->data;
561 
562 	if (irq == drvdata->sb_irq) {
563 		if (priv->ce_clear_mask)
564 			writel(priv->ce_clear_mask, drvdata->base);
565 		edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
566 		ret_value = IRQ_HANDLED;
567 	} else if (irq == drvdata->db_irq) {
568 		if (priv->ue_clear_mask)
569 			writel(priv->ue_clear_mask, drvdata->base);
570 		edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
571 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
572 		ret_value = IRQ_HANDLED;
573 	} else {
574 		WARN_ON(1);
575 	}
576 
577 	return ret_value;
578 }
579 
580 static ssize_t __maybe_unused
581 altr_edac_device_trig(struct file *file, const char __user *user_buf,
582 		      size_t count, loff_t *ppos)
583 
584 {
585 	u32 *ptemp, i, error_mask;
586 	int result = 0;
587 	u8 trig_type;
588 	unsigned long flags;
589 	struct edac_device_ctl_info *edac_dci = file->private_data;
590 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
591 	const struct edac_device_prv_data *priv = drvdata->data;
592 	void *generic_ptr = edac_dci->dev;
593 
594 	if (!user_buf || get_user(trig_type, user_buf))
595 		return -EFAULT;
596 
597 	if (!priv->alloc_mem)
598 		return -ENOMEM;
599 
600 	/*
601 	 * Note that generic_ptr is initialized to the device * but in
602 	 * some alloc_functions, this is overridden and returns data.
603 	 */
604 	ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
605 	if (!ptemp) {
606 		edac_printk(KERN_ERR, EDAC_DEVICE,
607 			    "Inject: Buffer Allocation error\n");
608 		return -ENOMEM;
609 	}
610 
611 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
612 		error_mask = priv->ue_set_mask;
613 	else
614 		error_mask = priv->ce_set_mask;
615 
616 	edac_printk(KERN_ALERT, EDAC_DEVICE,
617 		    "Trigger Error Mask (0x%X)\n", error_mask);
618 
619 	local_irq_save(flags);
620 	/* write ECC corrupted data out. */
621 	for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
622 		/* Read data so we're in the correct state */
623 		rmb();
624 		if (READ_ONCE(ptemp[i]))
625 			result = -1;
626 		/* Toggle Error bit (it is latched), leave ECC enabled */
627 		writel(error_mask, (drvdata->base + priv->set_err_ofst));
628 		writel(priv->ecc_enable_mask, (drvdata->base +
629 					       priv->set_err_ofst));
630 		ptemp[i] = i;
631 	}
632 	/* Ensure it has been written out */
633 	wmb();
634 	local_irq_restore(flags);
635 
636 	if (result)
637 		edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
638 
639 	/* Read out written data. ECC error caused here */
640 	for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
641 		if (READ_ONCE(ptemp[i]) != i)
642 			edac_printk(KERN_ERR, EDAC_DEVICE,
643 				    "Read doesn't match written data\n");
644 
645 	if (priv->free_mem)
646 		priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
647 
648 	return count;
649 }
650 
651 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
652 	.open = simple_open,
653 	.write = altr_edac_device_trig,
654 	.llseek = generic_file_llseek,
655 };
656 
657 static ssize_t __maybe_unused
658 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
659 			  size_t count, loff_t *ppos);
660 
661 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
662 	.open = simple_open,
663 	.write = altr_edac_a10_device_trig,
664 	.llseek = generic_file_llseek,
665 };
666 
667 static ssize_t __maybe_unused
668 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
669 			   size_t count, loff_t *ppos);
670 
671 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
672 	.open = simple_open,
673 	.write = altr_edac_a10_device_trig2,
674 	.llseek = generic_file_llseek,
675 };
676 
677 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
678 				      const struct edac_device_prv_data *priv)
679 {
680 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
681 
682 	if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
683 		return;
684 
685 	drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
686 	if (!drvdata->debugfs_dir)
687 		return;
688 
689 	if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
690 				      drvdata->debugfs_dir, edac_dci,
691 				      priv->inject_fops))
692 		debugfs_remove_recursive(drvdata->debugfs_dir);
693 }
694 
695 static const struct of_device_id altr_edac_device_of_match[] = {
696 #ifdef CONFIG_EDAC_ALTERA_L2C
697 	{ .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
698 #endif
699 #ifdef CONFIG_EDAC_ALTERA_OCRAM
700 	{ .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
701 #endif
702 	{},
703 };
704 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
705 
706 /*
707  * altr_edac_device_probe()
708  *	This is a generic EDAC device driver that will support
709  *	various Altera memory devices such as the L2 cache ECC and
710  *	OCRAM ECC as well as the memories for other peripherals.
711  *	Module specific initialization is done by passing the
712  *	function index in the device tree.
713  */
714 static int altr_edac_device_probe(struct platform_device *pdev)
715 {
716 	struct edac_device_ctl_info *dci;
717 	struct altr_edac_device_dev *drvdata;
718 	struct resource *r;
719 	int res = 0;
720 	struct device_node *np = pdev->dev.of_node;
721 	char *ecc_name = (char *)np->name;
722 	static int dev_instance;
723 
724 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
725 		edac_printk(KERN_ERR, EDAC_DEVICE,
726 			    "Unable to open devm\n");
727 		return -ENOMEM;
728 	}
729 
730 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
731 	if (!r) {
732 		edac_printk(KERN_ERR, EDAC_DEVICE,
733 			    "Unable to get mem resource\n");
734 		res = -ENODEV;
735 		goto fail;
736 	}
737 
738 	if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
739 				     dev_name(&pdev->dev))) {
740 		edac_printk(KERN_ERR, EDAC_DEVICE,
741 			    "%s:Error requesting mem region\n", ecc_name);
742 		res = -EBUSY;
743 		goto fail;
744 	}
745 
746 	dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
747 					 1, ecc_name, 1, 0, NULL, 0,
748 					 dev_instance++);
749 
750 	if (!dci) {
751 		edac_printk(KERN_ERR, EDAC_DEVICE,
752 			    "%s: Unable to allocate EDAC device\n", ecc_name);
753 		res = -ENOMEM;
754 		goto fail;
755 	}
756 
757 	drvdata = dci->pvt_info;
758 	dci->dev = &pdev->dev;
759 	platform_set_drvdata(pdev, dci);
760 	drvdata->edac_dev_name = ecc_name;
761 
762 	drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
763 	if (!drvdata->base) {
764 		res = -ENOMEM;
765 		goto fail1;
766 	}
767 
768 	/* Get driver specific data for this EDAC device */
769 	drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
770 
771 	/* Check specific dependencies for the module */
772 	if (drvdata->data->setup) {
773 		res = drvdata->data->setup(drvdata);
774 		if (res)
775 			goto fail1;
776 	}
777 
778 	drvdata->sb_irq = platform_get_irq(pdev, 0);
779 	res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
780 			       altr_edac_device_handler,
781 			       0, dev_name(&pdev->dev), dci);
782 	if (res)
783 		goto fail1;
784 
785 	drvdata->db_irq = platform_get_irq(pdev, 1);
786 	res = devm_request_irq(&pdev->dev, drvdata->db_irq,
787 			       altr_edac_device_handler,
788 			       0, dev_name(&pdev->dev), dci);
789 	if (res)
790 		goto fail1;
791 
792 	dci->mod_name = "Altera ECC Manager";
793 	dci->dev_name = drvdata->edac_dev_name;
794 
795 	res = edac_device_add_device(dci);
796 	if (res)
797 		goto fail1;
798 
799 	altr_create_edacdev_dbgfs(dci, drvdata->data);
800 
801 	devres_close_group(&pdev->dev, NULL);
802 
803 	return 0;
804 
805 fail1:
806 	edac_device_free_ctl_info(dci);
807 fail:
808 	devres_release_group(&pdev->dev, NULL);
809 	edac_printk(KERN_ERR, EDAC_DEVICE,
810 		    "%s:Error setting up EDAC device: %d\n", ecc_name, res);
811 
812 	return res;
813 }
814 
815 static int altr_edac_device_remove(struct platform_device *pdev)
816 {
817 	struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
818 	struct altr_edac_device_dev *drvdata = dci->pvt_info;
819 
820 	debugfs_remove_recursive(drvdata->debugfs_dir);
821 	edac_device_del_device(&pdev->dev);
822 	edac_device_free_ctl_info(dci);
823 
824 	return 0;
825 }
826 
827 static struct platform_driver altr_edac_device_driver = {
828 	.probe =  altr_edac_device_probe,
829 	.remove = altr_edac_device_remove,
830 	.driver = {
831 		.name = "altr_edac_device",
832 		.of_match_table = altr_edac_device_of_match,
833 	},
834 };
835 module_platform_driver(altr_edac_device_driver);
836 
837 /******************* Arria10 Device ECC Shared Functions *****************/
838 
839 /*
840  *  Test for memory's ECC dependencies upon entry because platform specific
841  *  startup should have initialized the memory and enabled the ECC.
842  *  Can't turn on ECC here because accessing un-initialized memory will
843  *  cause CE/UE errors possibly causing an ABORT.
844  */
845 static int __maybe_unused
846 altr_check_ecc_deps(struct altr_edac_device_dev *device)
847 {
848 	void __iomem  *base = device->base;
849 	const struct edac_device_prv_data *prv = device->data;
850 
851 	if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
852 		return 0;
853 
854 	edac_printk(KERN_ERR, EDAC_DEVICE,
855 		    "%s: No ECC present or ECC disabled.\n",
856 		    device->edac_dev_name);
857 	return -ENODEV;
858 }
859 
860 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
861 {
862 	struct altr_edac_device_dev *dci = dev_id;
863 	void __iomem  *base = dci->base;
864 
865 	if (irq == dci->sb_irq) {
866 		writel(ALTR_A10_ECC_SERRPENA,
867 		       base + ALTR_A10_ECC_INTSTAT_OFST);
868 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
869 
870 		return IRQ_HANDLED;
871 	} else if (irq == dci->db_irq) {
872 		writel(ALTR_A10_ECC_DERRPENA,
873 		       base + ALTR_A10_ECC_INTSTAT_OFST);
874 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
875 		if (dci->data->panic)
876 			panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
877 
878 		return IRQ_HANDLED;
879 	}
880 
881 	WARN_ON(1);
882 
883 	return IRQ_NONE;
884 }
885 
886 /******************* Arria10 Memory Buffer Functions *********************/
887 
888 static inline int a10_get_irq_mask(struct device_node *np)
889 {
890 	int irq;
891 	const u32 *handle = of_get_property(np, "interrupts", NULL);
892 
893 	if (!handle)
894 		return -ENODEV;
895 	irq = be32_to_cpup(handle);
896 	return irq;
897 }
898 
899 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
900 {
901 	u32 value = readl(ioaddr);
902 
903 	value |= bit_mask;
904 	writel(value, ioaddr);
905 }
906 
907 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
908 {
909 	u32 value = readl(ioaddr);
910 
911 	value &= ~bit_mask;
912 	writel(value, ioaddr);
913 }
914 
915 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
916 {
917 	u32 value = readl(ioaddr);
918 
919 	return (value & bit_mask) ? 1 : 0;
920 }
921 
922 /*
923  * This function uses the memory initialization block in the Arria10 ECC
924  * controller to initialize/clear the entire memory data and ECC data.
925  */
926 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
927 {
928 	int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
929 	u32 init_mask, stat_mask, clear_mask;
930 	int ret = 0;
931 
932 	if (port) {
933 		init_mask = ALTR_A10_ECC_INITB;
934 		stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
935 		clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
936 	} else {
937 		init_mask = ALTR_A10_ECC_INITA;
938 		stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
939 		clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
940 	}
941 
942 	ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
943 	while (limit--) {
944 		if (ecc_test_bits(stat_mask,
945 				  (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
946 			break;
947 		udelay(1);
948 	}
949 	if (limit < 0)
950 		ret = -EBUSY;
951 
952 	/* Clear any pending ECC interrupts */
953 	writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
954 
955 	return ret;
956 }
957 
958 static __init int __maybe_unused
959 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
960 			u32 ecc_ctrl_en_mask, bool dual_port)
961 {
962 	int ret = 0;
963 	void __iomem *ecc_block_base;
964 	struct regmap *ecc_mgr_map;
965 	char *ecc_name;
966 	struct device_node *np_eccmgr;
967 
968 	ecc_name = (char *)np->name;
969 
970 	/* Get the ECC Manager - parent of the device EDACs */
971 	np_eccmgr = of_get_parent(np);
972 
973 	ecc_mgr_map =
974 		altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
975 						     "altr,sysmgr-syscon");
976 
977 	of_node_put(np_eccmgr);
978 	if (IS_ERR(ecc_mgr_map)) {
979 		edac_printk(KERN_ERR, EDAC_DEVICE,
980 			    "Unable to get syscon altr,sysmgr-syscon\n");
981 		return -ENODEV;
982 	}
983 
984 	/* Map the ECC Block */
985 	ecc_block_base = of_iomap(np, 0);
986 	if (!ecc_block_base) {
987 		edac_printk(KERN_ERR, EDAC_DEVICE,
988 			    "Unable to map %s ECC block\n", ecc_name);
989 		return -ENODEV;
990 	}
991 
992 	/* Disable ECC */
993 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
994 	writel(ALTR_A10_ECC_SERRINTEN,
995 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
996 	ecc_clear_bits(ecc_ctrl_en_mask,
997 		       (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
998 	/* Ensure all writes complete */
999 	wmb();
1000 	/* Use HW initialization block to initialize memory for ECC */
1001 	ret = altr_init_memory_port(ecc_block_base, 0);
1002 	if (ret) {
1003 		edac_printk(KERN_ERR, EDAC_DEVICE,
1004 			    "ECC: cannot init %s PORTA memory\n", ecc_name);
1005 		goto out;
1006 	}
1007 
1008 	if (dual_port) {
1009 		ret = altr_init_memory_port(ecc_block_base, 1);
1010 		if (ret) {
1011 			edac_printk(KERN_ERR, EDAC_DEVICE,
1012 				    "ECC: cannot init %s PORTB memory\n",
1013 				    ecc_name);
1014 			goto out;
1015 		}
1016 	}
1017 
1018 	/* Interrupt mode set to every SBERR */
1019 	regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1020 		     ALTR_A10_ECC_INTMODE);
1021 	/* Enable ECC */
1022 	ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1023 					ALTR_A10_ECC_CTRL_OFST));
1024 	writel(ALTR_A10_ECC_SERRINTEN,
1025 	       (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1026 	regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1027 	/* Ensure all writes complete */
1028 	wmb();
1029 out:
1030 	iounmap(ecc_block_base);
1031 	return ret;
1032 }
1033 
1034 static int validate_parent_available(struct device_node *np);
1035 static const struct of_device_id altr_edac_a10_device_of_match[];
1036 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1037 {
1038 	int irq;
1039 	struct device_node *child, *np;
1040 
1041 	np = of_find_compatible_node(NULL, NULL,
1042 				     "altr,socfpga-a10-ecc-manager");
1043 	if (!np) {
1044 		edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1045 		return -ENODEV;
1046 	}
1047 
1048 	for_each_child_of_node(np, child) {
1049 		const struct of_device_id *pdev_id;
1050 		const struct edac_device_prv_data *prv;
1051 
1052 		if (!of_device_is_available(child))
1053 			continue;
1054 		if (!of_device_is_compatible(child, compat))
1055 			continue;
1056 
1057 		if (validate_parent_available(child))
1058 			continue;
1059 
1060 		irq = a10_get_irq_mask(child);
1061 		if (irq < 0)
1062 			continue;
1063 
1064 		/* Get matching node and check for valid result */
1065 		pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1066 		if (IS_ERR_OR_NULL(pdev_id))
1067 			continue;
1068 
1069 		/* Validate private data pointer before dereferencing */
1070 		prv = pdev_id->data;
1071 		if (!prv)
1072 			continue;
1073 
1074 		altr_init_a10_ecc_block(child, BIT(irq),
1075 					prv->ecc_enable_mask, 0);
1076 	}
1077 
1078 	of_node_put(np);
1079 	return 0;
1080 }
1081 
1082 /*********************** SDRAM EDAC Device Functions *********************/
1083 
1084 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1085 
1086 /*
1087  * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable
1088  * register if ECC is enabled. Linux checks the ECC Enable register to
1089  * determine ECC status.
1090  * Use an SMC call (which always works) to determine ECC enablement.
1091  */
1092 static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device)
1093 {
1094 	const struct edac_device_prv_data *prv = device->data;
1095 	unsigned long sdram_ecc_addr;
1096 	struct arm_smccc_res result;
1097 	struct device_node *np;
1098 	phys_addr_t sdram_addr;
1099 	u32 read_reg;
1100 	int ret;
1101 
1102 	np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl");
1103 	if (!np)
1104 		goto sdram_err;
1105 
1106 	sdram_addr = of_translate_address(np, of_get_address(np, 0,
1107 							     NULL, NULL));
1108 	of_node_put(np);
1109 	sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst;
1110 	arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr,
1111 		      0, 0, 0, 0, 0, 0, &result);
1112 	read_reg = (unsigned int)result.a1;
1113 	ret = (int)result.a0;
1114 	if (!ret && (read_reg & prv->ecc_enable_mask))
1115 		return 0;
1116 
1117 sdram_err:
1118 	edac_printk(KERN_ERR, EDAC_DEVICE,
1119 		    "%s: No ECC present or ECC disabled.\n",
1120 		    device->edac_dev_name);
1121 	return -ENODEV;
1122 }
1123 
1124 static const struct edac_device_prv_data s10_sdramecc_data = {
1125 	.setup = altr_s10_sdram_check_ecc_deps,
1126 	.ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1127 	.ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1128 	.ecc_enable_mask = ALTR_S10_ECC_EN,
1129 	.ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1130 	.ce_set_mask = ALTR_S10_ECC_TSERRA,
1131 	.ue_set_mask = ALTR_S10_ECC_TDERRA,
1132 	.set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1133 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1134 	.inject_fops = &altr_edac_a10_device_inject_fops,
1135 };
1136 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1137 
1138 /*********************** OCRAM EDAC Device Functions *********************/
1139 
1140 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1141 
1142 static void *ocram_alloc_mem(size_t size, void **other)
1143 {
1144 	struct device_node *np;
1145 	struct gen_pool *gp;
1146 	void *sram_addr;
1147 
1148 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1149 	if (!np)
1150 		return NULL;
1151 
1152 	gp = of_gen_pool_get(np, "iram", 0);
1153 	of_node_put(np);
1154 	if (!gp)
1155 		return NULL;
1156 
1157 	sram_addr = (void *)gen_pool_alloc(gp, size);
1158 	if (!sram_addr)
1159 		return NULL;
1160 
1161 	memset(sram_addr, 0, size);
1162 	/* Ensure data is written out */
1163 	wmb();
1164 
1165 	/* Remember this handle for freeing  later */
1166 	*other = gp;
1167 
1168 	return sram_addr;
1169 }
1170 
1171 static void ocram_free_mem(void *p, size_t size, void *other)
1172 {
1173 	gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1174 }
1175 
1176 static const struct edac_device_prv_data ocramecc_data = {
1177 	.setup = altr_check_ecc_deps,
1178 	.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1179 	.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1180 	.alloc_mem = ocram_alloc_mem,
1181 	.free_mem = ocram_free_mem,
1182 	.ecc_enable_mask = ALTR_OCR_ECC_EN,
1183 	.ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1184 	.ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1185 	.ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1186 	.set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1187 	.trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1188 	.inject_fops = &altr_edac_device_inject_fops,
1189 };
1190 
1191 static int __maybe_unused
1192 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1193 {
1194 	void __iomem  *base = device->base;
1195 	int ret;
1196 
1197 	ret = altr_check_ecc_deps(device);
1198 	if (ret)
1199 		return ret;
1200 
1201 	/* Verify OCRAM has been initialized */
1202 	if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1203 			   (base + ALTR_A10_ECC_INITSTAT_OFST)))
1204 		return -ENODEV;
1205 
1206 	/* Enable IRQ on Single Bit Error */
1207 	writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1208 	/* Ensure all writes complete */
1209 	wmb();
1210 
1211 	return 0;
1212 }
1213 
1214 static const struct edac_device_prv_data a10_ocramecc_data = {
1215 	.setup = altr_check_ocram_deps_init,
1216 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1217 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1218 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1219 	.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1220 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1221 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1222 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1223 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1224 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1225 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1226 	/*
1227 	 * OCRAM panic on uncorrectable error because sleep/resume
1228 	 * functions and FPGA contents are stored in OCRAM. Prefer
1229 	 * a kernel panic over executing/loading corrupted data.
1230 	 */
1231 	.panic = true,
1232 };
1233 
1234 #endif	/* CONFIG_EDAC_ALTERA_OCRAM */
1235 
1236 /********************* L2 Cache EDAC Device Functions ********************/
1237 
1238 #ifdef CONFIG_EDAC_ALTERA_L2C
1239 
1240 static void *l2_alloc_mem(size_t size, void **other)
1241 {
1242 	struct device *dev = *other;
1243 	void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1244 
1245 	if (!ptemp)
1246 		return NULL;
1247 
1248 	/* Make sure everything is written out */
1249 	wmb();
1250 
1251 	/*
1252 	 * Clean all cache levels up to LoC (includes L2)
1253 	 * This ensures the corrupted data is written into
1254 	 * L2 cache for readback test (which causes ECC error).
1255 	 */
1256 	flush_cache_all();
1257 
1258 	return ptemp;
1259 }
1260 
1261 static void l2_free_mem(void *p, size_t size, void *other)
1262 {
1263 	struct device *dev = other;
1264 
1265 	if (dev && p)
1266 		devm_kfree(dev, p);
1267 }
1268 
1269 /*
1270  * altr_l2_check_deps()
1271  *	Test for L2 cache ECC dependencies upon entry because
1272  *	platform specific startup should have initialized the L2
1273  *	memory and enabled the ECC.
1274  *	Bail if ECC is not enabled.
1275  *	Note that L2 Cache Enable is forced at build time.
1276  */
1277 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1278 {
1279 	void __iomem *base = device->base;
1280 	const struct edac_device_prv_data *prv = device->data;
1281 
1282 	if ((readl(base) & prv->ecc_enable_mask) ==
1283 	     prv->ecc_enable_mask)
1284 		return 0;
1285 
1286 	edac_printk(KERN_ERR, EDAC_DEVICE,
1287 		    "L2: No ECC present, or ECC disabled\n");
1288 	return -ENODEV;
1289 }
1290 
1291 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1292 {
1293 	struct altr_edac_device_dev *dci = dev_id;
1294 
1295 	if (irq == dci->sb_irq) {
1296 		regmap_write(dci->edac->ecc_mgr_map,
1297 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1298 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1299 		edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1300 
1301 		return IRQ_HANDLED;
1302 	} else if (irq == dci->db_irq) {
1303 		regmap_write(dci->edac->ecc_mgr_map,
1304 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1305 			     A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1306 		edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1307 		panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1308 
1309 		return IRQ_HANDLED;
1310 	}
1311 
1312 	WARN_ON(1);
1313 
1314 	return IRQ_NONE;
1315 }
1316 
1317 static const struct edac_device_prv_data l2ecc_data = {
1318 	.setup = altr_l2_check_deps,
1319 	.ce_clear_mask = 0,
1320 	.ue_clear_mask = 0,
1321 	.alloc_mem = l2_alloc_mem,
1322 	.free_mem = l2_free_mem,
1323 	.ecc_enable_mask = ALTR_L2_ECC_EN,
1324 	.ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1325 	.ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1326 	.set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1327 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1328 	.inject_fops = &altr_edac_device_inject_fops,
1329 };
1330 
1331 static const struct edac_device_prv_data a10_l2ecc_data = {
1332 	.setup = altr_l2_check_deps,
1333 	.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1334 	.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1335 	.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1336 	.alloc_mem = l2_alloc_mem,
1337 	.free_mem = l2_free_mem,
1338 	.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1339 	.ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1340 	.ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1341 	.set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1342 	.ecc_irq_handler = altr_edac_a10_l2_irq,
1343 	.trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1344 	.inject_fops = &altr_edac_device_inject_fops,
1345 };
1346 
1347 #endif	/* CONFIG_EDAC_ALTERA_L2C */
1348 
1349 /********************* Ethernet Device Functions ********************/
1350 
1351 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1352 
1353 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1354 {
1355 	int ret;
1356 
1357 	ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1358 	if (ret)
1359 		return ret;
1360 
1361 	return altr_check_ecc_deps(dev);
1362 }
1363 
1364 static const struct edac_device_prv_data a10_enetecc_data = {
1365 	.setup = socfpga_init_ethernet_ecc,
1366 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1367 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1368 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1369 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1370 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1371 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1372 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1373 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1374 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1375 };
1376 
1377 #endif	/* CONFIG_EDAC_ALTERA_ETHERNET */
1378 
1379 /********************** NAND Device Functions **********************/
1380 
1381 #ifdef CONFIG_EDAC_ALTERA_NAND
1382 
1383 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1384 {
1385 	int ret;
1386 
1387 	ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1388 	if (ret)
1389 		return ret;
1390 
1391 	return altr_check_ecc_deps(device);
1392 }
1393 
1394 static const struct edac_device_prv_data a10_nandecc_data = {
1395 	.setup = socfpga_init_nand_ecc,
1396 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1397 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1398 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1399 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1400 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1401 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1402 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1403 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1404 	.inject_fops = &altr_edac_a10_device_inject_fops,
1405 };
1406 
1407 #endif	/* CONFIG_EDAC_ALTERA_NAND */
1408 
1409 /********************** DMA Device Functions **********************/
1410 
1411 #ifdef CONFIG_EDAC_ALTERA_DMA
1412 
1413 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1414 {
1415 	int ret;
1416 
1417 	ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1418 	if (ret)
1419 		return ret;
1420 
1421 	return altr_check_ecc_deps(device);
1422 }
1423 
1424 static const struct edac_device_prv_data a10_dmaecc_data = {
1425 	.setup = socfpga_init_dma_ecc,
1426 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1427 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1428 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1429 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1430 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1431 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1432 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1433 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1434 	.inject_fops = &altr_edac_a10_device_inject_fops,
1435 };
1436 
1437 #endif	/* CONFIG_EDAC_ALTERA_DMA */
1438 
1439 /********************** USB Device Functions **********************/
1440 
1441 #ifdef CONFIG_EDAC_ALTERA_USB
1442 
1443 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1444 {
1445 	int ret;
1446 
1447 	ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1448 	if (ret)
1449 		return ret;
1450 
1451 	return altr_check_ecc_deps(device);
1452 }
1453 
1454 static const struct edac_device_prv_data a10_usbecc_data = {
1455 	.setup = socfpga_init_usb_ecc,
1456 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1457 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1458 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1459 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1460 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1461 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1462 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1463 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1464 	.inject_fops = &altr_edac_a10_device_inject2_fops,
1465 };
1466 
1467 #endif	/* CONFIG_EDAC_ALTERA_USB */
1468 
1469 /********************** QSPI Device Functions **********************/
1470 
1471 #ifdef CONFIG_EDAC_ALTERA_QSPI
1472 
1473 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1474 {
1475 	int ret;
1476 
1477 	ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1478 	if (ret)
1479 		return ret;
1480 
1481 	return altr_check_ecc_deps(device);
1482 }
1483 
1484 static const struct edac_device_prv_data a10_qspiecc_data = {
1485 	.setup = socfpga_init_qspi_ecc,
1486 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1487 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1488 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1489 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1490 	.ce_set_mask = ALTR_A10_ECC_TSERRA,
1491 	.ue_set_mask = ALTR_A10_ECC_TDERRA,
1492 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1493 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1494 	.inject_fops = &altr_edac_a10_device_inject_fops,
1495 };
1496 
1497 #endif	/* CONFIG_EDAC_ALTERA_QSPI */
1498 
1499 /********************* SDMMC Device Functions **********************/
1500 
1501 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1502 
1503 static const struct edac_device_prv_data a10_sdmmceccb_data;
1504 static int altr_portb_setup(struct altr_edac_device_dev *device)
1505 {
1506 	struct edac_device_ctl_info *dci;
1507 	struct altr_edac_device_dev *altdev;
1508 	char *ecc_name = "sdmmcb-ecc";
1509 	int edac_idx, rc;
1510 	struct device_node *np;
1511 	const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1512 
1513 	rc = altr_check_ecc_deps(device);
1514 	if (rc)
1515 		return rc;
1516 
1517 	np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1518 	if (!np) {
1519 		edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1520 		return -ENODEV;
1521 	}
1522 
1523 	/* Create the PortB EDAC device */
1524 	edac_idx = edac_device_alloc_index();
1525 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1526 					 ecc_name, 1, 0, NULL, 0, edac_idx);
1527 	if (!dci) {
1528 		edac_printk(KERN_ERR, EDAC_DEVICE,
1529 			    "%s: Unable to allocate PortB EDAC device\n",
1530 			    ecc_name);
1531 		return -ENOMEM;
1532 	}
1533 
1534 	/* Initialize the PortB EDAC device structure from PortA structure */
1535 	altdev = dci->pvt_info;
1536 	*altdev = *device;
1537 
1538 	if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1539 		return -ENOMEM;
1540 
1541 	/* Update PortB specific values */
1542 	altdev->edac_dev_name = ecc_name;
1543 	altdev->edac_idx = edac_idx;
1544 	altdev->edac_dev = dci;
1545 	altdev->data = prv;
1546 	dci->dev = &altdev->ddev;
1547 	dci->ctl_name = "Altera ECC Manager";
1548 	dci->mod_name = ecc_name;
1549 	dci->dev_name = ecc_name;
1550 
1551 	/*
1552 	 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1553 	 *
1554 	 * FIXME: Instead of ifdefs with different architectures the driver
1555 	 *        should properly use compatibles.
1556 	 */
1557 #ifdef CONFIG_64BIT
1558 	altdev->sb_irq = irq_of_parse_and_map(np, 1);
1559 #else
1560 	altdev->sb_irq = irq_of_parse_and_map(np, 2);
1561 #endif
1562 	if (!altdev->sb_irq) {
1563 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1564 		rc = -ENODEV;
1565 		goto err_release_group_1;
1566 	}
1567 	rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1568 			      prv->ecc_irq_handler,
1569 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1570 			      ecc_name, altdev);
1571 	if (rc) {
1572 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1573 		goto err_release_group_1;
1574 	}
1575 
1576 #ifdef CONFIG_64BIT
1577 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1578 	rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1579 	if (rc) {
1580 		edac_printk(KERN_ERR, EDAC_DEVICE,
1581 			    "Error PortB DBIRQ alloc\n");
1582 		goto err_release_group_1;
1583 	}
1584 #else
1585 	altdev->db_irq = irq_of_parse_and_map(np, 3);
1586 	if (!altdev->db_irq) {
1587 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1588 		rc = -ENODEV;
1589 		goto err_release_group_1;
1590 	}
1591 	rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1592 			      prv->ecc_irq_handler,
1593 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1594 			      ecc_name, altdev);
1595 	if (rc) {
1596 		edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1597 		goto err_release_group_1;
1598 	}
1599 #endif
1600 
1601 	rc = edac_device_add_device(dci);
1602 	if (rc) {
1603 		edac_printk(KERN_ERR, EDAC_DEVICE,
1604 			    "edac_device_add_device portB failed\n");
1605 		rc = -ENOMEM;
1606 		goto err_release_group_1;
1607 	}
1608 	altr_create_edacdev_dbgfs(dci, prv);
1609 
1610 	list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1611 
1612 	devres_remove_group(&altdev->ddev, altr_portb_setup);
1613 
1614 	return 0;
1615 
1616 err_release_group_1:
1617 	edac_device_free_ctl_info(dci);
1618 	devres_release_group(&altdev->ddev, altr_portb_setup);
1619 	edac_printk(KERN_ERR, EDAC_DEVICE,
1620 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1621 	return rc;
1622 }
1623 
1624 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1625 {
1626 	int rc = -ENODEV;
1627 	struct device_node *child;
1628 
1629 	child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1630 	if (!child)
1631 		return -ENODEV;
1632 
1633 	if (!of_device_is_available(child))
1634 		goto exit;
1635 
1636 	if (validate_parent_available(child))
1637 		goto exit;
1638 
1639 	/* Init portB */
1640 	rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1641 				     a10_sdmmceccb_data.ecc_enable_mask, 1);
1642 	if (rc)
1643 		goto exit;
1644 
1645 	/* Setup portB */
1646 	return altr_portb_setup(device);
1647 
1648 exit:
1649 	of_node_put(child);
1650 	return rc;
1651 }
1652 
1653 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1654 {
1655 	struct altr_edac_device_dev *ad = dev_id;
1656 	void __iomem  *base = ad->base;
1657 	const struct edac_device_prv_data *priv = ad->data;
1658 
1659 	if (irq == ad->sb_irq) {
1660 		writel(priv->ce_clear_mask,
1661 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1662 		edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1663 		return IRQ_HANDLED;
1664 	} else if (irq == ad->db_irq) {
1665 		writel(priv->ue_clear_mask,
1666 		       base + ALTR_A10_ECC_INTSTAT_OFST);
1667 		edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1668 		return IRQ_HANDLED;
1669 	}
1670 
1671 	WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1672 
1673 	return IRQ_NONE;
1674 }
1675 
1676 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1677 	.setup = socfpga_init_sdmmc_ecc,
1678 	.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1679 	.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1680 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1681 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1682 	.ce_set_mask = ALTR_A10_ECC_SERRPENA,
1683 	.ue_set_mask = ALTR_A10_ECC_DERRPENA,
1684 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1685 	.ecc_irq_handler = altr_edac_a10_ecc_irq,
1686 	.inject_fops = &altr_edac_a10_device_inject_fops,
1687 };
1688 
1689 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1690 	.setup = socfpga_init_sdmmc_ecc,
1691 	.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1692 	.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1693 	.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1694 	.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1695 	.ce_set_mask = ALTR_A10_ECC_TSERRB,
1696 	.ue_set_mask = ALTR_A10_ECC_TDERRB,
1697 	.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1698 	.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1699 	.inject_fops = &altr_edac_a10_device_inject_fops,
1700 };
1701 
1702 #endif	/* CONFIG_EDAC_ALTERA_SDMMC */
1703 
1704 /********************* Arria10 EDAC Device Functions *************************/
1705 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1706 #ifdef CONFIG_EDAC_ALTERA_L2C
1707 	{ .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1708 #endif
1709 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1710 	{ .compatible = "altr,socfpga-a10-ocram-ecc",
1711 	  .data = &a10_ocramecc_data },
1712 #endif
1713 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1714 	{ .compatible = "altr,socfpga-eth-mac-ecc",
1715 	  .data = &a10_enetecc_data },
1716 #endif
1717 #ifdef CONFIG_EDAC_ALTERA_NAND
1718 	{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1719 #endif
1720 #ifdef CONFIG_EDAC_ALTERA_DMA
1721 	{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1722 #endif
1723 #ifdef CONFIG_EDAC_ALTERA_USB
1724 	{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1725 #endif
1726 #ifdef CONFIG_EDAC_ALTERA_QSPI
1727 	{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1728 #endif
1729 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1730 	{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1731 #endif
1732 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1733 	{ .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1734 #endif
1735 	{},
1736 };
1737 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1738 
1739 /*
1740  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1741  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1742  * manager manages the IRQs and the children.
1743  * Based on xgene_edac.c peripheral code.
1744  */
1745 
1746 static ssize_t __maybe_unused
1747 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1748 			  size_t count, loff_t *ppos)
1749 {
1750 	struct edac_device_ctl_info *edac_dci = file->private_data;
1751 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1752 	const struct edac_device_prv_data *priv = drvdata->data;
1753 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1754 	unsigned long flags;
1755 	u8 trig_type;
1756 
1757 	if (!user_buf || get_user(trig_type, user_buf))
1758 		return -EFAULT;
1759 
1760 	local_irq_save(flags);
1761 	if (trig_type == ALTR_UE_TRIGGER_CHAR)
1762 		writel(priv->ue_set_mask, set_addr);
1763 	else
1764 		writel(priv->ce_set_mask, set_addr);
1765 
1766 	/* Ensure the interrupt test bits are set */
1767 	wmb();
1768 	local_irq_restore(flags);
1769 
1770 	return count;
1771 }
1772 
1773 /*
1774  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1775  * slightly. A few Arria10 peripherals can use this injection function.
1776  * Inject the error into the memory and then readback to trigger the IRQ.
1777  */
1778 static ssize_t __maybe_unused
1779 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1780 			   size_t count, loff_t *ppos)
1781 {
1782 	struct edac_device_ctl_info *edac_dci = file->private_data;
1783 	struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1784 	const struct edac_device_prv_data *priv = drvdata->data;
1785 	void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1786 	unsigned long flags;
1787 	u8 trig_type;
1788 
1789 	if (!user_buf || get_user(trig_type, user_buf))
1790 		return -EFAULT;
1791 
1792 	local_irq_save(flags);
1793 	if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1794 		writel(priv->ue_set_mask, set_addr);
1795 	} else {
1796 		/* Setup read/write of 4 bytes */
1797 		writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1798 		/* Setup Address to 0 */
1799 		writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1800 		/* Setup accctrl to read & ecc & data override */
1801 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1802 		/* Kick it. */
1803 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1804 		/* Setup write for single bit change */
1805 		writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1806 		       drvdata->base + ECC_BLK_WDATA0_OFST);
1807 		writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1808 		       drvdata->base + ECC_BLK_WDATA1_OFST);
1809 		writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1810 		       drvdata->base + ECC_BLK_WDATA2_OFST);
1811 		writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1812 		       drvdata->base + ECC_BLK_WDATA3_OFST);
1813 
1814 		/* Copy Read ECC to Write ECC */
1815 		writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1816 		       drvdata->base + ECC_BLK_WECC0_OFST);
1817 		writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1818 		       drvdata->base + ECC_BLK_WECC1_OFST);
1819 		/* Setup accctrl to write & ecc override & data override */
1820 		writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1821 		/* Kick it. */
1822 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1823 		/* Setup accctrl to read & ecc overwrite & data overwrite */
1824 		writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1825 		/* Kick it. */
1826 		writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1827 	}
1828 
1829 	/* Ensure the interrupt test bits are set */
1830 	wmb();
1831 	local_irq_restore(flags);
1832 
1833 	return count;
1834 }
1835 
1836 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1837 {
1838 	int dberr, bit, sm_offset, irq_status;
1839 	struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1840 	struct irq_chip *chip = irq_desc_get_chip(desc);
1841 	int irq = irq_desc_get_irq(desc);
1842 	unsigned long bits;
1843 
1844 	dberr = (irq == edac->db_irq) ? 1 : 0;
1845 	sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1846 			    A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1847 
1848 	chained_irq_enter(chip, desc);
1849 
1850 	regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1851 
1852 	bits = irq_status;
1853 	for_each_set_bit(bit, &bits, 32)
1854 		generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1855 
1856 	chained_irq_exit(chip, desc);
1857 }
1858 
1859 static int validate_parent_available(struct device_node *np)
1860 {
1861 	struct device_node *parent;
1862 	int ret = 0;
1863 
1864 	/* SDRAM must be present for Linux (implied parent) */
1865 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1866 		return 0;
1867 
1868 	/* Ensure parent device is enabled if parent node exists */
1869 	parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1870 	if (parent && !of_device_is_available(parent))
1871 		ret = -ENODEV;
1872 
1873 	of_node_put(parent);
1874 	return ret;
1875 }
1876 
1877 static int get_s10_sdram_edac_resource(struct device_node *np,
1878 				       struct resource *res)
1879 {
1880 	struct device_node *parent;
1881 	int ret;
1882 
1883 	parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1884 	if (!parent)
1885 		return -ENODEV;
1886 
1887 	ret = of_address_to_resource(parent, 0, res);
1888 	of_node_put(parent);
1889 
1890 	return ret;
1891 }
1892 
1893 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1894 				    struct device_node *np)
1895 {
1896 	struct edac_device_ctl_info *dci;
1897 	struct altr_edac_device_dev *altdev;
1898 	char *ecc_name = (char *)np->name;
1899 	struct resource res;
1900 	int edac_idx;
1901 	int rc = 0;
1902 	const struct edac_device_prv_data *prv;
1903 	/* Get matching node and check for valid result */
1904 	const struct of_device_id *pdev_id =
1905 		of_match_node(altr_edac_a10_device_of_match, np);
1906 	if (IS_ERR_OR_NULL(pdev_id))
1907 		return -ENODEV;
1908 
1909 	/* Get driver specific data for this EDAC device */
1910 	prv = pdev_id->data;
1911 	if (IS_ERR_OR_NULL(prv))
1912 		return -ENODEV;
1913 
1914 	if (validate_parent_available(np))
1915 		return -ENODEV;
1916 
1917 	if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1918 		return -ENOMEM;
1919 
1920 	if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1921 		rc = get_s10_sdram_edac_resource(np, &res);
1922 	else
1923 		rc = of_address_to_resource(np, 0, &res);
1924 
1925 	if (rc < 0) {
1926 		edac_printk(KERN_ERR, EDAC_DEVICE,
1927 			    "%s: no resource address\n", ecc_name);
1928 		goto err_release_group;
1929 	}
1930 
1931 	edac_idx = edac_device_alloc_index();
1932 	dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1933 					 1, ecc_name, 1, 0, NULL, 0,
1934 					 edac_idx);
1935 
1936 	if (!dci) {
1937 		edac_printk(KERN_ERR, EDAC_DEVICE,
1938 			    "%s: Unable to allocate EDAC device\n", ecc_name);
1939 		rc = -ENOMEM;
1940 		goto err_release_group;
1941 	}
1942 
1943 	altdev = dci->pvt_info;
1944 	dci->dev = edac->dev;
1945 	altdev->edac_dev_name = ecc_name;
1946 	altdev->edac_idx = edac_idx;
1947 	altdev->edac = edac;
1948 	altdev->edac_dev = dci;
1949 	altdev->data = prv;
1950 	altdev->ddev = *edac->dev;
1951 	dci->dev = &altdev->ddev;
1952 	dci->ctl_name = "Altera ECC Manager";
1953 	dci->mod_name = ecc_name;
1954 	dci->dev_name = ecc_name;
1955 
1956 	altdev->base = devm_ioremap_resource(edac->dev, &res);
1957 	if (IS_ERR(altdev->base)) {
1958 		rc = PTR_ERR(altdev->base);
1959 		goto err_release_group1;
1960 	}
1961 
1962 	/* Check specific dependencies for the module */
1963 	if (altdev->data->setup) {
1964 		rc = altdev->data->setup(altdev);
1965 		if (rc)
1966 			goto err_release_group1;
1967 	}
1968 
1969 	altdev->sb_irq = irq_of_parse_and_map(np, 0);
1970 	if (!altdev->sb_irq) {
1971 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1972 		rc = -ENODEV;
1973 		goto err_release_group1;
1974 	}
1975 	rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1976 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1977 			      ecc_name, altdev);
1978 	if (rc) {
1979 		edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1980 		goto err_release_group1;
1981 	}
1982 
1983 #ifdef CONFIG_64BIT
1984 	/* Use IRQ to determine SError origin instead of assigning IRQ */
1985 	rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1986 	if (rc) {
1987 		edac_printk(KERN_ERR, EDAC_DEVICE,
1988 			    "Unable to parse DB IRQ index\n");
1989 		goto err_release_group1;
1990 	}
1991 #else
1992 	altdev->db_irq = irq_of_parse_and_map(np, 1);
1993 	if (!altdev->db_irq) {
1994 		edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1995 		rc = -ENODEV;
1996 		goto err_release_group1;
1997 	}
1998 	rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1999 			      IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2000 			      ecc_name, altdev);
2001 	if (rc) {
2002 		edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2003 		goto err_release_group1;
2004 	}
2005 #endif
2006 
2007 	rc = edac_device_add_device(dci);
2008 	if (rc) {
2009 		dev_err(edac->dev, "edac_device_add_device failed\n");
2010 		rc = -ENOMEM;
2011 		goto err_release_group1;
2012 	}
2013 
2014 	altr_create_edacdev_dbgfs(dci, prv);
2015 
2016 	list_add(&altdev->next, &edac->a10_ecc_devices);
2017 
2018 	devres_remove_group(edac->dev, altr_edac_a10_device_add);
2019 
2020 	return 0;
2021 
2022 err_release_group1:
2023 	edac_device_free_ctl_info(dci);
2024 err_release_group:
2025 	devres_release_group(edac->dev, NULL);
2026 	edac_printk(KERN_ERR, EDAC_DEVICE,
2027 		    "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2028 
2029 	return rc;
2030 }
2031 
2032 static void a10_eccmgr_irq_mask(struct irq_data *d)
2033 {
2034 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2035 
2036 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_SET_OFST,
2037 		     BIT(d->hwirq));
2038 }
2039 
2040 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2041 {
2042 	struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2043 
2044 	regmap_write(edac->ecc_mgr_map,	A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2045 		     BIT(d->hwirq));
2046 }
2047 
2048 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2049 				    irq_hw_number_t hwirq)
2050 {
2051 	struct altr_arria10_edac *edac = d->host_data;
2052 
2053 	irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2054 	irq_set_chip_data(irq, edac);
2055 	irq_set_noprobe(irq);
2056 
2057 	return 0;
2058 }
2059 
2060 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2061 	.map = a10_eccmgr_irqdomain_map,
2062 	.xlate = irq_domain_xlate_twocell,
2063 };
2064 
2065 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2066 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2067 
2068 #ifdef CONFIG_64BIT
2069 /* panic routine issues reboot on non-zero panic_timeout */
2070 extern int panic_timeout;
2071 
2072 /*
2073  * The double bit error is handled through SError which is fatal. This is
2074  * called as a panic notifier to printout ECC error info as part of the panic.
2075  */
2076 static int s10_edac_dberr_handler(struct notifier_block *this,
2077 				  unsigned long event, void *ptr)
2078 {
2079 	struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2080 	int err_addr, dberror;
2081 
2082 	regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2083 		    &dberror);
2084 	regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2085 	if (dberror & S10_DBE_IRQ_MASK) {
2086 		struct list_head *position;
2087 		struct altr_edac_device_dev *ed;
2088 		struct arm_smccc_res result;
2089 
2090 		/* Find the matching DBE in the list of devices */
2091 		list_for_each(position, &edac->a10_ecc_devices) {
2092 			ed = list_entry(position, struct altr_edac_device_dev,
2093 					next);
2094 			if (!(BIT(ed->db_irq) & dberror))
2095 				continue;
2096 
2097 			writel(ALTR_A10_ECC_DERRPENA,
2098 			       ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2099 			err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2100 			regmap_write(edac->ecc_mgr_map,
2101 				     S10_SYSMGR_UE_ADDR_OFST, err_addr);
2102 			edac_printk(KERN_ERR, EDAC_DEVICE,
2103 				    "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2104 				    ed->edac_dev_name, err_addr);
2105 			break;
2106 		}
2107 		/* Notify the System through SMC. Reboot delay = 1 second */
2108 		panic_timeout = 1;
2109 		arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2110 			      0, 0, &result);
2111 	}
2112 
2113 	return NOTIFY_DONE;
2114 }
2115 #endif
2116 
2117 /****************** Arria 10 EDAC Probe Function *********************/
2118 static int altr_edac_a10_probe(struct platform_device *pdev)
2119 {
2120 	struct altr_arria10_edac *edac;
2121 	struct device_node *child;
2122 
2123 	edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2124 	if (!edac)
2125 		return -ENOMEM;
2126 
2127 	edac->dev = &pdev->dev;
2128 	platform_set_drvdata(pdev, edac);
2129 	INIT_LIST_HEAD(&edac->a10_ecc_devices);
2130 
2131 	edac->ecc_mgr_map =
2132 		altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2133 						     "altr,sysmgr-syscon");
2134 
2135 	if (IS_ERR(edac->ecc_mgr_map)) {
2136 		edac_printk(KERN_ERR, EDAC_DEVICE,
2137 			    "Unable to get syscon altr,sysmgr-syscon\n");
2138 		return PTR_ERR(edac->ecc_mgr_map);
2139 	}
2140 
2141 	edac->irq_chip.name = pdev->dev.of_node->name;
2142 	edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2143 	edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2144 	edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2145 					     &a10_eccmgr_ic_ops, edac);
2146 	if (!edac->domain) {
2147 		dev_err(&pdev->dev, "Error adding IRQ domain\n");
2148 		return -ENOMEM;
2149 	}
2150 
2151 	edac->sb_irq = platform_get_irq(pdev, 0);
2152 	if (edac->sb_irq < 0)
2153 		return edac->sb_irq;
2154 
2155 	irq_set_chained_handler_and_data(edac->sb_irq,
2156 					 altr_edac_a10_irq_handler,
2157 					 edac);
2158 
2159 #ifdef CONFIG_64BIT
2160 	{
2161 		int dberror, err_addr;
2162 
2163 		edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2164 		atomic_notifier_chain_register(&panic_notifier_list,
2165 					       &edac->panic_notifier);
2166 
2167 		/* Printout a message if uncorrectable error previously. */
2168 		regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2169 			    &dberror);
2170 		if (dberror) {
2171 			regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2172 				    &err_addr);
2173 			edac_printk(KERN_ERR, EDAC_DEVICE,
2174 				    "Previous Boot UE detected[0x%X] @ 0x%X\n",
2175 				    dberror, err_addr);
2176 			/* Reset the sticky registers */
2177 			regmap_write(edac->ecc_mgr_map,
2178 				     S10_SYSMGR_UE_VAL_OFST, 0);
2179 			regmap_write(edac->ecc_mgr_map,
2180 				     S10_SYSMGR_UE_ADDR_OFST, 0);
2181 		}
2182 	}
2183 #else
2184 	edac->db_irq = platform_get_irq(pdev, 1);
2185 	if (edac->db_irq < 0)
2186 		return edac->db_irq;
2187 
2188 	irq_set_chained_handler_and_data(edac->db_irq,
2189 					 altr_edac_a10_irq_handler, edac);
2190 #endif
2191 
2192 	for_each_child_of_node(pdev->dev.of_node, child) {
2193 		if (!of_device_is_available(child))
2194 			continue;
2195 
2196 		if (of_match_node(altr_edac_a10_device_of_match, child))
2197 			altr_edac_a10_device_add(edac, child);
2198 
2199 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2200 		else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2201 			of_platform_populate(pdev->dev.of_node,
2202 					     altr_sdram_ctrl_of_match,
2203 					     NULL, &pdev->dev);
2204 #endif
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 static const struct of_device_id altr_edac_a10_of_match[] = {
2211 	{ .compatible = "altr,socfpga-a10-ecc-manager" },
2212 	{ .compatible = "altr,socfpga-s10-ecc-manager" },
2213 	{},
2214 };
2215 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2216 
2217 static struct platform_driver altr_edac_a10_driver = {
2218 	.probe =  altr_edac_a10_probe,
2219 	.driver = {
2220 		.name = "socfpga_a10_ecc_manager",
2221 		.of_match_table = altr_edac_a10_of_match,
2222 	},
2223 };
2224 module_platform_driver(altr_edac_a10_driver);
2225 
2226 MODULE_AUTHOR("Thor Thayer");
2227 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");
2228