1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DMA driver for Xilinx Video DMA Engine 4 * 5 * Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved. 6 * 7 * Based on the Freescale DMA driver. 8 * 9 * Description: 10 * The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP 11 * core that provides high-bandwidth direct memory access between memory 12 * and AXI4-Stream type video target peripherals. The core provides efficient 13 * two dimensional DMA operations with independent asynchronous read (S2MM) 14 * and write (MM2S) channel operation. It can be configured to have either 15 * one channel or two channels. If configured as two channels, one is to 16 * transmit to the video device (MM2S) and another is to receive from the 17 * video device (S2MM). Initialization, status, interrupt and management 18 * registers are accessed through an AXI4-Lite slave interface. 19 * 20 * The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that 21 * provides high-bandwidth one dimensional direct memory access between memory 22 * and AXI4-Stream target peripherals. It supports one receive and one 23 * transmit channel, both of them optional at synthesis time. 24 * 25 * The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory 26 * Access (DMA) between a memory-mapped source address and a memory-mapped 27 * destination address. 28 * 29 * The AXI Multichannel Direct Memory Access (AXI MCDMA) core is a soft 30 * Xilinx IP that provides high-bandwidth direct memory access between 31 * memory and AXI4-Stream target peripherals. It provides scatter gather 32 * (SG) interface with multiple channels independent configuration support. 33 * 34 */ 35 36 #include <linux/bitops.h> 37 #include <linux/dmapool.h> 38 #include <linux/dma/xilinx_dma.h> 39 #include <linux/init.h> 40 #include <linux/interrupt.h> 41 #include <linux/io.h> 42 #include <linux/iopoll.h> 43 #include <linux/module.h> 44 #include <linux/of_address.h> 45 #include <linux/of_dma.h> 46 #include <linux/of_platform.h> 47 #include <linux/of_irq.h> 48 #include <linux/slab.h> 49 #include <linux/clk.h> 50 #include <linux/io-64-nonatomic-lo-hi.h> 51 52 #include "../dmaengine.h" 53 54 /* Register/Descriptor Offsets */ 55 #define XILINX_DMA_MM2S_CTRL_OFFSET 0x0000 56 #define XILINX_DMA_S2MM_CTRL_OFFSET 0x0030 57 #define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050 58 #define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0 59 60 /* Control Registers */ 61 #define XILINX_DMA_REG_DMACR 0x0000 62 #define XILINX_DMA_DMACR_DELAY_MAX 0xff 63 #define XILINX_DMA_DMACR_DELAY_SHIFT 24 64 #define XILINX_DMA_DMACR_FRAME_COUNT_MAX 0xff 65 #define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT 16 66 #define XILINX_DMA_DMACR_ERR_IRQ BIT(14) 67 #define XILINX_DMA_DMACR_DLY_CNT_IRQ BIT(13) 68 #define XILINX_DMA_DMACR_FRM_CNT_IRQ BIT(12) 69 #define XILINX_DMA_DMACR_MASTER_SHIFT 8 70 #define XILINX_DMA_DMACR_FSYNCSRC_SHIFT 5 71 #define XILINX_DMA_DMACR_FRAMECNT_EN BIT(4) 72 #define XILINX_DMA_DMACR_GENLOCK_EN BIT(3) 73 #define XILINX_DMA_DMACR_RESET BIT(2) 74 #define XILINX_DMA_DMACR_CIRC_EN BIT(1) 75 #define XILINX_DMA_DMACR_RUNSTOP BIT(0) 76 #define XILINX_DMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5) 77 #define XILINX_DMA_DMACR_DELAY_MASK GENMASK(31, 24) 78 #define XILINX_DMA_DMACR_FRAME_COUNT_MASK GENMASK(23, 16) 79 #define XILINX_DMA_DMACR_MASTER_MASK GENMASK(11, 8) 80 81 #define XILINX_DMA_REG_DMASR 0x0004 82 #define XILINX_DMA_DMASR_EOL_LATE_ERR BIT(15) 83 #define XILINX_DMA_DMASR_ERR_IRQ BIT(14) 84 #define XILINX_DMA_DMASR_DLY_CNT_IRQ BIT(13) 85 #define XILINX_DMA_DMASR_FRM_CNT_IRQ BIT(12) 86 #define XILINX_DMA_DMASR_SOF_LATE_ERR BIT(11) 87 #define XILINX_DMA_DMASR_SG_DEC_ERR BIT(10) 88 #define XILINX_DMA_DMASR_SG_SLV_ERR BIT(9) 89 #define XILINX_DMA_DMASR_EOF_EARLY_ERR BIT(8) 90 #define XILINX_DMA_DMASR_SOF_EARLY_ERR BIT(7) 91 #define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6) 92 #define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5) 93 #define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4) 94 #define XILINX_DMA_DMASR_SG_MASK BIT(3) 95 #define XILINX_DMA_DMASR_IDLE BIT(1) 96 #define XILINX_DMA_DMASR_HALTED BIT(0) 97 #define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24) 98 #define XILINX_DMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16) 99 100 #define XILINX_DMA_REG_CURDESC 0x0008 101 #define XILINX_DMA_REG_TAILDESC 0x0010 102 #define XILINX_DMA_REG_REG_INDEX 0x0014 103 #define XILINX_DMA_REG_FRMSTORE 0x0018 104 #define XILINX_DMA_REG_THRESHOLD 0x001c 105 #define XILINX_DMA_REG_FRMPTR_STS 0x0024 106 #define XILINX_DMA_REG_PARK_PTR 0x0028 107 #define XILINX_DMA_PARK_PTR_WR_REF_SHIFT 8 108 #define XILINX_DMA_PARK_PTR_WR_REF_MASK GENMASK(12, 8) 109 #define XILINX_DMA_PARK_PTR_RD_REF_SHIFT 0 110 #define XILINX_DMA_PARK_PTR_RD_REF_MASK GENMASK(4, 0) 111 #define XILINX_DMA_REG_VDMA_VERSION 0x002c 112 113 /* Register Direct Mode Registers */ 114 #define XILINX_DMA_REG_VSIZE 0x0000 115 #define XILINX_DMA_REG_HSIZE 0x0004 116 117 #define XILINX_DMA_REG_FRMDLY_STRIDE 0x0008 118 #define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24 119 #define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT 0 120 121 #define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n)) 122 #define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n)) 123 124 #define XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP 0x00ec 125 #define XILINX_VDMA_ENABLE_VERTICAL_FLIP BIT(0) 126 127 /* HW specific definitions */ 128 #define XILINX_MCDMA_MAX_CHANS_PER_DEVICE 0x20 129 #define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x2 130 #define XILINX_CDMA_MAX_CHANS_PER_DEVICE 0x1 131 132 #define XILINX_DMA_DMAXR_ALL_IRQ_MASK \ 133 (XILINX_DMA_DMASR_FRM_CNT_IRQ | \ 134 XILINX_DMA_DMASR_DLY_CNT_IRQ | \ 135 XILINX_DMA_DMASR_ERR_IRQ) 136 137 #define XILINX_DMA_DMASR_ALL_ERR_MASK \ 138 (XILINX_DMA_DMASR_EOL_LATE_ERR | \ 139 XILINX_DMA_DMASR_SOF_LATE_ERR | \ 140 XILINX_DMA_DMASR_SG_DEC_ERR | \ 141 XILINX_DMA_DMASR_SG_SLV_ERR | \ 142 XILINX_DMA_DMASR_EOF_EARLY_ERR | \ 143 XILINX_DMA_DMASR_SOF_EARLY_ERR | \ 144 XILINX_DMA_DMASR_DMA_DEC_ERR | \ 145 XILINX_DMA_DMASR_DMA_SLAVE_ERR | \ 146 XILINX_DMA_DMASR_DMA_INT_ERR) 147 148 /* 149 * Recoverable errors are DMA Internal error, SOF Early, EOF Early 150 * and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC 151 * is enabled in the h/w system. 152 */ 153 #define XILINX_DMA_DMASR_ERR_RECOVER_MASK \ 154 (XILINX_DMA_DMASR_SOF_LATE_ERR | \ 155 XILINX_DMA_DMASR_EOF_EARLY_ERR | \ 156 XILINX_DMA_DMASR_SOF_EARLY_ERR | \ 157 XILINX_DMA_DMASR_DMA_INT_ERR) 158 159 /* Axi VDMA Flush on Fsync bits */ 160 #define XILINX_DMA_FLUSH_S2MM 3 161 #define XILINX_DMA_FLUSH_MM2S 2 162 #define XILINX_DMA_FLUSH_BOTH 1 163 164 /* Delay loop counter to prevent hardware failure */ 165 #define XILINX_DMA_LOOP_COUNT 1000000 166 167 /* AXI DMA Specific Registers/Offsets */ 168 #define XILINX_DMA_REG_SRCDSTADDR 0x18 169 #define XILINX_DMA_REG_BTT 0x28 170 171 /* AXI DMA Specific Masks/Bit fields */ 172 #define XILINX_DMA_MAX_TRANS_LEN_MIN 8 173 #define XILINX_DMA_MAX_TRANS_LEN_MAX 23 174 #define XILINX_DMA_V2_MAX_TRANS_LEN_MAX 26 175 #define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16) 176 #define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4) 177 #define XILINX_DMA_CR_COALESCE_SHIFT 16 178 #define XILINX_DMA_BD_SOP BIT(27) 179 #define XILINX_DMA_BD_EOP BIT(26) 180 #define XILINX_DMA_COALESCE_MAX 255 181 #define XILINX_DMA_NUM_DESCS 255 182 #define XILINX_DMA_NUM_APP_WORDS 5 183 184 /* AXI CDMA Specific Registers/Offsets */ 185 #define XILINX_CDMA_REG_SRCADDR 0x18 186 #define XILINX_CDMA_REG_DSTADDR 0x20 187 188 /* AXI CDMA Specific Masks */ 189 #define XILINX_CDMA_CR_SGMODE BIT(3) 190 191 #define xilinx_prep_dma_addr_t(addr) \ 192 ((dma_addr_t)((u64)addr##_##msb << 32 | (addr))) 193 194 /* AXI MCDMA Specific Registers/Offsets */ 195 #define XILINX_MCDMA_MM2S_CTRL_OFFSET 0x0000 196 #define XILINX_MCDMA_S2MM_CTRL_OFFSET 0x0500 197 #define XILINX_MCDMA_CHEN_OFFSET 0x0008 198 #define XILINX_MCDMA_CH_ERR_OFFSET 0x0010 199 #define XILINX_MCDMA_RXINT_SER_OFFSET 0x0020 200 #define XILINX_MCDMA_TXINT_SER_OFFSET 0x0028 201 #define XILINX_MCDMA_CHAN_CR_OFFSET(x) (0x40 + (x) * 0x40) 202 #define XILINX_MCDMA_CHAN_SR_OFFSET(x) (0x44 + (x) * 0x40) 203 #define XILINX_MCDMA_CHAN_CDESC_OFFSET(x) (0x48 + (x) * 0x40) 204 #define XILINX_MCDMA_CHAN_TDESC_OFFSET(x) (0x50 + (x) * 0x40) 205 206 /* AXI MCDMA Specific Masks/Shifts */ 207 #define XILINX_MCDMA_COALESCE_SHIFT 16 208 #define XILINX_MCDMA_COALESCE_MAX 24 209 #define XILINX_MCDMA_IRQ_ALL_MASK GENMASK(7, 5) 210 #define XILINX_MCDMA_COALESCE_MASK GENMASK(23, 16) 211 #define XILINX_MCDMA_CR_RUNSTOP_MASK BIT(0) 212 #define XILINX_MCDMA_IRQ_IOC_MASK BIT(5) 213 #define XILINX_MCDMA_IRQ_DELAY_MASK BIT(6) 214 #define XILINX_MCDMA_IRQ_ERR_MASK BIT(7) 215 #define XILINX_MCDMA_BD_EOP BIT(30) 216 #define XILINX_MCDMA_BD_SOP BIT(31) 217 218 /** 219 * struct xilinx_vdma_desc_hw - Hardware Descriptor 220 * @next_desc: Next Descriptor Pointer @0x00 221 * @pad1: Reserved @0x04 222 * @buf_addr: Buffer address @0x08 223 * @buf_addr_msb: MSB of Buffer address @0x0C 224 * @vsize: Vertical Size @0x10 225 * @hsize: Horizontal Size @0x14 226 * @stride: Number of bytes between the first 227 * pixels of each horizontal line @0x18 228 */ 229 struct xilinx_vdma_desc_hw { 230 u32 next_desc; 231 u32 pad1; 232 u32 buf_addr; 233 u32 buf_addr_msb; 234 u32 vsize; 235 u32 hsize; 236 u32 stride; 237 } __aligned(64); 238 239 /** 240 * struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA 241 * @next_desc: Next Descriptor Pointer @0x00 242 * @next_desc_msb: MSB of Next Descriptor Pointer @0x04 243 * @buf_addr: Buffer address @0x08 244 * @buf_addr_msb: MSB of Buffer address @0x0C 245 * @reserved1: Reserved @0x10 246 * @reserved2: Reserved @0x14 247 * @control: Control field @0x18 248 * @status: Status field @0x1C 249 * @app: APP Fields @0x20 - 0x30 250 */ 251 struct xilinx_axidma_desc_hw { 252 u32 next_desc; 253 u32 next_desc_msb; 254 u32 buf_addr; 255 u32 buf_addr_msb; 256 u32 reserved1; 257 u32 reserved2; 258 u32 control; 259 u32 status; 260 u32 app[XILINX_DMA_NUM_APP_WORDS]; 261 } __aligned(64); 262 263 /** 264 * struct xilinx_aximcdma_desc_hw - Hardware Descriptor for AXI MCDMA 265 * @next_desc: Next Descriptor Pointer @0x00 266 * @next_desc_msb: MSB of Next Descriptor Pointer @0x04 267 * @buf_addr: Buffer address @0x08 268 * @buf_addr_msb: MSB of Buffer address @0x0C 269 * @rsvd: Reserved field @0x10 270 * @control: Control Information field @0x14 271 * @status: Status field @0x18 272 * @sideband_status: Status of sideband signals @0x1C 273 * @app: APP Fields @0x20 - 0x30 274 */ 275 struct xilinx_aximcdma_desc_hw { 276 u32 next_desc; 277 u32 next_desc_msb; 278 u32 buf_addr; 279 u32 buf_addr_msb; 280 u32 rsvd; 281 u32 control; 282 u32 status; 283 u32 sideband_status; 284 u32 app[XILINX_DMA_NUM_APP_WORDS]; 285 } __aligned(64); 286 287 /** 288 * struct xilinx_cdma_desc_hw - Hardware Descriptor 289 * @next_desc: Next Descriptor Pointer @0x00 290 * @next_desc_msb: Next Descriptor Pointer MSB @0x04 291 * @src_addr: Source address @0x08 292 * @src_addr_msb: Source address MSB @0x0C 293 * @dest_addr: Destination address @0x10 294 * @dest_addr_msb: Destination address MSB @0x14 295 * @control: Control field @0x18 296 * @status: Status field @0x1C 297 */ 298 struct xilinx_cdma_desc_hw { 299 u32 next_desc; 300 u32 next_desc_msb; 301 u32 src_addr; 302 u32 src_addr_msb; 303 u32 dest_addr; 304 u32 dest_addr_msb; 305 u32 control; 306 u32 status; 307 } __aligned(64); 308 309 /** 310 * struct xilinx_vdma_tx_segment - Descriptor segment 311 * @hw: Hardware descriptor 312 * @node: Node in the descriptor segments list 313 * @phys: Physical address of segment 314 */ 315 struct xilinx_vdma_tx_segment { 316 struct xilinx_vdma_desc_hw hw; 317 struct list_head node; 318 dma_addr_t phys; 319 } __aligned(64); 320 321 /** 322 * struct xilinx_axidma_tx_segment - Descriptor segment 323 * @hw: Hardware descriptor 324 * @node: Node in the descriptor segments list 325 * @phys: Physical address of segment 326 */ 327 struct xilinx_axidma_tx_segment { 328 struct xilinx_axidma_desc_hw hw; 329 struct list_head node; 330 dma_addr_t phys; 331 } __aligned(64); 332 333 /** 334 * struct xilinx_aximcdma_tx_segment - Descriptor segment 335 * @hw: Hardware descriptor 336 * @node: Node in the descriptor segments list 337 * @phys: Physical address of segment 338 */ 339 struct xilinx_aximcdma_tx_segment { 340 struct xilinx_aximcdma_desc_hw hw; 341 struct list_head node; 342 dma_addr_t phys; 343 } __aligned(64); 344 345 /** 346 * struct xilinx_cdma_tx_segment - Descriptor segment 347 * @hw: Hardware descriptor 348 * @node: Node in the descriptor segments list 349 * @phys: Physical address of segment 350 */ 351 struct xilinx_cdma_tx_segment { 352 struct xilinx_cdma_desc_hw hw; 353 struct list_head node; 354 dma_addr_t phys; 355 } __aligned(64); 356 357 /** 358 * struct xilinx_dma_tx_descriptor - Per Transaction structure 359 * @async_tx: Async transaction descriptor 360 * @segments: TX segments list 361 * @node: Node in the channel descriptors list 362 * @cyclic: Check for cyclic transfers. 363 * @err: Whether the descriptor has an error. 364 * @residue: Residue of the completed descriptor 365 */ 366 struct xilinx_dma_tx_descriptor { 367 struct dma_async_tx_descriptor async_tx; 368 struct list_head segments; 369 struct list_head node; 370 bool cyclic; 371 bool err; 372 u32 residue; 373 }; 374 375 /** 376 * struct xilinx_dma_chan - Driver specific DMA channel structure 377 * @xdev: Driver specific device structure 378 * @ctrl_offset: Control registers offset 379 * @desc_offset: TX descriptor registers offset 380 * @lock: Descriptor operation lock 381 * @pending_list: Descriptors waiting 382 * @active_list: Descriptors ready to submit 383 * @done_list: Complete descriptors 384 * @free_seg_list: Free descriptors 385 * @common: DMA common channel 386 * @desc_pool: Descriptors pool 387 * @dev: The dma device 388 * @irq: Channel IRQ 389 * @id: Channel ID 390 * @direction: Transfer direction 391 * @num_frms: Number of frames 392 * @has_sg: Support scatter transfers 393 * @cyclic: Check for cyclic transfers. 394 * @genlock: Support genlock mode 395 * @err: Channel has errors 396 * @idle: Check for channel idle 397 * @terminating: Check for channel being synchronized by user 398 * @tasklet: Cleanup work after irq 399 * @config: Device configuration info 400 * @flush_on_fsync: Flush on Frame sync 401 * @desc_pendingcount: Descriptor pending count 402 * @ext_addr: Indicates 64 bit addressing is supported by dma channel 403 * @desc_submitcount: Descriptor h/w submitted count 404 * @seg_v: Statically allocated segments base 405 * @seg_mv: Statically allocated segments base for MCDMA 406 * @seg_p: Physical allocated segments base 407 * @cyclic_seg_v: Statically allocated segment base for cyclic transfers 408 * @cyclic_seg_p: Physical allocated segments base for cyclic dma 409 * @start_transfer: Differentiate b/w DMA IP's transfer 410 * @stop_transfer: Differentiate b/w DMA IP's quiesce 411 * @tdest: TDEST value for mcdma 412 * @has_vflip: S2MM vertical flip 413 */ 414 struct xilinx_dma_chan { 415 struct xilinx_dma_device *xdev; 416 u32 ctrl_offset; 417 u32 desc_offset; 418 spinlock_t lock; 419 struct list_head pending_list; 420 struct list_head active_list; 421 struct list_head done_list; 422 struct list_head free_seg_list; 423 struct dma_chan common; 424 struct dma_pool *desc_pool; 425 struct device *dev; 426 int irq; 427 int id; 428 enum dma_transfer_direction direction; 429 int num_frms; 430 bool has_sg; 431 bool cyclic; 432 bool genlock; 433 bool err; 434 bool idle; 435 bool terminating; 436 struct tasklet_struct tasklet; 437 struct xilinx_vdma_config config; 438 bool flush_on_fsync; 439 u32 desc_pendingcount; 440 bool ext_addr; 441 u32 desc_submitcount; 442 struct xilinx_axidma_tx_segment *seg_v; 443 struct xilinx_aximcdma_tx_segment *seg_mv; 444 dma_addr_t seg_p; 445 struct xilinx_axidma_tx_segment *cyclic_seg_v; 446 dma_addr_t cyclic_seg_p; 447 void (*start_transfer)(struct xilinx_dma_chan *chan); 448 int (*stop_transfer)(struct xilinx_dma_chan *chan); 449 u16 tdest; 450 bool has_vflip; 451 }; 452 453 /** 454 * enum xdma_ip_type - DMA IP type. 455 * 456 * @XDMA_TYPE_AXIDMA: Axi dma ip. 457 * @XDMA_TYPE_CDMA: Axi cdma ip. 458 * @XDMA_TYPE_VDMA: Axi vdma ip. 459 * @XDMA_TYPE_AXIMCDMA: Axi MCDMA ip. 460 * 461 */ 462 enum xdma_ip_type { 463 XDMA_TYPE_AXIDMA = 0, 464 XDMA_TYPE_CDMA, 465 XDMA_TYPE_VDMA, 466 XDMA_TYPE_AXIMCDMA 467 }; 468 469 struct xilinx_dma_config { 470 enum xdma_ip_type dmatype; 471 int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk, 472 struct clk **tx_clk, struct clk **txs_clk, 473 struct clk **rx_clk, struct clk **rxs_clk); 474 irqreturn_t (*irq_handler)(int irq, void *data); 475 const int max_channels; 476 }; 477 478 /** 479 * struct xilinx_dma_device - DMA device structure 480 * @regs: I/O mapped base address 481 * @dev: Device Structure 482 * @common: DMA device structure 483 * @chan: Driver specific DMA channel 484 * @flush_on_fsync: Flush on frame sync 485 * @ext_addr: Indicates 64 bit addressing is supported by dma device 486 * @pdev: Platform device structure pointer 487 * @dma_config: DMA config structure 488 * @axi_clk: DMA Axi4-lite interace clock 489 * @tx_clk: DMA mm2s clock 490 * @txs_clk: DMA mm2s stream clock 491 * @rx_clk: DMA s2mm clock 492 * @rxs_clk: DMA s2mm stream clock 493 * @s2mm_chan_id: DMA s2mm channel identifier 494 * @mm2s_chan_id: DMA mm2s channel identifier 495 * @max_buffer_len: Max buffer length 496 */ 497 struct xilinx_dma_device { 498 void __iomem *regs; 499 struct device *dev; 500 struct dma_device common; 501 struct xilinx_dma_chan *chan[XILINX_MCDMA_MAX_CHANS_PER_DEVICE]; 502 u32 flush_on_fsync; 503 bool ext_addr; 504 struct platform_device *pdev; 505 const struct xilinx_dma_config *dma_config; 506 struct clk *axi_clk; 507 struct clk *tx_clk; 508 struct clk *txs_clk; 509 struct clk *rx_clk; 510 struct clk *rxs_clk; 511 u32 s2mm_chan_id; 512 u32 mm2s_chan_id; 513 u32 max_buffer_len; 514 }; 515 516 /* Macros */ 517 #define to_xilinx_chan(chan) \ 518 container_of(chan, struct xilinx_dma_chan, common) 519 #define to_dma_tx_descriptor(tx) \ 520 container_of(tx, struct xilinx_dma_tx_descriptor, async_tx) 521 #define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \ 522 readl_poll_timeout_atomic(chan->xdev->regs + chan->ctrl_offset + reg, \ 523 val, cond, delay_us, timeout_us) 524 525 /* IO accessors */ 526 static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg) 527 { 528 return ioread32(chan->xdev->regs + reg); 529 } 530 531 static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value) 532 { 533 iowrite32(value, chan->xdev->regs + reg); 534 } 535 536 static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg, 537 u32 value) 538 { 539 dma_write(chan, chan->desc_offset + reg, value); 540 } 541 542 static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg) 543 { 544 return dma_read(chan, chan->ctrl_offset + reg); 545 } 546 547 static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg, 548 u32 value) 549 { 550 dma_write(chan, chan->ctrl_offset + reg, value); 551 } 552 553 static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg, 554 u32 clr) 555 { 556 dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr); 557 } 558 559 static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg, 560 u32 set) 561 { 562 dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set); 563 } 564 565 /** 566 * vdma_desc_write_64 - 64-bit descriptor write 567 * @chan: Driver specific VDMA channel 568 * @reg: Register to write 569 * @value_lsb: lower address of the descriptor. 570 * @value_msb: upper address of the descriptor. 571 * 572 * Since vdma driver is trying to write to a register offset which is not a 573 * multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits 574 * instead of a single 64 bit register write. 575 */ 576 static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg, 577 u32 value_lsb, u32 value_msb) 578 { 579 /* Write the lsb 32 bits*/ 580 writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg); 581 582 /* Write the msb 32 bits */ 583 writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4); 584 } 585 586 static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value) 587 { 588 lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg); 589 } 590 591 static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg, 592 dma_addr_t addr) 593 { 594 if (chan->ext_addr) 595 dma_writeq(chan, reg, addr); 596 else 597 dma_ctrl_write(chan, reg, addr); 598 } 599 600 static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan, 601 struct xilinx_axidma_desc_hw *hw, 602 dma_addr_t buf_addr, size_t sg_used, 603 size_t period_len) 604 { 605 if (chan->ext_addr) { 606 hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len); 607 hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used + 608 period_len); 609 } else { 610 hw->buf_addr = buf_addr + sg_used + period_len; 611 } 612 } 613 614 static inline void xilinx_aximcdma_buf(struct xilinx_dma_chan *chan, 615 struct xilinx_aximcdma_desc_hw *hw, 616 dma_addr_t buf_addr, size_t sg_used) 617 { 618 if (chan->ext_addr) { 619 hw->buf_addr = lower_32_bits(buf_addr + sg_used); 620 hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used); 621 } else { 622 hw->buf_addr = buf_addr + sg_used; 623 } 624 } 625 626 /* ----------------------------------------------------------------------------- 627 * Descriptors and segments alloc and free 628 */ 629 630 /** 631 * xilinx_vdma_alloc_tx_segment - Allocate transaction segment 632 * @chan: Driver specific DMA channel 633 * 634 * Return: The allocated segment on success and NULL on failure. 635 */ 636 static struct xilinx_vdma_tx_segment * 637 xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan) 638 { 639 struct xilinx_vdma_tx_segment *segment; 640 dma_addr_t phys; 641 642 segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys); 643 if (!segment) 644 return NULL; 645 646 segment->phys = phys; 647 648 return segment; 649 } 650 651 /** 652 * xilinx_cdma_alloc_tx_segment - Allocate transaction segment 653 * @chan: Driver specific DMA channel 654 * 655 * Return: The allocated segment on success and NULL on failure. 656 */ 657 static struct xilinx_cdma_tx_segment * 658 xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan) 659 { 660 struct xilinx_cdma_tx_segment *segment; 661 dma_addr_t phys; 662 663 segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys); 664 if (!segment) 665 return NULL; 666 667 segment->phys = phys; 668 669 return segment; 670 } 671 672 /** 673 * xilinx_axidma_alloc_tx_segment - Allocate transaction segment 674 * @chan: Driver specific DMA channel 675 * 676 * Return: The allocated segment on success and NULL on failure. 677 */ 678 static struct xilinx_axidma_tx_segment * 679 xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan) 680 { 681 struct xilinx_axidma_tx_segment *segment = NULL; 682 unsigned long flags; 683 684 spin_lock_irqsave(&chan->lock, flags); 685 if (!list_empty(&chan->free_seg_list)) { 686 segment = list_first_entry(&chan->free_seg_list, 687 struct xilinx_axidma_tx_segment, 688 node); 689 list_del(&segment->node); 690 } 691 spin_unlock_irqrestore(&chan->lock, flags); 692 693 if (!segment) 694 dev_dbg(chan->dev, "Could not find free tx segment\n"); 695 696 return segment; 697 } 698 699 /** 700 * xilinx_aximcdma_alloc_tx_segment - Allocate transaction segment 701 * @chan: Driver specific DMA channel 702 * 703 * Return: The allocated segment on success and NULL on failure. 704 */ 705 static struct xilinx_aximcdma_tx_segment * 706 xilinx_aximcdma_alloc_tx_segment(struct xilinx_dma_chan *chan) 707 { 708 struct xilinx_aximcdma_tx_segment *segment = NULL; 709 unsigned long flags; 710 711 spin_lock_irqsave(&chan->lock, flags); 712 if (!list_empty(&chan->free_seg_list)) { 713 segment = list_first_entry(&chan->free_seg_list, 714 struct xilinx_aximcdma_tx_segment, 715 node); 716 list_del(&segment->node); 717 } 718 spin_unlock_irqrestore(&chan->lock, flags); 719 720 return segment; 721 } 722 723 static void xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw *hw) 724 { 725 u32 next_desc = hw->next_desc; 726 u32 next_desc_msb = hw->next_desc_msb; 727 728 memset(hw, 0, sizeof(struct xilinx_axidma_desc_hw)); 729 730 hw->next_desc = next_desc; 731 hw->next_desc_msb = next_desc_msb; 732 } 733 734 static void xilinx_mcdma_clean_hw_desc(struct xilinx_aximcdma_desc_hw *hw) 735 { 736 u32 next_desc = hw->next_desc; 737 u32 next_desc_msb = hw->next_desc_msb; 738 739 memset(hw, 0, sizeof(struct xilinx_aximcdma_desc_hw)); 740 741 hw->next_desc = next_desc; 742 hw->next_desc_msb = next_desc_msb; 743 } 744 745 /** 746 * xilinx_dma_free_tx_segment - Free transaction segment 747 * @chan: Driver specific DMA channel 748 * @segment: DMA transaction segment 749 */ 750 static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan, 751 struct xilinx_axidma_tx_segment *segment) 752 { 753 xilinx_dma_clean_hw_desc(&segment->hw); 754 755 list_add_tail(&segment->node, &chan->free_seg_list); 756 } 757 758 /** 759 * xilinx_mcdma_free_tx_segment - Free transaction segment 760 * @chan: Driver specific DMA channel 761 * @segment: DMA transaction segment 762 */ 763 static void xilinx_mcdma_free_tx_segment(struct xilinx_dma_chan *chan, 764 struct xilinx_aximcdma_tx_segment * 765 segment) 766 { 767 xilinx_mcdma_clean_hw_desc(&segment->hw); 768 769 list_add_tail(&segment->node, &chan->free_seg_list); 770 } 771 772 /** 773 * xilinx_cdma_free_tx_segment - Free transaction segment 774 * @chan: Driver specific DMA channel 775 * @segment: DMA transaction segment 776 */ 777 static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan, 778 struct xilinx_cdma_tx_segment *segment) 779 { 780 dma_pool_free(chan->desc_pool, segment, segment->phys); 781 } 782 783 /** 784 * xilinx_vdma_free_tx_segment - Free transaction segment 785 * @chan: Driver specific DMA channel 786 * @segment: DMA transaction segment 787 */ 788 static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan, 789 struct xilinx_vdma_tx_segment *segment) 790 { 791 dma_pool_free(chan->desc_pool, segment, segment->phys); 792 } 793 794 /** 795 * xilinx_dma_alloc_tx_descriptor - Allocate transaction descriptor 796 * @chan: Driver specific DMA channel 797 * 798 * Return: The allocated descriptor on success and NULL on failure. 799 */ 800 static struct xilinx_dma_tx_descriptor * 801 xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan) 802 { 803 struct xilinx_dma_tx_descriptor *desc; 804 805 desc = kzalloc(sizeof(*desc), GFP_NOWAIT); 806 if (!desc) 807 return NULL; 808 809 INIT_LIST_HEAD(&desc->segments); 810 811 return desc; 812 } 813 814 /** 815 * xilinx_dma_free_tx_descriptor - Free transaction descriptor 816 * @chan: Driver specific DMA channel 817 * @desc: DMA transaction descriptor 818 */ 819 static void 820 xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan, 821 struct xilinx_dma_tx_descriptor *desc) 822 { 823 struct xilinx_vdma_tx_segment *segment, *next; 824 struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next; 825 struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next; 826 struct xilinx_aximcdma_tx_segment *aximcdma_segment, *aximcdma_next; 827 828 if (!desc) 829 return; 830 831 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 832 list_for_each_entry_safe(segment, next, &desc->segments, node) { 833 list_del(&segment->node); 834 xilinx_vdma_free_tx_segment(chan, segment); 835 } 836 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 837 list_for_each_entry_safe(cdma_segment, cdma_next, 838 &desc->segments, node) { 839 list_del(&cdma_segment->node); 840 xilinx_cdma_free_tx_segment(chan, cdma_segment); 841 } 842 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 843 list_for_each_entry_safe(axidma_segment, axidma_next, 844 &desc->segments, node) { 845 list_del(&axidma_segment->node); 846 xilinx_dma_free_tx_segment(chan, axidma_segment); 847 } 848 } else { 849 list_for_each_entry_safe(aximcdma_segment, aximcdma_next, 850 &desc->segments, node) { 851 list_del(&aximcdma_segment->node); 852 xilinx_mcdma_free_tx_segment(chan, aximcdma_segment); 853 } 854 } 855 856 kfree(desc); 857 } 858 859 /* Required functions */ 860 861 /** 862 * xilinx_dma_free_desc_list - Free descriptors list 863 * @chan: Driver specific DMA channel 864 * @list: List to parse and delete the descriptor 865 */ 866 static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan, 867 struct list_head *list) 868 { 869 struct xilinx_dma_tx_descriptor *desc, *next; 870 871 list_for_each_entry_safe(desc, next, list, node) { 872 list_del(&desc->node); 873 xilinx_dma_free_tx_descriptor(chan, desc); 874 } 875 } 876 877 /** 878 * xilinx_dma_free_descriptors - Free channel descriptors 879 * @chan: Driver specific DMA channel 880 */ 881 static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan) 882 { 883 unsigned long flags; 884 885 spin_lock_irqsave(&chan->lock, flags); 886 887 xilinx_dma_free_desc_list(chan, &chan->pending_list); 888 xilinx_dma_free_desc_list(chan, &chan->done_list); 889 xilinx_dma_free_desc_list(chan, &chan->active_list); 890 891 spin_unlock_irqrestore(&chan->lock, flags); 892 } 893 894 /** 895 * xilinx_dma_free_chan_resources - Free channel resources 896 * @dchan: DMA channel 897 */ 898 static void xilinx_dma_free_chan_resources(struct dma_chan *dchan) 899 { 900 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 901 unsigned long flags; 902 903 dev_dbg(chan->dev, "Free all channel resources.\n"); 904 905 xilinx_dma_free_descriptors(chan); 906 907 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 908 spin_lock_irqsave(&chan->lock, flags); 909 INIT_LIST_HEAD(&chan->free_seg_list); 910 spin_unlock_irqrestore(&chan->lock, flags); 911 912 /* Free memory that is allocated for BD */ 913 dma_free_coherent(chan->dev, sizeof(*chan->seg_v) * 914 XILINX_DMA_NUM_DESCS, chan->seg_v, 915 chan->seg_p); 916 917 /* Free Memory that is allocated for cyclic DMA Mode */ 918 dma_free_coherent(chan->dev, sizeof(*chan->cyclic_seg_v), 919 chan->cyclic_seg_v, chan->cyclic_seg_p); 920 } 921 922 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 923 spin_lock_irqsave(&chan->lock, flags); 924 INIT_LIST_HEAD(&chan->free_seg_list); 925 spin_unlock_irqrestore(&chan->lock, flags); 926 927 /* Free memory that is allocated for BD */ 928 dma_free_coherent(chan->dev, sizeof(*chan->seg_mv) * 929 XILINX_DMA_NUM_DESCS, chan->seg_mv, 930 chan->seg_p); 931 } 932 933 if (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA && 934 chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIMCDMA) { 935 dma_pool_destroy(chan->desc_pool); 936 chan->desc_pool = NULL; 937 } 938 939 } 940 941 /** 942 * xilinx_dma_get_residue - Compute residue for a given descriptor 943 * @chan: Driver specific dma channel 944 * @desc: dma transaction descriptor 945 * 946 * Return: The number of residue bytes for the descriptor. 947 */ 948 static u32 xilinx_dma_get_residue(struct xilinx_dma_chan *chan, 949 struct xilinx_dma_tx_descriptor *desc) 950 { 951 struct xilinx_cdma_tx_segment *cdma_seg; 952 struct xilinx_axidma_tx_segment *axidma_seg; 953 struct xilinx_aximcdma_tx_segment *aximcdma_seg; 954 struct xilinx_cdma_desc_hw *cdma_hw; 955 struct xilinx_axidma_desc_hw *axidma_hw; 956 struct xilinx_aximcdma_desc_hw *aximcdma_hw; 957 struct list_head *entry; 958 u32 residue = 0; 959 960 list_for_each(entry, &desc->segments) { 961 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 962 cdma_seg = list_entry(entry, 963 struct xilinx_cdma_tx_segment, 964 node); 965 cdma_hw = &cdma_seg->hw; 966 residue += (cdma_hw->control - cdma_hw->status) & 967 chan->xdev->max_buffer_len; 968 } else if (chan->xdev->dma_config->dmatype == 969 XDMA_TYPE_AXIDMA) { 970 axidma_seg = list_entry(entry, 971 struct xilinx_axidma_tx_segment, 972 node); 973 axidma_hw = &axidma_seg->hw; 974 residue += (axidma_hw->control - axidma_hw->status) & 975 chan->xdev->max_buffer_len; 976 } else { 977 aximcdma_seg = 978 list_entry(entry, 979 struct xilinx_aximcdma_tx_segment, 980 node); 981 aximcdma_hw = &aximcdma_seg->hw; 982 residue += 983 (aximcdma_hw->control - aximcdma_hw->status) & 984 chan->xdev->max_buffer_len; 985 } 986 } 987 988 return residue; 989 } 990 991 /** 992 * xilinx_dma_chan_handle_cyclic - Cyclic dma callback 993 * @chan: Driver specific dma channel 994 * @desc: dma transaction descriptor 995 * @flags: flags for spin lock 996 */ 997 static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan, 998 struct xilinx_dma_tx_descriptor *desc, 999 unsigned long *flags) 1000 { 1001 struct dmaengine_desc_callback cb; 1002 1003 dmaengine_desc_get_callback(&desc->async_tx, &cb); 1004 if (dmaengine_desc_callback_valid(&cb)) { 1005 spin_unlock_irqrestore(&chan->lock, *flags); 1006 dmaengine_desc_callback_invoke(&cb, NULL); 1007 spin_lock_irqsave(&chan->lock, *flags); 1008 } 1009 } 1010 1011 /** 1012 * xilinx_dma_chan_desc_cleanup - Clean channel descriptors 1013 * @chan: Driver specific DMA channel 1014 */ 1015 static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan) 1016 { 1017 struct xilinx_dma_tx_descriptor *desc, *next; 1018 unsigned long flags; 1019 1020 spin_lock_irqsave(&chan->lock, flags); 1021 1022 list_for_each_entry_safe(desc, next, &chan->done_list, node) { 1023 struct dmaengine_result result; 1024 1025 if (desc->cyclic) { 1026 xilinx_dma_chan_handle_cyclic(chan, desc, &flags); 1027 break; 1028 } 1029 1030 /* Remove from the list of running transactions */ 1031 list_del(&desc->node); 1032 1033 if (unlikely(desc->err)) { 1034 if (chan->direction == DMA_DEV_TO_MEM) 1035 result.result = DMA_TRANS_READ_FAILED; 1036 else 1037 result.result = DMA_TRANS_WRITE_FAILED; 1038 } else { 1039 result.result = DMA_TRANS_NOERROR; 1040 } 1041 1042 result.residue = desc->residue; 1043 1044 /* Run the link descriptor callback function */ 1045 spin_unlock_irqrestore(&chan->lock, flags); 1046 dmaengine_desc_get_callback_invoke(&desc->async_tx, &result); 1047 spin_lock_irqsave(&chan->lock, flags); 1048 1049 /* Run any dependencies, then free the descriptor */ 1050 dma_run_dependencies(&desc->async_tx); 1051 xilinx_dma_free_tx_descriptor(chan, desc); 1052 1053 /* 1054 * While we ran a callback the user called a terminate function, 1055 * which takes care of cleaning up any remaining descriptors 1056 */ 1057 if (chan->terminating) 1058 break; 1059 } 1060 1061 spin_unlock_irqrestore(&chan->lock, flags); 1062 } 1063 1064 /** 1065 * xilinx_dma_do_tasklet - Schedule completion tasklet 1066 * @t: Pointer to the Xilinx DMA channel structure 1067 */ 1068 static void xilinx_dma_do_tasklet(struct tasklet_struct *t) 1069 { 1070 struct xilinx_dma_chan *chan = from_tasklet(chan, t, tasklet); 1071 1072 xilinx_dma_chan_desc_cleanup(chan); 1073 } 1074 1075 /** 1076 * xilinx_dma_alloc_chan_resources - Allocate channel resources 1077 * @dchan: DMA channel 1078 * 1079 * Return: '0' on success and failure value on error 1080 */ 1081 static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan) 1082 { 1083 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 1084 int i; 1085 1086 /* Has this channel already been allocated? */ 1087 if (chan->desc_pool) 1088 return 0; 1089 1090 /* 1091 * We need the descriptor to be aligned to 64bytes 1092 * for meeting Xilinx VDMA specification requirement. 1093 */ 1094 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 1095 /* Allocate the buffer descriptors. */ 1096 chan->seg_v = dma_alloc_coherent(chan->dev, 1097 sizeof(*chan->seg_v) * XILINX_DMA_NUM_DESCS, 1098 &chan->seg_p, GFP_KERNEL); 1099 if (!chan->seg_v) { 1100 dev_err(chan->dev, 1101 "unable to allocate channel %d descriptors\n", 1102 chan->id); 1103 return -ENOMEM; 1104 } 1105 /* 1106 * For cyclic DMA mode we need to program the tail Descriptor 1107 * register with a value which is not a part of the BD chain 1108 * so allocating a desc segment during channel allocation for 1109 * programming tail descriptor. 1110 */ 1111 chan->cyclic_seg_v = dma_alloc_coherent(chan->dev, 1112 sizeof(*chan->cyclic_seg_v), 1113 &chan->cyclic_seg_p, 1114 GFP_KERNEL); 1115 if (!chan->cyclic_seg_v) { 1116 dev_err(chan->dev, 1117 "unable to allocate desc segment for cyclic DMA\n"); 1118 dma_free_coherent(chan->dev, sizeof(*chan->seg_v) * 1119 XILINX_DMA_NUM_DESCS, chan->seg_v, 1120 chan->seg_p); 1121 return -ENOMEM; 1122 } 1123 chan->cyclic_seg_v->phys = chan->cyclic_seg_p; 1124 1125 for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) { 1126 chan->seg_v[i].hw.next_desc = 1127 lower_32_bits(chan->seg_p + sizeof(*chan->seg_v) * 1128 ((i + 1) % XILINX_DMA_NUM_DESCS)); 1129 chan->seg_v[i].hw.next_desc_msb = 1130 upper_32_bits(chan->seg_p + sizeof(*chan->seg_v) * 1131 ((i + 1) % XILINX_DMA_NUM_DESCS)); 1132 chan->seg_v[i].phys = chan->seg_p + 1133 sizeof(*chan->seg_v) * i; 1134 list_add_tail(&chan->seg_v[i].node, 1135 &chan->free_seg_list); 1136 } 1137 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 1138 /* Allocate the buffer descriptors. */ 1139 chan->seg_mv = dma_alloc_coherent(chan->dev, 1140 sizeof(*chan->seg_mv) * 1141 XILINX_DMA_NUM_DESCS, 1142 &chan->seg_p, GFP_KERNEL); 1143 if (!chan->seg_mv) { 1144 dev_err(chan->dev, 1145 "unable to allocate channel %d descriptors\n", 1146 chan->id); 1147 return -ENOMEM; 1148 } 1149 for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) { 1150 chan->seg_mv[i].hw.next_desc = 1151 lower_32_bits(chan->seg_p + sizeof(*chan->seg_mv) * 1152 ((i + 1) % XILINX_DMA_NUM_DESCS)); 1153 chan->seg_mv[i].hw.next_desc_msb = 1154 upper_32_bits(chan->seg_p + sizeof(*chan->seg_mv) * 1155 ((i + 1) % XILINX_DMA_NUM_DESCS)); 1156 chan->seg_mv[i].phys = chan->seg_p + 1157 sizeof(*chan->seg_mv) * i; 1158 list_add_tail(&chan->seg_mv[i].node, 1159 &chan->free_seg_list); 1160 } 1161 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 1162 chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool", 1163 chan->dev, 1164 sizeof(struct xilinx_cdma_tx_segment), 1165 __alignof__(struct xilinx_cdma_tx_segment), 1166 0); 1167 } else { 1168 chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool", 1169 chan->dev, 1170 sizeof(struct xilinx_vdma_tx_segment), 1171 __alignof__(struct xilinx_vdma_tx_segment), 1172 0); 1173 } 1174 1175 if (!chan->desc_pool && 1176 ((chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA) && 1177 chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIMCDMA)) { 1178 dev_err(chan->dev, 1179 "unable to allocate channel %d descriptor pool\n", 1180 chan->id); 1181 return -ENOMEM; 1182 } 1183 1184 dma_cookie_init(dchan); 1185 1186 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 1187 /* For AXI DMA resetting once channel will reset the 1188 * other channel as well so enable the interrupts here. 1189 */ 1190 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, 1191 XILINX_DMA_DMAXR_ALL_IRQ_MASK); 1192 } 1193 1194 if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg) 1195 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, 1196 XILINX_CDMA_CR_SGMODE); 1197 1198 return 0; 1199 } 1200 1201 /** 1202 * xilinx_dma_calc_copysize - Calculate the amount of data to copy 1203 * @chan: Driver specific DMA channel 1204 * @size: Total data that needs to be copied 1205 * @done: Amount of data that has been already copied 1206 * 1207 * Return: Amount of data that has to be copied 1208 */ 1209 static int xilinx_dma_calc_copysize(struct xilinx_dma_chan *chan, 1210 int size, int done) 1211 { 1212 size_t copy; 1213 1214 copy = min_t(size_t, size - done, 1215 chan->xdev->max_buffer_len); 1216 1217 if ((copy + done < size) && 1218 chan->xdev->common.copy_align) { 1219 /* 1220 * If this is not the last descriptor, make sure 1221 * the next one will be properly aligned 1222 */ 1223 copy = rounddown(copy, 1224 (1 << chan->xdev->common.copy_align)); 1225 } 1226 return copy; 1227 } 1228 1229 /** 1230 * xilinx_dma_tx_status - Get DMA transaction status 1231 * @dchan: DMA channel 1232 * @cookie: Transaction identifier 1233 * @txstate: Transaction state 1234 * 1235 * Return: DMA transaction status 1236 */ 1237 static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan, 1238 dma_cookie_t cookie, 1239 struct dma_tx_state *txstate) 1240 { 1241 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 1242 struct xilinx_dma_tx_descriptor *desc; 1243 enum dma_status ret; 1244 unsigned long flags; 1245 u32 residue = 0; 1246 1247 ret = dma_cookie_status(dchan, cookie, txstate); 1248 if (ret == DMA_COMPLETE || !txstate) 1249 return ret; 1250 1251 spin_lock_irqsave(&chan->lock, flags); 1252 if (!list_empty(&chan->active_list)) { 1253 desc = list_last_entry(&chan->active_list, 1254 struct xilinx_dma_tx_descriptor, node); 1255 /* 1256 * VDMA and simple mode do not support residue reporting, so the 1257 * residue field will always be 0. 1258 */ 1259 if (chan->has_sg && chan->xdev->dma_config->dmatype != XDMA_TYPE_VDMA) 1260 residue = xilinx_dma_get_residue(chan, desc); 1261 } 1262 spin_unlock_irqrestore(&chan->lock, flags); 1263 1264 dma_set_residue(txstate, residue); 1265 1266 return ret; 1267 } 1268 1269 /** 1270 * xilinx_dma_stop_transfer - Halt DMA channel 1271 * @chan: Driver specific DMA channel 1272 * 1273 * Return: '0' on success and failure value on error 1274 */ 1275 static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan) 1276 { 1277 u32 val; 1278 1279 dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP); 1280 1281 /* Wait for the hardware to halt */ 1282 return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, 1283 val & XILINX_DMA_DMASR_HALTED, 0, 1284 XILINX_DMA_LOOP_COUNT); 1285 } 1286 1287 /** 1288 * xilinx_cdma_stop_transfer - Wait for the current transfer to complete 1289 * @chan: Driver specific DMA channel 1290 * 1291 * Return: '0' on success and failure value on error 1292 */ 1293 static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan) 1294 { 1295 u32 val; 1296 1297 return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, 1298 val & XILINX_DMA_DMASR_IDLE, 0, 1299 XILINX_DMA_LOOP_COUNT); 1300 } 1301 1302 /** 1303 * xilinx_dma_start - Start DMA channel 1304 * @chan: Driver specific DMA channel 1305 */ 1306 static void xilinx_dma_start(struct xilinx_dma_chan *chan) 1307 { 1308 int err; 1309 u32 val; 1310 1311 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP); 1312 1313 /* Wait for the hardware to start */ 1314 err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, 1315 !(val & XILINX_DMA_DMASR_HALTED), 0, 1316 XILINX_DMA_LOOP_COUNT); 1317 1318 if (err) { 1319 dev_err(chan->dev, "Cannot start channel %p: %x\n", 1320 chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); 1321 1322 chan->err = true; 1323 } 1324 } 1325 1326 /** 1327 * xilinx_vdma_start_transfer - Starts VDMA transfer 1328 * @chan: Driver specific channel struct pointer 1329 */ 1330 static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan) 1331 { 1332 struct xilinx_vdma_config *config = &chan->config; 1333 struct xilinx_dma_tx_descriptor *desc; 1334 u32 reg, j; 1335 struct xilinx_vdma_tx_segment *segment, *last = NULL; 1336 int i = 0; 1337 1338 /* This function was invoked with lock held */ 1339 if (chan->err) 1340 return; 1341 1342 if (!chan->idle) 1343 return; 1344 1345 if (list_empty(&chan->pending_list)) 1346 return; 1347 1348 desc = list_first_entry(&chan->pending_list, 1349 struct xilinx_dma_tx_descriptor, node); 1350 1351 /* Configure the hardware using info in the config structure */ 1352 if (chan->has_vflip) { 1353 reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP); 1354 reg &= ~XILINX_VDMA_ENABLE_VERTICAL_FLIP; 1355 reg |= config->vflip_en; 1356 dma_write(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP, 1357 reg); 1358 } 1359 1360 reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 1361 1362 if (config->frm_cnt_en) 1363 reg |= XILINX_DMA_DMACR_FRAMECNT_EN; 1364 else 1365 reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN; 1366 1367 /* If not parking, enable circular mode */ 1368 if (config->park) 1369 reg &= ~XILINX_DMA_DMACR_CIRC_EN; 1370 else 1371 reg |= XILINX_DMA_DMACR_CIRC_EN; 1372 1373 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); 1374 1375 j = chan->desc_submitcount; 1376 reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR); 1377 if (chan->direction == DMA_MEM_TO_DEV) { 1378 reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK; 1379 reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT; 1380 } else { 1381 reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK; 1382 reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT; 1383 } 1384 dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg); 1385 1386 /* Start the hardware */ 1387 xilinx_dma_start(chan); 1388 1389 if (chan->err) 1390 return; 1391 1392 /* Start the transfer */ 1393 if (chan->desc_submitcount < chan->num_frms) 1394 i = chan->desc_submitcount; 1395 1396 list_for_each_entry(segment, &desc->segments, node) { 1397 if (chan->ext_addr) 1398 vdma_desc_write_64(chan, 1399 XILINX_VDMA_REG_START_ADDRESS_64(i++), 1400 segment->hw.buf_addr, 1401 segment->hw.buf_addr_msb); 1402 else 1403 vdma_desc_write(chan, 1404 XILINX_VDMA_REG_START_ADDRESS(i++), 1405 segment->hw.buf_addr); 1406 1407 last = segment; 1408 } 1409 1410 if (!last) 1411 return; 1412 1413 /* HW expects these parameters to be same for one transaction */ 1414 vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize); 1415 vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE, 1416 last->hw.stride); 1417 vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize); 1418 1419 chan->desc_submitcount++; 1420 chan->desc_pendingcount--; 1421 list_move_tail(&desc->node, &chan->active_list); 1422 if (chan->desc_submitcount == chan->num_frms) 1423 chan->desc_submitcount = 0; 1424 1425 chan->idle = false; 1426 } 1427 1428 /** 1429 * xilinx_cdma_start_transfer - Starts cdma transfer 1430 * @chan: Driver specific channel struct pointer 1431 */ 1432 static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan) 1433 { 1434 struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; 1435 struct xilinx_cdma_tx_segment *tail_segment; 1436 u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR); 1437 1438 if (chan->err) 1439 return; 1440 1441 if (!chan->idle) 1442 return; 1443 1444 if (list_empty(&chan->pending_list)) 1445 return; 1446 1447 head_desc = list_first_entry(&chan->pending_list, 1448 struct xilinx_dma_tx_descriptor, node); 1449 tail_desc = list_last_entry(&chan->pending_list, 1450 struct xilinx_dma_tx_descriptor, node); 1451 tail_segment = list_last_entry(&tail_desc->segments, 1452 struct xilinx_cdma_tx_segment, node); 1453 1454 if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) { 1455 ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX; 1456 ctrl_reg |= chan->desc_pendingcount << 1457 XILINX_DMA_CR_COALESCE_SHIFT; 1458 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg); 1459 } 1460 1461 if (chan->has_sg) { 1462 dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, 1463 XILINX_CDMA_CR_SGMODE); 1464 1465 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, 1466 XILINX_CDMA_CR_SGMODE); 1467 1468 xilinx_write(chan, XILINX_DMA_REG_CURDESC, 1469 head_desc->async_tx.phys); 1470 1471 /* Update tail ptr register which will start the transfer */ 1472 xilinx_write(chan, XILINX_DMA_REG_TAILDESC, 1473 tail_segment->phys); 1474 } else { 1475 /* In simple mode */ 1476 struct xilinx_cdma_tx_segment *segment; 1477 struct xilinx_cdma_desc_hw *hw; 1478 1479 segment = list_first_entry(&head_desc->segments, 1480 struct xilinx_cdma_tx_segment, 1481 node); 1482 1483 hw = &segment->hw; 1484 1485 xilinx_write(chan, XILINX_CDMA_REG_SRCADDR, 1486 xilinx_prep_dma_addr_t(hw->src_addr)); 1487 xilinx_write(chan, XILINX_CDMA_REG_DSTADDR, 1488 xilinx_prep_dma_addr_t(hw->dest_addr)); 1489 1490 /* Start the transfer */ 1491 dma_ctrl_write(chan, XILINX_DMA_REG_BTT, 1492 hw->control & chan->xdev->max_buffer_len); 1493 } 1494 1495 list_splice_tail_init(&chan->pending_list, &chan->active_list); 1496 chan->desc_pendingcount = 0; 1497 chan->idle = false; 1498 } 1499 1500 /** 1501 * xilinx_dma_start_transfer - Starts DMA transfer 1502 * @chan: Driver specific channel struct pointer 1503 */ 1504 static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan) 1505 { 1506 struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; 1507 struct xilinx_axidma_tx_segment *tail_segment; 1508 u32 reg; 1509 1510 if (chan->err) 1511 return; 1512 1513 if (list_empty(&chan->pending_list)) 1514 return; 1515 1516 if (!chan->idle) 1517 return; 1518 1519 head_desc = list_first_entry(&chan->pending_list, 1520 struct xilinx_dma_tx_descriptor, node); 1521 tail_desc = list_last_entry(&chan->pending_list, 1522 struct xilinx_dma_tx_descriptor, node); 1523 tail_segment = list_last_entry(&tail_desc->segments, 1524 struct xilinx_axidma_tx_segment, node); 1525 1526 reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 1527 1528 if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) { 1529 reg &= ~XILINX_DMA_CR_COALESCE_MAX; 1530 reg |= chan->desc_pendingcount << 1531 XILINX_DMA_CR_COALESCE_SHIFT; 1532 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); 1533 } 1534 1535 if (chan->has_sg) 1536 xilinx_write(chan, XILINX_DMA_REG_CURDESC, 1537 head_desc->async_tx.phys); 1538 1539 xilinx_dma_start(chan); 1540 1541 if (chan->err) 1542 return; 1543 1544 /* Start the transfer */ 1545 if (chan->has_sg) { 1546 if (chan->cyclic) 1547 xilinx_write(chan, XILINX_DMA_REG_TAILDESC, 1548 chan->cyclic_seg_v->phys); 1549 else 1550 xilinx_write(chan, XILINX_DMA_REG_TAILDESC, 1551 tail_segment->phys); 1552 } else { 1553 struct xilinx_axidma_tx_segment *segment; 1554 struct xilinx_axidma_desc_hw *hw; 1555 1556 segment = list_first_entry(&head_desc->segments, 1557 struct xilinx_axidma_tx_segment, 1558 node); 1559 hw = &segment->hw; 1560 1561 xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR, 1562 xilinx_prep_dma_addr_t(hw->buf_addr)); 1563 1564 /* Start the transfer */ 1565 dma_ctrl_write(chan, XILINX_DMA_REG_BTT, 1566 hw->control & chan->xdev->max_buffer_len); 1567 } 1568 1569 list_splice_tail_init(&chan->pending_list, &chan->active_list); 1570 chan->desc_pendingcount = 0; 1571 chan->idle = false; 1572 } 1573 1574 /** 1575 * xilinx_mcdma_start_transfer - Starts MCDMA transfer 1576 * @chan: Driver specific channel struct pointer 1577 */ 1578 static void xilinx_mcdma_start_transfer(struct xilinx_dma_chan *chan) 1579 { 1580 struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; 1581 struct xilinx_aximcdma_tx_segment *tail_segment; 1582 u32 reg; 1583 1584 /* 1585 * lock has been held by calling functions, so we don't need it 1586 * to take it here again. 1587 */ 1588 1589 if (chan->err) 1590 return; 1591 1592 if (!chan->idle) 1593 return; 1594 1595 if (list_empty(&chan->pending_list)) 1596 return; 1597 1598 head_desc = list_first_entry(&chan->pending_list, 1599 struct xilinx_dma_tx_descriptor, node); 1600 tail_desc = list_last_entry(&chan->pending_list, 1601 struct xilinx_dma_tx_descriptor, node); 1602 tail_segment = list_last_entry(&tail_desc->segments, 1603 struct xilinx_aximcdma_tx_segment, node); 1604 1605 reg = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest)); 1606 1607 if (chan->desc_pendingcount <= XILINX_MCDMA_COALESCE_MAX) { 1608 reg &= ~XILINX_MCDMA_COALESCE_MASK; 1609 reg |= chan->desc_pendingcount << 1610 XILINX_MCDMA_COALESCE_SHIFT; 1611 } 1612 1613 reg |= XILINX_MCDMA_IRQ_ALL_MASK; 1614 dma_ctrl_write(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest), reg); 1615 1616 /* Program current descriptor */ 1617 xilinx_write(chan, XILINX_MCDMA_CHAN_CDESC_OFFSET(chan->tdest), 1618 head_desc->async_tx.phys); 1619 1620 /* Program channel enable register */ 1621 reg = dma_ctrl_read(chan, XILINX_MCDMA_CHEN_OFFSET); 1622 reg |= BIT(chan->tdest); 1623 dma_ctrl_write(chan, XILINX_MCDMA_CHEN_OFFSET, reg); 1624 1625 /* Start the fetch of BDs for the channel */ 1626 reg = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest)); 1627 reg |= XILINX_MCDMA_CR_RUNSTOP_MASK; 1628 dma_ctrl_write(chan, XILINX_MCDMA_CHAN_CR_OFFSET(chan->tdest), reg); 1629 1630 xilinx_dma_start(chan); 1631 1632 if (chan->err) 1633 return; 1634 1635 /* Start the transfer */ 1636 xilinx_write(chan, XILINX_MCDMA_CHAN_TDESC_OFFSET(chan->tdest), 1637 tail_segment->phys); 1638 1639 list_splice_tail_init(&chan->pending_list, &chan->active_list); 1640 chan->desc_pendingcount = 0; 1641 chan->idle = false; 1642 } 1643 1644 /** 1645 * xilinx_dma_issue_pending - Issue pending transactions 1646 * @dchan: DMA channel 1647 */ 1648 static void xilinx_dma_issue_pending(struct dma_chan *dchan) 1649 { 1650 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 1651 unsigned long flags; 1652 1653 spin_lock_irqsave(&chan->lock, flags); 1654 chan->start_transfer(chan); 1655 spin_unlock_irqrestore(&chan->lock, flags); 1656 } 1657 1658 /** 1659 * xilinx_dma_device_config - Configure the DMA channel 1660 * @dchan: DMA channel 1661 * @config: channel configuration 1662 */ 1663 static int xilinx_dma_device_config(struct dma_chan *dchan, 1664 struct dma_slave_config *config) 1665 { 1666 return 0; 1667 } 1668 1669 /** 1670 * xilinx_dma_complete_descriptor - Mark the active descriptor as complete 1671 * @chan : xilinx DMA channel 1672 * 1673 * CONTEXT: hardirq 1674 */ 1675 static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan) 1676 { 1677 struct xilinx_dma_tx_descriptor *desc, *next; 1678 1679 /* This function was invoked with lock held */ 1680 if (list_empty(&chan->active_list)) 1681 return; 1682 1683 list_for_each_entry_safe(desc, next, &chan->active_list, node) { 1684 if (chan->has_sg && chan->xdev->dma_config->dmatype != 1685 XDMA_TYPE_VDMA) 1686 desc->residue = xilinx_dma_get_residue(chan, desc); 1687 else 1688 desc->residue = 0; 1689 desc->err = chan->err; 1690 1691 list_del(&desc->node); 1692 if (!desc->cyclic) 1693 dma_cookie_complete(&desc->async_tx); 1694 list_add_tail(&desc->node, &chan->done_list); 1695 } 1696 } 1697 1698 /** 1699 * xilinx_dma_reset - Reset DMA channel 1700 * @chan: Driver specific DMA channel 1701 * 1702 * Return: '0' on success and failure value on error 1703 */ 1704 static int xilinx_dma_reset(struct xilinx_dma_chan *chan) 1705 { 1706 int err; 1707 u32 tmp; 1708 1709 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET); 1710 1711 /* Wait for the hardware to finish reset */ 1712 err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp, 1713 !(tmp & XILINX_DMA_DMACR_RESET), 0, 1714 XILINX_DMA_LOOP_COUNT); 1715 1716 if (err) { 1717 dev_err(chan->dev, "reset timeout, cr %x, sr %x\n", 1718 dma_ctrl_read(chan, XILINX_DMA_REG_DMACR), 1719 dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); 1720 return -ETIMEDOUT; 1721 } 1722 1723 chan->err = false; 1724 chan->idle = true; 1725 chan->desc_pendingcount = 0; 1726 chan->desc_submitcount = 0; 1727 1728 return err; 1729 } 1730 1731 /** 1732 * xilinx_dma_chan_reset - Reset DMA channel and enable interrupts 1733 * @chan: Driver specific DMA channel 1734 * 1735 * Return: '0' on success and failure value on error 1736 */ 1737 static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan) 1738 { 1739 int err; 1740 1741 /* Reset VDMA */ 1742 err = xilinx_dma_reset(chan); 1743 if (err) 1744 return err; 1745 1746 /* Enable interrupts */ 1747 dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, 1748 XILINX_DMA_DMAXR_ALL_IRQ_MASK); 1749 1750 return 0; 1751 } 1752 1753 /** 1754 * xilinx_mcdma_irq_handler - MCDMA Interrupt handler 1755 * @irq: IRQ number 1756 * @data: Pointer to the Xilinx MCDMA channel structure 1757 * 1758 * Return: IRQ_HANDLED/IRQ_NONE 1759 */ 1760 static irqreturn_t xilinx_mcdma_irq_handler(int irq, void *data) 1761 { 1762 struct xilinx_dma_chan *chan = data; 1763 u32 status, ser_offset, chan_sermask, chan_offset = 0, chan_id; 1764 1765 if (chan->direction == DMA_DEV_TO_MEM) 1766 ser_offset = XILINX_MCDMA_RXINT_SER_OFFSET; 1767 else 1768 ser_offset = XILINX_MCDMA_TXINT_SER_OFFSET; 1769 1770 /* Read the channel id raising the interrupt*/ 1771 chan_sermask = dma_ctrl_read(chan, ser_offset); 1772 chan_id = ffs(chan_sermask); 1773 1774 if (!chan_id) 1775 return IRQ_NONE; 1776 1777 if (chan->direction == DMA_DEV_TO_MEM) 1778 chan_offset = chan->xdev->dma_config->max_channels / 2; 1779 1780 chan_offset = chan_offset + (chan_id - 1); 1781 chan = chan->xdev->chan[chan_offset]; 1782 /* Read the status and ack the interrupts. */ 1783 status = dma_ctrl_read(chan, XILINX_MCDMA_CHAN_SR_OFFSET(chan->tdest)); 1784 if (!(status & XILINX_MCDMA_IRQ_ALL_MASK)) 1785 return IRQ_NONE; 1786 1787 dma_ctrl_write(chan, XILINX_MCDMA_CHAN_SR_OFFSET(chan->tdest), 1788 status & XILINX_MCDMA_IRQ_ALL_MASK); 1789 1790 if (status & XILINX_MCDMA_IRQ_ERR_MASK) { 1791 dev_err(chan->dev, "Channel %p has errors %x cdr %x tdr %x\n", 1792 chan, 1793 dma_ctrl_read(chan, XILINX_MCDMA_CH_ERR_OFFSET), 1794 dma_ctrl_read(chan, XILINX_MCDMA_CHAN_CDESC_OFFSET 1795 (chan->tdest)), 1796 dma_ctrl_read(chan, XILINX_MCDMA_CHAN_TDESC_OFFSET 1797 (chan->tdest))); 1798 chan->err = true; 1799 } 1800 1801 if (status & XILINX_MCDMA_IRQ_DELAY_MASK) { 1802 /* 1803 * Device takes too long to do the transfer when user requires 1804 * responsiveness. 1805 */ 1806 dev_dbg(chan->dev, "Inter-packet latency too long\n"); 1807 } 1808 1809 if (status & XILINX_MCDMA_IRQ_IOC_MASK) { 1810 spin_lock(&chan->lock); 1811 xilinx_dma_complete_descriptor(chan); 1812 chan->idle = true; 1813 chan->start_transfer(chan); 1814 spin_unlock(&chan->lock); 1815 } 1816 1817 tasklet_schedule(&chan->tasklet); 1818 return IRQ_HANDLED; 1819 } 1820 1821 /** 1822 * xilinx_dma_irq_handler - DMA Interrupt handler 1823 * @irq: IRQ number 1824 * @data: Pointer to the Xilinx DMA channel structure 1825 * 1826 * Return: IRQ_HANDLED/IRQ_NONE 1827 */ 1828 static irqreturn_t xilinx_dma_irq_handler(int irq, void *data) 1829 { 1830 struct xilinx_dma_chan *chan = data; 1831 u32 status; 1832 1833 /* Read the status and ack the interrupts. */ 1834 status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR); 1835 if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK)) 1836 return IRQ_NONE; 1837 1838 dma_ctrl_write(chan, XILINX_DMA_REG_DMASR, 1839 status & XILINX_DMA_DMAXR_ALL_IRQ_MASK); 1840 1841 if (status & XILINX_DMA_DMASR_ERR_IRQ) { 1842 /* 1843 * An error occurred. If C_FLUSH_ON_FSYNC is enabled and the 1844 * error is recoverable, ignore it. Otherwise flag the error. 1845 * 1846 * Only recoverable errors can be cleared in the DMASR register, 1847 * make sure not to write to other error bits to 1. 1848 */ 1849 u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK; 1850 1851 dma_ctrl_write(chan, XILINX_DMA_REG_DMASR, 1852 errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK); 1853 1854 if (!chan->flush_on_fsync || 1855 (errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) { 1856 dev_err(chan->dev, 1857 "Channel %p has errors %x, cdr %x tdr %x\n", 1858 chan, errors, 1859 dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC), 1860 dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC)); 1861 chan->err = true; 1862 } 1863 } 1864 1865 if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) { 1866 /* 1867 * Device takes too long to do the transfer when user requires 1868 * responsiveness. 1869 */ 1870 dev_dbg(chan->dev, "Inter-packet latency too long\n"); 1871 } 1872 1873 if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) { 1874 spin_lock(&chan->lock); 1875 xilinx_dma_complete_descriptor(chan); 1876 chan->idle = true; 1877 chan->start_transfer(chan); 1878 spin_unlock(&chan->lock); 1879 } 1880 1881 tasklet_schedule(&chan->tasklet); 1882 return IRQ_HANDLED; 1883 } 1884 1885 /** 1886 * append_desc_queue - Queuing descriptor 1887 * @chan: Driver specific dma channel 1888 * @desc: dma transaction descriptor 1889 */ 1890 static void append_desc_queue(struct xilinx_dma_chan *chan, 1891 struct xilinx_dma_tx_descriptor *desc) 1892 { 1893 struct xilinx_vdma_tx_segment *tail_segment; 1894 struct xilinx_dma_tx_descriptor *tail_desc; 1895 struct xilinx_axidma_tx_segment *axidma_tail_segment; 1896 struct xilinx_aximcdma_tx_segment *aximcdma_tail_segment; 1897 struct xilinx_cdma_tx_segment *cdma_tail_segment; 1898 1899 if (list_empty(&chan->pending_list)) 1900 goto append; 1901 1902 /* 1903 * Add the hardware descriptor to the chain of hardware descriptors 1904 * that already exists in memory. 1905 */ 1906 tail_desc = list_last_entry(&chan->pending_list, 1907 struct xilinx_dma_tx_descriptor, node); 1908 if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 1909 tail_segment = list_last_entry(&tail_desc->segments, 1910 struct xilinx_vdma_tx_segment, 1911 node); 1912 tail_segment->hw.next_desc = (u32)desc->async_tx.phys; 1913 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 1914 cdma_tail_segment = list_last_entry(&tail_desc->segments, 1915 struct xilinx_cdma_tx_segment, 1916 node); 1917 cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; 1918 } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 1919 axidma_tail_segment = list_last_entry(&tail_desc->segments, 1920 struct xilinx_axidma_tx_segment, 1921 node); 1922 axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; 1923 } else { 1924 aximcdma_tail_segment = 1925 list_last_entry(&tail_desc->segments, 1926 struct xilinx_aximcdma_tx_segment, 1927 node); 1928 aximcdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; 1929 } 1930 1931 /* 1932 * Add the software descriptor and all children to the list 1933 * of pending transactions 1934 */ 1935 append: 1936 list_add_tail(&desc->node, &chan->pending_list); 1937 chan->desc_pendingcount++; 1938 1939 if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) 1940 && unlikely(chan->desc_pendingcount > chan->num_frms)) { 1941 dev_dbg(chan->dev, "desc pendingcount is too high\n"); 1942 chan->desc_pendingcount = chan->num_frms; 1943 } 1944 } 1945 1946 /** 1947 * xilinx_dma_tx_submit - Submit DMA transaction 1948 * @tx: Async transaction descriptor 1949 * 1950 * Return: cookie value on success and failure value on error 1951 */ 1952 static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx) 1953 { 1954 struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx); 1955 struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan); 1956 dma_cookie_t cookie; 1957 unsigned long flags; 1958 int err; 1959 1960 if (chan->cyclic) { 1961 xilinx_dma_free_tx_descriptor(chan, desc); 1962 return -EBUSY; 1963 } 1964 1965 if (chan->err) { 1966 /* 1967 * If reset fails, need to hard reset the system. 1968 * Channel is no longer functional 1969 */ 1970 err = xilinx_dma_chan_reset(chan); 1971 if (err < 0) 1972 return err; 1973 } 1974 1975 spin_lock_irqsave(&chan->lock, flags); 1976 1977 cookie = dma_cookie_assign(tx); 1978 1979 /* Put this transaction onto the tail of the pending queue */ 1980 append_desc_queue(chan, desc); 1981 1982 if (desc->cyclic) 1983 chan->cyclic = true; 1984 1985 chan->terminating = false; 1986 1987 spin_unlock_irqrestore(&chan->lock, flags); 1988 1989 return cookie; 1990 } 1991 1992 /** 1993 * xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a 1994 * DMA_SLAVE transaction 1995 * @dchan: DMA channel 1996 * @xt: Interleaved template pointer 1997 * @flags: transfer ack flags 1998 * 1999 * Return: Async transaction descriptor on success and NULL on failure 2000 */ 2001 static struct dma_async_tx_descriptor * 2002 xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan, 2003 struct dma_interleaved_template *xt, 2004 unsigned long flags) 2005 { 2006 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2007 struct xilinx_dma_tx_descriptor *desc; 2008 struct xilinx_vdma_tx_segment *segment; 2009 struct xilinx_vdma_desc_hw *hw; 2010 2011 if (!is_slave_direction(xt->dir)) 2012 return NULL; 2013 2014 if (!xt->numf || !xt->sgl[0].size) 2015 return NULL; 2016 2017 if (xt->frame_size != 1) 2018 return NULL; 2019 2020 /* Allocate a transaction descriptor. */ 2021 desc = xilinx_dma_alloc_tx_descriptor(chan); 2022 if (!desc) 2023 return NULL; 2024 2025 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2026 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2027 async_tx_ack(&desc->async_tx); 2028 2029 /* Allocate the link descriptor from DMA pool */ 2030 segment = xilinx_vdma_alloc_tx_segment(chan); 2031 if (!segment) 2032 goto error; 2033 2034 /* Fill in the hardware descriptor */ 2035 hw = &segment->hw; 2036 hw->vsize = xt->numf; 2037 hw->hsize = xt->sgl[0].size; 2038 hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) << 2039 XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT; 2040 hw->stride |= chan->config.frm_dly << 2041 XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT; 2042 2043 if (xt->dir != DMA_MEM_TO_DEV) { 2044 if (chan->ext_addr) { 2045 hw->buf_addr = lower_32_bits(xt->dst_start); 2046 hw->buf_addr_msb = upper_32_bits(xt->dst_start); 2047 } else { 2048 hw->buf_addr = xt->dst_start; 2049 } 2050 } else { 2051 if (chan->ext_addr) { 2052 hw->buf_addr = lower_32_bits(xt->src_start); 2053 hw->buf_addr_msb = upper_32_bits(xt->src_start); 2054 } else { 2055 hw->buf_addr = xt->src_start; 2056 } 2057 } 2058 2059 /* Insert the segment into the descriptor segments list. */ 2060 list_add_tail(&segment->node, &desc->segments); 2061 2062 /* Link the last hardware descriptor with the first. */ 2063 segment = list_first_entry(&desc->segments, 2064 struct xilinx_vdma_tx_segment, node); 2065 desc->async_tx.phys = segment->phys; 2066 2067 return &desc->async_tx; 2068 2069 error: 2070 xilinx_dma_free_tx_descriptor(chan, desc); 2071 return NULL; 2072 } 2073 2074 /** 2075 * xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction 2076 * @dchan: DMA channel 2077 * @dma_dst: destination address 2078 * @dma_src: source address 2079 * @len: transfer length 2080 * @flags: transfer ack flags 2081 * 2082 * Return: Async transaction descriptor on success and NULL on failure 2083 */ 2084 static struct dma_async_tx_descriptor * 2085 xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst, 2086 dma_addr_t dma_src, size_t len, unsigned long flags) 2087 { 2088 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2089 struct xilinx_dma_tx_descriptor *desc; 2090 struct xilinx_cdma_tx_segment *segment; 2091 struct xilinx_cdma_desc_hw *hw; 2092 2093 if (!len || len > chan->xdev->max_buffer_len) 2094 return NULL; 2095 2096 desc = xilinx_dma_alloc_tx_descriptor(chan); 2097 if (!desc) 2098 return NULL; 2099 2100 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2101 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2102 2103 /* Allocate the link descriptor from DMA pool */ 2104 segment = xilinx_cdma_alloc_tx_segment(chan); 2105 if (!segment) 2106 goto error; 2107 2108 hw = &segment->hw; 2109 hw->control = len; 2110 hw->src_addr = dma_src; 2111 hw->dest_addr = dma_dst; 2112 if (chan->ext_addr) { 2113 hw->src_addr_msb = upper_32_bits(dma_src); 2114 hw->dest_addr_msb = upper_32_bits(dma_dst); 2115 } 2116 2117 /* Insert the segment into the descriptor segments list. */ 2118 list_add_tail(&segment->node, &desc->segments); 2119 2120 desc->async_tx.phys = segment->phys; 2121 hw->next_desc = segment->phys; 2122 2123 return &desc->async_tx; 2124 2125 error: 2126 xilinx_dma_free_tx_descriptor(chan, desc); 2127 return NULL; 2128 } 2129 2130 /** 2131 * xilinx_cdma_prep_memcpy_sg - prepare descriptors for a memcpy_sg transaction 2132 * @dchan: DMA channel 2133 * @dst_sg: Destination scatter list 2134 * @dst_sg_len: Number of entries in destination scatter list 2135 * @src_sg: Source scatter list 2136 * @src_sg_len: Number of entries in source scatter list 2137 * @flags: transfer ack flags 2138 * 2139 * Return: Async transaction descriptor on success and NULL on failure 2140 */ 2141 static struct dma_async_tx_descriptor *xilinx_cdma_prep_memcpy_sg( 2142 struct dma_chan *dchan, struct scatterlist *dst_sg, 2143 unsigned int dst_sg_len, struct scatterlist *src_sg, 2144 unsigned int src_sg_len, unsigned long flags) 2145 { 2146 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2147 struct xilinx_dma_tx_descriptor *desc; 2148 struct xilinx_cdma_tx_segment *segment, *prev = NULL; 2149 struct xilinx_cdma_desc_hw *hw; 2150 size_t len, dst_avail, src_avail; 2151 dma_addr_t dma_dst, dma_src; 2152 2153 if (unlikely(dst_sg_len == 0 || src_sg_len == 0)) 2154 return NULL; 2155 2156 if (unlikely(!dst_sg || !src_sg)) 2157 return NULL; 2158 2159 desc = xilinx_dma_alloc_tx_descriptor(chan); 2160 if (!desc) 2161 return NULL; 2162 2163 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2164 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2165 2166 dst_avail = sg_dma_len(dst_sg); 2167 src_avail = sg_dma_len(src_sg); 2168 /* 2169 * loop until there is either no more source or no more destination 2170 * scatterlist entry 2171 */ 2172 while (true) { 2173 len = min_t(size_t, src_avail, dst_avail); 2174 len = min_t(size_t, len, chan->xdev->max_buffer_len); 2175 if (len == 0) 2176 goto fetch; 2177 2178 /* Allocate the link descriptor from DMA pool */ 2179 segment = xilinx_cdma_alloc_tx_segment(chan); 2180 if (!segment) 2181 goto error; 2182 2183 dma_dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - 2184 dst_avail; 2185 dma_src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - 2186 src_avail; 2187 hw = &segment->hw; 2188 hw->control = len; 2189 hw->src_addr = dma_src; 2190 hw->dest_addr = dma_dst; 2191 if (chan->ext_addr) { 2192 hw->src_addr_msb = upper_32_bits(dma_src); 2193 hw->dest_addr_msb = upper_32_bits(dma_dst); 2194 } 2195 2196 if (prev) { 2197 prev->hw.next_desc = segment->phys; 2198 if (chan->ext_addr) 2199 prev->hw.next_desc_msb = 2200 upper_32_bits(segment->phys); 2201 } 2202 2203 prev = segment; 2204 dst_avail -= len; 2205 src_avail -= len; 2206 list_add_tail(&segment->node, &desc->segments); 2207 2208 fetch: 2209 /* Fetch the next dst scatterlist entry */ 2210 if (dst_avail == 0) { 2211 if (dst_sg_len == 0) 2212 break; 2213 dst_sg = sg_next(dst_sg); 2214 if (dst_sg == NULL) 2215 break; 2216 dst_sg_len--; 2217 dst_avail = sg_dma_len(dst_sg); 2218 } 2219 /* Fetch the next src scatterlist entry */ 2220 if (src_avail == 0) { 2221 if (src_sg_len == 0) 2222 break; 2223 src_sg = sg_next(src_sg); 2224 if (src_sg == NULL) 2225 break; 2226 src_sg_len--; 2227 src_avail = sg_dma_len(src_sg); 2228 } 2229 } 2230 2231 if (list_empty(&desc->segments)) { 2232 dev_err(chan->xdev->dev, 2233 "%s: Zero-size SG transfer requested\n", __func__); 2234 goto error; 2235 } 2236 2237 /* Link the last hardware descriptor with the first. */ 2238 segment = list_first_entry(&desc->segments, 2239 struct xilinx_cdma_tx_segment, node); 2240 desc->async_tx.phys = segment->phys; 2241 prev->hw.next_desc = segment->phys; 2242 2243 return &desc->async_tx; 2244 2245 error: 2246 xilinx_dma_free_tx_descriptor(chan, desc); 2247 return NULL; 2248 } 2249 2250 /** 2251 * xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 2252 * @dchan: DMA channel 2253 * @sgl: scatterlist to transfer to/from 2254 * @sg_len: number of entries in @scatterlist 2255 * @direction: DMA direction 2256 * @flags: transfer ack flags 2257 * @context: APP words of the descriptor 2258 * 2259 * Return: Async transaction descriptor on success and NULL on failure 2260 */ 2261 static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg( 2262 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, 2263 enum dma_transfer_direction direction, unsigned long flags, 2264 void *context) 2265 { 2266 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2267 struct xilinx_dma_tx_descriptor *desc; 2268 struct xilinx_axidma_tx_segment *segment = NULL; 2269 u32 *app_w = (u32 *)context; 2270 struct scatterlist *sg; 2271 size_t copy; 2272 size_t sg_used; 2273 unsigned int i; 2274 2275 if (!is_slave_direction(direction)) 2276 return NULL; 2277 2278 /* Allocate a transaction descriptor. */ 2279 desc = xilinx_dma_alloc_tx_descriptor(chan); 2280 if (!desc) 2281 return NULL; 2282 2283 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2284 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2285 2286 /* Build transactions using information in the scatter gather list */ 2287 for_each_sg(sgl, sg, sg_len, i) { 2288 sg_used = 0; 2289 2290 /* Loop until the entire scatterlist entry is used */ 2291 while (sg_used < sg_dma_len(sg)) { 2292 struct xilinx_axidma_desc_hw *hw; 2293 2294 /* Get a free segment */ 2295 segment = xilinx_axidma_alloc_tx_segment(chan); 2296 if (!segment) 2297 goto error; 2298 2299 /* 2300 * Calculate the maximum number of bytes to transfer, 2301 * making sure it is less than the hw limit 2302 */ 2303 copy = xilinx_dma_calc_copysize(chan, sg_dma_len(sg), 2304 sg_used); 2305 hw = &segment->hw; 2306 2307 /* Fill in the descriptor */ 2308 xilinx_axidma_buf(chan, hw, sg_dma_address(sg), 2309 sg_used, 0); 2310 2311 hw->control = copy; 2312 2313 if (chan->direction == DMA_MEM_TO_DEV) { 2314 if (app_w) 2315 memcpy(hw->app, app_w, sizeof(u32) * 2316 XILINX_DMA_NUM_APP_WORDS); 2317 } 2318 2319 sg_used += copy; 2320 2321 /* 2322 * Insert the segment into the descriptor segments 2323 * list. 2324 */ 2325 list_add_tail(&segment->node, &desc->segments); 2326 } 2327 } 2328 2329 segment = list_first_entry(&desc->segments, 2330 struct xilinx_axidma_tx_segment, node); 2331 desc->async_tx.phys = segment->phys; 2332 2333 /* For the last DMA_MEM_TO_DEV transfer, set EOP */ 2334 if (chan->direction == DMA_MEM_TO_DEV) { 2335 segment->hw.control |= XILINX_DMA_BD_SOP; 2336 segment = list_last_entry(&desc->segments, 2337 struct xilinx_axidma_tx_segment, 2338 node); 2339 segment->hw.control |= XILINX_DMA_BD_EOP; 2340 } 2341 2342 return &desc->async_tx; 2343 2344 error: 2345 xilinx_dma_free_tx_descriptor(chan, desc); 2346 return NULL; 2347 } 2348 2349 /** 2350 * xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction 2351 * @dchan: DMA channel 2352 * @buf_addr: Physical address of the buffer 2353 * @buf_len: Total length of the cyclic buffers 2354 * @period_len: length of individual cyclic buffer 2355 * @direction: DMA direction 2356 * @flags: transfer ack flags 2357 * 2358 * Return: Async transaction descriptor on success and NULL on failure 2359 */ 2360 static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic( 2361 struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len, 2362 size_t period_len, enum dma_transfer_direction direction, 2363 unsigned long flags) 2364 { 2365 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2366 struct xilinx_dma_tx_descriptor *desc; 2367 struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL; 2368 size_t copy, sg_used; 2369 unsigned int num_periods; 2370 int i; 2371 u32 reg; 2372 2373 if (!period_len) 2374 return NULL; 2375 2376 num_periods = buf_len / period_len; 2377 2378 if (!num_periods) 2379 return NULL; 2380 2381 if (!is_slave_direction(direction)) 2382 return NULL; 2383 2384 /* Allocate a transaction descriptor. */ 2385 desc = xilinx_dma_alloc_tx_descriptor(chan); 2386 if (!desc) 2387 return NULL; 2388 2389 chan->direction = direction; 2390 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2391 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2392 2393 for (i = 0; i < num_periods; ++i) { 2394 sg_used = 0; 2395 2396 while (sg_used < period_len) { 2397 struct xilinx_axidma_desc_hw *hw; 2398 2399 /* Get a free segment */ 2400 segment = xilinx_axidma_alloc_tx_segment(chan); 2401 if (!segment) 2402 goto error; 2403 2404 /* 2405 * Calculate the maximum number of bytes to transfer, 2406 * making sure it is less than the hw limit 2407 */ 2408 copy = xilinx_dma_calc_copysize(chan, period_len, 2409 sg_used); 2410 hw = &segment->hw; 2411 xilinx_axidma_buf(chan, hw, buf_addr, sg_used, 2412 period_len * i); 2413 hw->control = copy; 2414 2415 if (prev) 2416 prev->hw.next_desc = segment->phys; 2417 2418 prev = segment; 2419 sg_used += copy; 2420 2421 /* 2422 * Insert the segment into the descriptor segments 2423 * list. 2424 */ 2425 list_add_tail(&segment->node, &desc->segments); 2426 } 2427 } 2428 2429 head_segment = list_first_entry(&desc->segments, 2430 struct xilinx_axidma_tx_segment, node); 2431 desc->async_tx.phys = head_segment->phys; 2432 2433 desc->cyclic = true; 2434 reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 2435 reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK; 2436 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); 2437 2438 segment = list_last_entry(&desc->segments, 2439 struct xilinx_axidma_tx_segment, 2440 node); 2441 segment->hw.next_desc = (u32) head_segment->phys; 2442 2443 /* For the last DMA_MEM_TO_DEV transfer, set EOP */ 2444 if (direction == DMA_MEM_TO_DEV) { 2445 head_segment->hw.control |= XILINX_DMA_BD_SOP; 2446 segment->hw.control |= XILINX_DMA_BD_EOP; 2447 } 2448 2449 return &desc->async_tx; 2450 2451 error: 2452 xilinx_dma_free_tx_descriptor(chan, desc); 2453 return NULL; 2454 } 2455 2456 /** 2457 * xilinx_mcdma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 2458 * @dchan: DMA channel 2459 * @sgl: scatterlist to transfer to/from 2460 * @sg_len: number of entries in @scatterlist 2461 * @direction: DMA direction 2462 * @flags: transfer ack flags 2463 * @context: APP words of the descriptor 2464 * 2465 * Return: Async transaction descriptor on success and NULL on failure 2466 */ 2467 static struct dma_async_tx_descriptor * 2468 xilinx_mcdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl, 2469 unsigned int sg_len, 2470 enum dma_transfer_direction direction, 2471 unsigned long flags, void *context) 2472 { 2473 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2474 struct xilinx_dma_tx_descriptor *desc; 2475 struct xilinx_aximcdma_tx_segment *segment = NULL; 2476 u32 *app_w = (u32 *)context; 2477 struct scatterlist *sg; 2478 size_t copy; 2479 size_t sg_used; 2480 unsigned int i; 2481 2482 if (!is_slave_direction(direction)) 2483 return NULL; 2484 2485 /* Allocate a transaction descriptor. */ 2486 desc = xilinx_dma_alloc_tx_descriptor(chan); 2487 if (!desc) 2488 return NULL; 2489 2490 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); 2491 desc->async_tx.tx_submit = xilinx_dma_tx_submit; 2492 2493 /* Build transactions using information in the scatter gather list */ 2494 for_each_sg(sgl, sg, sg_len, i) { 2495 sg_used = 0; 2496 2497 /* Loop until the entire scatterlist entry is used */ 2498 while (sg_used < sg_dma_len(sg)) { 2499 struct xilinx_aximcdma_desc_hw *hw; 2500 2501 /* Get a free segment */ 2502 segment = xilinx_aximcdma_alloc_tx_segment(chan); 2503 if (!segment) 2504 goto error; 2505 2506 /* 2507 * Calculate the maximum number of bytes to transfer, 2508 * making sure it is less than the hw limit 2509 */ 2510 copy = min_t(size_t, sg_dma_len(sg) - sg_used, 2511 chan->xdev->max_buffer_len); 2512 hw = &segment->hw; 2513 2514 /* Fill in the descriptor */ 2515 xilinx_aximcdma_buf(chan, hw, sg_dma_address(sg), 2516 sg_used); 2517 hw->control = copy; 2518 2519 if (chan->direction == DMA_MEM_TO_DEV && app_w) { 2520 memcpy(hw->app, app_w, sizeof(u32) * 2521 XILINX_DMA_NUM_APP_WORDS); 2522 } 2523 2524 sg_used += copy; 2525 /* 2526 * Insert the segment into the descriptor segments 2527 * list. 2528 */ 2529 list_add_tail(&segment->node, &desc->segments); 2530 } 2531 } 2532 2533 segment = list_first_entry(&desc->segments, 2534 struct xilinx_aximcdma_tx_segment, node); 2535 desc->async_tx.phys = segment->phys; 2536 2537 /* For the last DMA_MEM_TO_DEV transfer, set EOP */ 2538 if (chan->direction == DMA_MEM_TO_DEV) { 2539 segment->hw.control |= XILINX_MCDMA_BD_SOP; 2540 segment = list_last_entry(&desc->segments, 2541 struct xilinx_aximcdma_tx_segment, 2542 node); 2543 segment->hw.control |= XILINX_MCDMA_BD_EOP; 2544 } 2545 2546 return &desc->async_tx; 2547 2548 error: 2549 xilinx_dma_free_tx_descriptor(chan, desc); 2550 2551 return NULL; 2552 } 2553 2554 /** 2555 * xilinx_dma_terminate_all - Halt the channel and free descriptors 2556 * @dchan: Driver specific DMA Channel pointer 2557 * 2558 * Return: '0' always. 2559 */ 2560 static int xilinx_dma_terminate_all(struct dma_chan *dchan) 2561 { 2562 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2563 u32 reg; 2564 int err; 2565 2566 if (!chan->cyclic) { 2567 err = chan->stop_transfer(chan); 2568 if (err) { 2569 dev_err(chan->dev, "Cannot stop channel %p: %x\n", 2570 chan, dma_ctrl_read(chan, 2571 XILINX_DMA_REG_DMASR)); 2572 chan->err = true; 2573 } 2574 } 2575 2576 xilinx_dma_chan_reset(chan); 2577 /* Remove and free all of the descriptors in the lists */ 2578 chan->terminating = true; 2579 xilinx_dma_free_descriptors(chan); 2580 chan->idle = true; 2581 2582 if (chan->cyclic) { 2583 reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 2584 reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK; 2585 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); 2586 chan->cyclic = false; 2587 } 2588 2589 if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg) 2590 dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, 2591 XILINX_CDMA_CR_SGMODE); 2592 2593 return 0; 2594 } 2595 2596 static void xilinx_dma_synchronize(struct dma_chan *dchan) 2597 { 2598 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2599 2600 tasklet_kill(&chan->tasklet); 2601 } 2602 2603 /** 2604 * xilinx_vdma_channel_set_config - Configure VDMA channel 2605 * Run-time configuration for Axi VDMA, supports: 2606 * . halt the channel 2607 * . configure interrupt coalescing and inter-packet delay threshold 2608 * . start/stop parking 2609 * . enable genlock 2610 * 2611 * @dchan: DMA channel 2612 * @cfg: VDMA device configuration pointer 2613 * 2614 * Return: '0' on success and failure value on error 2615 */ 2616 int xilinx_vdma_channel_set_config(struct dma_chan *dchan, 2617 struct xilinx_vdma_config *cfg) 2618 { 2619 struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); 2620 u32 dmacr; 2621 2622 if (cfg->reset) 2623 return xilinx_dma_chan_reset(chan); 2624 2625 dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); 2626 2627 chan->config.frm_dly = cfg->frm_dly; 2628 chan->config.park = cfg->park; 2629 2630 /* genlock settings */ 2631 chan->config.gen_lock = cfg->gen_lock; 2632 chan->config.master = cfg->master; 2633 2634 dmacr &= ~XILINX_DMA_DMACR_GENLOCK_EN; 2635 if (cfg->gen_lock && chan->genlock) { 2636 dmacr |= XILINX_DMA_DMACR_GENLOCK_EN; 2637 dmacr &= ~XILINX_DMA_DMACR_MASTER_MASK; 2638 dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT; 2639 } 2640 2641 chan->config.frm_cnt_en = cfg->frm_cnt_en; 2642 chan->config.vflip_en = cfg->vflip_en; 2643 2644 if (cfg->park) 2645 chan->config.park_frm = cfg->park_frm; 2646 else 2647 chan->config.park_frm = -1; 2648 2649 chan->config.coalesc = cfg->coalesc; 2650 chan->config.delay = cfg->delay; 2651 2652 if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) { 2653 dmacr &= ~XILINX_DMA_DMACR_FRAME_COUNT_MASK; 2654 dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT; 2655 chan->config.coalesc = cfg->coalesc; 2656 } 2657 2658 if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) { 2659 dmacr &= ~XILINX_DMA_DMACR_DELAY_MASK; 2660 dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT; 2661 chan->config.delay = cfg->delay; 2662 } 2663 2664 /* FSync Source selection */ 2665 dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK; 2666 dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT; 2667 2668 dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr); 2669 2670 return 0; 2671 } 2672 EXPORT_SYMBOL(xilinx_vdma_channel_set_config); 2673 2674 /* ----------------------------------------------------------------------------- 2675 * Probe and remove 2676 */ 2677 2678 /** 2679 * xilinx_dma_chan_remove - Per Channel remove function 2680 * @chan: Driver specific DMA channel 2681 */ 2682 static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan) 2683 { 2684 /* Disable all interrupts */ 2685 dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, 2686 XILINX_DMA_DMAXR_ALL_IRQ_MASK); 2687 2688 if (chan->irq > 0) 2689 free_irq(chan->irq, chan); 2690 2691 tasklet_kill(&chan->tasklet); 2692 2693 list_del(&chan->common.device_node); 2694 } 2695 2696 static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk, 2697 struct clk **tx_clk, struct clk **rx_clk, 2698 struct clk **sg_clk, struct clk **tmp_clk) 2699 { 2700 int err; 2701 2702 *tmp_clk = NULL; 2703 2704 *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); 2705 if (IS_ERR(*axi_clk)) 2706 return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); 2707 2708 *tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk"); 2709 if (IS_ERR(*tx_clk)) 2710 *tx_clk = NULL; 2711 2712 *rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk"); 2713 if (IS_ERR(*rx_clk)) 2714 *rx_clk = NULL; 2715 2716 *sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk"); 2717 if (IS_ERR(*sg_clk)) 2718 *sg_clk = NULL; 2719 2720 err = clk_prepare_enable(*axi_clk); 2721 if (err) { 2722 dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); 2723 return err; 2724 } 2725 2726 err = clk_prepare_enable(*tx_clk); 2727 if (err) { 2728 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 2729 goto err_disable_axiclk; 2730 } 2731 2732 err = clk_prepare_enable(*rx_clk); 2733 if (err) { 2734 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 2735 goto err_disable_txclk; 2736 } 2737 2738 err = clk_prepare_enable(*sg_clk); 2739 if (err) { 2740 dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err); 2741 goto err_disable_rxclk; 2742 } 2743 2744 return 0; 2745 2746 err_disable_rxclk: 2747 clk_disable_unprepare(*rx_clk); 2748 err_disable_txclk: 2749 clk_disable_unprepare(*tx_clk); 2750 err_disable_axiclk: 2751 clk_disable_unprepare(*axi_clk); 2752 2753 return err; 2754 } 2755 2756 static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk, 2757 struct clk **dev_clk, struct clk **tmp_clk, 2758 struct clk **tmp1_clk, struct clk **tmp2_clk) 2759 { 2760 int err; 2761 2762 *tmp_clk = NULL; 2763 *tmp1_clk = NULL; 2764 *tmp2_clk = NULL; 2765 2766 *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); 2767 if (IS_ERR(*axi_clk)) 2768 return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); 2769 2770 *dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk"); 2771 if (IS_ERR(*dev_clk)) 2772 return dev_err_probe(&pdev->dev, PTR_ERR(*dev_clk), "failed to get dev_clk\n"); 2773 2774 err = clk_prepare_enable(*axi_clk); 2775 if (err) { 2776 dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); 2777 return err; 2778 } 2779 2780 err = clk_prepare_enable(*dev_clk); 2781 if (err) { 2782 dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err); 2783 goto err_disable_axiclk; 2784 } 2785 2786 return 0; 2787 2788 err_disable_axiclk: 2789 clk_disable_unprepare(*axi_clk); 2790 2791 return err; 2792 } 2793 2794 static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk, 2795 struct clk **tx_clk, struct clk **txs_clk, 2796 struct clk **rx_clk, struct clk **rxs_clk) 2797 { 2798 int err; 2799 2800 *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); 2801 if (IS_ERR(*axi_clk)) 2802 return dev_err_probe(&pdev->dev, PTR_ERR(*axi_clk), "failed to get axi_aclk\n"); 2803 2804 *tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk"); 2805 if (IS_ERR(*tx_clk)) 2806 *tx_clk = NULL; 2807 2808 *txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk"); 2809 if (IS_ERR(*txs_clk)) 2810 *txs_clk = NULL; 2811 2812 *rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk"); 2813 if (IS_ERR(*rx_clk)) 2814 *rx_clk = NULL; 2815 2816 *rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk"); 2817 if (IS_ERR(*rxs_clk)) 2818 *rxs_clk = NULL; 2819 2820 err = clk_prepare_enable(*axi_clk); 2821 if (err) { 2822 dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", 2823 err); 2824 return err; 2825 } 2826 2827 err = clk_prepare_enable(*tx_clk); 2828 if (err) { 2829 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 2830 goto err_disable_axiclk; 2831 } 2832 2833 err = clk_prepare_enable(*txs_clk); 2834 if (err) { 2835 dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err); 2836 goto err_disable_txclk; 2837 } 2838 2839 err = clk_prepare_enable(*rx_clk); 2840 if (err) { 2841 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 2842 goto err_disable_txsclk; 2843 } 2844 2845 err = clk_prepare_enable(*rxs_clk); 2846 if (err) { 2847 dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err); 2848 goto err_disable_rxclk; 2849 } 2850 2851 return 0; 2852 2853 err_disable_rxclk: 2854 clk_disable_unprepare(*rx_clk); 2855 err_disable_txsclk: 2856 clk_disable_unprepare(*txs_clk); 2857 err_disable_txclk: 2858 clk_disable_unprepare(*tx_clk); 2859 err_disable_axiclk: 2860 clk_disable_unprepare(*axi_clk); 2861 2862 return err; 2863 } 2864 2865 static void xdma_disable_allclks(struct xilinx_dma_device *xdev) 2866 { 2867 clk_disable_unprepare(xdev->rxs_clk); 2868 clk_disable_unprepare(xdev->rx_clk); 2869 clk_disable_unprepare(xdev->txs_clk); 2870 clk_disable_unprepare(xdev->tx_clk); 2871 clk_disable_unprepare(xdev->axi_clk); 2872 } 2873 2874 /** 2875 * xilinx_dma_chan_probe - Per Channel Probing 2876 * It get channel features from the device tree entry and 2877 * initialize special channel handling routines 2878 * 2879 * @xdev: Driver specific device structure 2880 * @node: Device node 2881 * 2882 * Return: '0' on success and failure value on error 2883 */ 2884 static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev, 2885 struct device_node *node) 2886 { 2887 struct xilinx_dma_chan *chan; 2888 bool has_dre = false; 2889 u32 value, width; 2890 int err; 2891 2892 /* Allocate and initialize the channel structure */ 2893 chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL); 2894 if (!chan) 2895 return -ENOMEM; 2896 2897 chan->dev = xdev->dev; 2898 chan->xdev = xdev; 2899 chan->desc_pendingcount = 0x0; 2900 chan->ext_addr = xdev->ext_addr; 2901 /* This variable ensures that descriptors are not 2902 * Submitted when dma engine is in progress. This variable is 2903 * Added to avoid polling for a bit in the status register to 2904 * Know dma state in the driver hot path. 2905 */ 2906 chan->idle = true; 2907 2908 spin_lock_init(&chan->lock); 2909 INIT_LIST_HEAD(&chan->pending_list); 2910 INIT_LIST_HEAD(&chan->done_list); 2911 INIT_LIST_HEAD(&chan->active_list); 2912 INIT_LIST_HEAD(&chan->free_seg_list); 2913 2914 /* Retrieve the channel properties from the device tree */ 2915 has_dre = of_property_read_bool(node, "xlnx,include-dre"); 2916 2917 chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode"); 2918 2919 err = of_property_read_u32(node, "xlnx,datawidth", &value); 2920 if (err) { 2921 dev_err(xdev->dev, "missing xlnx,datawidth property\n"); 2922 return err; 2923 } 2924 width = value >> 3; /* Convert bits to bytes */ 2925 2926 /* If data width is greater than 8 bytes, DRE is not in hw */ 2927 if (width > 8) 2928 has_dre = false; 2929 2930 if (!has_dre) 2931 xdev->common.copy_align = (enum dmaengine_alignment)fls(width - 1); 2932 2933 if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") || 2934 of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") || 2935 of_device_is_compatible(node, "xlnx,axi-cdma-channel")) { 2936 chan->direction = DMA_MEM_TO_DEV; 2937 chan->id = xdev->mm2s_chan_id++; 2938 chan->tdest = chan->id; 2939 2940 chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET; 2941 if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 2942 chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET; 2943 chan->config.park = 1; 2944 2945 if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH || 2946 xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S) 2947 chan->flush_on_fsync = true; 2948 } 2949 } else if (of_device_is_compatible(node, 2950 "xlnx,axi-vdma-s2mm-channel") || 2951 of_device_is_compatible(node, 2952 "xlnx,axi-dma-s2mm-channel")) { 2953 chan->direction = DMA_DEV_TO_MEM; 2954 chan->id = xdev->s2mm_chan_id++; 2955 chan->tdest = chan->id - xdev->dma_config->max_channels / 2; 2956 chan->has_vflip = of_property_read_bool(node, 2957 "xlnx,enable-vert-flip"); 2958 if (chan->has_vflip) { 2959 chan->config.vflip_en = dma_read(chan, 2960 XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP) & 2961 XILINX_VDMA_ENABLE_VERTICAL_FLIP; 2962 } 2963 2964 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) 2965 chan->ctrl_offset = XILINX_MCDMA_S2MM_CTRL_OFFSET; 2966 else 2967 chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET; 2968 2969 if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 2970 chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET; 2971 chan->config.park = 1; 2972 2973 if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH || 2974 xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM) 2975 chan->flush_on_fsync = true; 2976 } 2977 } else { 2978 dev_err(xdev->dev, "Invalid channel compatible node\n"); 2979 return -EINVAL; 2980 } 2981 2982 /* Request the interrupt */ 2983 chan->irq = of_irq_get(node, chan->tdest); 2984 if (chan->irq < 0) 2985 return dev_err_probe(xdev->dev, chan->irq, "failed to get irq\n"); 2986 err = request_irq(chan->irq, xdev->dma_config->irq_handler, 2987 IRQF_SHARED, "xilinx-dma-controller", chan); 2988 if (err) { 2989 dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq); 2990 return err; 2991 } 2992 2993 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 2994 chan->start_transfer = xilinx_dma_start_transfer; 2995 chan->stop_transfer = xilinx_dma_stop_transfer; 2996 } else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 2997 chan->start_transfer = xilinx_mcdma_start_transfer; 2998 chan->stop_transfer = xilinx_dma_stop_transfer; 2999 } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 3000 chan->start_transfer = xilinx_cdma_start_transfer; 3001 chan->stop_transfer = xilinx_cdma_stop_transfer; 3002 } else { 3003 chan->start_transfer = xilinx_vdma_start_transfer; 3004 chan->stop_transfer = xilinx_dma_stop_transfer; 3005 } 3006 3007 /* check if SG is enabled (only for AXIDMA, AXIMCDMA, and CDMA) */ 3008 if (xdev->dma_config->dmatype != XDMA_TYPE_VDMA) { 3009 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA || 3010 dma_ctrl_read(chan, XILINX_DMA_REG_DMASR) & 3011 XILINX_DMA_DMASR_SG_MASK) 3012 chan->has_sg = true; 3013 dev_dbg(chan->dev, "ch %d: SG %s\n", chan->id, 3014 chan->has_sg ? "enabled" : "disabled"); 3015 } 3016 3017 /* Initialize the tasklet */ 3018 tasklet_setup(&chan->tasklet, xilinx_dma_do_tasklet); 3019 3020 /* 3021 * Initialize the DMA channel and add it to the DMA engine channels 3022 * list. 3023 */ 3024 chan->common.device = &xdev->common; 3025 3026 list_add_tail(&chan->common.device_node, &xdev->common.channels); 3027 xdev->chan[chan->id] = chan; 3028 3029 /* Reset the channel */ 3030 err = xilinx_dma_chan_reset(chan); 3031 if (err < 0) { 3032 dev_err(xdev->dev, "Reset channel failed\n"); 3033 return err; 3034 } 3035 3036 return 0; 3037 } 3038 3039 /** 3040 * xilinx_dma_child_probe - Per child node probe 3041 * It get number of dma-channels per child node from 3042 * device-tree and initializes all the channels. 3043 * 3044 * @xdev: Driver specific device structure 3045 * @node: Device node 3046 * 3047 * Return: 0 always. 3048 */ 3049 static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev, 3050 struct device_node *node) 3051 { 3052 int ret, i; 3053 u32 nr_channels = 1; 3054 3055 ret = of_property_read_u32(node, "dma-channels", &nr_channels); 3056 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA && ret < 0) 3057 dev_warn(xdev->dev, "missing dma-channels property\n"); 3058 3059 for (i = 0; i < nr_channels; i++) { 3060 ret = xilinx_dma_chan_probe(xdev, node); 3061 if (ret) 3062 return ret; 3063 } 3064 3065 return 0; 3066 } 3067 3068 /** 3069 * of_dma_xilinx_xlate - Translation function 3070 * @dma_spec: Pointer to DMA specifier as found in the device tree 3071 * @ofdma: Pointer to DMA controller data 3072 * 3073 * Return: DMA channel pointer on success and NULL on error 3074 */ 3075 static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec, 3076 struct of_dma *ofdma) 3077 { 3078 struct xilinx_dma_device *xdev = ofdma->of_dma_data; 3079 int chan_id = dma_spec->args[0]; 3080 3081 if (chan_id >= xdev->dma_config->max_channels || !xdev->chan[chan_id]) 3082 return NULL; 3083 3084 return dma_get_slave_channel(&xdev->chan[chan_id]->common); 3085 } 3086 3087 static const struct xilinx_dma_config axidma_config = { 3088 .dmatype = XDMA_TYPE_AXIDMA, 3089 .clk_init = axidma_clk_init, 3090 .irq_handler = xilinx_dma_irq_handler, 3091 .max_channels = XILINX_DMA_MAX_CHANS_PER_DEVICE, 3092 }; 3093 3094 static const struct xilinx_dma_config aximcdma_config = { 3095 .dmatype = XDMA_TYPE_AXIMCDMA, 3096 .clk_init = axidma_clk_init, 3097 .irq_handler = xilinx_mcdma_irq_handler, 3098 .max_channels = XILINX_MCDMA_MAX_CHANS_PER_DEVICE, 3099 }; 3100 static const struct xilinx_dma_config axicdma_config = { 3101 .dmatype = XDMA_TYPE_CDMA, 3102 .clk_init = axicdma_clk_init, 3103 .irq_handler = xilinx_dma_irq_handler, 3104 .max_channels = XILINX_CDMA_MAX_CHANS_PER_DEVICE, 3105 }; 3106 3107 static const struct xilinx_dma_config axivdma_config = { 3108 .dmatype = XDMA_TYPE_VDMA, 3109 .clk_init = axivdma_clk_init, 3110 .irq_handler = xilinx_dma_irq_handler, 3111 .max_channels = XILINX_DMA_MAX_CHANS_PER_DEVICE, 3112 }; 3113 3114 static const struct of_device_id xilinx_dma_of_ids[] = { 3115 { .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config }, 3116 { .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config }, 3117 { .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config }, 3118 { .compatible = "xlnx,axi-mcdma-1.00.a", .data = &aximcdma_config }, 3119 {} 3120 }; 3121 MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids); 3122 3123 /** 3124 * xilinx_dma_probe - Driver probe function 3125 * @pdev: Pointer to the platform_device structure 3126 * 3127 * Return: '0' on success and failure value on error 3128 */ 3129 static int xilinx_dma_probe(struct platform_device *pdev) 3130 { 3131 int (*clk_init)(struct platform_device *, struct clk **, struct clk **, 3132 struct clk **, struct clk **, struct clk **) 3133 = axivdma_clk_init; 3134 struct device_node *node = pdev->dev.of_node; 3135 struct xilinx_dma_device *xdev; 3136 struct device_node *child, *np = pdev->dev.of_node; 3137 u32 num_frames, addr_width, len_width; 3138 int i, err; 3139 3140 /* Allocate and initialize the DMA engine structure */ 3141 xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); 3142 if (!xdev) 3143 return -ENOMEM; 3144 3145 xdev->dev = &pdev->dev; 3146 if (np) { 3147 const struct of_device_id *match; 3148 3149 match = of_match_node(xilinx_dma_of_ids, np); 3150 if (match && match->data) { 3151 xdev->dma_config = match->data; 3152 clk_init = xdev->dma_config->clk_init; 3153 } 3154 } 3155 3156 err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk, 3157 &xdev->rx_clk, &xdev->rxs_clk); 3158 if (err) 3159 return err; 3160 3161 /* Request and map I/O memory */ 3162 xdev->regs = devm_platform_ioremap_resource(pdev, 0); 3163 if (IS_ERR(xdev->regs)) 3164 return PTR_ERR(xdev->regs); 3165 3166 /* Retrieve the DMA engine properties from the device tree */ 3167 xdev->max_buffer_len = GENMASK(XILINX_DMA_MAX_TRANS_LEN_MAX - 1, 0); 3168 xdev->s2mm_chan_id = xdev->dma_config->max_channels / 2; 3169 3170 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA || 3171 xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 3172 if (!of_property_read_u32(node, "xlnx,sg-length-width", 3173 &len_width)) { 3174 if (len_width < XILINX_DMA_MAX_TRANS_LEN_MIN || 3175 len_width > XILINX_DMA_V2_MAX_TRANS_LEN_MAX) { 3176 dev_warn(xdev->dev, 3177 "invalid xlnx,sg-length-width property value. Using default width\n"); 3178 } else { 3179 if (len_width > XILINX_DMA_MAX_TRANS_LEN_MAX) 3180 dev_warn(xdev->dev, "Please ensure that IP supports buffer length > 23 bits\n"); 3181 xdev->max_buffer_len = 3182 GENMASK(len_width - 1, 0); 3183 } 3184 } 3185 } 3186 3187 if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 3188 err = of_property_read_u32(node, "xlnx,num-fstores", 3189 &num_frames); 3190 if (err < 0) { 3191 dev_err(xdev->dev, 3192 "missing xlnx,num-fstores property\n"); 3193 return err; 3194 } 3195 3196 err = of_property_read_u32(node, "xlnx,flush-fsync", 3197 &xdev->flush_on_fsync); 3198 if (err < 0) 3199 dev_warn(xdev->dev, 3200 "missing xlnx,flush-fsync property\n"); 3201 } 3202 3203 err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width); 3204 if (err < 0) 3205 dev_warn(xdev->dev, "missing xlnx,addrwidth property\n"); 3206 3207 if (addr_width > 32) 3208 xdev->ext_addr = true; 3209 else 3210 xdev->ext_addr = false; 3211 3212 /* Set the dma mask bits */ 3213 dma_set_mask_and_coherent(xdev->dev, DMA_BIT_MASK(addr_width)); 3214 3215 /* Initialize the DMA engine */ 3216 xdev->common.dev = &pdev->dev; 3217 3218 INIT_LIST_HEAD(&xdev->common.channels); 3219 if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) { 3220 dma_cap_set(DMA_SLAVE, xdev->common.cap_mask); 3221 dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask); 3222 } 3223 3224 xdev->common.device_alloc_chan_resources = 3225 xilinx_dma_alloc_chan_resources; 3226 xdev->common.device_free_chan_resources = 3227 xilinx_dma_free_chan_resources; 3228 xdev->common.device_terminate_all = xilinx_dma_terminate_all; 3229 xdev->common.device_synchronize = xilinx_dma_synchronize; 3230 xdev->common.device_tx_status = xilinx_dma_tx_status; 3231 xdev->common.device_issue_pending = xilinx_dma_issue_pending; 3232 xdev->common.device_config = xilinx_dma_device_config; 3233 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { 3234 dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask); 3235 xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg; 3236 xdev->common.device_prep_dma_cyclic = 3237 xilinx_dma_prep_dma_cyclic; 3238 /* Residue calculation is supported by only AXI DMA and CDMA */ 3239 xdev->common.residue_granularity = 3240 DMA_RESIDUE_GRANULARITY_SEGMENT; 3241 } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { 3242 dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask); 3243 dma_cap_set(DMA_MEMCPY_SG, xdev->common.cap_mask); 3244 xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy; 3245 xdev->common.device_prep_dma_memcpy_sg = xilinx_cdma_prep_memcpy_sg; 3246 /* Residue calculation is supported by only AXI DMA and CDMA */ 3247 xdev->common.residue_granularity = 3248 DMA_RESIDUE_GRANULARITY_SEGMENT; 3249 } else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) { 3250 xdev->common.device_prep_slave_sg = xilinx_mcdma_prep_slave_sg; 3251 } else { 3252 xdev->common.device_prep_interleaved_dma = 3253 xilinx_vdma_dma_prep_interleaved; 3254 } 3255 3256 platform_set_drvdata(pdev, xdev); 3257 3258 /* Initialize the channels */ 3259 for_each_child_of_node(node, child) { 3260 err = xilinx_dma_child_probe(xdev, child); 3261 if (err < 0) 3262 goto disable_clks; 3263 } 3264 3265 if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { 3266 for (i = 0; i < xdev->dma_config->max_channels; i++) 3267 if (xdev->chan[i]) 3268 xdev->chan[i]->num_frms = num_frames; 3269 } 3270 3271 /* Register the DMA engine with the core */ 3272 err = dma_async_device_register(&xdev->common); 3273 if (err) { 3274 dev_err(xdev->dev, "failed to register the dma device\n"); 3275 goto error; 3276 } 3277 3278 err = of_dma_controller_register(node, of_dma_xilinx_xlate, 3279 xdev); 3280 if (err < 0) { 3281 dev_err(&pdev->dev, "Unable to register DMA to DT\n"); 3282 dma_async_device_unregister(&xdev->common); 3283 goto error; 3284 } 3285 3286 if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) 3287 dev_info(&pdev->dev, "Xilinx AXI DMA Engine Driver Probed!!\n"); 3288 else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) 3289 dev_info(&pdev->dev, "Xilinx AXI CDMA Engine Driver Probed!!\n"); 3290 else if (xdev->dma_config->dmatype == XDMA_TYPE_AXIMCDMA) 3291 dev_info(&pdev->dev, "Xilinx AXI MCDMA Engine Driver Probed!!\n"); 3292 else 3293 dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n"); 3294 3295 return 0; 3296 3297 disable_clks: 3298 xdma_disable_allclks(xdev); 3299 error: 3300 for (i = 0; i < xdev->dma_config->max_channels; i++) 3301 if (xdev->chan[i]) 3302 xilinx_dma_chan_remove(xdev->chan[i]); 3303 3304 return err; 3305 } 3306 3307 /** 3308 * xilinx_dma_remove - Driver remove function 3309 * @pdev: Pointer to the platform_device structure 3310 * 3311 * Return: Always '0' 3312 */ 3313 static int xilinx_dma_remove(struct platform_device *pdev) 3314 { 3315 struct xilinx_dma_device *xdev = platform_get_drvdata(pdev); 3316 int i; 3317 3318 of_dma_controller_free(pdev->dev.of_node); 3319 3320 dma_async_device_unregister(&xdev->common); 3321 3322 for (i = 0; i < xdev->dma_config->max_channels; i++) 3323 if (xdev->chan[i]) 3324 xilinx_dma_chan_remove(xdev->chan[i]); 3325 3326 xdma_disable_allclks(xdev); 3327 3328 return 0; 3329 } 3330 3331 static struct platform_driver xilinx_vdma_driver = { 3332 .driver = { 3333 .name = "xilinx-vdma", 3334 .of_match_table = xilinx_dma_of_ids, 3335 }, 3336 .probe = xilinx_dma_probe, 3337 .remove = xilinx_dma_remove, 3338 }; 3339 3340 module_platform_driver(xilinx_vdma_driver); 3341 3342 MODULE_AUTHOR("Xilinx, Inc."); 3343 MODULE_DESCRIPTION("Xilinx VDMA driver"); 3344 MODULE_LICENSE("GPL v2"); 3345