1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DMA driver for Xilinx DMA/Bridge Subsystem 4 * 5 * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved. 6 * Copyright (C) 2022, Advanced Micro Devices, Inc. 7 */ 8 9 /* 10 * The DMA/Bridge Subsystem for PCI Express allows for the movement of data 11 * between Host memory and the DMA subsystem. It does this by operating on 12 * 'descriptors' that contain information about the source, destination and 13 * amount of data to transfer. These direct memory transfers can be both in 14 * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be 15 * configured to have a single AXI4 Master interface shared by all channels 16 * or one AXI4-Stream interface for each channel enabled. Memory transfers are 17 * specified on a per-channel basis in descriptor linked lists, which the DMA 18 * fetches from host memory and processes. Events such as descriptor completion 19 * and errors are signaled using interrupts. The core also provides up to 16 20 * user interrupt wires that generate interrupts to the host. 21 */ 22 23 #include <linux/mod_devicetable.h> 24 #include <linux/bitfield.h> 25 #include <linux/dmapool.h> 26 #include <linux/regmap.h> 27 #include <linux/dmaengine.h> 28 #include <linux/dma/amd_xdma.h> 29 #include <linux/platform_device.h> 30 #include <linux/platform_data/amd_xdma.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/pci.h> 33 #include "../virt-dma.h" 34 #include "xdma-regs.h" 35 36 /* mmio regmap config for all XDMA registers */ 37 static const struct regmap_config xdma_regmap_config = { 38 .reg_bits = 32, 39 .val_bits = 32, 40 .reg_stride = 4, 41 .max_register = XDMA_REG_SPACE_LEN, 42 }; 43 44 /** 45 * struct xdma_desc_block - Descriptor block 46 * @virt_addr: Virtual address of block start 47 * @dma_addr: DMA address of block start 48 */ 49 struct xdma_desc_block { 50 void *virt_addr; 51 dma_addr_t dma_addr; 52 }; 53 54 /** 55 * struct xdma_chan - Driver specific DMA channel structure 56 * @vchan: Virtual channel 57 * @xdev_hdl: Pointer to DMA device structure 58 * @base: Offset of channel registers 59 * @desc_pool: Descriptor pool 60 * @busy: Busy flag of the channel 61 * @dir: Transferring direction of the channel 62 * @cfg: Transferring config of the channel 63 * @irq: IRQ assigned to the channel 64 */ 65 struct xdma_chan { 66 struct virt_dma_chan vchan; 67 void *xdev_hdl; 68 u32 base; 69 struct dma_pool *desc_pool; 70 bool busy; 71 enum dma_transfer_direction dir; 72 struct dma_slave_config cfg; 73 u32 irq; 74 struct completion last_interrupt; 75 bool stop_requested; 76 }; 77 78 /** 79 * struct xdma_desc - DMA desc structure 80 * @vdesc: Virtual DMA descriptor 81 * @chan: DMA channel pointer 82 * @dir: Transferring direction of the request 83 * @desc_blocks: Hardware descriptor blocks 84 * @dblk_num: Number of hardware descriptor blocks 85 * @desc_num: Number of hardware descriptors 86 * @completed_desc_num: Completed hardware descriptors 87 * @cyclic: Cyclic transfer vs. scatter-gather 88 * @interleaved_dma: Interleaved DMA transfer 89 * @periods: Number of periods in the cyclic transfer 90 * @period_size: Size of a period in bytes in cyclic transfers 91 * @frames_left: Number of frames left in interleaved DMA transfer 92 * @error: tx error flag 93 */ 94 struct xdma_desc { 95 struct virt_dma_desc vdesc; 96 struct xdma_chan *chan; 97 enum dma_transfer_direction dir; 98 struct xdma_desc_block *desc_blocks; 99 u32 dblk_num; 100 u32 desc_num; 101 u32 completed_desc_num; 102 bool cyclic; 103 bool interleaved_dma; 104 u32 periods; 105 u32 period_size; 106 u32 frames_left; 107 bool error; 108 }; 109 110 #define XDMA_DEV_STATUS_REG_DMA BIT(0) 111 #define XDMA_DEV_STATUS_INIT_MSIX BIT(1) 112 113 /** 114 * struct xdma_device - DMA device structure 115 * @pdev: Platform device pointer 116 * @dma_dev: DMA device structure 117 * @rmap: MMIO regmap for DMA registers 118 * @h2c_chans: Host to Card channels 119 * @c2h_chans: Card to Host channels 120 * @h2c_chan_num: Number of H2C channels 121 * @c2h_chan_num: Number of C2H channels 122 * @irq_start: Start IRQ assigned to device 123 * @irq_num: Number of IRQ assigned to device 124 * @status: Initialization status 125 */ 126 struct xdma_device { 127 struct platform_device *pdev; 128 struct dma_device dma_dev; 129 struct regmap *rmap; 130 struct xdma_chan *h2c_chans; 131 struct xdma_chan *c2h_chans; 132 u32 h2c_chan_num; 133 u32 c2h_chan_num; 134 u32 irq_start; 135 u32 irq_num; 136 u32 status; 137 }; 138 139 #define xdma_err(xdev, fmt, args...) \ 140 dev_err(&(xdev)->pdev->dev, fmt, ##args) 141 #define XDMA_CHAN_NUM(_xd) ({ \ 142 typeof(_xd) (xd) = (_xd); \ 143 ((xd)->h2c_chan_num + (xd)->c2h_chan_num); }) 144 145 /* Get the last desc in a desc block */ 146 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block) 147 { 148 return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE; 149 } 150 151 /** 152 * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer 153 * @sw_desc: Tx descriptor pointer 154 */ 155 static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc) 156 { 157 struct xdma_desc_block *block; 158 u32 last_blk_desc, desc_control; 159 struct xdma_hw_desc *desc; 160 int i; 161 162 desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0); 163 for (i = 1; i < sw_desc->dblk_num; i++) { 164 block = &sw_desc->desc_blocks[i - 1]; 165 desc = xdma_blk_last_desc(block); 166 167 if (!(i & XDMA_DESC_BLOCK_MASK)) { 168 desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST); 169 continue; 170 } 171 desc->control = cpu_to_le32(desc_control); 172 desc->next_desc = cpu_to_le64(block[1].dma_addr); 173 } 174 175 /* update the last block */ 176 last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK; 177 if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) { 178 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2]; 179 desc = xdma_blk_last_desc(block); 180 desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0); 181 desc->control = cpu_to_le32(desc_control); 182 } 183 184 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1]; 185 desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE; 186 desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST); 187 } 188 189 /** 190 * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer 191 * @sw_desc: Tx descriptor pointer 192 */ 193 static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc) 194 { 195 struct xdma_desc_block *block; 196 struct xdma_hw_desc *desc; 197 int i; 198 199 block = sw_desc->desc_blocks; 200 for (i = 0; i < sw_desc->desc_num - 1; i++) { 201 desc = block->virt_addr + i * XDMA_DESC_SIZE; 202 desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE)); 203 } 204 desc = block->virt_addr + i * XDMA_DESC_SIZE; 205 desc->next_desc = cpu_to_le64(block->dma_addr); 206 } 207 208 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan) 209 { 210 return container_of(chan, struct xdma_chan, vchan.chan); 211 } 212 213 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc) 214 { 215 return container_of(vdesc, struct xdma_desc, vdesc); 216 } 217 218 /** 219 * xdma_channel_init - Initialize DMA channel registers 220 * @chan: DMA channel pointer 221 */ 222 static int xdma_channel_init(struct xdma_chan *chan) 223 { 224 struct xdma_device *xdev = chan->xdev_hdl; 225 int ret; 226 227 ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C, 228 CHAN_CTRL_NON_INCR_ADDR); 229 if (ret) 230 return ret; 231 232 ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE, 233 CHAN_IM_ALL); 234 if (ret) 235 return ret; 236 237 return 0; 238 } 239 240 /** 241 * xdma_free_desc - Free descriptor 242 * @vdesc: Virtual DMA descriptor 243 */ 244 static void xdma_free_desc(struct virt_dma_desc *vdesc) 245 { 246 struct xdma_desc *sw_desc; 247 int i; 248 249 sw_desc = to_xdma_desc(vdesc); 250 for (i = 0; i < sw_desc->dblk_num; i++) { 251 if (!sw_desc->desc_blocks[i].virt_addr) 252 break; 253 dma_pool_free(sw_desc->chan->desc_pool, 254 sw_desc->desc_blocks[i].virt_addr, 255 sw_desc->desc_blocks[i].dma_addr); 256 } 257 kfree(sw_desc->desc_blocks); 258 kfree(sw_desc); 259 } 260 261 /** 262 * xdma_alloc_desc - Allocate descriptor 263 * @chan: DMA channel pointer 264 * @desc_num: Number of hardware descriptors 265 * @cyclic: Whether this is a cyclic transfer 266 */ 267 static struct xdma_desc * 268 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic) 269 { 270 struct xdma_desc *sw_desc; 271 struct xdma_hw_desc *desc; 272 dma_addr_t dma_addr; 273 u32 dblk_num; 274 u32 control; 275 void *addr; 276 int i, j; 277 278 sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT); 279 if (!sw_desc) 280 return NULL; 281 282 sw_desc->chan = chan; 283 sw_desc->desc_num = desc_num; 284 sw_desc->cyclic = cyclic; 285 sw_desc->error = false; 286 dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT); 287 sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks), 288 GFP_NOWAIT); 289 if (!sw_desc->desc_blocks) 290 goto failed; 291 292 if (cyclic) 293 control = XDMA_DESC_CONTROL_CYCLIC; 294 else 295 control = XDMA_DESC_CONTROL(1, 0); 296 297 sw_desc->dblk_num = dblk_num; 298 for (i = 0; i < sw_desc->dblk_num; i++) { 299 addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr); 300 if (!addr) 301 goto failed; 302 303 sw_desc->desc_blocks[i].virt_addr = addr; 304 sw_desc->desc_blocks[i].dma_addr = dma_addr; 305 for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++) 306 desc[j].control = cpu_to_le32(control); 307 } 308 309 if (cyclic) 310 xdma_link_cyclic_desc_blocks(sw_desc); 311 else 312 xdma_link_sg_desc_blocks(sw_desc); 313 314 return sw_desc; 315 316 failed: 317 xdma_free_desc(&sw_desc->vdesc); 318 return NULL; 319 } 320 321 /** 322 * xdma_xfer_start - Start DMA transfer 323 * @xchan: DMA channel pointer 324 */ 325 static int xdma_xfer_start(struct xdma_chan *xchan) 326 { 327 struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan); 328 struct xdma_device *xdev = xchan->xdev_hdl; 329 struct xdma_desc_block *block; 330 u32 val, completed_blocks; 331 struct xdma_desc *desc; 332 int ret; 333 334 /* 335 * check if there is not any submitted descriptor or channel is busy. 336 * vchan lock should be held where this function is called. 337 */ 338 if (!vd || xchan->busy) 339 return -EINVAL; 340 341 /* clear run stop bit to get ready for transfer */ 342 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C, 343 CHAN_CTRL_RUN_STOP); 344 if (ret) 345 return ret; 346 347 desc = to_xdma_desc(vd); 348 if (desc->dir != xchan->dir) { 349 xdma_err(xdev, "incorrect request direction"); 350 return -EINVAL; 351 } 352 353 /* set DMA engine to the first descriptor block */ 354 completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT; 355 block = &desc->desc_blocks[completed_blocks]; 356 val = lower_32_bits(block->dma_addr); 357 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val); 358 if (ret) 359 return ret; 360 361 val = upper_32_bits(block->dma_addr); 362 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val); 363 if (ret) 364 return ret; 365 366 if (completed_blocks + 1 == desc->dblk_num) 367 val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK; 368 else 369 val = XDMA_DESC_ADJACENT - 1; 370 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val); 371 if (ret) 372 return ret; 373 374 /* kick off DMA transfer */ 375 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL, 376 CHAN_CTRL_START); 377 if (ret) 378 return ret; 379 380 xchan->busy = true; 381 xchan->stop_requested = false; 382 reinit_completion(&xchan->last_interrupt); 383 384 return 0; 385 } 386 387 /** 388 * xdma_xfer_stop - Stop DMA transfer 389 * @xchan: DMA channel pointer 390 */ 391 static int xdma_xfer_stop(struct xdma_chan *xchan) 392 { 393 int ret; 394 struct xdma_device *xdev = xchan->xdev_hdl; 395 396 /* clear run stop bit to prevent any further auto-triggering */ 397 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C, 398 CHAN_CTRL_RUN_STOP); 399 if (ret) 400 return ret; 401 return ret; 402 } 403 404 /** 405 * xdma_alloc_channels - Detect and allocate DMA channels 406 * @xdev: DMA device pointer 407 * @dir: Channel direction 408 */ 409 static int xdma_alloc_channels(struct xdma_device *xdev, 410 enum dma_transfer_direction dir) 411 { 412 struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev); 413 struct xdma_chan **chans, *xchan; 414 u32 base, identifier, target; 415 u32 *chan_num; 416 int i, j, ret; 417 418 if (dir == DMA_MEM_TO_DEV) { 419 base = XDMA_CHAN_H2C_OFFSET; 420 target = XDMA_CHAN_H2C_TARGET; 421 chans = &xdev->h2c_chans; 422 chan_num = &xdev->h2c_chan_num; 423 } else if (dir == DMA_DEV_TO_MEM) { 424 base = XDMA_CHAN_C2H_OFFSET; 425 target = XDMA_CHAN_C2H_TARGET; 426 chans = &xdev->c2h_chans; 427 chan_num = &xdev->c2h_chan_num; 428 } else { 429 xdma_err(xdev, "invalid direction specified"); 430 return -EINVAL; 431 } 432 433 /* detect number of available DMA channels */ 434 for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) { 435 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE, 436 &identifier); 437 if (ret) 438 return ret; 439 440 /* check if it is available DMA channel */ 441 if (XDMA_CHAN_CHECK_TARGET(identifier, target)) 442 (*chan_num)++; 443 } 444 445 if (!*chan_num) { 446 xdma_err(xdev, "does not probe any channel"); 447 return -EINVAL; 448 } 449 450 *chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans), 451 GFP_KERNEL); 452 if (!*chans) 453 return -ENOMEM; 454 455 for (i = 0, j = 0; i < pdata->max_dma_channels; i++) { 456 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE, 457 &identifier); 458 if (ret) 459 return ret; 460 461 if (!XDMA_CHAN_CHECK_TARGET(identifier, target)) 462 continue; 463 464 if (j == *chan_num) { 465 xdma_err(xdev, "invalid channel number"); 466 return -EIO; 467 } 468 469 /* init channel structure and hardware */ 470 xchan = &(*chans)[j]; 471 xchan->xdev_hdl = xdev; 472 xchan->base = base + i * XDMA_CHAN_STRIDE; 473 xchan->dir = dir; 474 xchan->stop_requested = false; 475 init_completion(&xchan->last_interrupt); 476 477 ret = xdma_channel_init(xchan); 478 if (ret) 479 return ret; 480 xchan->vchan.desc_free = xdma_free_desc; 481 vchan_init(&xchan->vchan, &xdev->dma_dev); 482 483 j++; 484 } 485 486 dev_info(&xdev->pdev->dev, "configured %d %s channels", j, 487 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H"); 488 489 return 0; 490 } 491 492 /** 493 * xdma_issue_pending - Issue pending transactions 494 * @chan: DMA channel pointer 495 */ 496 static void xdma_issue_pending(struct dma_chan *chan) 497 { 498 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 499 unsigned long flags; 500 501 spin_lock_irqsave(&xdma_chan->vchan.lock, flags); 502 if (vchan_issue_pending(&xdma_chan->vchan)) 503 xdma_xfer_start(xdma_chan); 504 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 505 } 506 507 /** 508 * xdma_terminate_all - Terminate all transactions 509 * @chan: DMA channel pointer 510 */ 511 static int xdma_terminate_all(struct dma_chan *chan) 512 { 513 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 514 struct virt_dma_desc *vd; 515 unsigned long flags; 516 LIST_HEAD(head); 517 518 xdma_xfer_stop(xdma_chan); 519 520 spin_lock_irqsave(&xdma_chan->vchan.lock, flags); 521 522 xdma_chan->busy = false; 523 xdma_chan->stop_requested = true; 524 vd = vchan_next_desc(&xdma_chan->vchan); 525 if (vd) { 526 list_del(&vd->node); 527 dma_cookie_complete(&vd->tx); 528 vchan_terminate_vdesc(vd); 529 } 530 vchan_get_all_descriptors(&xdma_chan->vchan, &head); 531 list_splice_tail(&head, &xdma_chan->vchan.desc_terminated); 532 533 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 534 535 return 0; 536 } 537 538 /** 539 * xdma_synchronize - Synchronize terminated transactions 540 * @chan: DMA channel pointer 541 */ 542 static void xdma_synchronize(struct dma_chan *chan) 543 { 544 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 545 struct xdma_device *xdev = xdma_chan->xdev_hdl; 546 int st = 0; 547 548 /* If the engine continues running, wait for the last interrupt */ 549 regmap_read(xdev->rmap, xdma_chan->base + XDMA_CHAN_STATUS, &st); 550 if (st & XDMA_CHAN_STATUS_BUSY) 551 wait_for_completion_timeout(&xdma_chan->last_interrupt, msecs_to_jiffies(1000)); 552 553 vchan_synchronize(&xdma_chan->vchan); 554 } 555 556 /** 557 * xdma_fill_descs() - Fill hardware descriptors for one contiguous memory chunk. 558 * More than one descriptor will be used if the size is bigger 559 * than XDMA_DESC_BLEN_MAX. 560 * @sw_desc: Descriptor container 561 * @src_addr: First value for the ->src_addr field 562 * @dst_addr: First value for the ->dst_addr field 563 * @size: Size of the contiguous memory block 564 * @filled_descs_num: Index of the first descriptor to take care of in @sw_desc 565 */ 566 static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr, 567 u64 dst_addr, u32 size, u32 filled_descs_num) 568 { 569 u32 left = size, len, desc_num = filled_descs_num; 570 struct xdma_desc_block *dblk; 571 struct xdma_hw_desc *desc; 572 573 dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT); 574 desc = dblk->virt_addr; 575 desc += desc_num & XDMA_DESC_ADJACENT_MASK; 576 do { 577 len = min_t(u32, left, XDMA_DESC_BLEN_MAX); 578 /* set hardware descriptor */ 579 desc->bytes = cpu_to_le32(len); 580 desc->src_addr = cpu_to_le64(src_addr); 581 desc->dst_addr = cpu_to_le64(dst_addr); 582 if (!(++desc_num & XDMA_DESC_ADJACENT_MASK)) 583 desc = (++dblk)->virt_addr; 584 else 585 desc++; 586 587 src_addr += len; 588 dst_addr += len; 589 left -= len; 590 } while (left); 591 592 return desc_num - filled_descs_num; 593 } 594 595 /** 596 * xdma_prep_device_sg - prepare a descriptor for a DMA transaction 597 * @chan: DMA channel pointer 598 * @sgl: Transfer scatter gather list 599 * @sg_len: Length of scatter gather list 600 * @dir: Transfer direction 601 * @flags: transfer ack flags 602 * @context: APP words of the descriptor 603 */ 604 static struct dma_async_tx_descriptor * 605 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl, 606 unsigned int sg_len, enum dma_transfer_direction dir, 607 unsigned long flags, void *context) 608 { 609 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 610 struct dma_async_tx_descriptor *tx_desc; 611 struct xdma_desc *sw_desc; 612 u32 desc_num = 0, i; 613 u64 addr, dev_addr, *src, *dst; 614 struct scatterlist *sg; 615 616 for_each_sg(sgl, sg, sg_len, i) 617 desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX); 618 619 sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false); 620 if (!sw_desc) 621 return NULL; 622 sw_desc->dir = dir; 623 sw_desc->cyclic = false; 624 sw_desc->interleaved_dma = false; 625 626 if (dir == DMA_MEM_TO_DEV) { 627 dev_addr = xdma_chan->cfg.dst_addr; 628 src = &addr; 629 dst = &dev_addr; 630 } else { 631 dev_addr = xdma_chan->cfg.src_addr; 632 src = &dev_addr; 633 dst = &addr; 634 } 635 636 desc_num = 0; 637 for_each_sg(sgl, sg, sg_len, i) { 638 addr = sg_dma_address(sg); 639 desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num); 640 dev_addr += sg_dma_len(sg); 641 } 642 643 tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags); 644 if (!tx_desc) 645 goto failed; 646 647 return tx_desc; 648 649 failed: 650 xdma_free_desc(&sw_desc->vdesc); 651 652 return NULL; 653 } 654 655 /** 656 * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions 657 * @chan: DMA channel pointer 658 * @address: Device DMA address to access 659 * @size: Total length to transfer 660 * @period_size: Period size to use for each transfer 661 * @dir: Transfer direction 662 * @flags: Transfer ack flags 663 */ 664 static struct dma_async_tx_descriptor * 665 xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address, 666 size_t size, size_t period_size, 667 enum dma_transfer_direction dir, 668 unsigned long flags) 669 { 670 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 671 struct xdma_device *xdev = xdma_chan->xdev_hdl; 672 unsigned int periods = size / period_size; 673 struct dma_async_tx_descriptor *tx_desc; 674 struct xdma_desc *sw_desc; 675 u64 addr, dev_addr, *src, *dst; 676 u32 desc_num; 677 unsigned int i; 678 679 /* 680 * Simplify the whole logic by preventing an abnormally high number of 681 * periods and periods size. 682 */ 683 if (period_size > XDMA_DESC_BLEN_MAX) { 684 xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX); 685 return NULL; 686 } 687 688 if (periods > XDMA_DESC_ADJACENT) { 689 xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT); 690 return NULL; 691 } 692 693 sw_desc = xdma_alloc_desc(xdma_chan, periods, true); 694 if (!sw_desc) 695 return NULL; 696 697 sw_desc->periods = periods; 698 sw_desc->period_size = period_size; 699 sw_desc->dir = dir; 700 sw_desc->interleaved_dma = false; 701 702 addr = address; 703 if (dir == DMA_MEM_TO_DEV) { 704 dev_addr = xdma_chan->cfg.dst_addr; 705 src = &addr; 706 dst = &dev_addr; 707 } else { 708 dev_addr = xdma_chan->cfg.src_addr; 709 src = &dev_addr; 710 dst = &addr; 711 } 712 713 desc_num = 0; 714 for (i = 0; i < periods; i++) { 715 desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num); 716 addr += period_size; 717 } 718 719 tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags); 720 if (!tx_desc) 721 goto failed; 722 723 return tx_desc; 724 725 failed: 726 xdma_free_desc(&sw_desc->vdesc); 727 728 return NULL; 729 } 730 731 /** 732 * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers 733 * @chan: DMA channel 734 * @xt: DMA transfer template 735 * @flags: tx flags 736 */ 737 static struct dma_async_tx_descriptor * 738 xdma_prep_interleaved_dma(struct dma_chan *chan, 739 struct dma_interleaved_template *xt, 740 unsigned long flags) 741 { 742 int i; 743 u32 desc_num = 0, period_size = 0; 744 struct dma_async_tx_descriptor *tx_desc; 745 struct xdma_chan *xchan = to_xdma_chan(chan); 746 struct xdma_desc *sw_desc; 747 u64 src_addr, dst_addr; 748 749 for (i = 0; i < xt->frame_size; ++i) 750 desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX); 751 752 sw_desc = xdma_alloc_desc(xchan, desc_num, false); 753 if (!sw_desc) 754 return NULL; 755 sw_desc->dir = xt->dir; 756 sw_desc->interleaved_dma = true; 757 sw_desc->cyclic = flags & DMA_PREP_REPEAT; 758 sw_desc->frames_left = xt->numf; 759 sw_desc->periods = xt->numf; 760 761 desc_num = 0; 762 src_addr = xt->src_start; 763 dst_addr = xt->dst_start; 764 for (i = 0; i < xt->frame_size; ++i) { 765 desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num); 766 src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ? 767 xt->sgl[i].size : 0); 768 dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ? 769 xt->sgl[i].size : 0); 770 period_size += xt->sgl[i].size; 771 } 772 sw_desc->period_size = period_size; 773 774 tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags); 775 if (tx_desc) 776 return tx_desc; 777 778 xdma_free_desc(&sw_desc->vdesc); 779 return NULL; 780 } 781 782 /** 783 * xdma_device_config - Configure the DMA channel 784 * @chan: DMA channel 785 * @cfg: channel configuration 786 */ 787 static int xdma_device_config(struct dma_chan *chan, 788 struct dma_slave_config *cfg) 789 { 790 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 791 792 memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg)); 793 794 return 0; 795 } 796 797 /** 798 * xdma_free_chan_resources - Free channel resources 799 * @chan: DMA channel 800 */ 801 static void xdma_free_chan_resources(struct dma_chan *chan) 802 { 803 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 804 805 vchan_free_chan_resources(&xdma_chan->vchan); 806 dma_pool_destroy(xdma_chan->desc_pool); 807 xdma_chan->desc_pool = NULL; 808 } 809 810 /** 811 * xdma_alloc_chan_resources - Allocate channel resources 812 * @chan: DMA channel 813 */ 814 static int xdma_alloc_chan_resources(struct dma_chan *chan) 815 { 816 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 817 struct xdma_device *xdev = xdma_chan->xdev_hdl; 818 struct device *dev = xdev->dma_dev.dev; 819 820 while (dev && !dev_is_pci(dev)) 821 dev = dev->parent; 822 if (!dev) { 823 xdma_err(xdev, "unable to find pci device"); 824 return -EINVAL; 825 } 826 827 xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE, 828 XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY); 829 if (!xdma_chan->desc_pool) { 830 xdma_err(xdev, "unable to allocate descriptor pool"); 831 return -ENOMEM; 832 } 833 834 return 0; 835 } 836 837 static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 838 struct dma_tx_state *state) 839 { 840 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 841 struct xdma_desc *desc = NULL; 842 struct virt_dma_desc *vd; 843 enum dma_status ret; 844 unsigned long flags; 845 unsigned int period_idx; 846 u32 residue = 0; 847 848 ret = dma_cookie_status(chan, cookie, state); 849 if (ret == DMA_COMPLETE) 850 return ret; 851 852 spin_lock_irqsave(&xdma_chan->vchan.lock, flags); 853 854 vd = vchan_find_desc(&xdma_chan->vchan, cookie); 855 if (!vd) 856 goto out; 857 858 desc = to_xdma_desc(vd); 859 if (desc->error) { 860 ret = DMA_ERROR; 861 } else if (desc->cyclic) { 862 period_idx = desc->completed_desc_num % desc->periods; 863 residue = (desc->periods - period_idx) * desc->period_size; 864 dma_set_residue(state, residue); 865 } 866 out: 867 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 868 869 return ret; 870 } 871 872 /** 873 * xdma_channel_isr - XDMA channel interrupt handler 874 * @irq: IRQ number 875 * @dev_id: Pointer to the DMA channel structure 876 */ 877 static irqreturn_t xdma_channel_isr(int irq, void *dev_id) 878 { 879 struct xdma_chan *xchan = dev_id; 880 u32 complete_desc_num = 0; 881 struct xdma_device *xdev = xchan->xdev_hdl; 882 struct virt_dma_desc *vd, *next_vd; 883 struct xdma_desc *desc; 884 int ret; 885 u32 st; 886 bool repeat_tx; 887 888 spin_lock(&xchan->vchan.lock); 889 890 if (xchan->stop_requested) 891 complete(&xchan->last_interrupt); 892 893 /* get submitted request */ 894 vd = vchan_next_desc(&xchan->vchan); 895 if (!vd) 896 goto out; 897 898 /* Clear-on-read the status register */ 899 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st); 900 if (ret) 901 goto out; 902 903 desc = to_xdma_desc(vd); 904 905 st &= XDMA_CHAN_STATUS_MASK; 906 if ((st & XDMA_CHAN_ERROR_MASK) || 907 !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) { 908 desc->error = true; 909 xdma_err(xdev, "channel error, status register value: 0x%x", st); 910 goto out; 911 } 912 913 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC, 914 &complete_desc_num); 915 if (ret) 916 goto out; 917 918 if (desc->interleaved_dma) { 919 xchan->busy = false; 920 desc->completed_desc_num += complete_desc_num; 921 if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) { 922 xdma_xfer_start(xchan); 923 goto out; 924 } 925 926 /* last desc of any frame */ 927 desc->frames_left--; 928 if (desc->frames_left) 929 goto out; 930 931 /* last desc of the last frame */ 932 repeat_tx = vd->tx.flags & DMA_PREP_REPEAT; 933 next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node); 934 if (next_vd) 935 repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT); 936 if (repeat_tx) { 937 desc->frames_left = desc->periods; 938 desc->completed_desc_num = 0; 939 vchan_cyclic_callback(vd); 940 } else { 941 list_del(&vd->node); 942 vchan_cookie_complete(vd); 943 } 944 /* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */ 945 xdma_xfer_start(xchan); 946 } else if (!desc->cyclic) { 947 xchan->busy = false; 948 desc->completed_desc_num += complete_desc_num; 949 950 /* if all data blocks are transferred, remove and complete the request */ 951 if (desc->completed_desc_num == desc->desc_num) { 952 list_del(&vd->node); 953 vchan_cookie_complete(vd); 954 goto out; 955 } 956 957 if (desc->completed_desc_num > desc->desc_num || 958 complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) 959 goto out; 960 961 /* transfer the rest of data */ 962 xdma_xfer_start(xchan); 963 } else { 964 desc->completed_desc_num = complete_desc_num; 965 vchan_cyclic_callback(vd); 966 } 967 968 out: 969 spin_unlock(&xchan->vchan.lock); 970 return IRQ_HANDLED; 971 } 972 973 /** 974 * xdma_irq_fini - Uninitialize IRQ 975 * @xdev: DMA device pointer 976 */ 977 static void xdma_irq_fini(struct xdma_device *xdev) 978 { 979 int i; 980 981 /* disable interrupt */ 982 regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0); 983 984 /* free irq handler */ 985 for (i = 0; i < xdev->h2c_chan_num; i++) 986 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]); 987 988 for (i = 0; i < xdev->c2h_chan_num; i++) 989 free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]); 990 } 991 992 /** 993 * xdma_set_vector_reg - configure hardware IRQ registers 994 * @xdev: DMA device pointer 995 * @vec_tbl_start: Start of IRQ registers 996 * @irq_start: Start of IRQ 997 * @irq_num: Number of IRQ 998 */ 999 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start, 1000 u32 irq_start, u32 irq_num) 1001 { 1002 u32 shift, i, val = 0; 1003 int ret; 1004 1005 /* Each IRQ register is 32 bit and contains 4 IRQs */ 1006 while (irq_num > 0) { 1007 for (i = 0; i < 4; i++) { 1008 shift = XDMA_IRQ_VEC_SHIFT * i; 1009 val |= irq_start << shift; 1010 irq_start++; 1011 irq_num--; 1012 if (!irq_num) 1013 break; 1014 } 1015 1016 /* write IRQ register */ 1017 ret = regmap_write(xdev->rmap, vec_tbl_start, val); 1018 if (ret) 1019 return ret; 1020 vec_tbl_start += sizeof(u32); 1021 val = 0; 1022 } 1023 1024 return 0; 1025 } 1026 1027 /** 1028 * xdma_irq_init - initialize IRQs 1029 * @xdev: DMA device pointer 1030 */ 1031 static int xdma_irq_init(struct xdma_device *xdev) 1032 { 1033 u32 irq = xdev->irq_start; 1034 u32 user_irq_start; 1035 int i, j, ret; 1036 1037 /* return failure if there are not enough IRQs */ 1038 if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) { 1039 xdma_err(xdev, "not enough irq"); 1040 return -EINVAL; 1041 } 1042 1043 /* setup H2C interrupt handler */ 1044 for (i = 0; i < xdev->h2c_chan_num; i++) { 1045 ret = request_irq(irq, xdma_channel_isr, 0, 1046 "xdma-h2c-channel", &xdev->h2c_chans[i]); 1047 if (ret) { 1048 xdma_err(xdev, "H2C channel%d request irq%d failed: %d", 1049 i, irq, ret); 1050 goto failed_init_h2c; 1051 } 1052 xdev->h2c_chans[i].irq = irq; 1053 irq++; 1054 } 1055 1056 /* setup C2H interrupt handler */ 1057 for (j = 0; j < xdev->c2h_chan_num; j++) { 1058 ret = request_irq(irq, xdma_channel_isr, 0, 1059 "xdma-c2h-channel", &xdev->c2h_chans[j]); 1060 if (ret) { 1061 xdma_err(xdev, "C2H channel%d request irq%d failed: %d", 1062 j, irq, ret); 1063 goto failed_init_c2h; 1064 } 1065 xdev->c2h_chans[j].irq = irq; 1066 irq++; 1067 } 1068 1069 /* config hardware IRQ registers */ 1070 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0, 1071 XDMA_CHAN_NUM(xdev)); 1072 if (ret) { 1073 xdma_err(xdev, "failed to set channel vectors: %d", ret); 1074 goto failed_init_c2h; 1075 } 1076 1077 /* config user IRQ registers if needed */ 1078 user_irq_start = XDMA_CHAN_NUM(xdev); 1079 if (xdev->irq_num > user_irq_start) { 1080 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM, 1081 user_irq_start, 1082 xdev->irq_num - user_irq_start); 1083 if (ret) { 1084 xdma_err(xdev, "failed to set user vectors: %d", ret); 1085 goto failed_init_c2h; 1086 } 1087 } 1088 1089 /* enable interrupt */ 1090 ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0); 1091 if (ret) 1092 goto failed_init_c2h; 1093 1094 return 0; 1095 1096 failed_init_c2h: 1097 while (j--) 1098 free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]); 1099 failed_init_h2c: 1100 while (i--) 1101 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]); 1102 1103 return ret; 1104 } 1105 1106 static bool xdma_filter_fn(struct dma_chan *chan, void *param) 1107 { 1108 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 1109 struct xdma_chan_info *chan_info = param; 1110 1111 return chan_info->dir == xdma_chan->dir; 1112 } 1113 1114 /** 1115 * xdma_disable_user_irq - Disable user interrupt 1116 * @pdev: Pointer to the platform_device structure 1117 * @irq_num: System IRQ number 1118 */ 1119 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num) 1120 { 1121 struct xdma_device *xdev = platform_get_drvdata(pdev); 1122 u32 index; 1123 1124 index = irq_num - xdev->irq_start; 1125 if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) { 1126 xdma_err(xdev, "invalid user irq number"); 1127 return; 1128 } 1129 index -= XDMA_CHAN_NUM(xdev); 1130 1131 regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index); 1132 } 1133 EXPORT_SYMBOL(xdma_disable_user_irq); 1134 1135 /** 1136 * xdma_enable_user_irq - Enable user logic interrupt 1137 * @pdev: Pointer to the platform_device structure 1138 * @irq_num: System IRQ number 1139 */ 1140 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num) 1141 { 1142 struct xdma_device *xdev = platform_get_drvdata(pdev); 1143 u32 index; 1144 int ret; 1145 1146 index = irq_num - xdev->irq_start; 1147 if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) { 1148 xdma_err(xdev, "invalid user irq number"); 1149 return -EINVAL; 1150 } 1151 index -= XDMA_CHAN_NUM(xdev); 1152 1153 ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index); 1154 if (ret) 1155 return ret; 1156 1157 return 0; 1158 } 1159 EXPORT_SYMBOL(xdma_enable_user_irq); 1160 1161 /** 1162 * xdma_get_user_irq - Get system IRQ number 1163 * @pdev: Pointer to the platform_device structure 1164 * @user_irq_index: User logic IRQ wire index 1165 * 1166 * Return: The system IRQ number allocated for the given wire index. 1167 */ 1168 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index) 1169 { 1170 struct xdma_device *xdev = platform_get_drvdata(pdev); 1171 1172 if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) { 1173 xdma_err(xdev, "invalid user irq index"); 1174 return -EINVAL; 1175 } 1176 1177 return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index; 1178 } 1179 EXPORT_SYMBOL(xdma_get_user_irq); 1180 1181 /** 1182 * xdma_remove - Driver remove function 1183 * @pdev: Pointer to the platform_device structure 1184 */ 1185 static void xdma_remove(struct platform_device *pdev) 1186 { 1187 struct xdma_device *xdev = platform_get_drvdata(pdev); 1188 1189 if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX) 1190 xdma_irq_fini(xdev); 1191 1192 if (xdev->status & XDMA_DEV_STATUS_REG_DMA) 1193 dma_async_device_unregister(&xdev->dma_dev); 1194 } 1195 1196 /** 1197 * xdma_probe - Driver probe function 1198 * @pdev: Pointer to the platform_device structure 1199 */ 1200 static int xdma_probe(struct platform_device *pdev) 1201 { 1202 struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev); 1203 struct xdma_device *xdev; 1204 void __iomem *reg_base; 1205 struct resource *res; 1206 int ret = -ENODEV; 1207 1208 if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) { 1209 dev_err(&pdev->dev, "invalid max dma channels %d", 1210 pdata->max_dma_channels); 1211 return -EINVAL; 1212 } 1213 1214 xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); 1215 if (!xdev) 1216 return -ENOMEM; 1217 1218 platform_set_drvdata(pdev, xdev); 1219 xdev->pdev = pdev; 1220 1221 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1222 if (!res) { 1223 xdma_err(xdev, "failed to get irq resource"); 1224 goto failed; 1225 } 1226 xdev->irq_start = res->start; 1227 xdev->irq_num = resource_size(res); 1228 1229 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1230 if (!res) { 1231 xdma_err(xdev, "failed to get io resource"); 1232 goto failed; 1233 } 1234 1235 reg_base = devm_ioremap_resource(&pdev->dev, res); 1236 if (IS_ERR(reg_base)) { 1237 xdma_err(xdev, "ioremap failed"); 1238 goto failed; 1239 } 1240 1241 xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base, 1242 &xdma_regmap_config); 1243 if (!xdev->rmap) { 1244 xdma_err(xdev, "config regmap failed: %d", ret); 1245 goto failed; 1246 } 1247 INIT_LIST_HEAD(&xdev->dma_dev.channels); 1248 1249 ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV); 1250 if (ret) { 1251 xdma_err(xdev, "config H2C channels failed: %d", ret); 1252 goto failed; 1253 } 1254 1255 ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM); 1256 if (ret) { 1257 xdma_err(xdev, "config C2H channels failed: %d", ret); 1258 goto failed; 1259 } 1260 1261 dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask); 1262 dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask); 1263 dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask); 1264 dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask); 1265 dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask); 1266 dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask); 1267 1268 xdev->dma_dev.dev = &pdev->dev; 1269 xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 1270 xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources; 1271 xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources; 1272 xdev->dma_dev.device_tx_status = xdma_tx_status; 1273 xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg; 1274 xdev->dma_dev.device_config = xdma_device_config; 1275 xdev->dma_dev.device_issue_pending = xdma_issue_pending; 1276 xdev->dma_dev.device_terminate_all = xdma_terminate_all; 1277 xdev->dma_dev.device_synchronize = xdma_synchronize; 1278 xdev->dma_dev.filter.map = pdata->device_map; 1279 xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt; 1280 xdev->dma_dev.filter.fn = xdma_filter_fn; 1281 xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic; 1282 xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma; 1283 1284 ret = dma_async_device_register(&xdev->dma_dev); 1285 if (ret) { 1286 xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret); 1287 goto failed; 1288 } 1289 xdev->status |= XDMA_DEV_STATUS_REG_DMA; 1290 1291 ret = xdma_irq_init(xdev); 1292 if (ret) { 1293 xdma_err(xdev, "failed to init msix: %d", ret); 1294 goto failed; 1295 } 1296 xdev->status |= XDMA_DEV_STATUS_INIT_MSIX; 1297 1298 return 0; 1299 1300 failed: 1301 xdma_remove(pdev); 1302 1303 return ret; 1304 } 1305 1306 static const struct platform_device_id xdma_id_table[] = { 1307 { "xdma", 0}, 1308 { }, 1309 }; 1310 MODULE_DEVICE_TABLE(platform, xdma_id_table); 1311 1312 static struct platform_driver xdma_driver = { 1313 .driver = { 1314 .name = "xdma", 1315 }, 1316 .id_table = xdma_id_table, 1317 .probe = xdma_probe, 1318 .remove = xdma_remove, 1319 }; 1320 1321 module_platform_driver(xdma_driver); 1322 1323 MODULE_DESCRIPTION("AMD XDMA driver"); 1324 MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>"); 1325 MODULE_LICENSE("GPL"); 1326