xref: /linux/drivers/dma/xgene-dma.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Applied Micro X-Gene SoC DMA engine Driver
3  *
4  * Copyright (c) 2015, Applied Micro Circuits Corporation
5  * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6  *	    Loc Ho <lho@apm.com>
7  *
8  * This program is free software; you can redistribute  it and/or modify it
9  * under  the terms of  the GNU General  Public License as published by the
10  * Free Software Foundation;  either version 2 of the  License, or (at your
11  * option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  *
21  * NOTE: PM support is currently not available.
22  */
23 
24 #include <linux/clk.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dmapool.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33 
34 #include "dmaengine.h"
35 
36 /* X-Gene DMA ring csr registers and bit definations */
37 #define XGENE_DMA_RING_CONFIG			0x04
38 #define XGENE_DMA_RING_ENABLE			BIT(31)
39 #define XGENE_DMA_RING_ID			0x08
40 #define XGENE_DMA_RING_ID_SETUP(v)		((v) | BIT(31))
41 #define XGENE_DMA_RING_ID_BUF			0x0C
42 #define XGENE_DMA_RING_ID_BUF_SETUP(v)		(((v) << 9) | BIT(21))
43 #define XGENE_DMA_RING_THRESLD0_SET1		0x30
44 #define XGENE_DMA_RING_THRESLD0_SET1_VAL	0X64
45 #define XGENE_DMA_RING_THRESLD1_SET1		0x34
46 #define XGENE_DMA_RING_THRESLD1_SET1_VAL	0xC8
47 #define XGENE_DMA_RING_HYSTERESIS		0x68
48 #define XGENE_DMA_RING_HYSTERESIS_VAL		0xFFFFFFFF
49 #define XGENE_DMA_RING_STATE			0x6C
50 #define XGENE_DMA_RING_STATE_WR_BASE		0x70
51 #define XGENE_DMA_RING_NE_INT_MODE		0x017C
52 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)	\
53 	((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
54 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)	\
55 	((m) &= (~BIT(31 - (v))))
56 #define XGENE_DMA_RING_CLKEN			0xC208
57 #define XGENE_DMA_RING_SRST			0xC200
58 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN		0xD070
59 #define XGENE_DMA_RING_BLK_MEM_RDY		0xD074
60 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL		0xFFFFFFFF
61 #define XGENE_DMA_RING_DESC_CNT(v)		(((v) & 0x0001FFFE) >> 1)
62 #define XGENE_DMA_RING_ID_GET(owner, num)	(((owner) << 6) | (num))
63 #define XGENE_DMA_RING_DST_ID(v)		((1 << 10) | (v))
64 #define XGENE_DMA_RING_CMD_OFFSET		0x2C
65 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v)	((v) << 6)
66 #define XGENE_DMA_RING_COHERENT_SET(m)		\
67 	(((u32 *)(m))[2] |= BIT(4))
68 #define XGENE_DMA_RING_ADDRL_SET(m, v)		\
69 	(((u32 *)(m))[2] |= (((v) >> 8) << 5))
70 #define XGENE_DMA_RING_ADDRH_SET(m, v)		\
71 	(((u32 *)(m))[3] |= ((v) >> 35))
72 #define XGENE_DMA_RING_ACCEPTLERR_SET(m)	\
73 	(((u32 *)(m))[3] |= BIT(19))
74 #define XGENE_DMA_RING_SIZE_SET(m, v)		\
75 	(((u32 *)(m))[3] |= ((v) << 23))
76 #define XGENE_DMA_RING_RECOMBBUF_SET(m)		\
77 	(((u32 *)(m))[3] |= BIT(27))
78 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)	\
79 	(((u32 *)(m))[3] |= (0x7 << 28))
80 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)	\
81 	(((u32 *)(m))[4] |= 0x3)
82 #define XGENE_DMA_RING_SELTHRSH_SET(m)		\
83 	(((u32 *)(m))[4] |= BIT(3))
84 #define XGENE_DMA_RING_TYPE_SET(m, v)		\
85 	(((u32 *)(m))[4] |= ((v) << 19))
86 
87 /* X-Gene DMA device csr registers and bit definitions */
88 #define XGENE_DMA_IPBRR				0x0
89 #define XGENE_DMA_DEV_ID_RD(v)			((v) & 0x00000FFF)
90 #define XGENE_DMA_BUS_ID_RD(v)			(((v) >> 12) & 3)
91 #define XGENE_DMA_REV_NO_RD(v)			(((v) >> 14) & 3)
92 #define XGENE_DMA_GCR				0x10
93 #define XGENE_DMA_CH_SETUP(v)			\
94 	((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
95 #define XGENE_DMA_ENABLE(v)			((v) |= BIT(31))
96 #define XGENE_DMA_DISABLE(v)			((v) &= ~BIT(31))
97 #define XGENE_DMA_RAID6_CONT			0x14
98 #define XGENE_DMA_RAID6_MULTI_CTRL(v)		((v) << 24)
99 #define XGENE_DMA_INT				0x70
100 #define XGENE_DMA_INT_MASK			0x74
101 #define XGENE_DMA_INT_ALL_MASK			0xFFFFFFFF
102 #define XGENE_DMA_INT_ALL_UNMASK		0x0
103 #define XGENE_DMA_INT_MASK_SHIFT		0x14
104 #define XGENE_DMA_RING_INT0_MASK		0x90A0
105 #define XGENE_DMA_RING_INT1_MASK		0x90A8
106 #define XGENE_DMA_RING_INT2_MASK		0x90B0
107 #define XGENE_DMA_RING_INT3_MASK		0x90B8
108 #define XGENE_DMA_RING_INT4_MASK		0x90C0
109 #define XGENE_DMA_CFG_RING_WQ_ASSOC		0x90E0
110 #define XGENE_DMA_ASSOC_RING_MNGR1		0xFFFFFFFF
111 #define XGENE_DMA_MEM_RAM_SHUTDOWN		0xD070
112 #define XGENE_DMA_BLK_MEM_RDY			0xD074
113 #define XGENE_DMA_BLK_MEM_RDY_VAL		0xFFFFFFFF
114 #define XGENE_DMA_RING_CMD_SM_OFFSET		0x8000
115 
116 /* X-Gene SoC EFUSE csr register and bit defination */
117 #define XGENE_SOC_JTAG1_SHADOW			0x18
118 #define XGENE_DMA_PQ_DISABLE_MASK		BIT(13)
119 
120 /* X-Gene DMA Descriptor format */
121 #define XGENE_DMA_DESC_NV_BIT			BIT_ULL(50)
122 #define XGENE_DMA_DESC_IN_BIT			BIT_ULL(55)
123 #define XGENE_DMA_DESC_C_BIT			BIT_ULL(63)
124 #define XGENE_DMA_DESC_DR_BIT			BIT_ULL(61)
125 #define XGENE_DMA_DESC_ELERR_POS		46
126 #define XGENE_DMA_DESC_RTYPE_POS		56
127 #define XGENE_DMA_DESC_LERR_POS			60
128 #define XGENE_DMA_DESC_BUFLEN_POS		48
129 #define XGENE_DMA_DESC_HOENQ_NUM_POS		48
130 #define XGENE_DMA_DESC_ELERR_RD(m)		\
131 	(((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
132 #define XGENE_DMA_DESC_LERR_RD(m)		\
133 	(((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
134 #define XGENE_DMA_DESC_STATUS(elerr, lerr)	\
135 	(((elerr) << 4) | (lerr))
136 
137 /* X-Gene DMA descriptor empty s/w signature */
138 #define XGENE_DMA_DESC_EMPTY_SIGNATURE		~0ULL
139 
140 /* X-Gene DMA configurable parameters defines */
141 #define XGENE_DMA_RING_NUM		512
142 #define XGENE_DMA_BUFNUM		0x0
143 #define XGENE_DMA_CPU_BUFNUM		0x18
144 #define XGENE_DMA_RING_OWNER_DMA	0x03
145 #define XGENE_DMA_RING_OWNER_CPU	0x0F
146 #define XGENE_DMA_RING_TYPE_REGULAR	0x01
147 #define XGENE_DMA_RING_WQ_DESC_SIZE	32	/* 32 Bytes */
148 #define XGENE_DMA_RING_NUM_CONFIG	5
149 #define XGENE_DMA_MAX_CHANNEL		4
150 #define XGENE_DMA_XOR_CHANNEL		0
151 #define XGENE_DMA_PQ_CHANNEL		1
152 #define XGENE_DMA_MAX_BYTE_CNT		0x4000	/* 16 KB */
153 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT	0x14000	/* 80 KB */
154 #define XGENE_DMA_XOR_ALIGNMENT		6	/* 64 Bytes */
155 #define XGENE_DMA_MAX_XOR_SRC		5
156 #define XGENE_DMA_16K_BUFFER_LEN_CODE	0x0
157 #define XGENE_DMA_INVALID_LEN_CODE	0x7800000000000000ULL
158 
159 /* X-Gene DMA descriptor error codes */
160 #define ERR_DESC_AXI			0x01
161 #define ERR_BAD_DESC			0x02
162 #define ERR_READ_DATA_AXI		0x03
163 #define ERR_WRITE_DATA_AXI		0x04
164 #define ERR_FBP_TIMEOUT			0x05
165 #define ERR_ECC				0x06
166 #define ERR_DIFF_SIZE			0x08
167 #define ERR_SCT_GAT_LEN			0x09
168 #define ERR_CRC_ERR			0x11
169 #define ERR_CHKSUM			0x12
170 #define ERR_DIF				0x13
171 
172 /* X-Gene DMA error interrupt codes */
173 #define ERR_DIF_SIZE_INT		0x0
174 #define ERR_GS_ERR_INT			0x1
175 #define ERR_FPB_TIMEO_INT		0x2
176 #define ERR_WFIFO_OVF_INT		0x3
177 #define ERR_RFIFO_OVF_INT		0x4
178 #define ERR_WR_TIMEO_INT		0x5
179 #define ERR_RD_TIMEO_INT		0x6
180 #define ERR_WR_ERR_INT			0x7
181 #define ERR_RD_ERR_INT			0x8
182 #define ERR_BAD_DESC_INT		0x9
183 #define ERR_DESC_DST_INT		0xA
184 #define ERR_DESC_SRC_INT		0xB
185 
186 /* X-Gene DMA flyby operation code */
187 #define FLYBY_2SRC_XOR			0x80
188 #define FLYBY_3SRC_XOR			0x90
189 #define FLYBY_4SRC_XOR			0xA0
190 #define FLYBY_5SRC_XOR			0xB0
191 
192 /* X-Gene DMA SW descriptor flags */
193 #define XGENE_DMA_FLAG_64B_DESC		BIT(0)
194 
195 /* Define to dump X-Gene DMA descriptor */
196 #define XGENE_DMA_DESC_DUMP(desc, m)	\
197 	print_hex_dump(KERN_ERR, (m),	\
198 			DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
199 
200 #define to_dma_desc_sw(tx)		\
201 	container_of(tx, struct xgene_dma_desc_sw, tx)
202 #define to_dma_chan(dchan)		\
203 	container_of(dchan, struct xgene_dma_chan, dma_chan)
204 
205 #define chan_dbg(chan, fmt, arg...)	\
206 	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
207 #define chan_err(chan, fmt, arg...)	\
208 	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
209 
210 struct xgene_dma_desc_hw {
211 	__le64 m0;
212 	__le64 m1;
213 	__le64 m2;
214 	__le64 m3;
215 };
216 
217 enum xgene_dma_ring_cfgsize {
218 	XGENE_DMA_RING_CFG_SIZE_512B,
219 	XGENE_DMA_RING_CFG_SIZE_2KB,
220 	XGENE_DMA_RING_CFG_SIZE_16KB,
221 	XGENE_DMA_RING_CFG_SIZE_64KB,
222 	XGENE_DMA_RING_CFG_SIZE_512KB,
223 	XGENE_DMA_RING_CFG_SIZE_INVALID
224 };
225 
226 struct xgene_dma_ring {
227 	struct xgene_dma *pdma;
228 	u8 buf_num;
229 	u16 id;
230 	u16 num;
231 	u16 head;
232 	u16 owner;
233 	u16 slots;
234 	u16 dst_ring_num;
235 	u32 size;
236 	void __iomem *cmd;
237 	void __iomem *cmd_base;
238 	dma_addr_t desc_paddr;
239 	u32 state[XGENE_DMA_RING_NUM_CONFIG];
240 	enum xgene_dma_ring_cfgsize cfgsize;
241 	union {
242 		void *desc_vaddr;
243 		struct xgene_dma_desc_hw *desc_hw;
244 	};
245 };
246 
247 struct xgene_dma_desc_sw {
248 	struct xgene_dma_desc_hw desc1;
249 	struct xgene_dma_desc_hw desc2;
250 	u32 flags;
251 	struct list_head node;
252 	struct list_head tx_list;
253 	struct dma_async_tx_descriptor tx;
254 };
255 
256 /**
257  * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
258  * @dma_chan: dmaengine channel object member
259  * @pdma: X-Gene DMA device structure reference
260  * @dev: struct device reference for dma mapping api
261  * @id: raw id of this channel
262  * @rx_irq: channel IRQ
263  * @name: name of X-Gene DMA channel
264  * @lock: serializes enqueue/dequeue operations to the descriptor pool
265  * @pending: number of transaction request pushed to DMA controller for
266  *	execution, but still waiting for completion,
267  * @max_outstanding: max number of outstanding request we can push to channel
268  * @ld_pending: descriptors which are queued to run, but have not yet been
269  *	submitted to the hardware for execution
270  * @ld_running: descriptors which are currently being executing by the hardware
271  * @ld_completed: descriptors which have finished execution by the hardware.
272  *	These descriptors have already had their cleanup actions run. They
273  *	are waiting for the ACK bit to be set by the async tx API.
274  * @desc_pool: descriptor pool for DMA operations
275  * @tasklet: bottom half where all completed descriptors cleans
276  * @tx_ring: transmit ring descriptor that we use to prepare actual
277  *	descriptors for further executions
278  * @rx_ring: receive ring descriptor that we use to get completed DMA
279  *	descriptors during cleanup time
280  */
281 struct xgene_dma_chan {
282 	struct dma_chan dma_chan;
283 	struct xgene_dma *pdma;
284 	struct device *dev;
285 	int id;
286 	int rx_irq;
287 	char name[10];
288 	spinlock_t lock;
289 	int pending;
290 	int max_outstanding;
291 	struct list_head ld_pending;
292 	struct list_head ld_running;
293 	struct list_head ld_completed;
294 	struct dma_pool *desc_pool;
295 	struct tasklet_struct tasklet;
296 	struct xgene_dma_ring tx_ring;
297 	struct xgene_dma_ring rx_ring;
298 };
299 
300 /**
301  * struct xgene_dma - internal representation of an X-Gene DMA device
302  * @err_irq: DMA error irq number
303  * @ring_num: start id number for DMA ring
304  * @csr_dma: base for DMA register access
305  * @csr_ring: base for DMA ring register access
306  * @csr_ring_cmd: base for DMA ring command register access
307  * @csr_efuse: base for efuse register access
308  * @dma_dev: embedded struct dma_device
309  * @chan: reference to X-Gene DMA channels
310  */
311 struct xgene_dma {
312 	struct device *dev;
313 	struct clk *clk;
314 	int err_irq;
315 	int ring_num;
316 	void __iomem *csr_dma;
317 	void __iomem *csr_ring;
318 	void __iomem *csr_ring_cmd;
319 	void __iomem *csr_efuse;
320 	struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
321 	struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
322 };
323 
324 static const char * const xgene_dma_desc_err[] = {
325 	[ERR_DESC_AXI] = "AXI error when reading src/dst link list",
326 	[ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
327 	[ERR_READ_DATA_AXI] = "AXI error when reading data",
328 	[ERR_WRITE_DATA_AXI] = "AXI error when writing data",
329 	[ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
330 	[ERR_ECC] = "ECC double bit error",
331 	[ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
332 	[ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
333 	[ERR_CRC_ERR] = "CRC error",
334 	[ERR_CHKSUM] = "Checksum error",
335 	[ERR_DIF] = "DIF error",
336 };
337 
338 static const char * const xgene_dma_err[] = {
339 	[ERR_DIF_SIZE_INT] = "DIF size error",
340 	[ERR_GS_ERR_INT] = "Gather scatter not same size error",
341 	[ERR_FPB_TIMEO_INT] = "Free pool time out error",
342 	[ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
343 	[ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
344 	[ERR_WR_TIMEO_INT] = "Write time out error",
345 	[ERR_RD_TIMEO_INT] = "Read time out error",
346 	[ERR_WR_ERR_INT] = "HBF bus write error",
347 	[ERR_RD_ERR_INT] = "HBF bus read error",
348 	[ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
349 	[ERR_DESC_DST_INT] = "HFB reading dst link address error",
350 	[ERR_DESC_SRC_INT] = "HFB reading src link address error",
351 };
352 
353 static bool is_pq_enabled(struct xgene_dma *pdma)
354 {
355 	u32 val;
356 
357 	val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
358 	return !(val & XGENE_DMA_PQ_DISABLE_MASK);
359 }
360 
361 static u64 xgene_dma_encode_len(size_t len)
362 {
363 	return (len < XGENE_DMA_MAX_BYTE_CNT) ?
364 		((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
365 		XGENE_DMA_16K_BUFFER_LEN_CODE;
366 }
367 
368 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
369 {
370 	static u8 flyby_type[] = {
371 		FLYBY_2SRC_XOR, /* Dummy */
372 		FLYBY_2SRC_XOR, /* Dummy */
373 		FLYBY_2SRC_XOR,
374 		FLYBY_3SRC_XOR,
375 		FLYBY_4SRC_XOR,
376 		FLYBY_5SRC_XOR
377 	};
378 
379 	return flyby_type[src_cnt];
380 }
381 
382 static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring)
383 {
384 	u32 __iomem *cmd_base = ring->cmd_base;
385 	u32 ring_state = ioread32(&cmd_base[1]);
386 
387 	return XGENE_DMA_RING_DESC_CNT(ring_state);
388 }
389 
390 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
391 				     dma_addr_t *paddr)
392 {
393 	size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
394 			*len : XGENE_DMA_MAX_BYTE_CNT;
395 
396 	*ext8 |= cpu_to_le64(*paddr);
397 	*ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
398 	*len -= nbytes;
399 	*paddr += nbytes;
400 }
401 
402 static void xgene_dma_invalidate_buffer(__le64 *ext8)
403 {
404 	*ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
405 }
406 
407 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
408 {
409 	switch (idx) {
410 	case 0:
411 		return &desc->m1;
412 	case 1:
413 		return &desc->m0;
414 	case 2:
415 		return &desc->m3;
416 	case 3:
417 		return &desc->m2;
418 	default:
419 		pr_err("Invalid dma descriptor index\n");
420 	}
421 
422 	return NULL;
423 }
424 
425 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
426 				u16 dst_ring_num)
427 {
428 	desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
429 	desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
430 				XGENE_DMA_DESC_RTYPE_POS);
431 	desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
432 	desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
433 				XGENE_DMA_DESC_HOENQ_NUM_POS);
434 }
435 
436 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
437 				    struct xgene_dma_desc_sw *desc_sw,
438 				    dma_addr_t dst, dma_addr_t src,
439 				    size_t len)
440 {
441 	struct xgene_dma_desc_hw *desc1, *desc2;
442 	int i;
443 
444 	/* Get 1st descriptor */
445 	desc1 = &desc_sw->desc1;
446 	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
447 
448 	/* Set destination address */
449 	desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
450 	desc1->m3 |= cpu_to_le64(dst);
451 
452 	/* Set 1st source address */
453 	xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
454 
455 	if (!len)
456 		return;
457 
458 	/*
459 	 * We need to split this source buffer,
460 	 * and need to use 2nd descriptor
461 	 */
462 	desc2 = &desc_sw->desc2;
463 	desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
464 
465 	/* Set 2nd to 5th source address */
466 	for (i = 0; i < 4 && len; i++)
467 		xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
468 					 &len, &src);
469 
470 	/* Invalidate unused source address field */
471 	for (; i < 4; i++)
472 		xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
473 
474 	/* Updated flag that we have prepared 64B descriptor */
475 	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
476 }
477 
478 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
479 				    struct xgene_dma_desc_sw *desc_sw,
480 				    dma_addr_t *dst, dma_addr_t *src,
481 				    u32 src_cnt, size_t *nbytes,
482 				    const u8 *scf)
483 {
484 	struct xgene_dma_desc_hw *desc1, *desc2;
485 	size_t len = *nbytes;
486 	int i;
487 
488 	desc1 = &desc_sw->desc1;
489 	desc2 = &desc_sw->desc2;
490 
491 	/* Initialize DMA descriptor */
492 	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
493 
494 	/* Set destination address */
495 	desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
496 	desc1->m3 |= cpu_to_le64(*dst);
497 
498 	/* We have multiple source addresses, so need to set NV bit*/
499 	desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
500 
501 	/* Set flyby opcode */
502 	desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
503 
504 	/* Set 1st to 5th source addresses */
505 	for (i = 0; i < src_cnt; i++) {
506 		len = *nbytes;
507 		xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
508 					 xgene_dma_lookup_ext8(desc2, i - 1),
509 					 &len, &src[i]);
510 		desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
511 	}
512 
513 	/* Update meta data */
514 	*nbytes = len;
515 	*dst += XGENE_DMA_MAX_BYTE_CNT;
516 
517 	/* We need always 64B descriptor to perform xor or pq operations */
518 	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
519 }
520 
521 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
522 {
523 	struct xgene_dma_desc_sw *desc;
524 	struct xgene_dma_chan *chan;
525 	dma_cookie_t cookie;
526 
527 	if (unlikely(!tx))
528 		return -EINVAL;
529 
530 	chan = to_dma_chan(tx->chan);
531 	desc = to_dma_desc_sw(tx);
532 
533 	spin_lock_bh(&chan->lock);
534 
535 	cookie = dma_cookie_assign(tx);
536 
537 	/* Add this transaction list onto the tail of the pending queue */
538 	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
539 
540 	spin_unlock_bh(&chan->lock);
541 
542 	return cookie;
543 }
544 
545 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
546 				       struct xgene_dma_desc_sw *desc)
547 {
548 	list_del(&desc->node);
549 	chan_dbg(chan, "LD %p free\n", desc);
550 	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
551 }
552 
553 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
554 				 struct xgene_dma_chan *chan)
555 {
556 	struct xgene_dma_desc_sw *desc;
557 	dma_addr_t phys;
558 
559 	desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys);
560 	if (!desc) {
561 		chan_err(chan, "Failed to allocate LDs\n");
562 		return NULL;
563 	}
564 
565 	memset(desc, 0, sizeof(*desc));
566 
567 	INIT_LIST_HEAD(&desc->tx_list);
568 	desc->tx.phys = phys;
569 	desc->tx.tx_submit = xgene_dma_tx_submit;
570 	dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
571 
572 	chan_dbg(chan, "LD %p allocated\n", desc);
573 
574 	return desc;
575 }
576 
577 /**
578  * xgene_dma_clean_completed_descriptor - free all descriptors which
579  * has been completed and acked
580  * @chan: X-Gene DMA channel
581  *
582  * This function is used on all completed and acked descriptors.
583  */
584 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
585 {
586 	struct xgene_dma_desc_sw *desc, *_desc;
587 
588 	/* Run the callback for each descriptor, in order */
589 	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
590 		if (async_tx_test_ack(&desc->tx))
591 			xgene_dma_clean_descriptor(chan, desc);
592 	}
593 }
594 
595 /**
596  * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
597  * @chan: X-Gene DMA channel
598  * @desc: descriptor to cleanup and free
599  *
600  * This function is used on a descriptor which has been executed by the DMA
601  * controller. It will run any callbacks, submit any dependencies.
602  */
603 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
604 					      struct xgene_dma_desc_sw *desc)
605 {
606 	struct dma_async_tx_descriptor *tx = &desc->tx;
607 
608 	/*
609 	 * If this is not the last transaction in the group,
610 	 * then no need to complete cookie and run any callback as
611 	 * this is not the tx_descriptor which had been sent to caller
612 	 * of this DMA request
613 	 */
614 
615 	if (tx->cookie == 0)
616 		return;
617 
618 	dma_cookie_complete(tx);
619 
620 	/* Run the link descriptor callback function */
621 	if (tx->callback)
622 		tx->callback(tx->callback_param);
623 
624 	dma_descriptor_unmap(tx);
625 
626 	/* Run any dependencies */
627 	dma_run_dependencies(tx);
628 }
629 
630 /**
631  * xgene_dma_clean_running_descriptor - move the completed descriptor from
632  * ld_running to ld_completed
633  * @chan: X-Gene DMA channel
634  * @desc: the descriptor which is completed
635  *
636  * Free the descriptor directly if acked by async_tx api,
637  * else move it to queue ld_completed.
638  */
639 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
640 					       struct xgene_dma_desc_sw *desc)
641 {
642 	/* Remove from the list of running transactions */
643 	list_del(&desc->node);
644 
645 	/*
646 	 * the client is allowed to attach dependent operations
647 	 * until 'ack' is set
648 	 */
649 	if (!async_tx_test_ack(&desc->tx)) {
650 		/*
651 		 * Move this descriptor to the list of descriptors which is
652 		 * completed, but still awaiting the 'ack' bit to be set.
653 		 */
654 		list_add_tail(&desc->node, &chan->ld_completed);
655 		return;
656 	}
657 
658 	chan_dbg(chan, "LD %p free\n", desc);
659 	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
660 }
661 
662 static int xgene_chan_xfer_request(struct xgene_dma_ring *ring,
663 				   struct xgene_dma_desc_sw *desc_sw)
664 {
665 	struct xgene_dma_desc_hw *desc_hw;
666 
667 	/* Check if can push more descriptor to hw for execution */
668 	if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2))
669 		return -EBUSY;
670 
671 	/* Get hw descriptor from DMA tx ring */
672 	desc_hw = &ring->desc_hw[ring->head];
673 
674 	/*
675 	 * Increment the head count to point next
676 	 * descriptor for next time
677 	 */
678 	if (++ring->head == ring->slots)
679 		ring->head = 0;
680 
681 	/* Copy prepared sw descriptor data to hw descriptor */
682 	memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
683 
684 	/*
685 	 * Check if we have prepared 64B descriptor,
686 	 * in this case we need one more hw descriptor
687 	 */
688 	if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
689 		desc_hw = &ring->desc_hw[ring->head];
690 
691 		if (++ring->head == ring->slots)
692 			ring->head = 0;
693 
694 		memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
695 	}
696 
697 	/* Notify the hw that we have descriptor ready for execution */
698 	iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
699 		  2 : 1, ring->cmd);
700 
701 	return 0;
702 }
703 
704 /**
705  * xgene_chan_xfer_ld_pending - push any pending transactions to hw
706  * @chan : X-Gene DMA channel
707  *
708  * LOCKING: must hold chan->lock
709  */
710 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
711 {
712 	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
713 	int ret;
714 
715 	/*
716 	 * If the list of pending descriptors is empty, then we
717 	 * don't need to do any work at all
718 	 */
719 	if (list_empty(&chan->ld_pending)) {
720 		chan_dbg(chan, "No pending LDs\n");
721 		return;
722 	}
723 
724 	/*
725 	 * Move elements from the queue of pending transactions onto the list
726 	 * of running transactions and push it to hw for further executions
727 	 */
728 	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
729 		/*
730 		 * Check if have pushed max number of transactions to hw
731 		 * as capable, so let's stop here and will push remaining
732 		 * elements from pening ld queue after completing some
733 		 * descriptors that we have already pushed
734 		 */
735 		if (chan->pending >= chan->max_outstanding)
736 			return;
737 
738 		ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw);
739 		if (ret)
740 			return;
741 
742 		/*
743 		 * Delete this element from ld pending queue and append it to
744 		 * ld running queue
745 		 */
746 		list_move_tail(&desc_sw->node, &chan->ld_running);
747 
748 		/* Increment the pending transaction count */
749 		chan->pending++;
750 	}
751 }
752 
753 /**
754  * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
755  * and move them to ld_completed to free until flag 'ack' is set
756  * @chan: X-Gene DMA channel
757  *
758  * This function is used on descriptors which have been executed by the DMA
759  * controller. It will run any callbacks, submit any dependencies, then
760  * free these descriptors if flag 'ack' is set.
761  */
762 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
763 {
764 	struct xgene_dma_ring *ring = &chan->rx_ring;
765 	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
766 	struct xgene_dma_desc_hw *desc_hw;
767 	u8 status;
768 
769 	/* Clean already completed and acked descriptors */
770 	xgene_dma_clean_completed_descriptor(chan);
771 
772 	/* Run the callback for each descriptor, in order */
773 	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
774 		/* Get subsequent hw descriptor from DMA rx ring */
775 		desc_hw = &ring->desc_hw[ring->head];
776 
777 		/* Check if this descriptor has been completed */
778 		if (unlikely(le64_to_cpu(desc_hw->m0) ==
779 			     XGENE_DMA_DESC_EMPTY_SIGNATURE))
780 			break;
781 
782 		if (++ring->head == ring->slots)
783 			ring->head = 0;
784 
785 		/* Check if we have any error with DMA transactions */
786 		status = XGENE_DMA_DESC_STATUS(
787 				XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
788 							desc_hw->m0)),
789 				XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
790 						       desc_hw->m0)));
791 		if (status) {
792 			/* Print the DMA error type */
793 			chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
794 
795 			/*
796 			 * We have DMA transactions error here. Dump DMA Tx
797 			 * and Rx descriptors for this request */
798 			XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
799 					    "X-Gene DMA TX DESC1: ");
800 
801 			if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
802 				XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
803 						    "X-Gene DMA TX DESC2: ");
804 
805 			XGENE_DMA_DESC_DUMP(desc_hw,
806 					    "X-Gene DMA RX ERR DESC: ");
807 		}
808 
809 		/* Notify the hw about this completed descriptor */
810 		iowrite32(-1, ring->cmd);
811 
812 		/* Mark this hw descriptor as processed */
813 		desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
814 
815 		xgene_dma_run_tx_complete_actions(chan, desc_sw);
816 
817 		xgene_dma_clean_running_descriptor(chan, desc_sw);
818 
819 		/*
820 		 * Decrement the pending transaction count
821 		 * as we have processed one
822 		 */
823 		chan->pending--;
824 	}
825 
826 	/*
827 	 * Start any pending transactions automatically
828 	 * In the ideal case, we keep the DMA controller busy while we go
829 	 * ahead and free the descriptors below.
830 	 */
831 	xgene_chan_xfer_ld_pending(chan);
832 }
833 
834 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
835 {
836 	struct xgene_dma_chan *chan = to_dma_chan(dchan);
837 
838 	/* Has this channel already been allocated? */
839 	if (chan->desc_pool)
840 		return 1;
841 
842 	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
843 					  sizeof(struct xgene_dma_desc_sw),
844 					  0, 0);
845 	if (!chan->desc_pool) {
846 		chan_err(chan, "Failed to allocate descriptor pool\n");
847 		return -ENOMEM;
848 	}
849 
850 	chan_dbg(chan, "Allocate descripto pool\n");
851 
852 	return 1;
853 }
854 
855 /**
856  * xgene_dma_free_desc_list - Free all descriptors in a queue
857  * @chan: X-Gene DMA channel
858  * @list: the list to free
859  *
860  * LOCKING: must hold chan->lock
861  */
862 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
863 				     struct list_head *list)
864 {
865 	struct xgene_dma_desc_sw *desc, *_desc;
866 
867 	list_for_each_entry_safe(desc, _desc, list, node)
868 		xgene_dma_clean_descriptor(chan, desc);
869 }
870 
871 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
872 {
873 	struct xgene_dma_chan *chan = to_dma_chan(dchan);
874 
875 	chan_dbg(chan, "Free all resources\n");
876 
877 	if (!chan->desc_pool)
878 		return;
879 
880 	spin_lock_bh(&chan->lock);
881 
882 	/* Process all running descriptor */
883 	xgene_dma_cleanup_descriptors(chan);
884 
885 	/* Clean all link descriptor queues */
886 	xgene_dma_free_desc_list(chan, &chan->ld_pending);
887 	xgene_dma_free_desc_list(chan, &chan->ld_running);
888 	xgene_dma_free_desc_list(chan, &chan->ld_completed);
889 
890 	spin_unlock_bh(&chan->lock);
891 
892 	/* Delete this channel DMA pool */
893 	dma_pool_destroy(chan->desc_pool);
894 	chan->desc_pool = NULL;
895 }
896 
897 static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy(
898 	struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
899 	size_t len, unsigned long flags)
900 {
901 	struct xgene_dma_desc_sw *first = NULL, *new;
902 	struct xgene_dma_chan *chan;
903 	size_t copy;
904 
905 	if (unlikely(!dchan || !len))
906 		return NULL;
907 
908 	chan = to_dma_chan(dchan);
909 
910 	do {
911 		/* Allocate the link descriptor from DMA pool */
912 		new = xgene_dma_alloc_descriptor(chan);
913 		if (!new)
914 			goto fail;
915 
916 		/* Create the largest transaction possible */
917 		copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
918 
919 		/* Prepare DMA descriptor */
920 		xgene_dma_prep_cpy_desc(chan, new, dst, src, copy);
921 
922 		if (!first)
923 			first = new;
924 
925 		new->tx.cookie = 0;
926 		async_tx_ack(&new->tx);
927 
928 		/* Update metadata */
929 		len -= copy;
930 		dst += copy;
931 		src += copy;
932 
933 		/* Insert the link descriptor to the LD ring */
934 		list_add_tail(&new->node, &first->tx_list);
935 	} while (len);
936 
937 	new->tx.flags = flags; /* client is in control of this ack */
938 	new->tx.cookie = -EBUSY;
939 	list_splice(&first->tx_list, &new->tx_list);
940 
941 	return &new->tx;
942 
943 fail:
944 	if (!first)
945 		return NULL;
946 
947 	xgene_dma_free_desc_list(chan, &first->tx_list);
948 	return NULL;
949 }
950 
951 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
952 	struct dma_chan *dchan, struct scatterlist *dst_sg,
953 	u32 dst_nents, struct scatterlist *src_sg,
954 	u32 src_nents, unsigned long flags)
955 {
956 	struct xgene_dma_desc_sw *first = NULL, *new = NULL;
957 	struct xgene_dma_chan *chan;
958 	size_t dst_avail, src_avail;
959 	dma_addr_t dst, src;
960 	size_t len;
961 
962 	if (unlikely(!dchan))
963 		return NULL;
964 
965 	if (unlikely(!dst_nents || !src_nents))
966 		return NULL;
967 
968 	if (unlikely(!dst_sg || !src_sg))
969 		return NULL;
970 
971 	chan = to_dma_chan(dchan);
972 
973 	/* Get prepared for the loop */
974 	dst_avail = sg_dma_len(dst_sg);
975 	src_avail = sg_dma_len(src_sg);
976 	dst_nents--;
977 	src_nents--;
978 
979 	/* Run until we are out of scatterlist entries */
980 	while (true) {
981 		/* Create the largest transaction possible */
982 		len = min_t(size_t, src_avail, dst_avail);
983 		len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
984 		if (len == 0)
985 			goto fetch;
986 
987 		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
988 		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
989 
990 		/* Allocate the link descriptor from DMA pool */
991 		new = xgene_dma_alloc_descriptor(chan);
992 		if (!new)
993 			goto fail;
994 
995 		/* Prepare DMA descriptor */
996 		xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
997 
998 		if (!first)
999 			first = new;
1000 
1001 		new->tx.cookie = 0;
1002 		async_tx_ack(&new->tx);
1003 
1004 		/* update metadata */
1005 		dst_avail -= len;
1006 		src_avail -= len;
1007 
1008 		/* Insert the link descriptor to the LD ring */
1009 		list_add_tail(&new->node, &first->tx_list);
1010 
1011 fetch:
1012 		/* fetch the next dst scatterlist entry */
1013 		if (dst_avail == 0) {
1014 			/* no more entries: we're done */
1015 			if (dst_nents == 0)
1016 				break;
1017 
1018 			/* fetch the next entry: if there are no more: done */
1019 			dst_sg = sg_next(dst_sg);
1020 			if (!dst_sg)
1021 				break;
1022 
1023 			dst_nents--;
1024 			dst_avail = sg_dma_len(dst_sg);
1025 		}
1026 
1027 		/* fetch the next src scatterlist entry */
1028 		if (src_avail == 0) {
1029 			/* no more entries: we're done */
1030 			if (src_nents == 0)
1031 				break;
1032 
1033 			/* fetch the next entry: if there are no more: done */
1034 			src_sg = sg_next(src_sg);
1035 			if (!src_sg)
1036 				break;
1037 
1038 			src_nents--;
1039 			src_avail = sg_dma_len(src_sg);
1040 		}
1041 	}
1042 
1043 	if (!new)
1044 		return NULL;
1045 
1046 	new->tx.flags = flags; /* client is in control of this ack */
1047 	new->tx.cookie = -EBUSY;
1048 	list_splice(&first->tx_list, &new->tx_list);
1049 
1050 	return &new->tx;
1051 fail:
1052 	if (!first)
1053 		return NULL;
1054 
1055 	xgene_dma_free_desc_list(chan, &first->tx_list);
1056 	return NULL;
1057 }
1058 
1059 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1060 	struct dma_chan *dchan, dma_addr_t dst,	dma_addr_t *src,
1061 	u32 src_cnt, size_t len, unsigned long flags)
1062 {
1063 	struct xgene_dma_desc_sw *first = NULL, *new;
1064 	struct xgene_dma_chan *chan;
1065 	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1066 				0x01, 0x01, 0x01, 0x01, 0x01};
1067 
1068 	if (unlikely(!dchan || !len))
1069 		return NULL;
1070 
1071 	chan = to_dma_chan(dchan);
1072 
1073 	do {
1074 		/* Allocate the link descriptor from DMA pool */
1075 		new = xgene_dma_alloc_descriptor(chan);
1076 		if (!new)
1077 			goto fail;
1078 
1079 		/* Prepare xor DMA descriptor */
1080 		xgene_dma_prep_xor_desc(chan, new, &dst, src,
1081 					src_cnt, &len, multi);
1082 
1083 		if (!first)
1084 			first = new;
1085 
1086 		new->tx.cookie = 0;
1087 		async_tx_ack(&new->tx);
1088 
1089 		/* Insert the link descriptor to the LD ring */
1090 		list_add_tail(&new->node, &first->tx_list);
1091 	} while (len);
1092 
1093 	new->tx.flags = flags; /* client is in control of this ack */
1094 	new->tx.cookie = -EBUSY;
1095 	list_splice(&first->tx_list, &new->tx_list);
1096 
1097 	return &new->tx;
1098 
1099 fail:
1100 	if (!first)
1101 		return NULL;
1102 
1103 	xgene_dma_free_desc_list(chan, &first->tx_list);
1104 	return NULL;
1105 }
1106 
1107 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1108 	struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1109 	u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1110 {
1111 	struct xgene_dma_desc_sw *first = NULL, *new;
1112 	struct xgene_dma_chan *chan;
1113 	size_t _len = len;
1114 	dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1115 	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1116 
1117 	if (unlikely(!dchan || !len))
1118 		return NULL;
1119 
1120 	chan = to_dma_chan(dchan);
1121 
1122 	/*
1123 	 * Save source addresses on local variable, may be we have to
1124 	 * prepare two descriptor to generate P and Q if both enabled
1125 	 * in the flags by client
1126 	 */
1127 	memcpy(_src, src, sizeof(*src) * src_cnt);
1128 
1129 	if (flags & DMA_PREP_PQ_DISABLE_P)
1130 		len = 0;
1131 
1132 	if (flags & DMA_PREP_PQ_DISABLE_Q)
1133 		_len = 0;
1134 
1135 	do {
1136 		/* Allocate the link descriptor from DMA pool */
1137 		new = xgene_dma_alloc_descriptor(chan);
1138 		if (!new)
1139 			goto fail;
1140 
1141 		if (!first)
1142 			first = new;
1143 
1144 		new->tx.cookie = 0;
1145 		async_tx_ack(&new->tx);
1146 
1147 		/* Insert the link descriptor to the LD ring */
1148 		list_add_tail(&new->node, &first->tx_list);
1149 
1150 		/*
1151 		 * Prepare DMA descriptor to generate P,
1152 		 * if DMA_PREP_PQ_DISABLE_P flag is not set
1153 		 */
1154 		if (len) {
1155 			xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1156 						src_cnt, &len, multi);
1157 			continue;
1158 		}
1159 
1160 		/*
1161 		 * Prepare DMA descriptor to generate Q,
1162 		 * if DMA_PREP_PQ_DISABLE_Q flag is not set
1163 		 */
1164 		if (_len) {
1165 			xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1166 						src_cnt, &_len, scf);
1167 		}
1168 	} while (len || _len);
1169 
1170 	new->tx.flags = flags; /* client is in control of this ack */
1171 	new->tx.cookie = -EBUSY;
1172 	list_splice(&first->tx_list, &new->tx_list);
1173 
1174 	return &new->tx;
1175 
1176 fail:
1177 	if (!first)
1178 		return NULL;
1179 
1180 	xgene_dma_free_desc_list(chan, &first->tx_list);
1181 	return NULL;
1182 }
1183 
1184 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1185 {
1186 	struct xgene_dma_chan *chan = to_dma_chan(dchan);
1187 
1188 	spin_lock_bh(&chan->lock);
1189 	xgene_chan_xfer_ld_pending(chan);
1190 	spin_unlock_bh(&chan->lock);
1191 }
1192 
1193 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1194 					   dma_cookie_t cookie,
1195 					   struct dma_tx_state *txstate)
1196 {
1197 	return dma_cookie_status(dchan, cookie, txstate);
1198 }
1199 
1200 static void xgene_dma_tasklet_cb(unsigned long data)
1201 {
1202 	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1203 
1204 	spin_lock_bh(&chan->lock);
1205 
1206 	/* Run all cleanup for descriptors which have been completed */
1207 	xgene_dma_cleanup_descriptors(chan);
1208 
1209 	/* Re-enable DMA channel IRQ */
1210 	enable_irq(chan->rx_irq);
1211 
1212 	spin_unlock_bh(&chan->lock);
1213 }
1214 
1215 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1216 {
1217 	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1218 
1219 	BUG_ON(!chan);
1220 
1221 	/*
1222 	 * Disable DMA channel IRQ until we process completed
1223 	 * descriptors
1224 	 */
1225 	disable_irq_nosync(chan->rx_irq);
1226 
1227 	/*
1228 	 * Schedule the tasklet to handle all cleanup of the current
1229 	 * transaction. It will start a new transaction if there is
1230 	 * one pending.
1231 	 */
1232 	tasklet_schedule(&chan->tasklet);
1233 
1234 	return IRQ_HANDLED;
1235 }
1236 
1237 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1238 {
1239 	struct xgene_dma *pdma = (struct xgene_dma *)id;
1240 	unsigned long int_mask;
1241 	u32 val, i;
1242 
1243 	val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1244 
1245 	/* Clear DMA interrupts */
1246 	iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1247 
1248 	/* Print DMA error info */
1249 	int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1250 	for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1251 		dev_err(pdma->dev,
1252 			"Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1253 
1254 	return IRQ_HANDLED;
1255 }
1256 
1257 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1258 {
1259 	int i;
1260 
1261 	iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1262 
1263 	for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1264 		iowrite32(ring->state[i], ring->pdma->csr_ring +
1265 			  XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1266 }
1267 
1268 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1269 {
1270 	memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1271 	xgene_dma_wr_ring_state(ring);
1272 }
1273 
1274 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1275 {
1276 	void *ring_cfg = ring->state;
1277 	u64 addr = ring->desc_paddr;
1278 	u32 i, val;
1279 
1280 	ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1281 
1282 	/* Clear DMA ring state */
1283 	xgene_dma_clr_ring_state(ring);
1284 
1285 	/* Set DMA ring type */
1286 	XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1287 
1288 	if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1289 		/* Set recombination buffer and timeout */
1290 		XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1291 		XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1292 		XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1293 	}
1294 
1295 	/* Initialize DMA ring state */
1296 	XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1297 	XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1298 	XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1299 	XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1300 	XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1301 	XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1302 
1303 	/* Write DMA ring configurations */
1304 	xgene_dma_wr_ring_state(ring);
1305 
1306 	/* Set DMA ring id */
1307 	iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1308 		  ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1309 
1310 	/* Set DMA ring buffer */
1311 	iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1312 		  ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1313 
1314 	if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1315 		return;
1316 
1317 	/* Set empty signature to DMA Rx ring descriptors */
1318 	for (i = 0; i < ring->slots; i++) {
1319 		struct xgene_dma_desc_hw *desc;
1320 
1321 		desc = &ring->desc_hw[i];
1322 		desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1323 	}
1324 
1325 	/* Enable DMA Rx ring interrupt */
1326 	val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1327 	XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1328 	iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1329 }
1330 
1331 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1332 {
1333 	u32 ring_id, val;
1334 
1335 	if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1336 		/* Disable DMA Rx ring interrupt */
1337 		val = ioread32(ring->pdma->csr_ring +
1338 			       XGENE_DMA_RING_NE_INT_MODE);
1339 		XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1340 		iowrite32(val, ring->pdma->csr_ring +
1341 			  XGENE_DMA_RING_NE_INT_MODE);
1342 	}
1343 
1344 	/* Clear DMA ring state */
1345 	ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1346 	iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1347 
1348 	iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1349 	xgene_dma_clr_ring_state(ring);
1350 }
1351 
1352 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1353 {
1354 	ring->cmd_base = ring->pdma->csr_ring_cmd +
1355 				XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1356 							  XGENE_DMA_RING_NUM));
1357 
1358 	ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1359 }
1360 
1361 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1362 				   enum xgene_dma_ring_cfgsize cfgsize)
1363 {
1364 	int size;
1365 
1366 	switch (cfgsize) {
1367 	case XGENE_DMA_RING_CFG_SIZE_512B:
1368 		size = 0x200;
1369 		break;
1370 	case XGENE_DMA_RING_CFG_SIZE_2KB:
1371 		size = 0x800;
1372 		break;
1373 	case XGENE_DMA_RING_CFG_SIZE_16KB:
1374 		size = 0x4000;
1375 		break;
1376 	case XGENE_DMA_RING_CFG_SIZE_64KB:
1377 		size = 0x10000;
1378 		break;
1379 	case XGENE_DMA_RING_CFG_SIZE_512KB:
1380 		size = 0x80000;
1381 		break;
1382 	default:
1383 		chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1384 		return -EINVAL;
1385 	}
1386 
1387 	return size;
1388 }
1389 
1390 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1391 {
1392 	/* Clear DMA ring configurations */
1393 	xgene_dma_clear_ring(ring);
1394 
1395 	/* De-allocate DMA ring descriptor */
1396 	if (ring->desc_vaddr) {
1397 		dma_free_coherent(ring->pdma->dev, ring->size,
1398 				  ring->desc_vaddr, ring->desc_paddr);
1399 		ring->desc_vaddr = NULL;
1400 	}
1401 }
1402 
1403 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1404 {
1405 	xgene_dma_delete_ring_one(&chan->rx_ring);
1406 	xgene_dma_delete_ring_one(&chan->tx_ring);
1407 }
1408 
1409 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1410 				     struct xgene_dma_ring *ring,
1411 				     enum xgene_dma_ring_cfgsize cfgsize)
1412 {
1413 	/* Setup DMA ring descriptor variables */
1414 	ring->pdma = chan->pdma;
1415 	ring->cfgsize = cfgsize;
1416 	ring->num = chan->pdma->ring_num++;
1417 	ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1418 
1419 	ring->size = xgene_dma_get_ring_size(chan, cfgsize);
1420 	if (ring->size <= 0)
1421 		return ring->size;
1422 
1423 	/* Allocate memory for DMA ring descriptor */
1424 	ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1425 					       &ring->desc_paddr, GFP_KERNEL);
1426 	if (!ring->desc_vaddr) {
1427 		chan_err(chan, "Failed to allocate ring desc\n");
1428 		return -ENOMEM;
1429 	}
1430 
1431 	/* Configure and enable DMA ring */
1432 	xgene_dma_set_ring_cmd(ring);
1433 	xgene_dma_setup_ring(ring);
1434 
1435 	return 0;
1436 }
1437 
1438 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1439 {
1440 	struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1441 	struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1442 	int ret;
1443 
1444 	/* Create DMA Rx ring descriptor */
1445 	rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1446 	rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1447 
1448 	ret = xgene_dma_create_ring_one(chan, rx_ring,
1449 					XGENE_DMA_RING_CFG_SIZE_64KB);
1450 	if (ret)
1451 		return ret;
1452 
1453 	chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1454 		 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1455 
1456 	/* Create DMA Tx ring descriptor */
1457 	tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1458 	tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1459 
1460 	ret = xgene_dma_create_ring_one(chan, tx_ring,
1461 					XGENE_DMA_RING_CFG_SIZE_64KB);
1462 	if (ret) {
1463 		xgene_dma_delete_ring_one(rx_ring);
1464 		return ret;
1465 	}
1466 
1467 	tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1468 
1469 	chan_dbg(chan,
1470 		 "Tx ring id 0x%X num %d desc 0x%p\n",
1471 		 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1472 
1473 	/* Set the max outstanding request possible to this channel */
1474 	chan->max_outstanding = rx_ring->slots;
1475 
1476 	return ret;
1477 }
1478 
1479 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1480 {
1481 	int ret, i, j;
1482 
1483 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1484 		ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1485 		if (ret) {
1486 			for (j = 0; j < i; j++)
1487 				xgene_dma_delete_chan_rings(&pdma->chan[j]);
1488 			return ret;
1489 		}
1490 	}
1491 
1492 	return ret;
1493 }
1494 
1495 static void xgene_dma_enable(struct xgene_dma *pdma)
1496 {
1497 	u32 val;
1498 
1499 	/* Configure and enable DMA engine */
1500 	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1501 	XGENE_DMA_CH_SETUP(val);
1502 	XGENE_DMA_ENABLE(val);
1503 	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1504 }
1505 
1506 static void xgene_dma_disable(struct xgene_dma *pdma)
1507 {
1508 	u32 val;
1509 
1510 	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1511 	XGENE_DMA_DISABLE(val);
1512 	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1513 }
1514 
1515 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1516 {
1517 	/*
1518 	 * Mask DMA ring overflow, underflow and
1519 	 * AXI write/read error interrupts
1520 	 */
1521 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1522 		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1523 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1524 		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1525 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1526 		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1527 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1528 		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1529 	iowrite32(XGENE_DMA_INT_ALL_MASK,
1530 		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1531 
1532 	/* Mask DMA error interrupts */
1533 	iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1534 }
1535 
1536 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1537 {
1538 	/*
1539 	 * Unmask DMA ring overflow, underflow and
1540 	 * AXI write/read error interrupts
1541 	 */
1542 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1543 		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1544 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1545 		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1546 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1547 		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1548 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1549 		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1550 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1551 		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1552 
1553 	/* Unmask DMA error interrupts */
1554 	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1555 		  pdma->csr_dma + XGENE_DMA_INT_MASK);
1556 }
1557 
1558 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1559 {
1560 	u32 val;
1561 
1562 	/* Associate DMA ring to corresponding ring HW */
1563 	iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1564 		  pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1565 
1566 	/* Configure RAID6 polynomial control setting */
1567 	if (is_pq_enabled(pdma))
1568 		iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1569 			  pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1570 	else
1571 		dev_info(pdma->dev, "PQ is disabled in HW\n");
1572 
1573 	xgene_dma_enable(pdma);
1574 	xgene_dma_unmask_interrupts(pdma);
1575 
1576 	/* Get DMA id and version info */
1577 	val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1578 
1579 	/* DMA device info */
1580 	dev_info(pdma->dev,
1581 		 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1582 		 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1583 		 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1584 }
1585 
1586 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1587 {
1588 	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1589 	    (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1590 		return 0;
1591 
1592 	iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1593 	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1594 
1595 	/* Bring up memory */
1596 	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1597 
1598 	/* Force a barrier */
1599 	ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1600 
1601 	/* reset may take up to 1ms */
1602 	usleep_range(1000, 1100);
1603 
1604 	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1605 		!= XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1606 		dev_err(pdma->dev,
1607 			"Failed to release ring mngr memory from shutdown\n");
1608 		return -ENODEV;
1609 	}
1610 
1611 	/* program threshold set 1 and all hysteresis */
1612 	iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1613 		  pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1614 	iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1615 		  pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1616 	iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1617 		  pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1618 
1619 	/* Enable QPcore and assign error queue */
1620 	iowrite32(XGENE_DMA_RING_ENABLE,
1621 		  pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1622 
1623 	return 0;
1624 }
1625 
1626 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1627 {
1628 	int ret;
1629 
1630 	ret = xgene_dma_init_ring_mngr(pdma);
1631 	if (ret)
1632 		return ret;
1633 
1634 	/* Bring up memory */
1635 	iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1636 
1637 	/* Force a barrier */
1638 	ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1639 
1640 	/* reset may take up to 1ms */
1641 	usleep_range(1000, 1100);
1642 
1643 	if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1644 		!= XGENE_DMA_BLK_MEM_RDY_VAL) {
1645 		dev_err(pdma->dev,
1646 			"Failed to release DMA memory from shutdown\n");
1647 		return -ENODEV;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1654 {
1655 	struct xgene_dma_chan *chan;
1656 	int ret, i, j;
1657 
1658 	/* Register DMA error irq */
1659 	ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1660 			       0, "dma_error", pdma);
1661 	if (ret) {
1662 		dev_err(pdma->dev,
1663 			"Failed to register error IRQ %d\n", pdma->err_irq);
1664 		return ret;
1665 	}
1666 
1667 	/* Register DMA channel rx irq */
1668 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1669 		chan = &pdma->chan[i];
1670 		ret = devm_request_irq(chan->dev, chan->rx_irq,
1671 				       xgene_dma_chan_ring_isr,
1672 				       0, chan->name, chan);
1673 		if (ret) {
1674 			chan_err(chan, "Failed to register Rx IRQ %d\n",
1675 				 chan->rx_irq);
1676 			devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1677 
1678 			for (j = 0; j < i; j++) {
1679 				chan = &pdma->chan[i];
1680 				devm_free_irq(chan->dev, chan->rx_irq, chan);
1681 			}
1682 
1683 			return ret;
1684 		}
1685 	}
1686 
1687 	return 0;
1688 }
1689 
1690 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1691 {
1692 	struct xgene_dma_chan *chan;
1693 	int i;
1694 
1695 	/* Free DMA device error irq */
1696 	devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1697 
1698 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1699 		chan = &pdma->chan[i];
1700 		devm_free_irq(chan->dev, chan->rx_irq, chan);
1701 	}
1702 }
1703 
1704 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1705 			       struct dma_device *dma_dev)
1706 {
1707 	/* Initialize DMA device capability mask */
1708 	dma_cap_zero(dma_dev->cap_mask);
1709 
1710 	/* Set DMA device capability */
1711 	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1712 	dma_cap_set(DMA_SG, dma_dev->cap_mask);
1713 
1714 	/* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1715 	 * and channel 1 supports XOR, PQ both. First thing here is we have
1716 	 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1717 	 * we can make sure this by reading SoC Efuse register.
1718 	 * Second thing, we have hw errata that if we run channel 0 and
1719 	 * channel 1 simultaneously with executing XOR and PQ request,
1720 	 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1721 	 * if XOR and PQ supports on channel 1 is disabled.
1722 	 */
1723 	if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1724 	    is_pq_enabled(chan->pdma)) {
1725 		dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1726 		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1727 	} else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1728 		   !is_pq_enabled(chan->pdma)) {
1729 		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1730 	}
1731 
1732 	/* Set base and prep routines */
1733 	dma_dev->dev = chan->dev;
1734 	dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1735 	dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1736 	dma_dev->device_issue_pending = xgene_dma_issue_pending;
1737 	dma_dev->device_tx_status = xgene_dma_tx_status;
1738 	dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy;
1739 	dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1740 
1741 	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1742 		dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1743 		dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1744 		dma_dev->xor_align = XGENE_DMA_XOR_ALIGNMENT;
1745 	}
1746 
1747 	if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1748 		dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1749 		dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1750 		dma_dev->pq_align = XGENE_DMA_XOR_ALIGNMENT;
1751 	}
1752 }
1753 
1754 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1755 {
1756 	struct xgene_dma_chan *chan = &pdma->chan[id];
1757 	struct dma_device *dma_dev = &pdma->dma_dev[id];
1758 	int ret;
1759 
1760 	chan->dma_chan.device = dma_dev;
1761 
1762 	spin_lock_init(&chan->lock);
1763 	INIT_LIST_HEAD(&chan->ld_pending);
1764 	INIT_LIST_HEAD(&chan->ld_running);
1765 	INIT_LIST_HEAD(&chan->ld_completed);
1766 	tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1767 		     (unsigned long)chan);
1768 
1769 	chan->pending = 0;
1770 	chan->desc_pool = NULL;
1771 	dma_cookie_init(&chan->dma_chan);
1772 
1773 	/* Setup dma device capabilities and prep routines */
1774 	xgene_dma_set_caps(chan, dma_dev);
1775 
1776 	/* Initialize DMA device list head */
1777 	INIT_LIST_HEAD(&dma_dev->channels);
1778 	list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1779 
1780 	/* Register with Linux async DMA framework*/
1781 	ret = dma_async_device_register(dma_dev);
1782 	if (ret) {
1783 		chan_err(chan, "Failed to register async device %d", ret);
1784 		tasklet_kill(&chan->tasklet);
1785 
1786 		return ret;
1787 	}
1788 
1789 	/* DMA capability info */
1790 	dev_info(pdma->dev,
1791 		 "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan),
1792 		 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "",
1793 		 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1794 		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1795 		 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1796 
1797 	return 0;
1798 }
1799 
1800 static int xgene_dma_init_async(struct xgene_dma *pdma)
1801 {
1802 	int ret, i, j;
1803 
1804 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1805 		ret = xgene_dma_async_register(pdma, i);
1806 		if (ret) {
1807 			for (j = 0; j < i; j++) {
1808 				dma_async_device_unregister(&pdma->dma_dev[j]);
1809 				tasklet_kill(&pdma->chan[j].tasklet);
1810 			}
1811 
1812 			return ret;
1813 		}
1814 	}
1815 
1816 	return ret;
1817 }
1818 
1819 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1820 {
1821 	int i;
1822 
1823 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1824 		dma_async_device_unregister(&pdma->dma_dev[i]);
1825 }
1826 
1827 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1828 {
1829 	struct xgene_dma_chan *chan;
1830 	int i;
1831 
1832 	pdma->ring_num = XGENE_DMA_RING_NUM;
1833 
1834 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1835 		chan = &pdma->chan[i];
1836 		chan->dev = pdma->dev;
1837 		chan->pdma = pdma;
1838 		chan->id = i;
1839 		snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1840 	}
1841 }
1842 
1843 static int xgene_dma_get_resources(struct platform_device *pdev,
1844 				   struct xgene_dma *pdma)
1845 {
1846 	struct resource *res;
1847 	int irq, i;
1848 
1849 	/* Get DMA csr region */
1850 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1851 	if (!res) {
1852 		dev_err(&pdev->dev, "Failed to get csr region\n");
1853 		return -ENXIO;
1854 	}
1855 
1856 	pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1857 				     resource_size(res));
1858 	if (!pdma->csr_dma) {
1859 		dev_err(&pdev->dev, "Failed to ioremap csr region");
1860 		return -ENOMEM;
1861 	}
1862 
1863 	/* Get DMA ring csr region */
1864 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1865 	if (!res) {
1866 		dev_err(&pdev->dev, "Failed to get ring csr region\n");
1867 		return -ENXIO;
1868 	}
1869 
1870 	pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
1871 				       resource_size(res));
1872 	if (!pdma->csr_ring) {
1873 		dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1874 		return -ENOMEM;
1875 	}
1876 
1877 	/* Get DMA ring cmd csr region */
1878 	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1879 	if (!res) {
1880 		dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1881 		return -ENXIO;
1882 	}
1883 
1884 	pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1885 					  resource_size(res));
1886 	if (!pdma->csr_ring_cmd) {
1887 		dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1888 		return -ENOMEM;
1889 	}
1890 
1891 	pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1892 
1893 	/* Get efuse csr region */
1894 	res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1895 	if (!res) {
1896 		dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1897 		return -ENXIO;
1898 	}
1899 
1900 	pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1901 				       resource_size(res));
1902 	if (!pdma->csr_efuse) {
1903 		dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1904 		return -ENOMEM;
1905 	}
1906 
1907 	/* Get DMA error interrupt */
1908 	irq = platform_get_irq(pdev, 0);
1909 	if (irq <= 0) {
1910 		dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1911 		return -ENXIO;
1912 	}
1913 
1914 	pdma->err_irq = irq;
1915 
1916 	/* Get DMA Rx ring descriptor interrupts for all DMA channels */
1917 	for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1918 		irq = platform_get_irq(pdev, i);
1919 		if (irq <= 0) {
1920 			dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1921 			return -ENXIO;
1922 		}
1923 
1924 		pdma->chan[i - 1].rx_irq = irq;
1925 	}
1926 
1927 	return 0;
1928 }
1929 
1930 static int xgene_dma_probe(struct platform_device *pdev)
1931 {
1932 	struct xgene_dma *pdma;
1933 	int ret, i;
1934 
1935 	pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1936 	if (!pdma)
1937 		return -ENOMEM;
1938 
1939 	pdma->dev = &pdev->dev;
1940 	platform_set_drvdata(pdev, pdma);
1941 
1942 	ret = xgene_dma_get_resources(pdev, pdma);
1943 	if (ret)
1944 		return ret;
1945 
1946 	pdma->clk = devm_clk_get(&pdev->dev, NULL);
1947 	if (IS_ERR(pdma->clk)) {
1948 		dev_err(&pdev->dev, "Failed to get clk\n");
1949 		return PTR_ERR(pdma->clk);
1950 	}
1951 
1952 	/* Enable clk before accessing registers */
1953 	ret = clk_prepare_enable(pdma->clk);
1954 	if (ret) {
1955 		dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1956 		return ret;
1957 	}
1958 
1959 	/* Remove DMA RAM out of shutdown */
1960 	ret = xgene_dma_init_mem(pdma);
1961 	if (ret)
1962 		goto err_clk_enable;
1963 
1964 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1965 	if (ret) {
1966 		dev_err(&pdev->dev, "No usable DMA configuration\n");
1967 		goto err_dma_mask;
1968 	}
1969 
1970 	/* Initialize DMA channels software state */
1971 	xgene_dma_init_channels(pdma);
1972 
1973 	/* Configue DMA rings */
1974 	ret = xgene_dma_init_rings(pdma);
1975 	if (ret)
1976 		goto err_clk_enable;
1977 
1978 	ret = xgene_dma_request_irqs(pdma);
1979 	if (ret)
1980 		goto err_request_irq;
1981 
1982 	/* Configure and enable DMA engine */
1983 	xgene_dma_init_hw(pdma);
1984 
1985 	/* Register DMA device with linux async framework */
1986 	ret = xgene_dma_init_async(pdma);
1987 	if (ret)
1988 		goto err_async_init;
1989 
1990 	return 0;
1991 
1992 err_async_init:
1993 	xgene_dma_free_irqs(pdma);
1994 
1995 err_request_irq:
1996 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1997 		xgene_dma_delete_chan_rings(&pdma->chan[i]);
1998 
1999 err_dma_mask:
2000 err_clk_enable:
2001 	clk_disable_unprepare(pdma->clk);
2002 
2003 	return ret;
2004 }
2005 
2006 static int xgene_dma_remove(struct platform_device *pdev)
2007 {
2008 	struct xgene_dma *pdma = platform_get_drvdata(pdev);
2009 	struct xgene_dma_chan *chan;
2010 	int i;
2011 
2012 	xgene_dma_async_unregister(pdma);
2013 
2014 	/* Mask interrupts and disable DMA engine */
2015 	xgene_dma_mask_interrupts(pdma);
2016 	xgene_dma_disable(pdma);
2017 	xgene_dma_free_irqs(pdma);
2018 
2019 	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
2020 		chan = &pdma->chan[i];
2021 		tasklet_kill(&chan->tasklet);
2022 		xgene_dma_delete_chan_rings(chan);
2023 	}
2024 
2025 	clk_disable_unprepare(pdma->clk);
2026 
2027 	return 0;
2028 }
2029 
2030 static const struct of_device_id xgene_dma_of_match_ptr[] = {
2031 	{.compatible = "apm,xgene-storm-dma",},
2032 	{},
2033 };
2034 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
2035 
2036 static struct platform_driver xgene_dma_driver = {
2037 	.probe = xgene_dma_probe,
2038 	.remove = xgene_dma_remove,
2039 	.driver = {
2040 		.name = "X-Gene-DMA",
2041 		.of_match_table = xgene_dma_of_match_ptr,
2042 	},
2043 };
2044 
2045 module_platform_driver(xgene_dma_driver);
2046 
2047 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2048 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2049 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2050 MODULE_LICENSE("GPL");
2051 MODULE_VERSION("1.0");
2052