xref: /linux/drivers/dma/xilinx/xdma.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DMA driver for Xilinx DMA/Bridge Subsystem
4  *
5  * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
6  * Copyright (C) 2022, Advanced Micro Devices, Inc.
7  */
8 
9 /*
10  * The DMA/Bridge Subsystem for PCI Express allows for the movement of data
11  * between Host memory and the DMA subsystem. It does this by operating on
12  * 'descriptors' that contain information about the source, destination and
13  * amount of data to transfer. These direct memory transfers can be both in
14  * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
15  * configured to have a single AXI4 Master interface shared by all channels
16  * or one AXI4-Stream interface for each channel enabled. Memory transfers are
17  * specified on a per-channel basis in descriptor linked lists, which the DMA
18  * fetches from host memory and processes. Events such as descriptor completion
19  * and errors are signaled using interrupts. The core also provides up to 16
20  * user interrupt wires that generate interrupts to the host.
21  */
22 
23 #include <linux/mod_devicetable.h>
24 #include <linux/bitfield.h>
25 #include <linux/dmapool.h>
26 #include <linux/regmap.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/amd_xdma.h>
29 #include <linux/platform_device.h>
30 #include <linux/platform_data/amd_xdma.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/pci.h>
33 #include "../virt-dma.h"
34 #include "xdma-regs.h"
35 
36 /* mmio regmap config for all XDMA registers */
37 static const struct regmap_config xdma_regmap_config = {
38 	.reg_bits = 32,
39 	.val_bits = 32,
40 	.reg_stride = 4,
41 	.max_register = XDMA_REG_SPACE_LEN,
42 };
43 
44 /**
45  * struct xdma_desc_block - Descriptor block
46  * @virt_addr: Virtual address of block start
47  * @dma_addr: DMA address of block start
48  */
49 struct xdma_desc_block {
50 	void		*virt_addr;
51 	dma_addr_t	dma_addr;
52 };
53 
54 /**
55  * struct xdma_chan - Driver specific DMA channel structure
56  * @vchan: Virtual channel
57  * @xdev_hdl: Pointer to DMA device structure
58  * @base: Offset of channel registers
59  * @desc_pool: Descriptor pool
60  * @busy: Busy flag of the channel
61  * @dir: Transferring direction of the channel
62  * @cfg: Transferring config of the channel
63  * @irq: IRQ assigned to the channel
64  */
65 struct xdma_chan {
66 	struct virt_dma_chan		vchan;
67 	void				*xdev_hdl;
68 	u32				base;
69 	struct dma_pool			*desc_pool;
70 	bool				busy;
71 	enum dma_transfer_direction	dir;
72 	struct dma_slave_config		cfg;
73 	u32				irq;
74 };
75 
76 /**
77  * struct xdma_desc - DMA desc structure
78  * @vdesc: Virtual DMA descriptor
79  * @chan: DMA channel pointer
80  * @dir: Transferring direction of the request
81  * @desc_blocks: Hardware descriptor blocks
82  * @dblk_num: Number of hardware descriptor blocks
83  * @desc_num: Number of hardware descriptors
84  * @completed_desc_num: Completed hardware descriptors
85  * @cyclic: Cyclic transfer vs. scatter-gather
86  * @interleaved_dma: Interleaved DMA transfer
87  * @periods: Number of periods in the cyclic transfer
88  * @period_size: Size of a period in bytes in cyclic transfers
89  * @frames_left: Number of frames left in interleaved DMA transfer
90  * @error: tx error flag
91  */
92 struct xdma_desc {
93 	struct virt_dma_desc		vdesc;
94 	struct xdma_chan		*chan;
95 	enum dma_transfer_direction	dir;
96 	struct xdma_desc_block		*desc_blocks;
97 	u32				dblk_num;
98 	u32				desc_num;
99 	u32				completed_desc_num;
100 	bool				cyclic;
101 	bool				interleaved_dma;
102 	u32				periods;
103 	u32				period_size;
104 	u32				frames_left;
105 	bool				error;
106 };
107 
108 #define XDMA_DEV_STATUS_REG_DMA		BIT(0)
109 #define XDMA_DEV_STATUS_INIT_MSIX	BIT(1)
110 
111 /**
112  * struct xdma_device - DMA device structure
113  * @pdev: Platform device pointer
114  * @dma_dev: DMA device structure
115  * @rmap: MMIO regmap for DMA registers
116  * @h2c_chans: Host to Card channels
117  * @c2h_chans: Card to Host channels
118  * @h2c_chan_num: Number of H2C channels
119  * @c2h_chan_num: Number of C2H channels
120  * @irq_start: Start IRQ assigned to device
121  * @irq_num: Number of IRQ assigned to device
122  * @status: Initialization status
123  */
124 struct xdma_device {
125 	struct platform_device	*pdev;
126 	struct dma_device	dma_dev;
127 	struct regmap		*rmap;
128 	struct xdma_chan	*h2c_chans;
129 	struct xdma_chan	*c2h_chans;
130 	u32			h2c_chan_num;
131 	u32			c2h_chan_num;
132 	u32			irq_start;
133 	u32			irq_num;
134 	u32			status;
135 };
136 
137 #define xdma_err(xdev, fmt, args...)					\
138 	dev_err(&(xdev)->pdev->dev, fmt, ##args)
139 #define XDMA_CHAN_NUM(_xd) ({						\
140 	typeof(_xd) (xd) = (_xd);					\
141 	((xd)->h2c_chan_num + (xd)->c2h_chan_num); })
142 
143 /* Get the last desc in a desc block */
144 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
145 {
146 	return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
147 }
148 
149 /**
150  * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer
151  * @sw_desc: Tx descriptor pointer
152  */
153 static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc)
154 {
155 	struct xdma_desc_block *block;
156 	u32 last_blk_desc, desc_control;
157 	struct xdma_hw_desc *desc;
158 	int i;
159 
160 	desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
161 	for (i = 1; i < sw_desc->dblk_num; i++) {
162 		block = &sw_desc->desc_blocks[i - 1];
163 		desc = xdma_blk_last_desc(block);
164 
165 		if (!(i & XDMA_DESC_BLOCK_MASK)) {
166 			desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
167 			continue;
168 		}
169 		desc->control = cpu_to_le32(desc_control);
170 		desc->next_desc = cpu_to_le64(block[1].dma_addr);
171 	}
172 
173 	/* update the last block */
174 	last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
175 	if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
176 		block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
177 		desc = xdma_blk_last_desc(block);
178 		desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
179 		desc->control = cpu_to_le32(desc_control);
180 	}
181 
182 	block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
183 	desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
184 	desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
185 }
186 
187 /**
188  * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer
189  * @sw_desc: Tx descriptor pointer
190  */
191 static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc)
192 {
193 	struct xdma_desc_block *block;
194 	struct xdma_hw_desc *desc;
195 	int i;
196 
197 	block = sw_desc->desc_blocks;
198 	for (i = 0; i < sw_desc->desc_num - 1; i++) {
199 		desc = block->virt_addr + i * XDMA_DESC_SIZE;
200 		desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE));
201 	}
202 	desc = block->virt_addr + i * XDMA_DESC_SIZE;
203 	desc->next_desc = cpu_to_le64(block->dma_addr);
204 }
205 
206 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
207 {
208 	return container_of(chan, struct xdma_chan, vchan.chan);
209 }
210 
211 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
212 {
213 	return container_of(vdesc, struct xdma_desc, vdesc);
214 }
215 
216 /**
217  * xdma_channel_init - Initialize DMA channel registers
218  * @chan: DMA channel pointer
219  */
220 static int xdma_channel_init(struct xdma_chan *chan)
221 {
222 	struct xdma_device *xdev = chan->xdev_hdl;
223 	int ret;
224 
225 	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
226 			   CHAN_CTRL_NON_INCR_ADDR);
227 	if (ret)
228 		return ret;
229 
230 	ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
231 			   CHAN_IM_ALL);
232 	if (ret)
233 		return ret;
234 
235 	return 0;
236 }
237 
238 /**
239  * xdma_free_desc - Free descriptor
240  * @vdesc: Virtual DMA descriptor
241  */
242 static void xdma_free_desc(struct virt_dma_desc *vdesc)
243 {
244 	struct xdma_desc *sw_desc;
245 	int i;
246 
247 	sw_desc = to_xdma_desc(vdesc);
248 	for (i = 0; i < sw_desc->dblk_num; i++) {
249 		if (!sw_desc->desc_blocks[i].virt_addr)
250 			break;
251 		dma_pool_free(sw_desc->chan->desc_pool,
252 			      sw_desc->desc_blocks[i].virt_addr,
253 			      sw_desc->desc_blocks[i].dma_addr);
254 	}
255 	kfree(sw_desc->desc_blocks);
256 	kfree(sw_desc);
257 }
258 
259 /**
260  * xdma_alloc_desc - Allocate descriptor
261  * @chan: DMA channel pointer
262  * @desc_num: Number of hardware descriptors
263  * @cyclic: Whether this is a cyclic transfer
264  */
265 static struct xdma_desc *
266 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic)
267 {
268 	struct xdma_desc *sw_desc;
269 	struct xdma_hw_desc *desc;
270 	dma_addr_t dma_addr;
271 	u32 dblk_num;
272 	u32 control;
273 	void *addr;
274 	int i, j;
275 
276 	sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
277 	if (!sw_desc)
278 		return NULL;
279 
280 	sw_desc->chan = chan;
281 	sw_desc->desc_num = desc_num;
282 	sw_desc->cyclic = cyclic;
283 	sw_desc->error = false;
284 	dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
285 	sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
286 				       GFP_NOWAIT);
287 	if (!sw_desc->desc_blocks)
288 		goto failed;
289 
290 	if (cyclic)
291 		control = XDMA_DESC_CONTROL_CYCLIC;
292 	else
293 		control = XDMA_DESC_CONTROL(1, 0);
294 
295 	sw_desc->dblk_num = dblk_num;
296 	for (i = 0; i < sw_desc->dblk_num; i++) {
297 		addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
298 		if (!addr)
299 			goto failed;
300 
301 		sw_desc->desc_blocks[i].virt_addr = addr;
302 		sw_desc->desc_blocks[i].dma_addr = dma_addr;
303 		for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
304 			desc[j].control = cpu_to_le32(control);
305 	}
306 
307 	if (cyclic)
308 		xdma_link_cyclic_desc_blocks(sw_desc);
309 	else
310 		xdma_link_sg_desc_blocks(sw_desc);
311 
312 	return sw_desc;
313 
314 failed:
315 	xdma_free_desc(&sw_desc->vdesc);
316 	return NULL;
317 }
318 
319 /**
320  * xdma_xfer_start - Start DMA transfer
321  * @xchan: DMA channel pointer
322  */
323 static int xdma_xfer_start(struct xdma_chan *xchan)
324 {
325 	struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
326 	struct xdma_device *xdev = xchan->xdev_hdl;
327 	struct xdma_desc_block *block;
328 	u32 val, completed_blocks;
329 	struct xdma_desc *desc;
330 	int ret;
331 
332 	/*
333 	 * check if there is not any submitted descriptor or channel is busy.
334 	 * vchan lock should be held where this function is called.
335 	 */
336 	if (!vd || xchan->busy)
337 		return -EINVAL;
338 
339 	/* clear run stop bit to get ready for transfer */
340 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
341 			   CHAN_CTRL_RUN_STOP);
342 	if (ret)
343 		return ret;
344 
345 	desc = to_xdma_desc(vd);
346 	if (desc->dir != xchan->dir) {
347 		xdma_err(xdev, "incorrect request direction");
348 		return -EINVAL;
349 	}
350 
351 	/* set DMA engine to the first descriptor block */
352 	completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
353 	block = &desc->desc_blocks[completed_blocks];
354 	val = lower_32_bits(block->dma_addr);
355 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
356 	if (ret)
357 		return ret;
358 
359 	val = upper_32_bits(block->dma_addr);
360 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
361 	if (ret)
362 		return ret;
363 
364 	if (completed_blocks + 1 == desc->dblk_num)
365 		val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
366 	else
367 		val = XDMA_DESC_ADJACENT - 1;
368 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
369 	if (ret)
370 		return ret;
371 
372 	/* kick off DMA transfer */
373 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
374 			   CHAN_CTRL_START);
375 	if (ret)
376 		return ret;
377 
378 	xchan->busy = true;
379 
380 	return 0;
381 }
382 
383 /**
384  * xdma_xfer_stop - Stop DMA transfer
385  * @xchan: DMA channel pointer
386  */
387 static int xdma_xfer_stop(struct xdma_chan *xchan)
388 {
389 	int ret;
390 	u32 val;
391 	struct xdma_device *xdev = xchan->xdev_hdl;
392 
393 	/* clear run stop bit to prevent any further auto-triggering */
394 	ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
395 			   CHAN_CTRL_RUN_STOP);
396 	if (ret)
397 		return ret;
398 
399 	/* Clear the channel status register */
400 	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &val);
401 	if (ret)
402 		return ret;
403 
404 	return 0;
405 }
406 
407 /**
408  * xdma_alloc_channels - Detect and allocate DMA channels
409  * @xdev: DMA device pointer
410  * @dir: Channel direction
411  */
412 static int xdma_alloc_channels(struct xdma_device *xdev,
413 			       enum dma_transfer_direction dir)
414 {
415 	struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
416 	struct xdma_chan **chans, *xchan;
417 	u32 base, identifier, target;
418 	u32 *chan_num;
419 	int i, j, ret;
420 
421 	if (dir == DMA_MEM_TO_DEV) {
422 		base = XDMA_CHAN_H2C_OFFSET;
423 		target = XDMA_CHAN_H2C_TARGET;
424 		chans = &xdev->h2c_chans;
425 		chan_num = &xdev->h2c_chan_num;
426 	} else if (dir == DMA_DEV_TO_MEM) {
427 		base = XDMA_CHAN_C2H_OFFSET;
428 		target = XDMA_CHAN_C2H_TARGET;
429 		chans = &xdev->c2h_chans;
430 		chan_num = &xdev->c2h_chan_num;
431 	} else {
432 		xdma_err(xdev, "invalid direction specified");
433 		return -EINVAL;
434 	}
435 
436 	/* detect number of available DMA channels */
437 	for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
438 		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
439 				  &identifier);
440 		if (ret)
441 			return ret;
442 
443 		/* check if it is available DMA channel */
444 		if (XDMA_CHAN_CHECK_TARGET(identifier, target))
445 			(*chan_num)++;
446 	}
447 
448 	if (!*chan_num) {
449 		xdma_err(xdev, "does not probe any channel");
450 		return -EINVAL;
451 	}
452 
453 	*chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
454 			      GFP_KERNEL);
455 	if (!*chans)
456 		return -ENOMEM;
457 
458 	for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
459 		ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
460 				  &identifier);
461 		if (ret)
462 			return ret;
463 
464 		if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
465 			continue;
466 
467 		if (j == *chan_num) {
468 			xdma_err(xdev, "invalid channel number");
469 			return -EIO;
470 		}
471 
472 		/* init channel structure and hardware */
473 		xchan = &(*chans)[j];
474 		xchan->xdev_hdl = xdev;
475 		xchan->base = base + i * XDMA_CHAN_STRIDE;
476 		xchan->dir = dir;
477 
478 		ret = xdma_channel_init(xchan);
479 		if (ret)
480 			return ret;
481 		xchan->vchan.desc_free = xdma_free_desc;
482 		vchan_init(&xchan->vchan, &xdev->dma_dev);
483 
484 		j++;
485 	}
486 
487 	dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
488 		 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");
489 
490 	return 0;
491 }
492 
493 /**
494  * xdma_issue_pending - Issue pending transactions
495  * @chan: DMA channel pointer
496  */
497 static void xdma_issue_pending(struct dma_chan *chan)
498 {
499 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
500 	unsigned long flags;
501 
502 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
503 	if (vchan_issue_pending(&xdma_chan->vchan))
504 		xdma_xfer_start(xdma_chan);
505 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
506 }
507 
508 /**
509  * xdma_terminate_all - Terminate all transactions
510  * @chan: DMA channel pointer
511  */
512 static int xdma_terminate_all(struct dma_chan *chan)
513 {
514 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
515 	struct virt_dma_desc *vd;
516 	unsigned long flags;
517 	LIST_HEAD(head);
518 
519 	xdma_xfer_stop(xdma_chan);
520 
521 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
522 
523 	xdma_chan->busy = false;
524 	vd = vchan_next_desc(&xdma_chan->vchan);
525 	if (vd) {
526 		list_del(&vd->node);
527 		dma_cookie_complete(&vd->tx);
528 		vchan_terminate_vdesc(vd);
529 	}
530 	vchan_get_all_descriptors(&xdma_chan->vchan, &head);
531 	list_splice_tail(&head, &xdma_chan->vchan.desc_terminated);
532 
533 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
534 
535 	return 0;
536 }
537 
538 /**
539  * xdma_synchronize - Synchronize terminated transactions
540  * @chan: DMA channel pointer
541  */
542 static void xdma_synchronize(struct dma_chan *chan)
543 {
544 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
545 
546 	vchan_synchronize(&xdma_chan->vchan);
547 }
548 
549 /**
550  * xdma_fill_descs - Fill hardware descriptors with contiguous memory block addresses
551  * @sw_desc: tx descriptor state container
552  * @src_addr: Value for a ->src_addr field of a first descriptor
553  * @dst_addr: Value for a ->dst_addr field of a first descriptor
554  * @size: Total size of a contiguous memory block
555  * @filled_descs_num: Number of filled hardware descriptors for corresponding sw_desc
556  */
557 static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr,
558 				  u64 dst_addr, u32 size, u32 filled_descs_num)
559 {
560 	u32 left = size, len, desc_num = filled_descs_num;
561 	struct xdma_desc_block *dblk;
562 	struct xdma_hw_desc *desc;
563 
564 	dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT);
565 	desc = dblk->virt_addr;
566 	desc += desc_num & XDMA_DESC_ADJACENT_MASK;
567 	do {
568 		len = min_t(u32, left, XDMA_DESC_BLEN_MAX);
569 		/* set hardware descriptor */
570 		desc->bytes = cpu_to_le32(len);
571 		desc->src_addr = cpu_to_le64(src_addr);
572 		desc->dst_addr = cpu_to_le64(dst_addr);
573 		if (!(++desc_num & XDMA_DESC_ADJACENT_MASK))
574 			desc = (++dblk)->virt_addr;
575 		else
576 			desc++;
577 
578 		src_addr += len;
579 		dst_addr += len;
580 		left -= len;
581 	} while (left);
582 
583 	return desc_num - filled_descs_num;
584 }
585 
586 /**
587  * xdma_prep_device_sg - prepare a descriptor for a DMA transaction
588  * @chan: DMA channel pointer
589  * @sgl: Transfer scatter gather list
590  * @sg_len: Length of scatter gather list
591  * @dir: Transfer direction
592  * @flags: transfer ack flags
593  * @context: APP words of the descriptor
594  */
595 static struct dma_async_tx_descriptor *
596 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
597 		    unsigned int sg_len, enum dma_transfer_direction dir,
598 		    unsigned long flags, void *context)
599 {
600 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
601 	struct dma_async_tx_descriptor *tx_desc;
602 	struct xdma_desc *sw_desc;
603 	u32 desc_num = 0, i;
604 	u64 addr, dev_addr, *src, *dst;
605 	struct scatterlist *sg;
606 
607 	for_each_sg(sgl, sg, sg_len, i)
608 		desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
609 
610 	sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false);
611 	if (!sw_desc)
612 		return NULL;
613 	sw_desc->dir = dir;
614 	sw_desc->cyclic = false;
615 	sw_desc->interleaved_dma = false;
616 
617 	if (dir == DMA_MEM_TO_DEV) {
618 		dev_addr = xdma_chan->cfg.dst_addr;
619 		src = &addr;
620 		dst = &dev_addr;
621 	} else {
622 		dev_addr = xdma_chan->cfg.src_addr;
623 		src = &dev_addr;
624 		dst = &addr;
625 	}
626 
627 	desc_num = 0;
628 	for_each_sg(sgl, sg, sg_len, i) {
629 		addr = sg_dma_address(sg);
630 		desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num);
631 		dev_addr += sg_dma_len(sg);
632 	}
633 
634 	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
635 	if (!tx_desc)
636 		goto failed;
637 
638 	return tx_desc;
639 
640 failed:
641 	xdma_free_desc(&sw_desc->vdesc);
642 
643 	return NULL;
644 }
645 
646 /**
647  * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions
648  * @chan: DMA channel pointer
649  * @address: Device DMA address to access
650  * @size: Total length to transfer
651  * @period_size: Period size to use for each transfer
652  * @dir: Transfer direction
653  * @flags: Transfer ack flags
654  */
655 static struct dma_async_tx_descriptor *
656 xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
657 		     size_t size, size_t period_size,
658 		     enum dma_transfer_direction dir,
659 		     unsigned long flags)
660 {
661 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
662 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
663 	unsigned int periods = size / period_size;
664 	struct dma_async_tx_descriptor *tx_desc;
665 	struct xdma_desc *sw_desc;
666 	u64 addr, dev_addr, *src, *dst;
667 	u32 desc_num;
668 	unsigned int i;
669 
670 	/*
671 	 * Simplify the whole logic by preventing an abnormally high number of
672 	 * periods and periods size.
673 	 */
674 	if (period_size > XDMA_DESC_BLEN_MAX) {
675 		xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX);
676 		return NULL;
677 	}
678 
679 	if (periods > XDMA_DESC_ADJACENT) {
680 		xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT);
681 		return NULL;
682 	}
683 
684 	sw_desc = xdma_alloc_desc(xdma_chan, periods, true);
685 	if (!sw_desc)
686 		return NULL;
687 
688 	sw_desc->periods = periods;
689 	sw_desc->period_size = period_size;
690 	sw_desc->dir = dir;
691 	sw_desc->interleaved_dma = false;
692 
693 	addr = address;
694 	if (dir == DMA_MEM_TO_DEV) {
695 		dev_addr = xdma_chan->cfg.dst_addr;
696 		src = &addr;
697 		dst = &dev_addr;
698 	} else {
699 		dev_addr = xdma_chan->cfg.src_addr;
700 		src = &dev_addr;
701 		dst = &addr;
702 	}
703 
704 	desc_num = 0;
705 	for (i = 0; i < periods; i++) {
706 		desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num);
707 		addr += i * period_size;
708 	}
709 
710 	tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
711 	if (!tx_desc)
712 		goto failed;
713 
714 	return tx_desc;
715 
716 failed:
717 	xdma_free_desc(&sw_desc->vdesc);
718 
719 	return NULL;
720 }
721 
722 /**
723  * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers
724  * @chan: DMA channel
725  * @xt: DMA transfer template
726  * @flags: tx flags
727  */
728 static struct dma_async_tx_descriptor *
729 xdma_prep_interleaved_dma(struct dma_chan *chan,
730 			  struct dma_interleaved_template *xt,
731 			  unsigned long flags)
732 {
733 	int i;
734 	u32 desc_num = 0, period_size = 0;
735 	struct dma_async_tx_descriptor *tx_desc;
736 	struct xdma_chan *xchan = to_xdma_chan(chan);
737 	struct xdma_desc *sw_desc;
738 	u64 src_addr, dst_addr;
739 
740 	for (i = 0; i < xt->frame_size; ++i)
741 		desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX);
742 
743 	sw_desc = xdma_alloc_desc(xchan, desc_num, false);
744 	if (!sw_desc)
745 		return NULL;
746 	sw_desc->dir = xt->dir;
747 	sw_desc->interleaved_dma = true;
748 	sw_desc->cyclic = flags & DMA_PREP_REPEAT;
749 	sw_desc->frames_left = xt->numf;
750 	sw_desc->periods = xt->numf;
751 
752 	desc_num = 0;
753 	src_addr = xt->src_start;
754 	dst_addr = xt->dst_start;
755 	for (i = 0; i < xt->frame_size; ++i) {
756 		desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num);
757 		src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ?
758 							      xt->sgl[i].size : 0);
759 		dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ?
760 							      xt->sgl[i].size : 0);
761 		period_size += xt->sgl[i].size;
762 	}
763 	sw_desc->period_size = period_size;
764 
765 	tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags);
766 	if (tx_desc)
767 		return tx_desc;
768 
769 	xdma_free_desc(&sw_desc->vdesc);
770 	return NULL;
771 }
772 
773 /**
774  * xdma_device_config - Configure the DMA channel
775  * @chan: DMA channel
776  * @cfg: channel configuration
777  */
778 static int xdma_device_config(struct dma_chan *chan,
779 			      struct dma_slave_config *cfg)
780 {
781 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
782 
783 	memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));
784 
785 	return 0;
786 }
787 
788 /**
789  * xdma_free_chan_resources - Free channel resources
790  * @chan: DMA channel
791  */
792 static void xdma_free_chan_resources(struct dma_chan *chan)
793 {
794 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
795 
796 	vchan_free_chan_resources(&xdma_chan->vchan);
797 	dma_pool_destroy(xdma_chan->desc_pool);
798 	xdma_chan->desc_pool = NULL;
799 }
800 
801 /**
802  * xdma_alloc_chan_resources - Allocate channel resources
803  * @chan: DMA channel
804  */
805 static int xdma_alloc_chan_resources(struct dma_chan *chan)
806 {
807 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
808 	struct xdma_device *xdev = xdma_chan->xdev_hdl;
809 	struct device *dev = xdev->dma_dev.dev;
810 
811 	while (dev && !dev_is_pci(dev))
812 		dev = dev->parent;
813 	if (!dev) {
814 		xdma_err(xdev, "unable to find pci device");
815 		return -EINVAL;
816 	}
817 
818 	xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE,
819 					       XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY);
820 	if (!xdma_chan->desc_pool) {
821 		xdma_err(xdev, "unable to allocate descriptor pool");
822 		return -ENOMEM;
823 	}
824 
825 	return 0;
826 }
827 
828 static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
829 				      struct dma_tx_state *state)
830 {
831 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
832 	struct xdma_desc *desc = NULL;
833 	struct virt_dma_desc *vd;
834 	enum dma_status ret;
835 	unsigned long flags;
836 	unsigned int period_idx;
837 	u32 residue = 0;
838 
839 	ret = dma_cookie_status(chan, cookie, state);
840 	if (ret == DMA_COMPLETE)
841 		return ret;
842 
843 	spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
844 
845 	vd = vchan_find_desc(&xdma_chan->vchan, cookie);
846 	if (!vd)
847 		goto out;
848 
849 	desc = to_xdma_desc(vd);
850 	if (desc->error) {
851 		ret = DMA_ERROR;
852 	} else if (desc->cyclic) {
853 		period_idx = desc->completed_desc_num % desc->periods;
854 		residue = (desc->periods - period_idx) * desc->period_size;
855 		dma_set_residue(state, residue);
856 	}
857 out:
858 	spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
859 
860 	return ret;
861 }
862 
863 /**
864  * xdma_channel_isr - XDMA channel interrupt handler
865  * @irq: IRQ number
866  * @dev_id: Pointer to the DMA channel structure
867  */
868 static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
869 {
870 	struct xdma_chan *xchan = dev_id;
871 	u32 complete_desc_num = 0;
872 	struct xdma_device *xdev = xchan->xdev_hdl;
873 	struct virt_dma_desc *vd, *next_vd;
874 	struct xdma_desc *desc;
875 	int ret;
876 	u32 st;
877 	bool repeat_tx;
878 
879 	spin_lock(&xchan->vchan.lock);
880 
881 	/* get submitted request */
882 	vd = vchan_next_desc(&xchan->vchan);
883 	if (!vd)
884 		goto out;
885 
886 	/* Clear-on-read the status register */
887 	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st);
888 	if (ret)
889 		goto out;
890 
891 	desc = to_xdma_desc(vd);
892 
893 	st &= XDMA_CHAN_STATUS_MASK;
894 	if ((st & XDMA_CHAN_ERROR_MASK) ||
895 	    !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) {
896 		desc->error = true;
897 		xdma_err(xdev, "channel error, status register value: 0x%x", st);
898 		goto out;
899 	}
900 
901 	ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
902 			  &complete_desc_num);
903 	if (ret)
904 		goto out;
905 
906 	if (desc->interleaved_dma) {
907 		xchan->busy = false;
908 		desc->completed_desc_num += complete_desc_num;
909 		if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) {
910 			xdma_xfer_start(xchan);
911 			goto out;
912 		}
913 
914 		/* last desc of any frame */
915 		desc->frames_left--;
916 		if (desc->frames_left)
917 			goto out;
918 
919 		/* last desc of the last frame  */
920 		repeat_tx = vd->tx.flags & DMA_PREP_REPEAT;
921 		next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node);
922 		if (next_vd)
923 			repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT);
924 		if (repeat_tx) {
925 			desc->frames_left = desc->periods;
926 			desc->completed_desc_num = 0;
927 			vchan_cyclic_callback(vd);
928 		} else {
929 			list_del(&vd->node);
930 			vchan_cookie_complete(vd);
931 		}
932 		/* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */
933 		xdma_xfer_start(xchan);
934 	} else if (!desc->cyclic) {
935 		xchan->busy = false;
936 		desc->completed_desc_num += complete_desc_num;
937 
938 		/* if all data blocks are transferred, remove and complete the request */
939 		if (desc->completed_desc_num == desc->desc_num) {
940 			list_del(&vd->node);
941 			vchan_cookie_complete(vd);
942 			goto out;
943 		}
944 
945 		if (desc->completed_desc_num > desc->desc_num ||
946 		    complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
947 			goto out;
948 
949 		/* transfer the rest of data */
950 		xdma_xfer_start(xchan);
951 	} else {
952 		desc->completed_desc_num = complete_desc_num;
953 		vchan_cyclic_callback(vd);
954 	}
955 
956 out:
957 	spin_unlock(&xchan->vchan.lock);
958 	return IRQ_HANDLED;
959 }
960 
961 /**
962  * xdma_irq_fini - Uninitialize IRQ
963  * @xdev: DMA device pointer
964  */
965 static void xdma_irq_fini(struct xdma_device *xdev)
966 {
967 	int i;
968 
969 	/* disable interrupt */
970 	regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);
971 
972 	/* free irq handler */
973 	for (i = 0; i < xdev->h2c_chan_num; i++)
974 		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
975 
976 	for (i = 0; i < xdev->c2h_chan_num; i++)
977 		free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
978 }
979 
980 /**
981  * xdma_set_vector_reg - configure hardware IRQ registers
982  * @xdev: DMA device pointer
983  * @vec_tbl_start: Start of IRQ registers
984  * @irq_start: Start of IRQ
985  * @irq_num: Number of IRQ
986  */
987 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
988 			       u32 irq_start, u32 irq_num)
989 {
990 	u32 shift, i, val = 0;
991 	int ret;
992 
993 	/* Each IRQ register is 32 bit and contains 4 IRQs */
994 	while (irq_num > 0) {
995 		for (i = 0; i < 4; i++) {
996 			shift = XDMA_IRQ_VEC_SHIFT * i;
997 			val |= irq_start << shift;
998 			irq_start++;
999 			irq_num--;
1000 			if (!irq_num)
1001 				break;
1002 		}
1003 
1004 		/* write IRQ register */
1005 		ret = regmap_write(xdev->rmap, vec_tbl_start, val);
1006 		if (ret)
1007 			return ret;
1008 		vec_tbl_start += sizeof(u32);
1009 		val = 0;
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * xdma_irq_init - initialize IRQs
1017  * @xdev: DMA device pointer
1018  */
1019 static int xdma_irq_init(struct xdma_device *xdev)
1020 {
1021 	u32 irq = xdev->irq_start;
1022 	u32 user_irq_start;
1023 	int i, j, ret;
1024 
1025 	/* return failure if there are not enough IRQs */
1026 	if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
1027 		xdma_err(xdev, "not enough irq");
1028 		return -EINVAL;
1029 	}
1030 
1031 	/* setup H2C interrupt handler */
1032 	for (i = 0; i < xdev->h2c_chan_num; i++) {
1033 		ret = request_irq(irq, xdma_channel_isr, 0,
1034 				  "xdma-h2c-channel", &xdev->h2c_chans[i]);
1035 		if (ret) {
1036 			xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
1037 				 i, irq, ret);
1038 			goto failed_init_h2c;
1039 		}
1040 		xdev->h2c_chans[i].irq = irq;
1041 		irq++;
1042 	}
1043 
1044 	/* setup C2H interrupt handler */
1045 	for (j = 0; j < xdev->c2h_chan_num; j++) {
1046 		ret = request_irq(irq, xdma_channel_isr, 0,
1047 				  "xdma-c2h-channel", &xdev->c2h_chans[j]);
1048 		if (ret) {
1049 			xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
1050 				 j, irq, ret);
1051 			goto failed_init_c2h;
1052 		}
1053 		xdev->c2h_chans[j].irq = irq;
1054 		irq++;
1055 	}
1056 
1057 	/* config hardware IRQ registers */
1058 	ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
1059 				  XDMA_CHAN_NUM(xdev));
1060 	if (ret) {
1061 		xdma_err(xdev, "failed to set channel vectors: %d", ret);
1062 		goto failed_init_c2h;
1063 	}
1064 
1065 	/* config user IRQ registers if needed */
1066 	user_irq_start = XDMA_CHAN_NUM(xdev);
1067 	if (xdev->irq_num > user_irq_start) {
1068 		ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
1069 					  user_irq_start,
1070 					  xdev->irq_num - user_irq_start);
1071 		if (ret) {
1072 			xdma_err(xdev, "failed to set user vectors: %d", ret);
1073 			goto failed_init_c2h;
1074 		}
1075 	}
1076 
1077 	/* enable interrupt */
1078 	ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
1079 	if (ret)
1080 		goto failed_init_c2h;
1081 
1082 	return 0;
1083 
1084 failed_init_c2h:
1085 	while (j--)
1086 		free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
1087 failed_init_h2c:
1088 	while (i--)
1089 		free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
1090 
1091 	return ret;
1092 }
1093 
1094 static bool xdma_filter_fn(struct dma_chan *chan, void *param)
1095 {
1096 	struct xdma_chan *xdma_chan = to_xdma_chan(chan);
1097 	struct xdma_chan_info *chan_info = param;
1098 
1099 	return chan_info->dir == xdma_chan->dir;
1100 }
1101 
1102 /**
1103  * xdma_disable_user_irq - Disable user interrupt
1104  * @pdev: Pointer to the platform_device structure
1105  * @irq_num: System IRQ number
1106  */
1107 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
1108 {
1109 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1110 	u32 index;
1111 
1112 	index = irq_num - xdev->irq_start;
1113 	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1114 		xdma_err(xdev, "invalid user irq number");
1115 		return;
1116 	}
1117 	index -= XDMA_CHAN_NUM(xdev);
1118 
1119 	regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
1120 }
1121 EXPORT_SYMBOL(xdma_disable_user_irq);
1122 
1123 /**
1124  * xdma_enable_user_irq - Enable user logic interrupt
1125  * @pdev: Pointer to the platform_device structure
1126  * @irq_num: System IRQ number
1127  */
1128 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
1129 {
1130 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1131 	u32 index;
1132 	int ret;
1133 
1134 	index = irq_num - xdev->irq_start;
1135 	if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
1136 		xdma_err(xdev, "invalid user irq number");
1137 		return -EINVAL;
1138 	}
1139 	index -= XDMA_CHAN_NUM(xdev);
1140 
1141 	ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
1142 	if (ret)
1143 		return ret;
1144 
1145 	return 0;
1146 }
1147 EXPORT_SYMBOL(xdma_enable_user_irq);
1148 
1149 /**
1150  * xdma_get_user_irq - Get system IRQ number
1151  * @pdev: Pointer to the platform_device structure
1152  * @user_irq_index: User logic IRQ wire index
1153  *
1154  * Return: The system IRQ number allocated for the given wire index.
1155  */
1156 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
1157 {
1158 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1159 
1160 	if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
1161 		xdma_err(xdev, "invalid user irq index");
1162 		return -EINVAL;
1163 	}
1164 
1165 	return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
1166 }
1167 EXPORT_SYMBOL(xdma_get_user_irq);
1168 
1169 /**
1170  * xdma_remove - Driver remove function
1171  * @pdev: Pointer to the platform_device structure
1172  */
1173 static void xdma_remove(struct platform_device *pdev)
1174 {
1175 	struct xdma_device *xdev = platform_get_drvdata(pdev);
1176 
1177 	if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
1178 		xdma_irq_fini(xdev);
1179 
1180 	if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
1181 		dma_async_device_unregister(&xdev->dma_dev);
1182 }
1183 
1184 /**
1185  * xdma_probe - Driver probe function
1186  * @pdev: Pointer to the platform_device structure
1187  */
1188 static int xdma_probe(struct platform_device *pdev)
1189 {
1190 	struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
1191 	struct xdma_device *xdev;
1192 	void __iomem *reg_base;
1193 	struct resource *res;
1194 	int ret = -ENODEV;
1195 
1196 	if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
1197 		dev_err(&pdev->dev, "invalid max dma channels %d",
1198 			pdata->max_dma_channels);
1199 		return -EINVAL;
1200 	}
1201 
1202 	xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
1203 	if (!xdev)
1204 		return -ENOMEM;
1205 
1206 	platform_set_drvdata(pdev, xdev);
1207 	xdev->pdev = pdev;
1208 
1209 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1210 	if (!res) {
1211 		xdma_err(xdev, "failed to get irq resource");
1212 		goto failed;
1213 	}
1214 	xdev->irq_start = res->start;
1215 	xdev->irq_num = resource_size(res);
1216 
1217 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1218 	if (!res) {
1219 		xdma_err(xdev, "failed to get io resource");
1220 		goto failed;
1221 	}
1222 
1223 	reg_base = devm_ioremap_resource(&pdev->dev, res);
1224 	if (IS_ERR(reg_base)) {
1225 		xdma_err(xdev, "ioremap failed");
1226 		goto failed;
1227 	}
1228 
1229 	xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
1230 					   &xdma_regmap_config);
1231 	if (!xdev->rmap) {
1232 		xdma_err(xdev, "config regmap failed: %d", ret);
1233 		goto failed;
1234 	}
1235 	INIT_LIST_HEAD(&xdev->dma_dev.channels);
1236 
1237 	ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
1238 	if (ret) {
1239 		xdma_err(xdev, "config H2C channels failed: %d", ret);
1240 		goto failed;
1241 	}
1242 
1243 	ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
1244 	if (ret) {
1245 		xdma_err(xdev, "config C2H channels failed: %d", ret);
1246 		goto failed;
1247 	}
1248 
1249 	dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
1250 	dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
1251 	dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask);
1252 	dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask);
1253 	dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask);
1254 	dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask);
1255 
1256 	xdev->dma_dev.dev = &pdev->dev;
1257 	xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1258 	xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
1259 	xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
1260 	xdev->dma_dev.device_tx_status = xdma_tx_status;
1261 	xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
1262 	xdev->dma_dev.device_config = xdma_device_config;
1263 	xdev->dma_dev.device_issue_pending = xdma_issue_pending;
1264 	xdev->dma_dev.device_terminate_all = xdma_terminate_all;
1265 	xdev->dma_dev.device_synchronize = xdma_synchronize;
1266 	xdev->dma_dev.filter.map = pdata->device_map;
1267 	xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
1268 	xdev->dma_dev.filter.fn = xdma_filter_fn;
1269 	xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic;
1270 	xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma;
1271 
1272 	ret = dma_async_device_register(&xdev->dma_dev);
1273 	if (ret) {
1274 		xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
1275 		goto failed;
1276 	}
1277 	xdev->status |= XDMA_DEV_STATUS_REG_DMA;
1278 
1279 	ret = xdma_irq_init(xdev);
1280 	if (ret) {
1281 		xdma_err(xdev, "failed to init msix: %d", ret);
1282 		goto failed;
1283 	}
1284 	xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;
1285 
1286 	return 0;
1287 
1288 failed:
1289 	xdma_remove(pdev);
1290 
1291 	return ret;
1292 }
1293 
1294 static const struct platform_device_id xdma_id_table[] = {
1295 	{ "xdma", 0},
1296 	{ },
1297 };
1298 
1299 static struct platform_driver xdma_driver = {
1300 	.driver		= {
1301 		.name = "xdma",
1302 	},
1303 	.id_table	= xdma_id_table,
1304 	.probe		= xdma_probe,
1305 	.remove_new	= xdma_remove,
1306 };
1307 
1308 module_platform_driver(xdma_driver);
1309 
1310 MODULE_DESCRIPTION("AMD XDMA driver");
1311 MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>");
1312 MODULE_LICENSE("GPL");
1313