1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DMA driver for Xilinx DMA/Bridge Subsystem 4 * 5 * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved. 6 * Copyright (C) 2022, Advanced Micro Devices, Inc. 7 */ 8 9 /* 10 * The DMA/Bridge Subsystem for PCI Express allows for the movement of data 11 * between Host memory and the DMA subsystem. It does this by operating on 12 * 'descriptors' that contain information about the source, destination and 13 * amount of data to transfer. These direct memory transfers can be both in 14 * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be 15 * configured to have a single AXI4 Master interface shared by all channels 16 * or one AXI4-Stream interface for each channel enabled. Memory transfers are 17 * specified on a per-channel basis in descriptor linked lists, which the DMA 18 * fetches from host memory and processes. Events such as descriptor completion 19 * and errors are signaled using interrupts. The core also provides up to 16 20 * user interrupt wires that generate interrupts to the host. 21 */ 22 23 #include <linux/mod_devicetable.h> 24 #include <linux/bitfield.h> 25 #include <linux/dmapool.h> 26 #include <linux/regmap.h> 27 #include <linux/dmaengine.h> 28 #include <linux/dma/amd_xdma.h> 29 #include <linux/platform_device.h> 30 #include <linux/platform_data/amd_xdma.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/pci.h> 33 #include "../virt-dma.h" 34 #include "xdma-regs.h" 35 36 /* mmio regmap config for all XDMA registers */ 37 static const struct regmap_config xdma_regmap_config = { 38 .reg_bits = 32, 39 .val_bits = 32, 40 .reg_stride = 4, 41 .max_register = XDMA_REG_SPACE_LEN, 42 }; 43 44 /** 45 * struct xdma_desc_block - Descriptor block 46 * @virt_addr: Virtual address of block start 47 * @dma_addr: DMA address of block start 48 */ 49 struct xdma_desc_block { 50 void *virt_addr; 51 dma_addr_t dma_addr; 52 }; 53 54 /** 55 * struct xdma_chan - Driver specific DMA channel structure 56 * @vchan: Virtual channel 57 * @xdev_hdl: Pointer to DMA device structure 58 * @base: Offset of channel registers 59 * @desc_pool: Descriptor pool 60 * @busy: Busy flag of the channel 61 * @dir: Transferring direction of the channel 62 * @cfg: Transferring config of the channel 63 * @irq: IRQ assigned to the channel 64 */ 65 struct xdma_chan { 66 struct virt_dma_chan vchan; 67 void *xdev_hdl; 68 u32 base; 69 struct dma_pool *desc_pool; 70 bool busy; 71 enum dma_transfer_direction dir; 72 struct dma_slave_config cfg; 73 u32 irq; 74 }; 75 76 /** 77 * struct xdma_desc - DMA desc structure 78 * @vdesc: Virtual DMA descriptor 79 * @chan: DMA channel pointer 80 * @dir: Transferring direction of the request 81 * @dev_addr: Physical address on DMA device side 82 * @desc_blocks: Hardware descriptor blocks 83 * @dblk_num: Number of hardware descriptor blocks 84 * @desc_num: Number of hardware descriptors 85 * @completed_desc_num: Completed hardware descriptors 86 * @cyclic: Cyclic transfer vs. scatter-gather 87 * @periods: Number of periods in the cyclic transfer 88 * @period_size: Size of a period in bytes in cyclic transfers 89 */ 90 struct xdma_desc { 91 struct virt_dma_desc vdesc; 92 struct xdma_chan *chan; 93 enum dma_transfer_direction dir; 94 u64 dev_addr; 95 struct xdma_desc_block *desc_blocks; 96 u32 dblk_num; 97 u32 desc_num; 98 u32 completed_desc_num; 99 bool cyclic; 100 u32 periods; 101 u32 period_size; 102 }; 103 104 #define XDMA_DEV_STATUS_REG_DMA BIT(0) 105 #define XDMA_DEV_STATUS_INIT_MSIX BIT(1) 106 107 /** 108 * struct xdma_device - DMA device structure 109 * @pdev: Platform device pointer 110 * @dma_dev: DMA device structure 111 * @rmap: MMIO regmap for DMA registers 112 * @h2c_chans: Host to Card channels 113 * @c2h_chans: Card to Host channels 114 * @h2c_chan_num: Number of H2C channels 115 * @c2h_chan_num: Number of C2H channels 116 * @irq_start: Start IRQ assigned to device 117 * @irq_num: Number of IRQ assigned to device 118 * @status: Initialization status 119 */ 120 struct xdma_device { 121 struct platform_device *pdev; 122 struct dma_device dma_dev; 123 struct regmap *rmap; 124 struct xdma_chan *h2c_chans; 125 struct xdma_chan *c2h_chans; 126 u32 h2c_chan_num; 127 u32 c2h_chan_num; 128 u32 irq_start; 129 u32 irq_num; 130 u32 status; 131 }; 132 133 #define xdma_err(xdev, fmt, args...) \ 134 dev_err(&(xdev)->pdev->dev, fmt, ##args) 135 #define XDMA_CHAN_NUM(_xd) ({ \ 136 typeof(_xd) (xd) = (_xd); \ 137 ((xd)->h2c_chan_num + (xd)->c2h_chan_num); }) 138 139 /* Get the last desc in a desc block */ 140 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block) 141 { 142 return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE; 143 } 144 145 /** 146 * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer 147 * @sw_desc: Tx descriptor pointer 148 */ 149 static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc) 150 { 151 struct xdma_desc_block *block; 152 u32 last_blk_desc, desc_control; 153 struct xdma_hw_desc *desc; 154 int i; 155 156 desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0); 157 for (i = 1; i < sw_desc->dblk_num; i++) { 158 block = &sw_desc->desc_blocks[i - 1]; 159 desc = xdma_blk_last_desc(block); 160 161 if (!(i & XDMA_DESC_BLOCK_MASK)) { 162 desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST); 163 continue; 164 } 165 desc->control = cpu_to_le32(desc_control); 166 desc->next_desc = cpu_to_le64(block[1].dma_addr); 167 } 168 169 /* update the last block */ 170 last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK; 171 if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) { 172 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2]; 173 desc = xdma_blk_last_desc(block); 174 desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0); 175 desc->control = cpu_to_le32(desc_control); 176 } 177 178 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1]; 179 desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE; 180 desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST); 181 } 182 183 /** 184 * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer 185 * @sw_desc: Tx descriptor pointer 186 */ 187 static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc) 188 { 189 struct xdma_desc_block *block; 190 struct xdma_hw_desc *desc; 191 int i; 192 193 block = sw_desc->desc_blocks; 194 for (i = 0; i < sw_desc->desc_num - 1; i++) { 195 desc = block->virt_addr + i * XDMA_DESC_SIZE; 196 desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE)); 197 } 198 desc = block->virt_addr + i * XDMA_DESC_SIZE; 199 desc->next_desc = cpu_to_le64(block->dma_addr); 200 } 201 202 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan) 203 { 204 return container_of(chan, struct xdma_chan, vchan.chan); 205 } 206 207 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc) 208 { 209 return container_of(vdesc, struct xdma_desc, vdesc); 210 } 211 212 /** 213 * xdma_channel_init - Initialize DMA channel registers 214 * @chan: DMA channel pointer 215 */ 216 static int xdma_channel_init(struct xdma_chan *chan) 217 { 218 struct xdma_device *xdev = chan->xdev_hdl; 219 int ret; 220 221 ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C, 222 CHAN_CTRL_NON_INCR_ADDR); 223 if (ret) 224 return ret; 225 226 ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE, 227 CHAN_IM_ALL); 228 if (ret) 229 return ret; 230 231 return 0; 232 } 233 234 /** 235 * xdma_free_desc - Free descriptor 236 * @vdesc: Virtual DMA descriptor 237 */ 238 static void xdma_free_desc(struct virt_dma_desc *vdesc) 239 { 240 struct xdma_desc *sw_desc; 241 int i; 242 243 sw_desc = to_xdma_desc(vdesc); 244 for (i = 0; i < sw_desc->dblk_num; i++) { 245 if (!sw_desc->desc_blocks[i].virt_addr) 246 break; 247 dma_pool_free(sw_desc->chan->desc_pool, 248 sw_desc->desc_blocks[i].virt_addr, 249 sw_desc->desc_blocks[i].dma_addr); 250 } 251 kfree(sw_desc->desc_blocks); 252 kfree(sw_desc); 253 } 254 255 /** 256 * xdma_alloc_desc - Allocate descriptor 257 * @chan: DMA channel pointer 258 * @desc_num: Number of hardware descriptors 259 * @cyclic: Whether this is a cyclic transfer 260 */ 261 static struct xdma_desc * 262 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic) 263 { 264 struct xdma_desc *sw_desc; 265 struct xdma_hw_desc *desc; 266 dma_addr_t dma_addr; 267 u32 dblk_num; 268 u32 control; 269 void *addr; 270 int i, j; 271 272 sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT); 273 if (!sw_desc) 274 return NULL; 275 276 sw_desc->chan = chan; 277 sw_desc->desc_num = desc_num; 278 sw_desc->cyclic = cyclic; 279 dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT); 280 sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks), 281 GFP_NOWAIT); 282 if (!sw_desc->desc_blocks) 283 goto failed; 284 285 if (cyclic) 286 control = XDMA_DESC_CONTROL_CYCLIC; 287 else 288 control = XDMA_DESC_CONTROL(1, 0); 289 290 sw_desc->dblk_num = dblk_num; 291 for (i = 0; i < sw_desc->dblk_num; i++) { 292 addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr); 293 if (!addr) 294 goto failed; 295 296 sw_desc->desc_blocks[i].virt_addr = addr; 297 sw_desc->desc_blocks[i].dma_addr = dma_addr; 298 for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++) 299 desc[j].control = cpu_to_le32(control); 300 } 301 302 if (cyclic) 303 xdma_link_cyclic_desc_blocks(sw_desc); 304 else 305 xdma_link_sg_desc_blocks(sw_desc); 306 307 return sw_desc; 308 309 failed: 310 xdma_free_desc(&sw_desc->vdesc); 311 return NULL; 312 } 313 314 /** 315 * xdma_xfer_start - Start DMA transfer 316 * @xchan: DMA channel pointer 317 */ 318 static int xdma_xfer_start(struct xdma_chan *xchan) 319 { 320 struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan); 321 struct xdma_device *xdev = xchan->xdev_hdl; 322 struct xdma_desc_block *block; 323 u32 val, completed_blocks; 324 struct xdma_desc *desc; 325 int ret; 326 327 /* 328 * check if there is not any submitted descriptor or channel is busy. 329 * vchan lock should be held where this function is called. 330 */ 331 if (!vd || xchan->busy) 332 return -EINVAL; 333 334 /* clear run stop bit to get ready for transfer */ 335 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C, 336 CHAN_CTRL_RUN_STOP); 337 if (ret) 338 return ret; 339 340 desc = to_xdma_desc(vd); 341 if (desc->dir != xchan->dir) { 342 xdma_err(xdev, "incorrect request direction"); 343 return -EINVAL; 344 } 345 346 /* set DMA engine to the first descriptor block */ 347 completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT; 348 block = &desc->desc_blocks[completed_blocks]; 349 val = lower_32_bits(block->dma_addr); 350 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val); 351 if (ret) 352 return ret; 353 354 val = upper_32_bits(block->dma_addr); 355 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val); 356 if (ret) 357 return ret; 358 359 if (completed_blocks + 1 == desc->dblk_num) 360 val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK; 361 else 362 val = XDMA_DESC_ADJACENT - 1; 363 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val); 364 if (ret) 365 return ret; 366 367 /* kick off DMA transfer */ 368 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL, 369 CHAN_CTRL_START); 370 if (ret) 371 return ret; 372 373 xchan->busy = true; 374 return 0; 375 } 376 377 /** 378 * xdma_alloc_channels - Detect and allocate DMA channels 379 * @xdev: DMA device pointer 380 * @dir: Channel direction 381 */ 382 static int xdma_alloc_channels(struct xdma_device *xdev, 383 enum dma_transfer_direction dir) 384 { 385 struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev); 386 struct xdma_chan **chans, *xchan; 387 u32 base, identifier, target; 388 u32 *chan_num; 389 int i, j, ret; 390 391 if (dir == DMA_MEM_TO_DEV) { 392 base = XDMA_CHAN_H2C_OFFSET; 393 target = XDMA_CHAN_H2C_TARGET; 394 chans = &xdev->h2c_chans; 395 chan_num = &xdev->h2c_chan_num; 396 } else if (dir == DMA_DEV_TO_MEM) { 397 base = XDMA_CHAN_C2H_OFFSET; 398 target = XDMA_CHAN_C2H_TARGET; 399 chans = &xdev->c2h_chans; 400 chan_num = &xdev->c2h_chan_num; 401 } else { 402 xdma_err(xdev, "invalid direction specified"); 403 return -EINVAL; 404 } 405 406 /* detect number of available DMA channels */ 407 for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) { 408 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE, 409 &identifier); 410 if (ret) 411 return ret; 412 413 /* check if it is available DMA channel */ 414 if (XDMA_CHAN_CHECK_TARGET(identifier, target)) 415 (*chan_num)++; 416 } 417 418 if (!*chan_num) { 419 xdma_err(xdev, "does not probe any channel"); 420 return -EINVAL; 421 } 422 423 *chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans), 424 GFP_KERNEL); 425 if (!*chans) 426 return -ENOMEM; 427 428 for (i = 0, j = 0; i < pdata->max_dma_channels; i++) { 429 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE, 430 &identifier); 431 if (ret) 432 return ret; 433 434 if (!XDMA_CHAN_CHECK_TARGET(identifier, target)) 435 continue; 436 437 if (j == *chan_num) { 438 xdma_err(xdev, "invalid channel number"); 439 return -EIO; 440 } 441 442 /* init channel structure and hardware */ 443 xchan = &(*chans)[j]; 444 xchan->xdev_hdl = xdev; 445 xchan->base = base + i * XDMA_CHAN_STRIDE; 446 xchan->dir = dir; 447 448 ret = xdma_channel_init(xchan); 449 if (ret) 450 return ret; 451 xchan->vchan.desc_free = xdma_free_desc; 452 vchan_init(&xchan->vchan, &xdev->dma_dev); 453 454 j++; 455 } 456 457 dev_info(&xdev->pdev->dev, "configured %d %s channels", j, 458 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H"); 459 460 return 0; 461 } 462 463 /** 464 * xdma_issue_pending - Issue pending transactions 465 * @chan: DMA channel pointer 466 */ 467 static void xdma_issue_pending(struct dma_chan *chan) 468 { 469 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 470 unsigned long flags; 471 472 spin_lock_irqsave(&xdma_chan->vchan.lock, flags); 473 if (vchan_issue_pending(&xdma_chan->vchan)) 474 xdma_xfer_start(xdma_chan); 475 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 476 } 477 478 /** 479 * xdma_prep_device_sg - prepare a descriptor for a DMA transaction 480 * @chan: DMA channel pointer 481 * @sgl: Transfer scatter gather list 482 * @sg_len: Length of scatter gather list 483 * @dir: Transfer direction 484 * @flags: transfer ack flags 485 * @context: APP words of the descriptor 486 */ 487 static struct dma_async_tx_descriptor * 488 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl, 489 unsigned int sg_len, enum dma_transfer_direction dir, 490 unsigned long flags, void *context) 491 { 492 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 493 struct dma_async_tx_descriptor *tx_desc; 494 u32 desc_num = 0, i, len, rest; 495 struct xdma_desc_block *dblk; 496 struct xdma_hw_desc *desc; 497 struct xdma_desc *sw_desc; 498 u64 dev_addr, *src, *dst; 499 struct scatterlist *sg; 500 u64 addr; 501 502 for_each_sg(sgl, sg, sg_len, i) 503 desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX); 504 505 sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false); 506 if (!sw_desc) 507 return NULL; 508 sw_desc->dir = dir; 509 510 if (dir == DMA_MEM_TO_DEV) { 511 dev_addr = xdma_chan->cfg.dst_addr; 512 src = &addr; 513 dst = &dev_addr; 514 } else { 515 dev_addr = xdma_chan->cfg.src_addr; 516 src = &dev_addr; 517 dst = &addr; 518 } 519 520 dblk = sw_desc->desc_blocks; 521 desc = dblk->virt_addr; 522 desc_num = 1; 523 for_each_sg(sgl, sg, sg_len, i) { 524 addr = sg_dma_address(sg); 525 rest = sg_dma_len(sg); 526 527 do { 528 len = min_t(u32, rest, XDMA_DESC_BLEN_MAX); 529 /* set hardware descriptor */ 530 desc->bytes = cpu_to_le32(len); 531 desc->src_addr = cpu_to_le64(*src); 532 desc->dst_addr = cpu_to_le64(*dst); 533 534 if (!(desc_num & XDMA_DESC_ADJACENT_MASK)) { 535 dblk++; 536 desc = dblk->virt_addr; 537 } else { 538 desc++; 539 } 540 541 desc_num++; 542 dev_addr += len; 543 addr += len; 544 rest -= len; 545 } while (rest); 546 } 547 548 tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags); 549 if (!tx_desc) 550 goto failed; 551 552 return tx_desc; 553 554 failed: 555 xdma_free_desc(&sw_desc->vdesc); 556 557 return NULL; 558 } 559 560 /** 561 * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions 562 * @chan: DMA channel pointer 563 * @address: Device DMA address to access 564 * @size: Total length to transfer 565 * @period_size: Period size to use for each transfer 566 * @dir: Transfer direction 567 * @flags: Transfer ack flags 568 */ 569 static struct dma_async_tx_descriptor * 570 xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address, 571 size_t size, size_t period_size, 572 enum dma_transfer_direction dir, 573 unsigned long flags) 574 { 575 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 576 struct xdma_device *xdev = xdma_chan->xdev_hdl; 577 unsigned int periods = size / period_size; 578 struct dma_async_tx_descriptor *tx_desc; 579 struct xdma_desc_block *dblk; 580 struct xdma_hw_desc *desc; 581 struct xdma_desc *sw_desc; 582 unsigned int i; 583 584 /* 585 * Simplify the whole logic by preventing an abnormally high number of 586 * periods and periods size. 587 */ 588 if (period_size > XDMA_DESC_BLEN_MAX) { 589 xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX); 590 return NULL; 591 } 592 593 if (periods > XDMA_DESC_ADJACENT) { 594 xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT); 595 return NULL; 596 } 597 598 sw_desc = xdma_alloc_desc(xdma_chan, periods, true); 599 if (!sw_desc) 600 return NULL; 601 602 sw_desc->periods = periods; 603 sw_desc->period_size = period_size; 604 sw_desc->dir = dir; 605 606 dblk = sw_desc->desc_blocks; 607 desc = dblk->virt_addr; 608 609 /* fill hardware descriptor */ 610 for (i = 0; i < periods; i++) { 611 desc->bytes = cpu_to_le32(period_size); 612 if (dir == DMA_MEM_TO_DEV) { 613 desc->src_addr = cpu_to_le64(address + i * period_size); 614 desc->dst_addr = cpu_to_le64(xdma_chan->cfg.dst_addr); 615 } else { 616 desc->src_addr = cpu_to_le64(xdma_chan->cfg.src_addr); 617 desc->dst_addr = cpu_to_le64(address + i * period_size); 618 } 619 620 desc++; 621 } 622 623 tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags); 624 if (!tx_desc) 625 goto failed; 626 627 return tx_desc; 628 629 failed: 630 xdma_free_desc(&sw_desc->vdesc); 631 632 return NULL; 633 } 634 635 /** 636 * xdma_device_config - Configure the DMA channel 637 * @chan: DMA channel 638 * @cfg: channel configuration 639 */ 640 static int xdma_device_config(struct dma_chan *chan, 641 struct dma_slave_config *cfg) 642 { 643 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 644 645 memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg)); 646 647 return 0; 648 } 649 650 /** 651 * xdma_free_chan_resources - Free channel resources 652 * @chan: DMA channel 653 */ 654 static void xdma_free_chan_resources(struct dma_chan *chan) 655 { 656 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 657 658 vchan_free_chan_resources(&xdma_chan->vchan); 659 dma_pool_destroy(xdma_chan->desc_pool); 660 xdma_chan->desc_pool = NULL; 661 } 662 663 /** 664 * xdma_alloc_chan_resources - Allocate channel resources 665 * @chan: DMA channel 666 */ 667 static int xdma_alloc_chan_resources(struct dma_chan *chan) 668 { 669 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 670 struct xdma_device *xdev = xdma_chan->xdev_hdl; 671 struct device *dev = xdev->dma_dev.dev; 672 673 while (dev && !dev_is_pci(dev)) 674 dev = dev->parent; 675 if (!dev) { 676 xdma_err(xdev, "unable to find pci device"); 677 return -EINVAL; 678 } 679 680 xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), 681 dev, XDMA_DESC_BLOCK_SIZE, 682 XDMA_DESC_BLOCK_ALIGN, 0); 683 if (!xdma_chan->desc_pool) { 684 xdma_err(xdev, "unable to allocate descriptor pool"); 685 return -ENOMEM; 686 } 687 688 return 0; 689 } 690 691 static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 692 struct dma_tx_state *state) 693 { 694 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 695 struct xdma_desc *desc = NULL; 696 struct virt_dma_desc *vd; 697 enum dma_status ret; 698 unsigned long flags; 699 unsigned int period_idx; 700 u32 residue = 0; 701 702 ret = dma_cookie_status(chan, cookie, state); 703 if (ret == DMA_COMPLETE) 704 return ret; 705 706 spin_lock_irqsave(&xdma_chan->vchan.lock, flags); 707 708 vd = vchan_find_desc(&xdma_chan->vchan, cookie); 709 if (vd) 710 desc = to_xdma_desc(vd); 711 if (!desc || !desc->cyclic) { 712 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 713 return ret; 714 } 715 716 period_idx = desc->completed_desc_num % desc->periods; 717 residue = (desc->periods - period_idx) * desc->period_size; 718 719 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 720 721 dma_set_residue(state, residue); 722 723 return ret; 724 } 725 726 /** 727 * xdma_channel_isr - XDMA channel interrupt handler 728 * @irq: IRQ number 729 * @dev_id: Pointer to the DMA channel structure 730 */ 731 static irqreturn_t xdma_channel_isr(int irq, void *dev_id) 732 { 733 struct xdma_chan *xchan = dev_id; 734 u32 complete_desc_num = 0; 735 struct xdma_device *xdev; 736 struct virt_dma_desc *vd; 737 struct xdma_desc *desc; 738 int ret; 739 u32 st; 740 741 spin_lock(&xchan->vchan.lock); 742 743 /* get submitted request */ 744 vd = vchan_next_desc(&xchan->vchan); 745 if (!vd) 746 goto out; 747 748 xchan->busy = false; 749 desc = to_xdma_desc(vd); 750 xdev = xchan->xdev_hdl; 751 752 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC, 753 &complete_desc_num); 754 if (ret) 755 goto out; 756 757 desc->completed_desc_num += complete_desc_num; 758 759 if (desc->cyclic) { 760 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS, 761 &st); 762 if (ret) 763 goto out; 764 765 regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_STATUS, st); 766 767 vchan_cyclic_callback(vd); 768 goto out; 769 } 770 771 /* 772 * if all data blocks are transferred, remove and complete the request 773 */ 774 if (desc->completed_desc_num == desc->desc_num) { 775 list_del(&vd->node); 776 vchan_cookie_complete(vd); 777 goto out; 778 } 779 780 if (desc->completed_desc_num > desc->desc_num || 781 complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) 782 goto out; 783 784 /* transfer the rest of data (SG only) */ 785 xdma_xfer_start(xchan); 786 787 out: 788 spin_unlock(&xchan->vchan.lock); 789 return IRQ_HANDLED; 790 } 791 792 /** 793 * xdma_irq_fini - Uninitialize IRQ 794 * @xdev: DMA device pointer 795 */ 796 static void xdma_irq_fini(struct xdma_device *xdev) 797 { 798 int i; 799 800 /* disable interrupt */ 801 regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0); 802 803 /* free irq handler */ 804 for (i = 0; i < xdev->h2c_chan_num; i++) 805 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]); 806 807 for (i = 0; i < xdev->c2h_chan_num; i++) 808 free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]); 809 } 810 811 /** 812 * xdma_set_vector_reg - configure hardware IRQ registers 813 * @xdev: DMA device pointer 814 * @vec_tbl_start: Start of IRQ registers 815 * @irq_start: Start of IRQ 816 * @irq_num: Number of IRQ 817 */ 818 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start, 819 u32 irq_start, u32 irq_num) 820 { 821 u32 shift, i, val = 0; 822 int ret; 823 824 /* Each IRQ register is 32 bit and contains 4 IRQs */ 825 while (irq_num > 0) { 826 for (i = 0; i < 4; i++) { 827 shift = XDMA_IRQ_VEC_SHIFT * i; 828 val |= irq_start << shift; 829 irq_start++; 830 irq_num--; 831 if (!irq_num) 832 break; 833 } 834 835 /* write IRQ register */ 836 ret = regmap_write(xdev->rmap, vec_tbl_start, val); 837 if (ret) 838 return ret; 839 vec_tbl_start += sizeof(u32); 840 val = 0; 841 } 842 843 return 0; 844 } 845 846 /** 847 * xdma_irq_init - initialize IRQs 848 * @xdev: DMA device pointer 849 */ 850 static int xdma_irq_init(struct xdma_device *xdev) 851 { 852 u32 irq = xdev->irq_start; 853 u32 user_irq_start; 854 int i, j, ret; 855 856 /* return failure if there are not enough IRQs */ 857 if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) { 858 xdma_err(xdev, "not enough irq"); 859 return -EINVAL; 860 } 861 862 /* setup H2C interrupt handler */ 863 for (i = 0; i < xdev->h2c_chan_num; i++) { 864 ret = request_irq(irq, xdma_channel_isr, 0, 865 "xdma-h2c-channel", &xdev->h2c_chans[i]); 866 if (ret) { 867 xdma_err(xdev, "H2C channel%d request irq%d failed: %d", 868 i, irq, ret); 869 goto failed_init_h2c; 870 } 871 xdev->h2c_chans[i].irq = irq; 872 irq++; 873 } 874 875 /* setup C2H interrupt handler */ 876 for (j = 0; j < xdev->c2h_chan_num; j++) { 877 ret = request_irq(irq, xdma_channel_isr, 0, 878 "xdma-c2h-channel", &xdev->c2h_chans[j]); 879 if (ret) { 880 xdma_err(xdev, "C2H channel%d request irq%d failed: %d", 881 j, irq, ret); 882 goto failed_init_c2h; 883 } 884 xdev->c2h_chans[j].irq = irq; 885 irq++; 886 } 887 888 /* config hardware IRQ registers */ 889 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0, 890 XDMA_CHAN_NUM(xdev)); 891 if (ret) { 892 xdma_err(xdev, "failed to set channel vectors: %d", ret); 893 goto failed_init_c2h; 894 } 895 896 /* config user IRQ registers if needed */ 897 user_irq_start = XDMA_CHAN_NUM(xdev); 898 if (xdev->irq_num > user_irq_start) { 899 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM, 900 user_irq_start, 901 xdev->irq_num - user_irq_start); 902 if (ret) { 903 xdma_err(xdev, "failed to set user vectors: %d", ret); 904 goto failed_init_c2h; 905 } 906 } 907 908 /* enable interrupt */ 909 ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0); 910 if (ret) 911 goto failed_init_c2h; 912 913 return 0; 914 915 failed_init_c2h: 916 while (j--) 917 free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]); 918 failed_init_h2c: 919 while (i--) 920 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]); 921 922 return ret; 923 } 924 925 static bool xdma_filter_fn(struct dma_chan *chan, void *param) 926 { 927 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 928 struct xdma_chan_info *chan_info = param; 929 930 return chan_info->dir == xdma_chan->dir; 931 } 932 933 /** 934 * xdma_disable_user_irq - Disable user interrupt 935 * @pdev: Pointer to the platform_device structure 936 * @irq_num: System IRQ number 937 */ 938 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num) 939 { 940 struct xdma_device *xdev = platform_get_drvdata(pdev); 941 u32 index; 942 943 index = irq_num - xdev->irq_start; 944 if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) { 945 xdma_err(xdev, "invalid user irq number"); 946 return; 947 } 948 index -= XDMA_CHAN_NUM(xdev); 949 950 regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index); 951 } 952 EXPORT_SYMBOL(xdma_disable_user_irq); 953 954 /** 955 * xdma_enable_user_irq - Enable user logic interrupt 956 * @pdev: Pointer to the platform_device structure 957 * @irq_num: System IRQ number 958 */ 959 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num) 960 { 961 struct xdma_device *xdev = platform_get_drvdata(pdev); 962 u32 index; 963 int ret; 964 965 index = irq_num - xdev->irq_start; 966 if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) { 967 xdma_err(xdev, "invalid user irq number"); 968 return -EINVAL; 969 } 970 index -= XDMA_CHAN_NUM(xdev); 971 972 ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index); 973 if (ret) 974 return ret; 975 976 return 0; 977 } 978 EXPORT_SYMBOL(xdma_enable_user_irq); 979 980 /** 981 * xdma_get_user_irq - Get system IRQ number 982 * @pdev: Pointer to the platform_device structure 983 * @user_irq_index: User logic IRQ wire index 984 * 985 * Return: The system IRQ number allocated for the given wire index. 986 */ 987 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index) 988 { 989 struct xdma_device *xdev = platform_get_drvdata(pdev); 990 991 if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) { 992 xdma_err(xdev, "invalid user irq index"); 993 return -EINVAL; 994 } 995 996 return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index; 997 } 998 EXPORT_SYMBOL(xdma_get_user_irq); 999 1000 /** 1001 * xdma_remove - Driver remove function 1002 * @pdev: Pointer to the platform_device structure 1003 */ 1004 static void xdma_remove(struct platform_device *pdev) 1005 { 1006 struct xdma_device *xdev = platform_get_drvdata(pdev); 1007 1008 if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX) 1009 xdma_irq_fini(xdev); 1010 1011 if (xdev->status & XDMA_DEV_STATUS_REG_DMA) 1012 dma_async_device_unregister(&xdev->dma_dev); 1013 } 1014 1015 /** 1016 * xdma_probe - Driver probe function 1017 * @pdev: Pointer to the platform_device structure 1018 */ 1019 static int xdma_probe(struct platform_device *pdev) 1020 { 1021 struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev); 1022 struct xdma_device *xdev; 1023 void __iomem *reg_base; 1024 struct resource *res; 1025 int ret = -ENODEV; 1026 1027 if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) { 1028 dev_err(&pdev->dev, "invalid max dma channels %d", 1029 pdata->max_dma_channels); 1030 return -EINVAL; 1031 } 1032 1033 xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); 1034 if (!xdev) 1035 return -ENOMEM; 1036 1037 platform_set_drvdata(pdev, xdev); 1038 xdev->pdev = pdev; 1039 1040 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1041 if (!res) { 1042 xdma_err(xdev, "failed to get irq resource"); 1043 goto failed; 1044 } 1045 xdev->irq_start = res->start; 1046 xdev->irq_num = resource_size(res); 1047 1048 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1049 if (!res) { 1050 xdma_err(xdev, "failed to get io resource"); 1051 goto failed; 1052 } 1053 1054 reg_base = devm_ioremap_resource(&pdev->dev, res); 1055 if (IS_ERR(reg_base)) { 1056 xdma_err(xdev, "ioremap failed"); 1057 goto failed; 1058 } 1059 1060 xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base, 1061 &xdma_regmap_config); 1062 if (!xdev->rmap) { 1063 xdma_err(xdev, "config regmap failed: %d", ret); 1064 goto failed; 1065 } 1066 INIT_LIST_HEAD(&xdev->dma_dev.channels); 1067 1068 ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV); 1069 if (ret) { 1070 xdma_err(xdev, "config H2C channels failed: %d", ret); 1071 goto failed; 1072 } 1073 1074 ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM); 1075 if (ret) { 1076 xdma_err(xdev, "config C2H channels failed: %d", ret); 1077 goto failed; 1078 } 1079 1080 dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask); 1081 dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask); 1082 dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask); 1083 1084 xdev->dma_dev.dev = &pdev->dev; 1085 xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 1086 xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources; 1087 xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources; 1088 xdev->dma_dev.device_tx_status = xdma_tx_status; 1089 xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg; 1090 xdev->dma_dev.device_config = xdma_device_config; 1091 xdev->dma_dev.device_issue_pending = xdma_issue_pending; 1092 xdev->dma_dev.filter.map = pdata->device_map; 1093 xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt; 1094 xdev->dma_dev.filter.fn = xdma_filter_fn; 1095 xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic; 1096 1097 ret = dma_async_device_register(&xdev->dma_dev); 1098 if (ret) { 1099 xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret); 1100 goto failed; 1101 } 1102 xdev->status |= XDMA_DEV_STATUS_REG_DMA; 1103 1104 ret = xdma_irq_init(xdev); 1105 if (ret) { 1106 xdma_err(xdev, "failed to init msix: %d", ret); 1107 goto failed; 1108 } 1109 xdev->status |= XDMA_DEV_STATUS_INIT_MSIX; 1110 1111 return 0; 1112 1113 failed: 1114 xdma_remove(pdev); 1115 1116 return ret; 1117 } 1118 1119 static const struct platform_device_id xdma_id_table[] = { 1120 { "xdma", 0}, 1121 { }, 1122 }; 1123 1124 static struct platform_driver xdma_driver = { 1125 .driver = { 1126 .name = "xdma", 1127 }, 1128 .id_table = xdma_id_table, 1129 .probe = xdma_probe, 1130 .remove_new = xdma_remove, 1131 }; 1132 1133 module_platform_driver(xdma_driver); 1134 1135 MODULE_DESCRIPTION("AMD XDMA driver"); 1136 MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>"); 1137 MODULE_LICENSE("GPL"); 1138