1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DMA driver for Xilinx DMA/Bridge Subsystem 4 * 5 * Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved. 6 * Copyright (C) 2022, Advanced Micro Devices, Inc. 7 */ 8 9 /* 10 * The DMA/Bridge Subsystem for PCI Express allows for the movement of data 11 * between Host memory and the DMA subsystem. It does this by operating on 12 * 'descriptors' that contain information about the source, destination and 13 * amount of data to transfer. These direct memory transfers can be both in 14 * the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be 15 * configured to have a single AXI4 Master interface shared by all channels 16 * or one AXI4-Stream interface for each channel enabled. Memory transfers are 17 * specified on a per-channel basis in descriptor linked lists, which the DMA 18 * fetches from host memory and processes. Events such as descriptor completion 19 * and errors are signaled using interrupts. The core also provides up to 16 20 * user interrupt wires that generate interrupts to the host. 21 */ 22 23 #include <linux/mod_devicetable.h> 24 #include <linux/bitfield.h> 25 #include <linux/dmapool.h> 26 #include <linux/regmap.h> 27 #include <linux/dmaengine.h> 28 #include <linux/dma/amd_xdma.h> 29 #include <linux/platform_device.h> 30 #include <linux/platform_data/amd_xdma.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/pci.h> 33 #include "../virt-dma.h" 34 #include "xdma-regs.h" 35 36 /* mmio regmap config for all XDMA registers */ 37 static const struct regmap_config xdma_regmap_config = { 38 .reg_bits = 32, 39 .val_bits = 32, 40 .reg_stride = 4, 41 .max_register = XDMA_REG_SPACE_LEN, 42 }; 43 44 /** 45 * struct xdma_desc_block - Descriptor block 46 * @virt_addr: Virtual address of block start 47 * @dma_addr: DMA address of block start 48 */ 49 struct xdma_desc_block { 50 void *virt_addr; 51 dma_addr_t dma_addr; 52 }; 53 54 /** 55 * struct xdma_chan - Driver specific DMA channel structure 56 * @vchan: Virtual channel 57 * @xdev_hdl: Pointer to DMA device structure 58 * @base: Offset of channel registers 59 * @desc_pool: Descriptor pool 60 * @busy: Busy flag of the channel 61 * @dir: Transferring direction of the channel 62 * @cfg: Transferring config of the channel 63 * @irq: IRQ assigned to the channel 64 */ 65 struct xdma_chan { 66 struct virt_dma_chan vchan; 67 void *xdev_hdl; 68 u32 base; 69 struct dma_pool *desc_pool; 70 bool busy; 71 enum dma_transfer_direction dir; 72 struct dma_slave_config cfg; 73 u32 irq; 74 }; 75 76 /** 77 * struct xdma_desc - DMA desc structure 78 * @vdesc: Virtual DMA descriptor 79 * @chan: DMA channel pointer 80 * @dir: Transferring direction of the request 81 * @desc_blocks: Hardware descriptor blocks 82 * @dblk_num: Number of hardware descriptor blocks 83 * @desc_num: Number of hardware descriptors 84 * @completed_desc_num: Completed hardware descriptors 85 * @cyclic: Cyclic transfer vs. scatter-gather 86 * @interleaved_dma: Interleaved DMA transfer 87 * @periods: Number of periods in the cyclic transfer 88 * @period_size: Size of a period in bytes in cyclic transfers 89 * @frames_left: Number of frames left in interleaved DMA transfer 90 * @error: tx error flag 91 */ 92 struct xdma_desc { 93 struct virt_dma_desc vdesc; 94 struct xdma_chan *chan; 95 enum dma_transfer_direction dir; 96 struct xdma_desc_block *desc_blocks; 97 u32 dblk_num; 98 u32 desc_num; 99 u32 completed_desc_num; 100 bool cyclic; 101 bool interleaved_dma; 102 u32 periods; 103 u32 period_size; 104 u32 frames_left; 105 bool error; 106 }; 107 108 #define XDMA_DEV_STATUS_REG_DMA BIT(0) 109 #define XDMA_DEV_STATUS_INIT_MSIX BIT(1) 110 111 /** 112 * struct xdma_device - DMA device structure 113 * @pdev: Platform device pointer 114 * @dma_dev: DMA device structure 115 * @rmap: MMIO regmap for DMA registers 116 * @h2c_chans: Host to Card channels 117 * @c2h_chans: Card to Host channels 118 * @h2c_chan_num: Number of H2C channels 119 * @c2h_chan_num: Number of C2H channels 120 * @irq_start: Start IRQ assigned to device 121 * @irq_num: Number of IRQ assigned to device 122 * @status: Initialization status 123 */ 124 struct xdma_device { 125 struct platform_device *pdev; 126 struct dma_device dma_dev; 127 struct regmap *rmap; 128 struct xdma_chan *h2c_chans; 129 struct xdma_chan *c2h_chans; 130 u32 h2c_chan_num; 131 u32 c2h_chan_num; 132 u32 irq_start; 133 u32 irq_num; 134 u32 status; 135 }; 136 137 #define xdma_err(xdev, fmt, args...) \ 138 dev_err(&(xdev)->pdev->dev, fmt, ##args) 139 #define XDMA_CHAN_NUM(_xd) ({ \ 140 typeof(_xd) (xd) = (_xd); \ 141 ((xd)->h2c_chan_num + (xd)->c2h_chan_num); }) 142 143 /* Get the last desc in a desc block */ 144 static inline void *xdma_blk_last_desc(struct xdma_desc_block *block) 145 { 146 return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE; 147 } 148 149 /** 150 * xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer 151 * @sw_desc: Tx descriptor pointer 152 */ 153 static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc) 154 { 155 struct xdma_desc_block *block; 156 u32 last_blk_desc, desc_control; 157 struct xdma_hw_desc *desc; 158 int i; 159 160 desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0); 161 for (i = 1; i < sw_desc->dblk_num; i++) { 162 block = &sw_desc->desc_blocks[i - 1]; 163 desc = xdma_blk_last_desc(block); 164 165 if (!(i & XDMA_DESC_BLOCK_MASK)) { 166 desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST); 167 continue; 168 } 169 desc->control = cpu_to_le32(desc_control); 170 desc->next_desc = cpu_to_le64(block[1].dma_addr); 171 } 172 173 /* update the last block */ 174 last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK; 175 if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) { 176 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2]; 177 desc = xdma_blk_last_desc(block); 178 desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0); 179 desc->control = cpu_to_le32(desc_control); 180 } 181 182 block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1]; 183 desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE; 184 desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST); 185 } 186 187 /** 188 * xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer 189 * @sw_desc: Tx descriptor pointer 190 */ 191 static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc) 192 { 193 struct xdma_desc_block *block; 194 struct xdma_hw_desc *desc; 195 int i; 196 197 block = sw_desc->desc_blocks; 198 for (i = 0; i < sw_desc->desc_num - 1; i++) { 199 desc = block->virt_addr + i * XDMA_DESC_SIZE; 200 desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE)); 201 } 202 desc = block->virt_addr + i * XDMA_DESC_SIZE; 203 desc->next_desc = cpu_to_le64(block->dma_addr); 204 } 205 206 static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan) 207 { 208 return container_of(chan, struct xdma_chan, vchan.chan); 209 } 210 211 static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc) 212 { 213 return container_of(vdesc, struct xdma_desc, vdesc); 214 } 215 216 /** 217 * xdma_channel_init - Initialize DMA channel registers 218 * @chan: DMA channel pointer 219 */ 220 static int xdma_channel_init(struct xdma_chan *chan) 221 { 222 struct xdma_device *xdev = chan->xdev_hdl; 223 int ret; 224 225 ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C, 226 CHAN_CTRL_NON_INCR_ADDR); 227 if (ret) 228 return ret; 229 230 ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE, 231 CHAN_IM_ALL); 232 if (ret) 233 return ret; 234 235 return 0; 236 } 237 238 /** 239 * xdma_free_desc - Free descriptor 240 * @vdesc: Virtual DMA descriptor 241 */ 242 static void xdma_free_desc(struct virt_dma_desc *vdesc) 243 { 244 struct xdma_desc *sw_desc; 245 int i; 246 247 sw_desc = to_xdma_desc(vdesc); 248 for (i = 0; i < sw_desc->dblk_num; i++) { 249 if (!sw_desc->desc_blocks[i].virt_addr) 250 break; 251 dma_pool_free(sw_desc->chan->desc_pool, 252 sw_desc->desc_blocks[i].virt_addr, 253 sw_desc->desc_blocks[i].dma_addr); 254 } 255 kfree(sw_desc->desc_blocks); 256 kfree(sw_desc); 257 } 258 259 /** 260 * xdma_alloc_desc - Allocate descriptor 261 * @chan: DMA channel pointer 262 * @desc_num: Number of hardware descriptors 263 * @cyclic: Whether this is a cyclic transfer 264 */ 265 static struct xdma_desc * 266 xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic) 267 { 268 struct xdma_desc *sw_desc; 269 struct xdma_hw_desc *desc; 270 dma_addr_t dma_addr; 271 u32 dblk_num; 272 u32 control; 273 void *addr; 274 int i, j; 275 276 sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT); 277 if (!sw_desc) 278 return NULL; 279 280 sw_desc->chan = chan; 281 sw_desc->desc_num = desc_num; 282 sw_desc->cyclic = cyclic; 283 sw_desc->error = false; 284 dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT); 285 sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks), 286 GFP_NOWAIT); 287 if (!sw_desc->desc_blocks) 288 goto failed; 289 290 if (cyclic) 291 control = XDMA_DESC_CONTROL_CYCLIC; 292 else 293 control = XDMA_DESC_CONTROL(1, 0); 294 295 sw_desc->dblk_num = dblk_num; 296 for (i = 0; i < sw_desc->dblk_num; i++) { 297 addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr); 298 if (!addr) 299 goto failed; 300 301 sw_desc->desc_blocks[i].virt_addr = addr; 302 sw_desc->desc_blocks[i].dma_addr = dma_addr; 303 for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++) 304 desc[j].control = cpu_to_le32(control); 305 } 306 307 if (cyclic) 308 xdma_link_cyclic_desc_blocks(sw_desc); 309 else 310 xdma_link_sg_desc_blocks(sw_desc); 311 312 return sw_desc; 313 314 failed: 315 xdma_free_desc(&sw_desc->vdesc); 316 return NULL; 317 } 318 319 /** 320 * xdma_xfer_start - Start DMA transfer 321 * @xchan: DMA channel pointer 322 */ 323 static int xdma_xfer_start(struct xdma_chan *xchan) 324 { 325 struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan); 326 struct xdma_device *xdev = xchan->xdev_hdl; 327 struct xdma_desc_block *block; 328 u32 val, completed_blocks; 329 struct xdma_desc *desc; 330 int ret; 331 332 /* 333 * check if there is not any submitted descriptor or channel is busy. 334 * vchan lock should be held where this function is called. 335 */ 336 if (!vd || xchan->busy) 337 return -EINVAL; 338 339 /* clear run stop bit to get ready for transfer */ 340 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C, 341 CHAN_CTRL_RUN_STOP); 342 if (ret) 343 return ret; 344 345 desc = to_xdma_desc(vd); 346 if (desc->dir != xchan->dir) { 347 xdma_err(xdev, "incorrect request direction"); 348 return -EINVAL; 349 } 350 351 /* set DMA engine to the first descriptor block */ 352 completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT; 353 block = &desc->desc_blocks[completed_blocks]; 354 val = lower_32_bits(block->dma_addr); 355 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val); 356 if (ret) 357 return ret; 358 359 val = upper_32_bits(block->dma_addr); 360 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val); 361 if (ret) 362 return ret; 363 364 if (completed_blocks + 1 == desc->dblk_num) 365 val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK; 366 else 367 val = XDMA_DESC_ADJACENT - 1; 368 ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val); 369 if (ret) 370 return ret; 371 372 /* kick off DMA transfer */ 373 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL, 374 CHAN_CTRL_START); 375 if (ret) 376 return ret; 377 378 xchan->busy = true; 379 380 return 0; 381 } 382 383 /** 384 * xdma_xfer_stop - Stop DMA transfer 385 * @xchan: DMA channel pointer 386 */ 387 static int xdma_xfer_stop(struct xdma_chan *xchan) 388 { 389 int ret; 390 u32 val; 391 struct xdma_device *xdev = xchan->xdev_hdl; 392 393 /* clear run stop bit to prevent any further auto-triggering */ 394 ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C, 395 CHAN_CTRL_RUN_STOP); 396 if (ret) 397 return ret; 398 399 /* Clear the channel status register */ 400 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &val); 401 if (ret) 402 return ret; 403 404 return 0; 405 } 406 407 /** 408 * xdma_alloc_channels - Detect and allocate DMA channels 409 * @xdev: DMA device pointer 410 * @dir: Channel direction 411 */ 412 static int xdma_alloc_channels(struct xdma_device *xdev, 413 enum dma_transfer_direction dir) 414 { 415 struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev); 416 struct xdma_chan **chans, *xchan; 417 u32 base, identifier, target; 418 u32 *chan_num; 419 int i, j, ret; 420 421 if (dir == DMA_MEM_TO_DEV) { 422 base = XDMA_CHAN_H2C_OFFSET; 423 target = XDMA_CHAN_H2C_TARGET; 424 chans = &xdev->h2c_chans; 425 chan_num = &xdev->h2c_chan_num; 426 } else if (dir == DMA_DEV_TO_MEM) { 427 base = XDMA_CHAN_C2H_OFFSET; 428 target = XDMA_CHAN_C2H_TARGET; 429 chans = &xdev->c2h_chans; 430 chan_num = &xdev->c2h_chan_num; 431 } else { 432 xdma_err(xdev, "invalid direction specified"); 433 return -EINVAL; 434 } 435 436 /* detect number of available DMA channels */ 437 for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) { 438 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE, 439 &identifier); 440 if (ret) 441 return ret; 442 443 /* check if it is available DMA channel */ 444 if (XDMA_CHAN_CHECK_TARGET(identifier, target)) 445 (*chan_num)++; 446 } 447 448 if (!*chan_num) { 449 xdma_err(xdev, "does not probe any channel"); 450 return -EINVAL; 451 } 452 453 *chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans), 454 GFP_KERNEL); 455 if (!*chans) 456 return -ENOMEM; 457 458 for (i = 0, j = 0; i < pdata->max_dma_channels; i++) { 459 ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE, 460 &identifier); 461 if (ret) 462 return ret; 463 464 if (!XDMA_CHAN_CHECK_TARGET(identifier, target)) 465 continue; 466 467 if (j == *chan_num) { 468 xdma_err(xdev, "invalid channel number"); 469 return -EIO; 470 } 471 472 /* init channel structure and hardware */ 473 xchan = &(*chans)[j]; 474 xchan->xdev_hdl = xdev; 475 xchan->base = base + i * XDMA_CHAN_STRIDE; 476 xchan->dir = dir; 477 478 ret = xdma_channel_init(xchan); 479 if (ret) 480 return ret; 481 xchan->vchan.desc_free = xdma_free_desc; 482 vchan_init(&xchan->vchan, &xdev->dma_dev); 483 484 j++; 485 } 486 487 dev_info(&xdev->pdev->dev, "configured %d %s channels", j, 488 (dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H"); 489 490 return 0; 491 } 492 493 /** 494 * xdma_issue_pending - Issue pending transactions 495 * @chan: DMA channel pointer 496 */ 497 static void xdma_issue_pending(struct dma_chan *chan) 498 { 499 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 500 unsigned long flags; 501 502 spin_lock_irqsave(&xdma_chan->vchan.lock, flags); 503 if (vchan_issue_pending(&xdma_chan->vchan)) 504 xdma_xfer_start(xdma_chan); 505 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 506 } 507 508 /** 509 * xdma_terminate_all - Terminate all transactions 510 * @chan: DMA channel pointer 511 */ 512 static int xdma_terminate_all(struct dma_chan *chan) 513 { 514 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 515 struct virt_dma_desc *vd; 516 unsigned long flags; 517 LIST_HEAD(head); 518 519 xdma_xfer_stop(xdma_chan); 520 521 spin_lock_irqsave(&xdma_chan->vchan.lock, flags); 522 523 xdma_chan->busy = false; 524 vd = vchan_next_desc(&xdma_chan->vchan); 525 if (vd) { 526 list_del(&vd->node); 527 dma_cookie_complete(&vd->tx); 528 vchan_terminate_vdesc(vd); 529 } 530 vchan_get_all_descriptors(&xdma_chan->vchan, &head); 531 list_splice_tail(&head, &xdma_chan->vchan.desc_terminated); 532 533 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 534 535 return 0; 536 } 537 538 /** 539 * xdma_synchronize - Synchronize terminated transactions 540 * @chan: DMA channel pointer 541 */ 542 static void xdma_synchronize(struct dma_chan *chan) 543 { 544 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 545 546 vchan_synchronize(&xdma_chan->vchan); 547 } 548 549 /** 550 * xdma_fill_descs - Fill hardware descriptors with contiguous memory block addresses 551 * @sw_desc: tx descriptor state container 552 * @src_addr: Value for a ->src_addr field of a first descriptor 553 * @dst_addr: Value for a ->dst_addr field of a first descriptor 554 * @size: Total size of a contiguous memory block 555 * @filled_descs_num: Number of filled hardware descriptors for corresponding sw_desc 556 */ 557 static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr, 558 u64 dst_addr, u32 size, u32 filled_descs_num) 559 { 560 u32 left = size, len, desc_num = filled_descs_num; 561 struct xdma_desc_block *dblk; 562 struct xdma_hw_desc *desc; 563 564 dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT); 565 desc = dblk->virt_addr; 566 desc += desc_num & XDMA_DESC_ADJACENT_MASK; 567 do { 568 len = min_t(u32, left, XDMA_DESC_BLEN_MAX); 569 /* set hardware descriptor */ 570 desc->bytes = cpu_to_le32(len); 571 desc->src_addr = cpu_to_le64(src_addr); 572 desc->dst_addr = cpu_to_le64(dst_addr); 573 if (!(++desc_num & XDMA_DESC_ADJACENT_MASK)) 574 desc = (++dblk)->virt_addr; 575 else 576 desc++; 577 578 src_addr += len; 579 dst_addr += len; 580 left -= len; 581 } while (left); 582 583 return desc_num - filled_descs_num; 584 } 585 586 /** 587 * xdma_prep_device_sg - prepare a descriptor for a DMA transaction 588 * @chan: DMA channel pointer 589 * @sgl: Transfer scatter gather list 590 * @sg_len: Length of scatter gather list 591 * @dir: Transfer direction 592 * @flags: transfer ack flags 593 * @context: APP words of the descriptor 594 */ 595 static struct dma_async_tx_descriptor * 596 xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl, 597 unsigned int sg_len, enum dma_transfer_direction dir, 598 unsigned long flags, void *context) 599 { 600 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 601 struct dma_async_tx_descriptor *tx_desc; 602 struct xdma_desc *sw_desc; 603 u32 desc_num = 0, i; 604 u64 addr, dev_addr, *src, *dst; 605 struct scatterlist *sg; 606 607 for_each_sg(sgl, sg, sg_len, i) 608 desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX); 609 610 sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false); 611 if (!sw_desc) 612 return NULL; 613 sw_desc->dir = dir; 614 sw_desc->cyclic = false; 615 sw_desc->interleaved_dma = false; 616 617 if (dir == DMA_MEM_TO_DEV) { 618 dev_addr = xdma_chan->cfg.dst_addr; 619 src = &addr; 620 dst = &dev_addr; 621 } else { 622 dev_addr = xdma_chan->cfg.src_addr; 623 src = &dev_addr; 624 dst = &addr; 625 } 626 627 desc_num = 0; 628 for_each_sg(sgl, sg, sg_len, i) { 629 addr = sg_dma_address(sg); 630 desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num); 631 dev_addr += sg_dma_len(sg); 632 } 633 634 tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags); 635 if (!tx_desc) 636 goto failed; 637 638 return tx_desc; 639 640 failed: 641 xdma_free_desc(&sw_desc->vdesc); 642 643 return NULL; 644 } 645 646 /** 647 * xdma_prep_dma_cyclic - prepare for cyclic DMA transactions 648 * @chan: DMA channel pointer 649 * @address: Device DMA address to access 650 * @size: Total length to transfer 651 * @period_size: Period size to use for each transfer 652 * @dir: Transfer direction 653 * @flags: Transfer ack flags 654 */ 655 static struct dma_async_tx_descriptor * 656 xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address, 657 size_t size, size_t period_size, 658 enum dma_transfer_direction dir, 659 unsigned long flags) 660 { 661 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 662 struct xdma_device *xdev = xdma_chan->xdev_hdl; 663 unsigned int periods = size / period_size; 664 struct dma_async_tx_descriptor *tx_desc; 665 struct xdma_desc *sw_desc; 666 u64 addr, dev_addr, *src, *dst; 667 u32 desc_num; 668 unsigned int i; 669 670 /* 671 * Simplify the whole logic by preventing an abnormally high number of 672 * periods and periods size. 673 */ 674 if (period_size > XDMA_DESC_BLEN_MAX) { 675 xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX); 676 return NULL; 677 } 678 679 if (periods > XDMA_DESC_ADJACENT) { 680 xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT); 681 return NULL; 682 } 683 684 sw_desc = xdma_alloc_desc(xdma_chan, periods, true); 685 if (!sw_desc) 686 return NULL; 687 688 sw_desc->periods = periods; 689 sw_desc->period_size = period_size; 690 sw_desc->dir = dir; 691 sw_desc->interleaved_dma = false; 692 693 addr = address; 694 if (dir == DMA_MEM_TO_DEV) { 695 dev_addr = xdma_chan->cfg.dst_addr; 696 src = &addr; 697 dst = &dev_addr; 698 } else { 699 dev_addr = xdma_chan->cfg.src_addr; 700 src = &dev_addr; 701 dst = &addr; 702 } 703 704 desc_num = 0; 705 for (i = 0; i < periods; i++) { 706 desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num); 707 addr += i * period_size; 708 } 709 710 tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags); 711 if (!tx_desc) 712 goto failed; 713 714 return tx_desc; 715 716 failed: 717 xdma_free_desc(&sw_desc->vdesc); 718 719 return NULL; 720 } 721 722 /** 723 * xdma_prep_interleaved_dma - Prepare virtual descriptor for interleaved DMA transfers 724 * @chan: DMA channel 725 * @xt: DMA transfer template 726 * @flags: tx flags 727 */ 728 static struct dma_async_tx_descriptor * 729 xdma_prep_interleaved_dma(struct dma_chan *chan, 730 struct dma_interleaved_template *xt, 731 unsigned long flags) 732 { 733 int i; 734 u32 desc_num = 0, period_size = 0; 735 struct dma_async_tx_descriptor *tx_desc; 736 struct xdma_chan *xchan = to_xdma_chan(chan); 737 struct xdma_desc *sw_desc; 738 u64 src_addr, dst_addr; 739 740 for (i = 0; i < xt->frame_size; ++i) 741 desc_num += DIV_ROUND_UP(xt->sgl[i].size, XDMA_DESC_BLEN_MAX); 742 743 sw_desc = xdma_alloc_desc(xchan, desc_num, false); 744 if (!sw_desc) 745 return NULL; 746 sw_desc->dir = xt->dir; 747 sw_desc->interleaved_dma = true; 748 sw_desc->cyclic = flags & DMA_PREP_REPEAT; 749 sw_desc->frames_left = xt->numf; 750 sw_desc->periods = xt->numf; 751 752 desc_num = 0; 753 src_addr = xt->src_start; 754 dst_addr = xt->dst_start; 755 for (i = 0; i < xt->frame_size; ++i) { 756 desc_num += xdma_fill_descs(sw_desc, src_addr, dst_addr, xt->sgl[i].size, desc_num); 757 src_addr += dmaengine_get_src_icg(xt, &xt->sgl[i]) + (xt->src_inc ? 758 xt->sgl[i].size : 0); 759 dst_addr += dmaengine_get_dst_icg(xt, &xt->sgl[i]) + (xt->dst_inc ? 760 xt->sgl[i].size : 0); 761 period_size += xt->sgl[i].size; 762 } 763 sw_desc->period_size = period_size; 764 765 tx_desc = vchan_tx_prep(&xchan->vchan, &sw_desc->vdesc, flags); 766 if (tx_desc) 767 return tx_desc; 768 769 xdma_free_desc(&sw_desc->vdesc); 770 return NULL; 771 } 772 773 /** 774 * xdma_device_config - Configure the DMA channel 775 * @chan: DMA channel 776 * @cfg: channel configuration 777 */ 778 static int xdma_device_config(struct dma_chan *chan, 779 struct dma_slave_config *cfg) 780 { 781 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 782 783 memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg)); 784 785 return 0; 786 } 787 788 /** 789 * xdma_free_chan_resources - Free channel resources 790 * @chan: DMA channel 791 */ 792 static void xdma_free_chan_resources(struct dma_chan *chan) 793 { 794 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 795 796 vchan_free_chan_resources(&xdma_chan->vchan); 797 dma_pool_destroy(xdma_chan->desc_pool); 798 xdma_chan->desc_pool = NULL; 799 } 800 801 /** 802 * xdma_alloc_chan_resources - Allocate channel resources 803 * @chan: DMA channel 804 */ 805 static int xdma_alloc_chan_resources(struct dma_chan *chan) 806 { 807 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 808 struct xdma_device *xdev = xdma_chan->xdev_hdl; 809 struct device *dev = xdev->dma_dev.dev; 810 811 while (dev && !dev_is_pci(dev)) 812 dev = dev->parent; 813 if (!dev) { 814 xdma_err(xdev, "unable to find pci device"); 815 return -EINVAL; 816 } 817 818 xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan), dev, XDMA_DESC_BLOCK_SIZE, 819 XDMA_DESC_BLOCK_ALIGN, XDMA_DESC_BLOCK_BOUNDARY); 820 if (!xdma_chan->desc_pool) { 821 xdma_err(xdev, "unable to allocate descriptor pool"); 822 return -ENOMEM; 823 } 824 825 return 0; 826 } 827 828 static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, 829 struct dma_tx_state *state) 830 { 831 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 832 struct xdma_desc *desc = NULL; 833 struct virt_dma_desc *vd; 834 enum dma_status ret; 835 unsigned long flags; 836 unsigned int period_idx; 837 u32 residue = 0; 838 839 ret = dma_cookie_status(chan, cookie, state); 840 if (ret == DMA_COMPLETE) 841 return ret; 842 843 spin_lock_irqsave(&xdma_chan->vchan.lock, flags); 844 845 vd = vchan_find_desc(&xdma_chan->vchan, cookie); 846 if (!vd) 847 goto out; 848 849 desc = to_xdma_desc(vd); 850 if (desc->error) { 851 ret = DMA_ERROR; 852 } else if (desc->cyclic) { 853 period_idx = desc->completed_desc_num % desc->periods; 854 residue = (desc->periods - period_idx) * desc->period_size; 855 dma_set_residue(state, residue); 856 } 857 out: 858 spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags); 859 860 return ret; 861 } 862 863 /** 864 * xdma_channel_isr - XDMA channel interrupt handler 865 * @irq: IRQ number 866 * @dev_id: Pointer to the DMA channel structure 867 */ 868 static irqreturn_t xdma_channel_isr(int irq, void *dev_id) 869 { 870 struct xdma_chan *xchan = dev_id; 871 u32 complete_desc_num = 0; 872 struct xdma_device *xdev = xchan->xdev_hdl; 873 struct virt_dma_desc *vd, *next_vd; 874 struct xdma_desc *desc; 875 int ret; 876 u32 st; 877 bool repeat_tx; 878 879 spin_lock(&xchan->vchan.lock); 880 881 /* get submitted request */ 882 vd = vchan_next_desc(&xchan->vchan); 883 if (!vd) 884 goto out; 885 886 /* Clear-on-read the status register */ 887 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS_RC, &st); 888 if (ret) 889 goto out; 890 891 desc = to_xdma_desc(vd); 892 893 st &= XDMA_CHAN_STATUS_MASK; 894 if ((st & XDMA_CHAN_ERROR_MASK) || 895 !(st & (CHAN_CTRL_IE_DESC_COMPLETED | CHAN_CTRL_IE_DESC_STOPPED))) { 896 desc->error = true; 897 xdma_err(xdev, "channel error, status register value: 0x%x", st); 898 goto out; 899 } 900 901 ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC, 902 &complete_desc_num); 903 if (ret) 904 goto out; 905 906 if (desc->interleaved_dma) { 907 xchan->busy = false; 908 desc->completed_desc_num += complete_desc_num; 909 if (complete_desc_num == XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) { 910 xdma_xfer_start(xchan); 911 goto out; 912 } 913 914 /* last desc of any frame */ 915 desc->frames_left--; 916 if (desc->frames_left) 917 goto out; 918 919 /* last desc of the last frame */ 920 repeat_tx = vd->tx.flags & DMA_PREP_REPEAT; 921 next_vd = list_first_entry_or_null(&vd->node, struct virt_dma_desc, node); 922 if (next_vd) 923 repeat_tx = repeat_tx && !(next_vd->tx.flags & DMA_PREP_LOAD_EOT); 924 if (repeat_tx) { 925 desc->frames_left = desc->periods; 926 desc->completed_desc_num = 0; 927 vchan_cyclic_callback(vd); 928 } else { 929 list_del(&vd->node); 930 vchan_cookie_complete(vd); 931 } 932 /* start (or continue) the tx of a first desc on the vc.desc_issued list, if any */ 933 xdma_xfer_start(xchan); 934 } else if (!desc->cyclic) { 935 xchan->busy = false; 936 desc->completed_desc_num += complete_desc_num; 937 938 /* if all data blocks are transferred, remove and complete the request */ 939 if (desc->completed_desc_num == desc->desc_num) { 940 list_del(&vd->node); 941 vchan_cookie_complete(vd); 942 goto out; 943 } 944 945 if (desc->completed_desc_num > desc->desc_num || 946 complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT) 947 goto out; 948 949 /* transfer the rest of data */ 950 xdma_xfer_start(xchan); 951 } else { 952 desc->completed_desc_num = complete_desc_num; 953 vchan_cyclic_callback(vd); 954 } 955 956 out: 957 spin_unlock(&xchan->vchan.lock); 958 return IRQ_HANDLED; 959 } 960 961 /** 962 * xdma_irq_fini - Uninitialize IRQ 963 * @xdev: DMA device pointer 964 */ 965 static void xdma_irq_fini(struct xdma_device *xdev) 966 { 967 int i; 968 969 /* disable interrupt */ 970 regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0); 971 972 /* free irq handler */ 973 for (i = 0; i < xdev->h2c_chan_num; i++) 974 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]); 975 976 for (i = 0; i < xdev->c2h_chan_num; i++) 977 free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]); 978 } 979 980 /** 981 * xdma_set_vector_reg - configure hardware IRQ registers 982 * @xdev: DMA device pointer 983 * @vec_tbl_start: Start of IRQ registers 984 * @irq_start: Start of IRQ 985 * @irq_num: Number of IRQ 986 */ 987 static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start, 988 u32 irq_start, u32 irq_num) 989 { 990 u32 shift, i, val = 0; 991 int ret; 992 993 /* Each IRQ register is 32 bit and contains 4 IRQs */ 994 while (irq_num > 0) { 995 for (i = 0; i < 4; i++) { 996 shift = XDMA_IRQ_VEC_SHIFT * i; 997 val |= irq_start << shift; 998 irq_start++; 999 irq_num--; 1000 if (!irq_num) 1001 break; 1002 } 1003 1004 /* write IRQ register */ 1005 ret = regmap_write(xdev->rmap, vec_tbl_start, val); 1006 if (ret) 1007 return ret; 1008 vec_tbl_start += sizeof(u32); 1009 val = 0; 1010 } 1011 1012 return 0; 1013 } 1014 1015 /** 1016 * xdma_irq_init - initialize IRQs 1017 * @xdev: DMA device pointer 1018 */ 1019 static int xdma_irq_init(struct xdma_device *xdev) 1020 { 1021 u32 irq = xdev->irq_start; 1022 u32 user_irq_start; 1023 int i, j, ret; 1024 1025 /* return failure if there are not enough IRQs */ 1026 if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) { 1027 xdma_err(xdev, "not enough irq"); 1028 return -EINVAL; 1029 } 1030 1031 /* setup H2C interrupt handler */ 1032 for (i = 0; i < xdev->h2c_chan_num; i++) { 1033 ret = request_irq(irq, xdma_channel_isr, 0, 1034 "xdma-h2c-channel", &xdev->h2c_chans[i]); 1035 if (ret) { 1036 xdma_err(xdev, "H2C channel%d request irq%d failed: %d", 1037 i, irq, ret); 1038 goto failed_init_h2c; 1039 } 1040 xdev->h2c_chans[i].irq = irq; 1041 irq++; 1042 } 1043 1044 /* setup C2H interrupt handler */ 1045 for (j = 0; j < xdev->c2h_chan_num; j++) { 1046 ret = request_irq(irq, xdma_channel_isr, 0, 1047 "xdma-c2h-channel", &xdev->c2h_chans[j]); 1048 if (ret) { 1049 xdma_err(xdev, "C2H channel%d request irq%d failed: %d", 1050 j, irq, ret); 1051 goto failed_init_c2h; 1052 } 1053 xdev->c2h_chans[j].irq = irq; 1054 irq++; 1055 } 1056 1057 /* config hardware IRQ registers */ 1058 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0, 1059 XDMA_CHAN_NUM(xdev)); 1060 if (ret) { 1061 xdma_err(xdev, "failed to set channel vectors: %d", ret); 1062 goto failed_init_c2h; 1063 } 1064 1065 /* config user IRQ registers if needed */ 1066 user_irq_start = XDMA_CHAN_NUM(xdev); 1067 if (xdev->irq_num > user_irq_start) { 1068 ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM, 1069 user_irq_start, 1070 xdev->irq_num - user_irq_start); 1071 if (ret) { 1072 xdma_err(xdev, "failed to set user vectors: %d", ret); 1073 goto failed_init_c2h; 1074 } 1075 } 1076 1077 /* enable interrupt */ 1078 ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0); 1079 if (ret) 1080 goto failed_init_c2h; 1081 1082 return 0; 1083 1084 failed_init_c2h: 1085 while (j--) 1086 free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]); 1087 failed_init_h2c: 1088 while (i--) 1089 free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]); 1090 1091 return ret; 1092 } 1093 1094 static bool xdma_filter_fn(struct dma_chan *chan, void *param) 1095 { 1096 struct xdma_chan *xdma_chan = to_xdma_chan(chan); 1097 struct xdma_chan_info *chan_info = param; 1098 1099 return chan_info->dir == xdma_chan->dir; 1100 } 1101 1102 /** 1103 * xdma_disable_user_irq - Disable user interrupt 1104 * @pdev: Pointer to the platform_device structure 1105 * @irq_num: System IRQ number 1106 */ 1107 void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num) 1108 { 1109 struct xdma_device *xdev = platform_get_drvdata(pdev); 1110 u32 index; 1111 1112 index = irq_num - xdev->irq_start; 1113 if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) { 1114 xdma_err(xdev, "invalid user irq number"); 1115 return; 1116 } 1117 index -= XDMA_CHAN_NUM(xdev); 1118 1119 regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index); 1120 } 1121 EXPORT_SYMBOL(xdma_disable_user_irq); 1122 1123 /** 1124 * xdma_enable_user_irq - Enable user logic interrupt 1125 * @pdev: Pointer to the platform_device structure 1126 * @irq_num: System IRQ number 1127 */ 1128 int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num) 1129 { 1130 struct xdma_device *xdev = platform_get_drvdata(pdev); 1131 u32 index; 1132 int ret; 1133 1134 index = irq_num - xdev->irq_start; 1135 if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) { 1136 xdma_err(xdev, "invalid user irq number"); 1137 return -EINVAL; 1138 } 1139 index -= XDMA_CHAN_NUM(xdev); 1140 1141 ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index); 1142 if (ret) 1143 return ret; 1144 1145 return 0; 1146 } 1147 EXPORT_SYMBOL(xdma_enable_user_irq); 1148 1149 /** 1150 * xdma_get_user_irq - Get system IRQ number 1151 * @pdev: Pointer to the platform_device structure 1152 * @user_irq_index: User logic IRQ wire index 1153 * 1154 * Return: The system IRQ number allocated for the given wire index. 1155 */ 1156 int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index) 1157 { 1158 struct xdma_device *xdev = platform_get_drvdata(pdev); 1159 1160 if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) { 1161 xdma_err(xdev, "invalid user irq index"); 1162 return -EINVAL; 1163 } 1164 1165 return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index; 1166 } 1167 EXPORT_SYMBOL(xdma_get_user_irq); 1168 1169 /** 1170 * xdma_remove - Driver remove function 1171 * @pdev: Pointer to the platform_device structure 1172 */ 1173 static void xdma_remove(struct platform_device *pdev) 1174 { 1175 struct xdma_device *xdev = platform_get_drvdata(pdev); 1176 1177 if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX) 1178 xdma_irq_fini(xdev); 1179 1180 if (xdev->status & XDMA_DEV_STATUS_REG_DMA) 1181 dma_async_device_unregister(&xdev->dma_dev); 1182 } 1183 1184 /** 1185 * xdma_probe - Driver probe function 1186 * @pdev: Pointer to the platform_device structure 1187 */ 1188 static int xdma_probe(struct platform_device *pdev) 1189 { 1190 struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev); 1191 struct xdma_device *xdev; 1192 void __iomem *reg_base; 1193 struct resource *res; 1194 int ret = -ENODEV; 1195 1196 if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) { 1197 dev_err(&pdev->dev, "invalid max dma channels %d", 1198 pdata->max_dma_channels); 1199 return -EINVAL; 1200 } 1201 1202 xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); 1203 if (!xdev) 1204 return -ENOMEM; 1205 1206 platform_set_drvdata(pdev, xdev); 1207 xdev->pdev = pdev; 1208 1209 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1210 if (!res) { 1211 xdma_err(xdev, "failed to get irq resource"); 1212 goto failed; 1213 } 1214 xdev->irq_start = res->start; 1215 xdev->irq_num = resource_size(res); 1216 1217 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1218 if (!res) { 1219 xdma_err(xdev, "failed to get io resource"); 1220 goto failed; 1221 } 1222 1223 reg_base = devm_ioremap_resource(&pdev->dev, res); 1224 if (IS_ERR(reg_base)) { 1225 xdma_err(xdev, "ioremap failed"); 1226 goto failed; 1227 } 1228 1229 xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base, 1230 &xdma_regmap_config); 1231 if (!xdev->rmap) { 1232 xdma_err(xdev, "config regmap failed: %d", ret); 1233 goto failed; 1234 } 1235 INIT_LIST_HEAD(&xdev->dma_dev.channels); 1236 1237 ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV); 1238 if (ret) { 1239 xdma_err(xdev, "config H2C channels failed: %d", ret); 1240 goto failed; 1241 } 1242 1243 ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM); 1244 if (ret) { 1245 xdma_err(xdev, "config C2H channels failed: %d", ret); 1246 goto failed; 1247 } 1248 1249 dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask); 1250 dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask); 1251 dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask); 1252 dma_cap_set(DMA_INTERLEAVE, xdev->dma_dev.cap_mask); 1253 dma_cap_set(DMA_REPEAT, xdev->dma_dev.cap_mask); 1254 dma_cap_set(DMA_LOAD_EOT, xdev->dma_dev.cap_mask); 1255 1256 xdev->dma_dev.dev = &pdev->dev; 1257 xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; 1258 xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources; 1259 xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources; 1260 xdev->dma_dev.device_tx_status = xdma_tx_status; 1261 xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg; 1262 xdev->dma_dev.device_config = xdma_device_config; 1263 xdev->dma_dev.device_issue_pending = xdma_issue_pending; 1264 xdev->dma_dev.device_terminate_all = xdma_terminate_all; 1265 xdev->dma_dev.device_synchronize = xdma_synchronize; 1266 xdev->dma_dev.filter.map = pdata->device_map; 1267 xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt; 1268 xdev->dma_dev.filter.fn = xdma_filter_fn; 1269 xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic; 1270 xdev->dma_dev.device_prep_interleaved_dma = xdma_prep_interleaved_dma; 1271 1272 ret = dma_async_device_register(&xdev->dma_dev); 1273 if (ret) { 1274 xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret); 1275 goto failed; 1276 } 1277 xdev->status |= XDMA_DEV_STATUS_REG_DMA; 1278 1279 ret = xdma_irq_init(xdev); 1280 if (ret) { 1281 xdma_err(xdev, "failed to init msix: %d", ret); 1282 goto failed; 1283 } 1284 xdev->status |= XDMA_DEV_STATUS_INIT_MSIX; 1285 1286 return 0; 1287 1288 failed: 1289 xdma_remove(pdev); 1290 1291 return ret; 1292 } 1293 1294 static const struct platform_device_id xdma_id_table[] = { 1295 { "xdma", 0}, 1296 { }, 1297 }; 1298 1299 static struct platform_driver xdma_driver = { 1300 .driver = { 1301 .name = "xdma", 1302 }, 1303 .id_table = xdma_id_table, 1304 .probe = xdma_probe, 1305 .remove_new = xdma_remove, 1306 }; 1307 1308 module_platform_driver(xdma_driver); 1309 1310 MODULE_DESCRIPTION("AMD XDMA driver"); 1311 MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>"); 1312 MODULE_LICENSE("GPL"); 1313