xref: /linux/drivers/dma/xilinx/xdma.c (revision f14aa5ea415b8add245e976bfab96a12986c6843)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DMA driver for Xilinx DMA/Bridge Subsystem
4  *
5  * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
6  * Copyright (C) 2022, Advanced Micro Devices, Inc.
7  */
8 
9 /*
10  * The DMA/Bridge Subsystem for PCI Express allows for the movement of data
11  * between Host memory and the DMA subsystem. It does this by operating on
12  * 'descriptors' that contain information about the source, destination and
13  * amount of data to transfer. These direct memory transfers can be both in
14  * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
15  * configured to have a single AXI4 Master interface shared by all channels
16  * or one AXI4-Stream interface for each channel enabled. Memory transfers are
17  * specified on a per-channel basis in descriptor linked lists, which the DMA
18  * fetches from host memory and processes. Events such as descriptor completion
19  * and errors are signaled using interrupts. The core also provides up to 16
20  * user interrupt wires that generate interrupts to the host.
21  */
22 
23 #include <linux/mod_devicetable.h>
24 #include <linux/bitfield.h>
25 #include <linux/dmapool.h>
26 #include <linux/regmap.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/amd_xdma.h>
29 #include <linux/platform_device.h>
30 #include <linux/platform_data/amd_xdma.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/pci.h>
33 #include "../virt-dma.h"
34 #include "xdma-regs.h"
35 
36 /* mmio regmap config for all XDMA registers */
37 static const struct regmap_config xdma_regmap_config = {
38 	.reg_bits = 32,
39 	.val_bits = 32,
40 	.reg_stride = 4,
41 	.max_register = XDMA_REG_SPACE_LEN,
42 };
43 
44 /**
45  * struct xdma_desc_block - Descriptor block
46  * @virt_addr: Virtual address of block start
47  * @dma_addr: DMA address of block start
48  */
49 struct xdma_desc_block {
50 	void		*virt_addr;
51 	dma_addr_t	dma_addr;
52 };
53 
54 /**
55  * struct xdma_chan - Driver specific DMA channel structure
56  * @vchan: Virtual channel
57  * @xdev_hdl: Pointer to DMA device structure
58  * @base: Offset of channel registers
59  * @desc_pool: Descriptor pool
60  * @busy: Busy flag of the channel
61  * @dir: Transferring direction of the channel
62  * @cfg: Transferring config of the channel
63  * @irq: IRQ assigned to the channel
64  */
65 struct xdma_chan {
66 	struct virt_dma_chan		vchan;
67 	void				*xdev_hdl;
68 	u32				base;
69 	struct dma_pool			*desc_pool;
70 	bool				busy;
71 	enum dma_transfer_direction	dir;
72 	struct dma_slave_config		cfg;
73 	u32				irq;
74 	struct completion		last_interrupt;
75 	bool				stop_requested;
76 };
77 
78 /**
79  * struct xdma_desc - DMA desc structure
80  * @vdesc: Virtual DMA descriptor
81  * @chan: DMA channel pointer
82  * @dir: Transferring direction of the request
83  * @desc_blocks: Hardware descriptor blocks
84  * @dblk_num: Number of hardware descriptor blocks
85  * @desc_num: Number of hardware descriptors
86  * @completed_desc_num: Completed hardware descriptors
87  * @cyclic: Cyclic transfer vs. scatter-gather
88  * @interleaved_dma: Interleaved DMA transfer
89  * @periods: Number of periods in the cyclic transfer
90  * @period_size: Size of a period in bytes in cyclic transfers
91  * @frames_left: Number of frames left in interleaved DMA transfer
92  * @error: tx error flag
93  */
94 struct xdma_desc {
95 	struct virt_dma_desc		vdesc;
96 	struct xdma_chan		*chan;
97 	enum dma_transfer_direction	dir;
98 	struct xdma_desc_block		*desc_blocks;
99 	u32				dblk_num;
100 	u32				desc_num;
101 	u32				completed_desc_num;
102 	bool				cyclic;
103 	bool				interleaved_dma;
104 	u32				periods;
105 	u32				period_size;
106 	u32				frames_left;
107 	bool				error;
108 };
109 
110 #define XDMA_DEV_STATUS_REG_DMA		BIT(0)
111 #define XDMA_DEV_STATUS_INIT_MSIX	BIT(1)
112 
113 /**
114  * struct xdma_device - DMA device structure
115  * @pdev: Platform device pointer
116  * @dma_dev: DMA device structure
117  * @rmap: MMIO regmap for DMA registers
118  * @h2c_chans: Host to Card channels
119  * @c2h_chans: Card to Host channels
120  * @h2c_chan_num: Number of H2C channels
121  * @c2h_chan_num: Number of C2H channels
122  * @irq_start: Start IRQ assigned to device
123  * @irq_num: Number of IRQ assigned to device
124  * @status: Initialization status
125  */
126 struct xdma_device {
127 	struct platform_device	*pdev;
128 	struct dma_device	dma_dev;
129 	struct regmap		*rmap;
130 	struct xdma_chan	*h2c_chans;
131 	struct xdma_chan	*c2h_chans;
132 	u32			h2c_chan_num;
133 	u32			c2h_chan_num;
134 	u32			irq_start;
135 	u32			irq_num;
136 	u32			status;
137 };
138 
139 #define xdma_err(xdev, fmt, args...)					\
140 	dev_err(&(xdev)->pdev->dev, fmt, ##args)
141 #define XDMA_CHAN_NUM(_xd) ({						\
142 	typeof(_xd) (xd) = (_xd);					\
143 	((xd)->h2c_chan_num + (xd)->c2h_chan_num); })
144 
145 /* Get the last desc in a desc block */
146 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
147 {
148 	return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
149 }
150 
151 /**
152  * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer
153  * @sw_desc: Tx descriptor pointer
154  */
155 static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc)
156 {
157 	struct xdma_desc_block *block;
158 	u32 last_blk_desc, desc_control;
159 	struct xdma_hw_desc *desc;
160 	int i;
161 
162 	desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
163 	for (i = 1; i < sw_desc->dblk_num; i++) {
164 		block = &sw_desc->desc_blocks[i - 1];
165 		desc = xdma_blk_last_desc(block);
166 
167 		if (!(i & XDMA_DESC_BLOCK_MASK)) {
168 			desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
169 			continue;
170 		}
171 		desc->control = cpu_to_le32(desc_control);
172 		desc->next_desc = cpu_to_le64(block[1].dma_addr);
173 	}
174 
175 	/* update the last block */
176 	last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
177 	if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
178 		block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
179 		desc = xdma_blk_last_desc(block);
180 		desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
181 		desc->control = cpu_to_le32(desc_control);
182 	}
183 
184 	block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
185 	desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
186 	desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
187 }
188 
189 /**
190  * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer
191  * @sw_desc: Tx descriptor pointer
192  */
193 static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc)
194 {
195 	struct xdma_desc_block *block;
196 	struct xdma_hw_desc *desc;
197 	int i;
198 
199 	block = sw_desc->desc_blocks;
200 	for (i = 0; i < sw_desc->desc_num - 1; i++) {
201 		desc = block->virt_addr + i * XDMA_DESC_SIZE;
202 		desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE));
203 	}
204 	desc = block->virt_addr + i * XDMA_DESC_SIZE;
205 	desc->next_desc = cpu_to_le64(block->dma_addr);
206 }
207 
208 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
209 {
210 	return container_of(chan, struct xdma_chan, vchan.chan);
211 }
212 
213 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
214 {
215 	return container_of(vdesc, struct xdma_desc, vdesc);
216 }
217 
218 /**
219  * xdma_channel_init - Initialize DMA channel registers
220  * @chan: DMA channel pointer
221  */
222 static int xdma_channel_init(struct xdma_chan *chan)
223 {
224 	struct xdma_device *xdev = chan->xdev_hdl;
225 	int ret;
226 
227 	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
228 			   CHAN_CTRL_NON_INCR_ADDR);
229 	if (ret)
230 		return ret;
231 
232 	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
233 			   CHAN_IM_ALL);
234 	if (ret)
235 		return ret;
236 
237 	return 0;
238 }
239 
240 /**
241  * xdma_free_desc - Free descriptor
242  * @vdesc: Virtual DMA descriptor
243  */
244 static void xdma_free_desc(struct virt_dma_desc *vdesc)
245 {
246 	struct xdma_desc *sw_desc;
247 	int i;
248 
249 	sw_desc = to_xdma_desc(vdesc);
250 	for (i = 0; i < sw_desc->dblk_num; i++) {
251 		if (!sw_desc->desc_blocks[i].virt_addr)
252 			break;
253 		dma_pool_free(sw_desc->chan->desc_pool,
254 			      sw_desc->desc_blocks[i].virt_addr,
255 			      sw_desc->desc_blocks[i].dma_addr);
256 	}
257 	kfree(sw_desc->desc_blocks);
258 	kfree(sw_desc);
259 }
260 
261 /**
262  * xdma_alloc_desc - Allocate descriptor
263  * @chan: DMA channel pointer
264  * @desc_num: Number of hardware descriptors
265  * @cyclic: Whether this is a cyclic transfer
266  */
267 static struct xdma_desc *
268 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic)
269 {
270 	struct xdma_desc *sw_desc;
271 	struct xdma_hw_desc *desc;
272 	dma_addr_t dma_addr;
273 	u32 dblk_num;
274 	u32 control;
275 	void *addr;
276 	int i, j;
277 
278 	sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
279 	if (!sw_desc)
280 		return NULL;
281 
282 	sw_desc->chan = chan;
283 	sw_desc->desc_num = desc_num;
284 	sw_desc->cyclic = cyclic;
285 	sw_desc->error = false;
286 	dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
287 	sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
288 				       GFP_NOWAIT);
289 	if (!sw_desc->desc_blocks)
290 		goto failed;
291 
292 	if (cyclic)
293 		control = XDMA_DESC_CONTROL_CYCLIC;
294 	else
295 		control = XDMA_DESC_CONTROL(1, 0);
296 
297 	sw_desc->dblk_num = dblk_num;
298 	for (i = 0; i < sw_desc->dblk_num; i++) {
299 		addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
300 		if (!addr)
301 			goto failed;
302 
303 		sw_desc->desc_blocks[i].virt_addr = addr;
304 		sw_desc->desc_blocks[i].dma_addr = dma_addr;
305 		for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
306 			desc[j].control = cpu_to_le32(control);
307 	}
308 
309 	if (cyclic)
310 		xdma_link_cyclic_desc_blocks(sw_desc);
311 	else
312 		xdma_link_sg_desc_blocks(sw_desc);
313 
314 	return sw_desc;
315 
316 failed:
317 	xdma_free_desc(&sw_desc->vdesc);
318 	return NULL;
319 }
320 
321 /**
322  * xdma_xfer_start - Start DMA transfer
323  * @xchan: DMA channel pointer
324  */
325 static int xdma_xfer_start(struct xdma_chan *xchan)
326 {
327 	struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
328 	struct xdma_device *xdev = xchan->xdev_hdl;
329 	struct xdma_desc_block *block;
330 	u32 val, completed_blocks;
331 	struct xdma_desc *desc;
332 	int ret;
333 
334 	/*
335 	 * check if there is not any submitted descriptor or channel is busy.
336 	 * vchan lock should be held where this function is called.
337 	 */
338 	if (!vd || xchan->busy)
339 		return -EINVAL;
340 
341 	/* clear run stop bit to get ready for transfer */
342 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
343 			   CHAN_CTRL_RUN_STOP);
344 	if (ret)
345 		return ret;
346 
347 	desc = to_xdma_desc(vd);
348 	if (desc->dir != xchan->dir) {
349 		xdma_err(xdev, "incorrect request direction");
350 		return -EINVAL;
351 	}
352 
353 	/* set DMA engine to the first descriptor block */
354 	completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
355 	block = &desc->desc_blocks[completed_blocks];
356 	val = lower_32_bits(block->dma_addr);
357 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
358 	if (ret)
359 		return ret;
360 
361 	val = upper_32_bits(block->dma_addr);
362 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
363 	if (ret)
364 		return ret;
365 
366 	if (completed_blocks + 1 == desc->dblk_num)
367 		val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
368 	else
369 		val = XDMA_DESC_ADJACENT - 1;
370 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
371 	if (ret)
372 		return ret;
373 
374 	/* kick off DMA transfer */
375 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
376 			   CHAN_CTRL_START);
377 	if (ret)
378 		return ret;
379 
380 	xchan->busy = true;
381 	xchan->stop_requested = false;
382 	reinit_completion(&xchan->last_interrupt);
383 
384 	return 0;
385 }
386 
387 /**
388  * xdma_xfer_stop - Stop DMA transfer
389  * @xchan: DMA channel pointer
390  */
391 static int xdma_xfer_stop(struct xdma_chan *xchan)
392 {
393 	int ret;
394 	struct xdma_device *xdev = xchan->xdev_hdl;
395 
396 	/* clear run stop bit to prevent any further auto-triggering */
397 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
398 			   CHAN_CTRL_RUN_STOP);
399 	if (ret)
400 		return ret;
401 	return ret;
402 }
403 
404 /**
405  * xdma_alloc_channels - Detect and allocate DMA channels
406  * @xdev: DMA device pointer
407  * @dir: Channel direction
408  */
409 static int xdma_alloc_channels(struct xdma_device *xdev,
410 			       enum dma_transfer_direction dir)
411 {
412 	struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
413 	struct xdma_chan **chans, *xchan;
414 	u32 base, identifier, target;
415 	u32 *chan_num;
416 	int i, j, ret;
417 
418 	if (dir == DMA_MEM_TO_DEV) {
419 		base = XDMA_CHAN_H2C_OFFSET;
420 		target = XDMA_CHAN_H2C_TARGET;
421 		chans = &xdev->h2c_chans;
422 		chan_num = &xdev->h2c_chan_num;
423 	} else if (dir == DMA_DEV_TO_MEM) {
424 		base = XDMA_CHAN_C2H_OFFSET;
425 		target = XDMA_CHAN_C2H_TARGET;
426 		chans = &xdev->c2h_chans;
427 		chan_num = &xdev->c2h_chan_num;
428 	} else {
429 		xdma_err(xdev, "invalid direction specified");
430 		return -EINVAL;
431 	}
432 
433 	/* detect number of available DMA channels */
434 	for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
435 		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
436 				  &identifier);
437 		if (ret)
438 			return ret;
439 
440 		/* check if it is available DMA channel */
441 		if (XDMA_CHAN_CHECK_TARGET(identifier, target))
442 			(*chan_num)++;
443 	}
444 
445 	if (!*chan_num) {
446 		xdma_err(xdev, "does not probe any channel");
447 		return -EINVAL;
448 	}
449 
450 	*chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
451 			      GFP_KERNEL);
452 	if (!*chans)
453 		return -ENOMEM;
454 
455 	for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
456 		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
457 				  &identifier);
458 		if (ret)
459 			return ret;
460 
461 		if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
462 			continue;
463 
464 		if (j == *chan_num) {
465 			xdma_err(xdev, "invalid channel number");
466 			return -EIO;
467 		}
468 
469 		/* init channel structure and hardware */
470 		xchan = &(*chans)[j];
471 		xchan->xdev_hdl = xdev;
472 		xchan->base = base + i * XDMA_CHAN_STRIDE;
473 		xchan->dir = dir;
474 		xchan->stop_requested = false;
475 		init_completion(&xchan->last_interrupt);
476 
477 		ret = xdma_channel_init(xchan);
478 		if (ret)
479 			return ret;
480 		xchan->vchan.desc_free = xdma_free_desc;
481 		vchan_init(&xchan->vchan, &xdev->dma_dev);
482 
483 		j++;
484 	}
485 
486 	dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
487 		 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");
488 
489 	return 0;
490 }
491 
492 /**
493  * xdma_issue_pending - Issue pending transactions
494  * @chan: DMA channel pointer
495  */
496 static void xdma_issue_pending(struct dma_chan *chan)
497 {
498 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
502 	if (vchan_issue_pending(&xdma_chan->vchan))
503 		xdma_xfer_start(xdma_chan);
504 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
505 }
506 
507 /**
508  * xdma_terminate_all - Terminate all transactions
509  * @chan: DMA channel pointer
510  */
511 static int xdma_terminate_all(struct dma_chan *chan)
512 {
513 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
514 	struct virt_dma_desc *vd;
515 	unsigned long flags;
516 	LIST_HEAD(head);
517 
518 	xdma_xfer_stop(xdma_chan);
519 
520 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
521 
522 	xdma_chan->busy = false;
523 	xdma_chan->stop_requested = true;
524 	vd = vchan_next_desc(&xdma_chan->vchan);
525 	if (vd) {
526 		list_del(&vd->node);
527 		dma_cookie_complete(&vd->tx);
528 		vchan_terminate_vdesc(vd);
529 	}
530 	vchan_get_all_descriptors(&xdma_chan->vchan, &head);
531 	list_splice_tail(&head, &xdma_chan->vchan.desc_terminated);
532 
533 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
534 
535 	return 0;
536 }
537 
538 /**
539  * xdma_synchronize - Synchronize terminated transactions
540  * @chan: DMA channel pointer
541  */
542 static void xdma_synchronize(struct dma_chan *chan)
543 {
544 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
545 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
546 	int st = 0;
547 
548 	/* If the engine continues running, wait for the last interrupt */
549 	regmap_read(xdev->rmap, xdma_chan->base + XDMA_CHAN_STATUS, &st);
550 	if (st & XDMA_CHAN_STATUS_BUSY)
551 		wait_for_completion_timeout(&xdma_chan->last_interrupt, msecs_to_jiffies(1000));
552 
553 	vchan_synchronize(&xdma_chan->vchan);
554 }
555 
556 /**
557  * xdma_fill_descs() - Fill hardware descriptors for one contiguous memory chunk.
558  *		       More than one descriptor will be used if the size is bigger
559  *		       than XDMA_DESC_BLEN_MAX.
560  * @sw_desc: Descriptor container
561  * @src_addr: First value for the ->src_addr field
562  * @dst_addr: First value for the ->dst_addr field
563  * @size: Size of the contiguous memory block
564  * @filled_descs_num: Index of the first descriptor to take care of in @sw_desc
565  */
566 static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr,
567 				  u64 dst_addr, u32 size, u32 filled_descs_num)
568 {
569 	u32 left = size, len, desc_num = filled_descs_num;
570 	struct xdma_desc_block *dblk;
571 	struct xdma_hw_desc *desc;
572 
573 	dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT);
574 	desc = dblk->virt_addr;
575 	desc += desc_num & XDMA_DESC_ADJACENT_MASK;
576 	do {
577 		len = min_t(u32, left, XDMA_DESC_BLEN_MAX);
578 		/* set hardware descriptor */
579 		desc->bytes = cpu_to_le32(len);
580 		desc->src_addr = cpu_to_le64(src_addr);
581 		desc->dst_addr = cpu_to_le64(dst_addr);
582 		if (!(++desc_num & XDMA_DESC_ADJACENT_MASK))
583 			desc = (++dblk)->virt_addr;
584 		else
585 			desc++;
586 
587 		src_addr += len;
588 		dst_addr += len;
589 		left -= len;
590 	} while (left);
591 
592 	return desc_num - filled_descs_num;
593 }
594 
595 /**
596  * xdma_prep_device_sg - prepare a descriptor for a DMA transaction
597  * @chan: DMA channel pointer
598  * @sgl: Transfer scatter gather list
599  * @sg_len: Length of scatter gather list
600  * @dir: Transfer direction
601  * @flags: transfer ack flags
602  * @context: APP words of the descriptor
603  */
604 static struct dma_async_tx_descriptor *
605 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
606 		    unsigned int sg_len, enum dma_transfer_direction dir,
607 		    unsigned long flags, void *context)
608 {
609 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
610 	struct dma_async_tx_descriptor *tx_desc;
611 	struct xdma_desc *sw_desc;
612 	u32 desc_num = 0, i;
613 	u64 addr, dev_addr, *src, *dst;
614 	struct scatterlist *sg;
615 
616 	for_each_sg(sgl, sg, sg_len, i)
617 		desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
618 
619 	sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false);
620 	if (!sw_desc)
621 		return NULL;
622 	sw_desc->dir = dir;
623 	sw_desc->cyclic = false;
624 	sw_desc->interleaved_dma = false;
625 
626 	if (dir == DMA_MEM_TO_DEV) {
627 		dev_addr = xdma_chan->cfg.dst_addr;
628 		src = &addr;
629 		dst = &dev_addr;
630 	} else {
631 		dev_addr = xdma_chan->cfg.src_addr;
632 		src = &dev_addr;
633 		dst = &addr;
634 	}
635 
636 	desc_num = 0;
637 	for_each_sg(sgl, sg, sg_len, i) {
638 		addr = sg_dma_address(sg);
639 		desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num);
640 		dev_addr += sg_dma_len(sg);
641 	}
642 
643 	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
644 	if (!tx_desc)
645 		goto failed;
646 
647 	return tx_desc;
648 
649 failed:
650 	xdma_free_desc(&sw_desc->vdesc);
651 
652 	return NULL;
653 }
654 
655 /**
656  * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions
657  * @chan: DMA channel pointer
658  * @address: Device DMA address to access
659  * @size: Total length to transfer
660  * @period_size: Period size to use for each transfer
661  * @dir: Transfer direction
662  * @flags: Transfer ack flags
663  */
664 static struct dma_async_tx_descriptor *
665 xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
666 		     size_t size, size_t period_size,
667 		     enum dma_transfer_direction dir,
668 		     unsigned long flags)
669 {
670 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
671 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
672 	unsigned int periods = size / period_size;
673 	struct dma_async_tx_descriptor *tx_desc;
674 	struct xdma_desc *sw_desc;
675 	u64 addr, dev_addr, *src, *dst;
676 	u32 desc_num;
677 	unsigned int i;
678 
679 	/*
680 	 * Simplify the whole logic by preventing an abnormally high number of
681 	 * periods and periods size.
682 	 */
683 	if (period_size > XDMA_DESC_BLEN_MAX) {
684 		xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX);
685 		return NULL;
686 	}
687 
688 	if (periods > XDMA_DESC_ADJACENT) {
689 		xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT);
690 		return NULL;
691 	}
692 
693 	sw_desc = xdma_alloc_desc(xdma_chan, periods, true);
694 	if (!sw_desc)
695 		return NULL;
696 
697 	sw_desc->periods = periods;
698 	sw_desc->period_size = period_size;
699 	sw_desc->dir = dir;
700 	sw_desc->interleaved_dma = false;
701 
702 	addr = address;
703 	if (dir == DMA_MEM_TO_DEV) {
704 		dev_addr = xdma_chan->cfg.dst_addr;
705 		src = &addr;
706 		dst = &dev_addr;
707 	} else {
708 		dev_addr = xdma_chan->cfg.src_addr;
709 		src = &dev_addr;
710 		dst = &addr;
711 	}
712 
713 	desc_num = 0;
714 	for (i = 0; i < periods; i++) {
715 		desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num);
716 		addr += period_size;
717 	}
718 
719 	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
720 	if (!tx_desc)
721 		goto failed;
722 
723 	return tx_desc;
724 
725 failed:
726 	xdma_free_desc(&sw_desc->vdesc);
727 
728 	return NULL;
729 }
730 
731 /**
732  * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers
733  * @chan: DMA channel
734  * @xt: DMA transfer template
735  * @flags: tx flags
736  */
737 static struct dma_async_tx_descriptor *
738 xdma_prep_interleaved_dma(struct dma_chan *chan,
739 			  struct dma_interleaved_template *xt,
740 			  unsigned long flags)
741 {
742 	int i;
743 	u32 desc_num = 0, period_size = 0;
744 	struct dma_async_tx_descriptor *tx_desc;
745 	struct xdma_chan *xchan = to_xdma_chan(chan);
746 	struct xdma_desc *sw_desc;
747 	u64 src_addr, dst_addr;
748 
749 	for (i = 0; i < xt->frame_size; ++i)
750 		desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX);
751 
752 	sw_desc = xdma_alloc_desc(xchan, desc_num, false);
753 	if (!sw_desc)
754 		return NULL;
755 	sw_desc->dir = xt->dir;
756 	sw_desc->interleaved_dma = true;
757 	sw_desc->cyclic = flags & DMA_PREP_REPEAT;
758 	sw_desc->frames_left = xt->numf;
759 	sw_desc->periods = xt->numf;
760 
761 	desc_num = 0;
762 	src_addr = xt->src_start;
763 	dst_addr = xt->dst_start;
764 	for (i = 0; i < xt->frame_size; ++i) {
765 		desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num);
766 		src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ?
767 							      xt->sgl[i].size : 0);
768 		dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ?
769 							      xt->sgl[i].size : 0);
770 		period_size += xt->sgl[i].size;
771 	}
772 	sw_desc->period_size = period_size;
773 
774 	tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags);
775 	if (tx_desc)
776 		return tx_desc;
777 
778 	xdma_free_desc(&sw_desc->vdesc);
779 	return NULL;
780 }
781 
782 /**
783  * xdma_device_config - Configure the DMA channel
784  * @chan: DMA channel
785  * @cfg: channel configuration
786  */
787 static int xdma_device_config(struct dma_chan *chan,
788 			      struct dma_slave_config *cfg)
789 {
790 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
791 
792 	memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));
793 
794 	return 0;
795 }
796 
797 /**
798  * xdma_free_chan_resources - Free channel resources
799  * @chan: DMA channel
800  */
801 static void xdma_free_chan_resources(struct dma_chan *chan)
802 {
803 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
804 
805 	vchan_free_chan_resources(&xdma_chan->vchan);
806 	dma_pool_destroy(xdma_chan->desc_pool);
807 	xdma_chan->desc_pool = NULL;
808 }
809 
810 /**
811  * xdma_alloc_chan_resources - Allocate channel resources
812  * @chan: DMA channel
813  */
814 static int xdma_alloc_chan_resources(struct dma_chan *chan)
815 {
816 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
817 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
818 	struct device *dev = xdev->dma_dev.dev;
819 
820 	while (dev && !dev_is_pci(dev))
821 		dev = dev->parent;
822 	if (!dev) {
823 		xdma_err(xdev, "unable to find pci device");
824 		return -EINVAL;
825 	}
826 
827 	xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE,
828 					       XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY);
829 	if (!xdma_chan->desc_pool) {
830 		xdma_err(xdev, "unable to allocate descriptor pool");
831 		return -ENOMEM;
832 	}
833 
834 	return 0;
835 }
836 
837 static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
838 				      struct dma_tx_state *state)
839 {
840 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
841 	struct xdma_desc *desc = NULL;
842 	struct virt_dma_desc *vd;
843 	enum dma_status ret;
844 	unsigned long flags;
845 	unsigned int period_idx;
846 	u32 residue = 0;
847 
848 	ret = dma_cookie_status(chan, cookie, state);
849 	if (ret == DMA_COMPLETE)
850 		return ret;
851 
852 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
853 
854 	vd = vchan_find_desc(&xdma_chan->vchan, cookie);
855 	if (!vd)
856 		goto out;
857 
858 	desc = to_xdma_desc(vd);
859 	if (desc->error) {
860 		ret = DMA_ERROR;
861 	} else if (desc->cyclic) {
862 		period_idx = desc->completed_desc_num % desc->periods;
863 		residue = (desc->periods - period_idx) * desc->period_size;
864 		dma_set_residue(state, residue);
865 	}
866 out:
867 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
868 
869 	return ret;
870 }
871 
872 /**
873  * xdma_channel_isr - XDMA channel interrupt handler
874  * @irq: IRQ number
875  * @dev_id: Pointer to the DMA channel structure
876  */
877 static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
878 {
879 	struct xdma_chan *xchan = dev_id;
880 	u32 complete_desc_num = 0;
881 	struct xdma_device *xdev = xchan->xdev_hdl;
882 	struct virt_dma_desc *vd, *next_vd;
883 	struct xdma_desc *desc;
884 	int ret;
885 	u32 st;
886 	bool repeat_tx;
887 
888 	if (xchan->stop_requested)
889 		complete(&xchan->last_interrupt);
890 
891 	spin_lock(&xchan->vchan.lock);
892 
893 	/* get submitted request */
894 	vd = vchan_next_desc(&xchan->vchan);
895 	if (!vd)
896 		goto out;
897 
898 	/* Clear-on-read the status register */
899 	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st);
900 	if (ret)
901 		goto out;
902 
903 	desc = to_xdma_desc(vd);
904 
905 	st &= XDMA_CHAN_STATUS_MASK;
906 	if ((st & XDMA_CHAN_ERROR_MASK) ||
907 	    !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) {
908 		desc->error = true;
909 		xdma_err(xdev, "channel error, status register value: 0x%x", st);
910 		goto out;
911 	}
912 
913 	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
914 			  &complete_desc_num);
915 	if (ret)
916 		goto out;
917 
918 	if (desc->interleaved_dma) {
919 		xchan->busy = false;
920 		desc->completed_desc_num += complete_desc_num;
921 		if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) {
922 			xdma_xfer_start(xchan);
923 			goto out;
924 		}
925 
926 		/* last desc of any frame */
927 		desc->frames_left--;
928 		if (desc->frames_left)
929 			goto out;
930 
931 		/* last desc of the last frame  */
932 		repeat_tx = vd->tx.flags & DMA_PREP_REPEAT;
933 		next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node);
934 		if (next_vd)
935 			repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT);
936 		if (repeat_tx) {
937 			desc->frames_left = desc->periods;
938 			desc->completed_desc_num = 0;
939 			vchan_cyclic_callback(vd);
940 		} else {
941 			list_del(&vd->node);
942 			vchan_cookie_complete(vd);
943 		}
944 		/* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */
945 		xdma_xfer_start(xchan);
946 	} else if (!desc->cyclic) {
947 		xchan->busy = false;
948 		desc->completed_desc_num += complete_desc_num;
949 
950 		/* if all data blocks are transferred, remove and complete the request */
951 		if (desc->completed_desc_num == desc->desc_num) {
952 			list_del(&vd->node);
953 			vchan_cookie_complete(vd);
954 			goto out;
955 		}
956 
957 		if (desc->completed_desc_num > desc->desc_num ||
958 		    complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
959 			goto out;
960 
961 		/* transfer the rest of data */
962 		xdma_xfer_start(xchan);
963 	} else {
964 		desc->completed_desc_num = complete_desc_num;
965 		vchan_cyclic_callback(vd);
966 	}
967 
968 out:
969 	spin_unlock(&xchan->vchan.lock);
970 	return IRQ_HANDLED;
971 }
972 
973 /**
974  * xdma_irq_fini - Uninitialize IRQ
975  * @xdev: DMA device pointer
976  */
977 static void xdma_irq_fini(struct xdma_device *xdev)
978 {
979 	int i;
980 
981 	/* disable interrupt */
982 	regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);
983 
984 	/* free irq handler */
985 	for (i = 0; i < xdev->h2c_chan_num; i++)
986 		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
987 
988 	for (i = 0; i < xdev->c2h_chan_num; i++)
989 		free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
990 }
991 
992 /**
993  * xdma_set_vector_reg - configure hardware IRQ registers
994  * @xdev: DMA device pointer
995  * @vec_tbl_start: Start of IRQ registers
996  * @irq_start: Start of IRQ
997  * @irq_num: Number of IRQ
998  */
999 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
1000 			       u32 irq_start, u32 irq_num)
1001 {
1002 	u32 shift, i, val = 0;
1003 	int ret;
1004 
1005 	/* Each IRQ register is 32 bit and contains 4 IRQs */
1006 	while (irq_num > 0) {
1007 		for (i = 0; i < 4; i++) {
1008 			shift = XDMA_IRQ_VEC_SHIFT * i;
1009 			val |= irq_start << shift;
1010 			irq_start++;
1011 			irq_num--;
1012 			if (!irq_num)
1013 				break;
1014 		}
1015 
1016 		/* write IRQ register */
1017 		ret = regmap_write(xdev->rmap, vec_tbl_start, val);
1018 		if (ret)
1019 			return ret;
1020 		vec_tbl_start += sizeof(u32);
1021 		val = 0;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * xdma_irq_init - initialize IRQs
1029  * @xdev: DMA device pointer
1030  */
1031 static int xdma_irq_init(struct xdma_device *xdev)
1032 {
1033 	u32 irq = xdev->irq_start;
1034 	u32 user_irq_start;
1035 	int i, j, ret;
1036 
1037 	/* return failure if there are not enough IRQs */
1038 	if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
1039 		xdma_err(xdev, "not enough irq");
1040 		return -EINVAL;
1041 	}
1042 
1043 	/* setup H2C interrupt handler */
1044 	for (i = 0; i < xdev->h2c_chan_num; i++) {
1045 		ret = request_irq(irq, xdma_channel_isr, 0,
1046 				  "xdma-h2c-channel", &xdev->h2c_chans[i]);
1047 		if (ret) {
1048 			xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
1049 				 i, irq, ret);
1050 			goto failed_init_h2c;
1051 		}
1052 		xdev->h2c_chans[i].irq = irq;
1053 		irq++;
1054 	}
1055 
1056 	/* setup C2H interrupt handler */
1057 	for (j = 0; j < xdev->c2h_chan_num; j++) {
1058 		ret = request_irq(irq, xdma_channel_isr, 0,
1059 				  "xdma-c2h-channel", &xdev->c2h_chans[j]);
1060 		if (ret) {
1061 			xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
1062 				 j, irq, ret);
1063 			goto failed_init_c2h;
1064 		}
1065 		xdev->c2h_chans[j].irq = irq;
1066 		irq++;
1067 	}
1068 
1069 	/* config hardware IRQ registers */
1070 	ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
1071 				  XDMA_CHAN_NUM(xdev));
1072 	if (ret) {
1073 		xdma_err(xdev, "failed to set channel vectors: %d", ret);
1074 		goto failed_init_c2h;
1075 	}
1076 
1077 	/* config user IRQ registers if needed */
1078 	user_irq_start = XDMA_CHAN_NUM(xdev);
1079 	if (xdev->irq_num > user_irq_start) {
1080 		ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
1081 					  user_irq_start,
1082 					  xdev->irq_num - user_irq_start);
1083 		if (ret) {
1084 			xdma_err(xdev, "failed to set user vectors: %d", ret);
1085 			goto failed_init_c2h;
1086 		}
1087 	}
1088 
1089 	/* enable interrupt */
1090 	ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
1091 	if (ret)
1092 		goto failed_init_c2h;
1093 
1094 	return 0;
1095 
1096 failed_init_c2h:
1097 	while (j--)
1098 		free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
1099 failed_init_h2c:
1100 	while (i--)
1101 		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
1102 
1103 	return ret;
1104 }
1105 
1106 static bool xdma_filter_fn(struct dma_chan *chan, void *param)
1107 {
1108 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
1109 	struct xdma_chan_info *chan_info = param;
1110 
1111 	return chan_info->dir == xdma_chan->dir;
1112 }
1113 
1114 /**
1115  * xdma_disable_user_irq - Disable user interrupt
1116  * @pdev: Pointer to the platform_device structure
1117  * @irq_num: System IRQ number
1118  */
1119 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
1120 {
1121 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1122 	u32 index;
1123 
1124 	index = irq_num - xdev->irq_start;
1125 	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1126 		xdma_err(xdev, "invalid user irq number");
1127 		return;
1128 	}
1129 	index -= XDMA_CHAN_NUM(xdev);
1130 
1131 	regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
1132 }
1133 EXPORT_SYMBOL(xdma_disable_user_irq);
1134 
1135 /**
1136  * xdma_enable_user_irq - Enable user logic interrupt
1137  * @pdev: Pointer to the platform_device structure
1138  * @irq_num: System IRQ number
1139  */
1140 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
1141 {
1142 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1143 	u32 index;
1144 	int ret;
1145 
1146 	index = irq_num - xdev->irq_start;
1147 	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1148 		xdma_err(xdev, "invalid user irq number");
1149 		return -EINVAL;
1150 	}
1151 	index -= XDMA_CHAN_NUM(xdev);
1152 
1153 	ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
1154 	if (ret)
1155 		return ret;
1156 
1157 	return 0;
1158 }
1159 EXPORT_SYMBOL(xdma_enable_user_irq);
1160 
1161 /**
1162  * xdma_get_user_irq - Get system IRQ number
1163  * @pdev: Pointer to the platform_device structure
1164  * @user_irq_index: User logic IRQ wire index
1165  *
1166  * Return: The system IRQ number allocated for the given wire index.
1167  */
1168 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
1169 {
1170 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1171 
1172 	if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
1173 		xdma_err(xdev, "invalid user irq index");
1174 		return -EINVAL;
1175 	}
1176 
1177 	return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
1178 }
1179 EXPORT_SYMBOL(xdma_get_user_irq);
1180 
1181 /**
1182  * xdma_remove - Driver remove function
1183  * @pdev: Pointer to the platform_device structure
1184  */
1185 static void xdma_remove(struct platform_device *pdev)
1186 {
1187 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1188 
1189 	if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
1190 		xdma_irq_fini(xdev);
1191 
1192 	if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
1193 		dma_async_device_unregister(&xdev->dma_dev);
1194 }
1195 
1196 /**
1197  * xdma_probe - Driver probe function
1198  * @pdev: Pointer to the platform_device structure
1199  */
1200 static int xdma_probe(struct platform_device *pdev)
1201 {
1202 	struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
1203 	struct xdma_device *xdev;
1204 	void __iomem *reg_base;
1205 	struct resource *res;
1206 	int ret = -ENODEV;
1207 
1208 	if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
1209 		dev_err(&pdev->dev, "invalid max dma channels %d",
1210 			pdata->max_dma_channels);
1211 		return -EINVAL;
1212 	}
1213 
1214 	xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
1215 	if (!xdev)
1216 		return -ENOMEM;
1217 
1218 	platform_set_drvdata(pdev, xdev);
1219 	xdev->pdev = pdev;
1220 
1221 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1222 	if (!res) {
1223 		xdma_err(xdev, "failed to get irq resource");
1224 		goto failed;
1225 	}
1226 	xdev->irq_start = res->start;
1227 	xdev->irq_num = resource_size(res);
1228 
1229 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1230 	if (!res) {
1231 		xdma_err(xdev, "failed to get io resource");
1232 		goto failed;
1233 	}
1234 
1235 	reg_base = devm_ioremap_resource(&pdev->dev, res);
1236 	if (IS_ERR(reg_base)) {
1237 		xdma_err(xdev, "ioremap failed");
1238 		goto failed;
1239 	}
1240 
1241 	xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
1242 					   &xdma_regmap_config);
1243 	if (!xdev->rmap) {
1244 		xdma_err(xdev, "config regmap failed: %d", ret);
1245 		goto failed;
1246 	}
1247 	INIT_LIST_HEAD(&xdev->dma_dev.channels);
1248 
1249 	ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
1250 	if (ret) {
1251 		xdma_err(xdev, "config H2C channels failed: %d", ret);
1252 		goto failed;
1253 	}
1254 
1255 	ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
1256 	if (ret) {
1257 		xdma_err(xdev, "config C2H channels failed: %d", ret);
1258 		goto failed;
1259 	}
1260 
1261 	dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
1262 	dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
1263 	dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask);
1264 	dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask);
1265 	dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask);
1266 	dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask);
1267 
1268 	xdev->dma_dev.dev = &pdev->dev;
1269 	xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1270 	xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
1271 	xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
1272 	xdev->dma_dev.device_tx_status = xdma_tx_status;
1273 	xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
1274 	xdev->dma_dev.device_config = xdma_device_config;
1275 	xdev->dma_dev.device_issue_pending = xdma_issue_pending;
1276 	xdev->dma_dev.device_terminate_all = xdma_terminate_all;
1277 	xdev->dma_dev.device_synchronize = xdma_synchronize;
1278 	xdev->dma_dev.filter.map = pdata->device_map;
1279 	xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
1280 	xdev->dma_dev.filter.fn = xdma_filter_fn;
1281 	xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic;
1282 	xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma;
1283 
1284 	ret = dma_async_device_register(&xdev->dma_dev);
1285 	if (ret) {
1286 		xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
1287 		goto failed;
1288 	}
1289 	xdev->status |= XDMA_DEV_STATUS_REG_DMA;
1290 
1291 	ret = xdma_irq_init(xdev);
1292 	if (ret) {
1293 		xdma_err(xdev, "failed to init msix: %d", ret);
1294 		goto failed;
1295 	}
1296 	xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;
1297 
1298 	return 0;
1299 
1300 failed:
1301 	xdma_remove(pdev);
1302 
1303 	return ret;
1304 }
1305 
1306 static const struct platform_device_id xdma_id_table[] = {
1307 	{ "xdma", 0},
1308 	{ },
1309 };
1310 MODULE_DEVICE_TABLE(platform, xdma_id_table);
1311 
1312 static struct platform_driver xdma_driver = {
1313 	.driver		= {
1314 		.name = "xdma",
1315 	},
1316 	.id_table	= xdma_id_table,
1317 	.probe		= xdma_probe,
1318 	.remove_new	= xdma_remove,
1319 };
1320 
1321 module_platform_driver(xdma_driver);
1322 
1323 MODULE_DESCRIPTION("AMD XDMA driver");
1324 MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>");
1325 MODULE_LICENSE("GPL");
1326