1 /* 2 * Applied Micro X-Gene SoC DMA engine Driver 3 * 4 * Copyright (c) 2015, Applied Micro Circuits Corporation 5 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com> 6 * Loc Ho <lho@apm.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 * 21 * NOTE: PM support is currently not available. 22 */ 23 24 #include <linux/clk.h> 25 #include <linux/delay.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmaengine.h> 28 #include <linux/dmapool.h> 29 #include <linux/interrupt.h> 30 #include <linux/io.h> 31 #include <linux/module.h> 32 #include <linux/of_device.h> 33 34 #include "dmaengine.h" 35 36 /* X-Gene DMA ring csr registers and bit definations */ 37 #define XGENE_DMA_RING_CONFIG 0x04 38 #define XGENE_DMA_RING_ENABLE BIT(31) 39 #define XGENE_DMA_RING_ID 0x08 40 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31)) 41 #define XGENE_DMA_RING_ID_BUF 0x0C 42 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21)) 43 #define XGENE_DMA_RING_THRESLD0_SET1 0x30 44 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64 45 #define XGENE_DMA_RING_THRESLD1_SET1 0x34 46 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8 47 #define XGENE_DMA_RING_HYSTERESIS 0x68 48 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF 49 #define XGENE_DMA_RING_STATE 0x6C 50 #define XGENE_DMA_RING_STATE_WR_BASE 0x70 51 #define XGENE_DMA_RING_NE_INT_MODE 0x017C 52 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \ 53 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v))) 54 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \ 55 ((m) &= (~BIT(31 - (v)))) 56 #define XGENE_DMA_RING_CLKEN 0xC208 57 #define XGENE_DMA_RING_SRST 0xC200 58 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070 59 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074 60 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF 61 #define XGENE_DMA_RING_DESC_CNT(v) (((v) & 0x0001FFFE) >> 1) 62 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num)) 63 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v)) 64 #define XGENE_DMA_RING_CMD_OFFSET 0x2C 65 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6) 66 #define XGENE_DMA_RING_COHERENT_SET(m) \ 67 (((u32 *)(m))[2] |= BIT(4)) 68 #define XGENE_DMA_RING_ADDRL_SET(m, v) \ 69 (((u32 *)(m))[2] |= (((v) >> 8) << 5)) 70 #define XGENE_DMA_RING_ADDRH_SET(m, v) \ 71 (((u32 *)(m))[3] |= ((v) >> 35)) 72 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \ 73 (((u32 *)(m))[3] |= BIT(19)) 74 #define XGENE_DMA_RING_SIZE_SET(m, v) \ 75 (((u32 *)(m))[3] |= ((v) << 23)) 76 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \ 77 (((u32 *)(m))[3] |= BIT(27)) 78 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \ 79 (((u32 *)(m))[3] |= (0x7 << 28)) 80 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \ 81 (((u32 *)(m))[4] |= 0x3) 82 #define XGENE_DMA_RING_SELTHRSH_SET(m) \ 83 (((u32 *)(m))[4] |= BIT(3)) 84 #define XGENE_DMA_RING_TYPE_SET(m, v) \ 85 (((u32 *)(m))[4] |= ((v) << 19)) 86 87 /* X-Gene DMA device csr registers and bit definitions */ 88 #define XGENE_DMA_IPBRR 0x0 89 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF) 90 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3) 91 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3) 92 #define XGENE_DMA_GCR 0x10 93 #define XGENE_DMA_CH_SETUP(v) \ 94 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF) 95 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31)) 96 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31)) 97 #define XGENE_DMA_RAID6_CONT 0x14 98 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24) 99 #define XGENE_DMA_INT 0x70 100 #define XGENE_DMA_INT_MASK 0x74 101 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF 102 #define XGENE_DMA_INT_ALL_UNMASK 0x0 103 #define XGENE_DMA_INT_MASK_SHIFT 0x14 104 #define XGENE_DMA_RING_INT0_MASK 0x90A0 105 #define XGENE_DMA_RING_INT1_MASK 0x90A8 106 #define XGENE_DMA_RING_INT2_MASK 0x90B0 107 #define XGENE_DMA_RING_INT3_MASK 0x90B8 108 #define XGENE_DMA_RING_INT4_MASK 0x90C0 109 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0 110 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF 111 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070 112 #define XGENE_DMA_BLK_MEM_RDY 0xD074 113 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF 114 115 /* X-Gene SoC EFUSE csr register and bit defination */ 116 #define XGENE_SOC_JTAG1_SHADOW 0x18 117 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13) 118 119 /* X-Gene DMA Descriptor format */ 120 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50) 121 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55) 122 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63) 123 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61) 124 #define XGENE_DMA_DESC_ELERR_POS 46 125 #define XGENE_DMA_DESC_RTYPE_POS 56 126 #define XGENE_DMA_DESC_LERR_POS 60 127 #define XGENE_DMA_DESC_BUFLEN_POS 48 128 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48 129 #define XGENE_DMA_DESC_ELERR_RD(m) \ 130 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3) 131 #define XGENE_DMA_DESC_LERR_RD(m) \ 132 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7) 133 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \ 134 (((elerr) << 4) | (lerr)) 135 136 /* X-Gene DMA descriptor empty s/w signature */ 137 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL 138 139 /* X-Gene DMA configurable parameters defines */ 140 #define XGENE_DMA_RING_NUM 512 141 #define XGENE_DMA_BUFNUM 0x0 142 #define XGENE_DMA_CPU_BUFNUM 0x18 143 #define XGENE_DMA_RING_OWNER_DMA 0x03 144 #define XGENE_DMA_RING_OWNER_CPU 0x0F 145 #define XGENE_DMA_RING_TYPE_REGULAR 0x01 146 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */ 147 #define XGENE_DMA_RING_NUM_CONFIG 5 148 #define XGENE_DMA_MAX_CHANNEL 4 149 #define XGENE_DMA_XOR_CHANNEL 0 150 #define XGENE_DMA_PQ_CHANNEL 1 151 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */ 152 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */ 153 #define XGENE_DMA_XOR_ALIGNMENT 6 /* 64 Bytes */ 154 #define XGENE_DMA_MAX_XOR_SRC 5 155 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0 156 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL 157 158 /* X-Gene DMA descriptor error codes */ 159 #define ERR_DESC_AXI 0x01 160 #define ERR_BAD_DESC 0x02 161 #define ERR_READ_DATA_AXI 0x03 162 #define ERR_WRITE_DATA_AXI 0x04 163 #define ERR_FBP_TIMEOUT 0x05 164 #define ERR_ECC 0x06 165 #define ERR_DIFF_SIZE 0x08 166 #define ERR_SCT_GAT_LEN 0x09 167 #define ERR_CRC_ERR 0x11 168 #define ERR_CHKSUM 0x12 169 #define ERR_DIF 0x13 170 171 /* X-Gene DMA error interrupt codes */ 172 #define ERR_DIF_SIZE_INT 0x0 173 #define ERR_GS_ERR_INT 0x1 174 #define ERR_FPB_TIMEO_INT 0x2 175 #define ERR_WFIFO_OVF_INT 0x3 176 #define ERR_RFIFO_OVF_INT 0x4 177 #define ERR_WR_TIMEO_INT 0x5 178 #define ERR_RD_TIMEO_INT 0x6 179 #define ERR_WR_ERR_INT 0x7 180 #define ERR_RD_ERR_INT 0x8 181 #define ERR_BAD_DESC_INT 0x9 182 #define ERR_DESC_DST_INT 0xA 183 #define ERR_DESC_SRC_INT 0xB 184 185 /* X-Gene DMA flyby operation code */ 186 #define FLYBY_2SRC_XOR 0x80 187 #define FLYBY_3SRC_XOR 0x90 188 #define FLYBY_4SRC_XOR 0xA0 189 #define FLYBY_5SRC_XOR 0xB0 190 191 /* X-Gene DMA SW descriptor flags */ 192 #define XGENE_DMA_FLAG_64B_DESC BIT(0) 193 194 /* Define to dump X-Gene DMA descriptor */ 195 #define XGENE_DMA_DESC_DUMP(desc, m) \ 196 print_hex_dump(KERN_ERR, (m), \ 197 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0) 198 199 #define to_dma_desc_sw(tx) \ 200 container_of(tx, struct xgene_dma_desc_sw, tx) 201 #define to_dma_chan(dchan) \ 202 container_of(dchan, struct xgene_dma_chan, dma_chan) 203 204 #define chan_dbg(chan, fmt, arg...) \ 205 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg) 206 #define chan_err(chan, fmt, arg...) \ 207 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg) 208 209 struct xgene_dma_desc_hw { 210 __le64 m0; 211 __le64 m1; 212 __le64 m2; 213 __le64 m3; 214 }; 215 216 enum xgene_dma_ring_cfgsize { 217 XGENE_DMA_RING_CFG_SIZE_512B, 218 XGENE_DMA_RING_CFG_SIZE_2KB, 219 XGENE_DMA_RING_CFG_SIZE_16KB, 220 XGENE_DMA_RING_CFG_SIZE_64KB, 221 XGENE_DMA_RING_CFG_SIZE_512KB, 222 XGENE_DMA_RING_CFG_SIZE_INVALID 223 }; 224 225 struct xgene_dma_ring { 226 struct xgene_dma *pdma; 227 u8 buf_num; 228 u16 id; 229 u16 num; 230 u16 head; 231 u16 owner; 232 u16 slots; 233 u16 dst_ring_num; 234 u32 size; 235 void __iomem *cmd; 236 void __iomem *cmd_base; 237 dma_addr_t desc_paddr; 238 u32 state[XGENE_DMA_RING_NUM_CONFIG]; 239 enum xgene_dma_ring_cfgsize cfgsize; 240 union { 241 void *desc_vaddr; 242 struct xgene_dma_desc_hw *desc_hw; 243 }; 244 }; 245 246 struct xgene_dma_desc_sw { 247 struct xgene_dma_desc_hw desc1; 248 struct xgene_dma_desc_hw desc2; 249 u32 flags; 250 struct list_head node; 251 struct list_head tx_list; 252 struct dma_async_tx_descriptor tx; 253 }; 254 255 /** 256 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel 257 * @dma_chan: dmaengine channel object member 258 * @pdma: X-Gene DMA device structure reference 259 * @dev: struct device reference for dma mapping api 260 * @id: raw id of this channel 261 * @rx_irq: channel IRQ 262 * @name: name of X-Gene DMA channel 263 * @lock: serializes enqueue/dequeue operations to the descriptor pool 264 * @pending: number of transaction request pushed to DMA controller for 265 * execution, but still waiting for completion, 266 * @max_outstanding: max number of outstanding request we can push to channel 267 * @ld_pending: descriptors which are queued to run, but have not yet been 268 * submitted to the hardware for execution 269 * @ld_running: descriptors which are currently being executing by the hardware 270 * @ld_completed: descriptors which have finished execution by the hardware. 271 * These descriptors have already had their cleanup actions run. They 272 * are waiting for the ACK bit to be set by the async tx API. 273 * @desc_pool: descriptor pool for DMA operations 274 * @tasklet: bottom half where all completed descriptors cleans 275 * @tx_ring: transmit ring descriptor that we use to prepare actual 276 * descriptors for further executions 277 * @rx_ring: receive ring descriptor that we use to get completed DMA 278 * descriptors during cleanup time 279 */ 280 struct xgene_dma_chan { 281 struct dma_chan dma_chan; 282 struct xgene_dma *pdma; 283 struct device *dev; 284 int id; 285 int rx_irq; 286 char name[10]; 287 spinlock_t lock; 288 int pending; 289 int max_outstanding; 290 struct list_head ld_pending; 291 struct list_head ld_running; 292 struct list_head ld_completed; 293 struct dma_pool *desc_pool; 294 struct tasklet_struct tasklet; 295 struct xgene_dma_ring tx_ring; 296 struct xgene_dma_ring rx_ring; 297 }; 298 299 /** 300 * struct xgene_dma - internal representation of an X-Gene DMA device 301 * @err_irq: DMA error irq number 302 * @ring_num: start id number for DMA ring 303 * @csr_dma: base for DMA register access 304 * @csr_ring: base for DMA ring register access 305 * @csr_ring_cmd: base for DMA ring command register access 306 * @csr_efuse: base for efuse register access 307 * @dma_dev: embedded struct dma_device 308 * @chan: reference to X-Gene DMA channels 309 */ 310 struct xgene_dma { 311 struct device *dev; 312 struct clk *clk; 313 int err_irq; 314 int ring_num; 315 void __iomem *csr_dma; 316 void __iomem *csr_ring; 317 void __iomem *csr_ring_cmd; 318 void __iomem *csr_efuse; 319 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL]; 320 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL]; 321 }; 322 323 static const char * const xgene_dma_desc_err[] = { 324 [ERR_DESC_AXI] = "AXI error when reading src/dst link list", 325 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc", 326 [ERR_READ_DATA_AXI] = "AXI error when reading data", 327 [ERR_WRITE_DATA_AXI] = "AXI error when writing data", 328 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch", 329 [ERR_ECC] = "ECC double bit error", 330 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result", 331 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same", 332 [ERR_CRC_ERR] = "CRC error", 333 [ERR_CHKSUM] = "Checksum error", 334 [ERR_DIF] = "DIF error", 335 }; 336 337 static const char * const xgene_dma_err[] = { 338 [ERR_DIF_SIZE_INT] = "DIF size error", 339 [ERR_GS_ERR_INT] = "Gather scatter not same size error", 340 [ERR_FPB_TIMEO_INT] = "Free pool time out error", 341 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error", 342 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error", 343 [ERR_WR_TIMEO_INT] = "Write time out error", 344 [ERR_RD_TIMEO_INT] = "Read time out error", 345 [ERR_WR_ERR_INT] = "HBF bus write error", 346 [ERR_RD_ERR_INT] = "HBF bus read error", 347 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error", 348 [ERR_DESC_DST_INT] = "HFB reading dst link address error", 349 [ERR_DESC_SRC_INT] = "HFB reading src link address error", 350 }; 351 352 static bool is_pq_enabled(struct xgene_dma *pdma) 353 { 354 u32 val; 355 356 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW); 357 return !(val & XGENE_DMA_PQ_DISABLE_MASK); 358 } 359 360 static u64 xgene_dma_encode_len(size_t len) 361 { 362 return (len < XGENE_DMA_MAX_BYTE_CNT) ? 363 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) : 364 XGENE_DMA_16K_BUFFER_LEN_CODE; 365 } 366 367 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt) 368 { 369 static u8 flyby_type[] = { 370 FLYBY_2SRC_XOR, /* Dummy */ 371 FLYBY_2SRC_XOR, /* Dummy */ 372 FLYBY_2SRC_XOR, 373 FLYBY_3SRC_XOR, 374 FLYBY_4SRC_XOR, 375 FLYBY_5SRC_XOR 376 }; 377 378 return flyby_type[src_cnt]; 379 } 380 381 static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring) 382 { 383 u32 __iomem *cmd_base = ring->cmd_base; 384 u32 ring_state = ioread32(&cmd_base[1]); 385 386 return XGENE_DMA_RING_DESC_CNT(ring_state); 387 } 388 389 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len, 390 dma_addr_t *paddr) 391 { 392 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ? 393 *len : XGENE_DMA_MAX_BYTE_CNT; 394 395 *ext8 |= cpu_to_le64(*paddr); 396 *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes)); 397 *len -= nbytes; 398 *paddr += nbytes; 399 } 400 401 static void xgene_dma_invalidate_buffer(__le64 *ext8) 402 { 403 *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE); 404 } 405 406 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx) 407 { 408 switch (idx) { 409 case 0: 410 return &desc->m1; 411 case 1: 412 return &desc->m0; 413 case 2: 414 return &desc->m3; 415 case 3: 416 return &desc->m2; 417 default: 418 pr_err("Invalid dma descriptor index\n"); 419 } 420 421 return NULL; 422 } 423 424 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc, 425 u16 dst_ring_num) 426 { 427 desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT); 428 desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA << 429 XGENE_DMA_DESC_RTYPE_POS); 430 desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT); 431 desc->m3 |= cpu_to_le64((u64)dst_ring_num << 432 XGENE_DMA_DESC_HOENQ_NUM_POS); 433 } 434 435 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan, 436 struct xgene_dma_desc_sw *desc_sw, 437 dma_addr_t dst, dma_addr_t src, 438 size_t len) 439 { 440 struct xgene_dma_desc_hw *desc1, *desc2; 441 int i; 442 443 /* Get 1st descriptor */ 444 desc1 = &desc_sw->desc1; 445 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num); 446 447 /* Set destination address */ 448 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT); 449 desc1->m3 |= cpu_to_le64(dst); 450 451 /* Set 1st source address */ 452 xgene_dma_set_src_buffer(&desc1->m1, &len, &src); 453 454 if (!len) 455 return; 456 457 /* 458 * We need to split this source buffer, 459 * and need to use 2nd descriptor 460 */ 461 desc2 = &desc_sw->desc2; 462 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT); 463 464 /* Set 2nd to 5th source address */ 465 for (i = 0; i < 4 && len; i++) 466 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i), 467 &len, &src); 468 469 /* Invalidate unused source address field */ 470 for (; i < 4; i++) 471 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i)); 472 473 /* Updated flag that we have prepared 64B descriptor */ 474 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC; 475 } 476 477 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan, 478 struct xgene_dma_desc_sw *desc_sw, 479 dma_addr_t *dst, dma_addr_t *src, 480 u32 src_cnt, size_t *nbytes, 481 const u8 *scf) 482 { 483 struct xgene_dma_desc_hw *desc1, *desc2; 484 size_t len = *nbytes; 485 int i; 486 487 desc1 = &desc_sw->desc1; 488 desc2 = &desc_sw->desc2; 489 490 /* Initialize DMA descriptor */ 491 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num); 492 493 /* Set destination address */ 494 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT); 495 desc1->m3 |= cpu_to_le64(*dst); 496 497 /* We have multiple source addresses, so need to set NV bit*/ 498 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT); 499 500 /* Set flyby opcode */ 501 desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt)); 502 503 /* Set 1st to 5th source addresses */ 504 for (i = 0; i < src_cnt; i++) { 505 len = *nbytes; 506 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 : 507 xgene_dma_lookup_ext8(desc2, i - 1), 508 &len, &src[i]); 509 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8))); 510 } 511 512 /* Update meta data */ 513 *nbytes = len; 514 *dst += XGENE_DMA_MAX_BYTE_CNT; 515 516 /* We need always 64B descriptor to perform xor or pq operations */ 517 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC; 518 } 519 520 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx) 521 { 522 struct xgene_dma_desc_sw *desc; 523 struct xgene_dma_chan *chan; 524 dma_cookie_t cookie; 525 526 if (unlikely(!tx)) 527 return -EINVAL; 528 529 chan = to_dma_chan(tx->chan); 530 desc = to_dma_desc_sw(tx); 531 532 spin_lock_bh(&chan->lock); 533 534 cookie = dma_cookie_assign(tx); 535 536 /* Add this transaction list onto the tail of the pending queue */ 537 list_splice_tail_init(&desc->tx_list, &chan->ld_pending); 538 539 spin_unlock_bh(&chan->lock); 540 541 return cookie; 542 } 543 544 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan, 545 struct xgene_dma_desc_sw *desc) 546 { 547 list_del(&desc->node); 548 chan_dbg(chan, "LD %p free\n", desc); 549 dma_pool_free(chan->desc_pool, desc, desc->tx.phys); 550 } 551 552 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor( 553 struct xgene_dma_chan *chan) 554 { 555 struct xgene_dma_desc_sw *desc; 556 dma_addr_t phys; 557 558 desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys); 559 if (!desc) { 560 chan_err(chan, "Failed to allocate LDs\n"); 561 return NULL; 562 } 563 564 memset(desc, 0, sizeof(*desc)); 565 566 INIT_LIST_HEAD(&desc->tx_list); 567 desc->tx.phys = phys; 568 desc->tx.tx_submit = xgene_dma_tx_submit; 569 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan); 570 571 chan_dbg(chan, "LD %p allocated\n", desc); 572 573 return desc; 574 } 575 576 /** 577 * xgene_dma_clean_completed_descriptor - free all descriptors which 578 * has been completed and acked 579 * @chan: X-Gene DMA channel 580 * 581 * This function is used on all completed and acked descriptors. 582 */ 583 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan) 584 { 585 struct xgene_dma_desc_sw *desc, *_desc; 586 587 /* Run the callback for each descriptor, in order */ 588 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) { 589 if (async_tx_test_ack(&desc->tx)) 590 xgene_dma_clean_descriptor(chan, desc); 591 } 592 } 593 594 /** 595 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor 596 * @chan: X-Gene DMA channel 597 * @desc: descriptor to cleanup and free 598 * 599 * This function is used on a descriptor which has been executed by the DMA 600 * controller. It will run any callbacks, submit any dependencies. 601 */ 602 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan, 603 struct xgene_dma_desc_sw *desc) 604 { 605 struct dma_async_tx_descriptor *tx = &desc->tx; 606 607 /* 608 * If this is not the last transaction in the group, 609 * then no need to complete cookie and run any callback as 610 * this is not the tx_descriptor which had been sent to caller 611 * of this DMA request 612 */ 613 614 if (tx->cookie == 0) 615 return; 616 617 dma_cookie_complete(tx); 618 619 /* Run the link descriptor callback function */ 620 if (tx->callback) 621 tx->callback(tx->callback_param); 622 623 dma_descriptor_unmap(tx); 624 625 /* Run any dependencies */ 626 dma_run_dependencies(tx); 627 } 628 629 /** 630 * xgene_dma_clean_running_descriptor - move the completed descriptor from 631 * ld_running to ld_completed 632 * @chan: X-Gene DMA channel 633 * @desc: the descriptor which is completed 634 * 635 * Free the descriptor directly if acked by async_tx api, 636 * else move it to queue ld_completed. 637 */ 638 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan, 639 struct xgene_dma_desc_sw *desc) 640 { 641 /* Remove from the list of running transactions */ 642 list_del(&desc->node); 643 644 /* 645 * the client is allowed to attach dependent operations 646 * until 'ack' is set 647 */ 648 if (!async_tx_test_ack(&desc->tx)) { 649 /* 650 * Move this descriptor to the list of descriptors which is 651 * completed, but still awaiting the 'ack' bit to be set. 652 */ 653 list_add_tail(&desc->node, &chan->ld_completed); 654 return; 655 } 656 657 chan_dbg(chan, "LD %p free\n", desc); 658 dma_pool_free(chan->desc_pool, desc, desc->tx.phys); 659 } 660 661 static int xgene_chan_xfer_request(struct xgene_dma_ring *ring, 662 struct xgene_dma_desc_sw *desc_sw) 663 { 664 struct xgene_dma_desc_hw *desc_hw; 665 666 /* Check if can push more descriptor to hw for execution */ 667 if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2)) 668 return -EBUSY; 669 670 /* Get hw descriptor from DMA tx ring */ 671 desc_hw = &ring->desc_hw[ring->head]; 672 673 /* 674 * Increment the head count to point next 675 * descriptor for next time 676 */ 677 if (++ring->head == ring->slots) 678 ring->head = 0; 679 680 /* Copy prepared sw descriptor data to hw descriptor */ 681 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw)); 682 683 /* 684 * Check if we have prepared 64B descriptor, 685 * in this case we need one more hw descriptor 686 */ 687 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) { 688 desc_hw = &ring->desc_hw[ring->head]; 689 690 if (++ring->head == ring->slots) 691 ring->head = 0; 692 693 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw)); 694 } 695 696 /* Notify the hw that we have descriptor ready for execution */ 697 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ? 698 2 : 1, ring->cmd); 699 700 return 0; 701 } 702 703 /** 704 * xgene_chan_xfer_ld_pending - push any pending transactions to hw 705 * @chan : X-Gene DMA channel 706 * 707 * LOCKING: must hold chan->lock 708 */ 709 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan) 710 { 711 struct xgene_dma_desc_sw *desc_sw, *_desc_sw; 712 int ret; 713 714 /* 715 * If the list of pending descriptors is empty, then we 716 * don't need to do any work at all 717 */ 718 if (list_empty(&chan->ld_pending)) { 719 chan_dbg(chan, "No pending LDs\n"); 720 return; 721 } 722 723 /* 724 * Move elements from the queue of pending transactions onto the list 725 * of running transactions and push it to hw for further executions 726 */ 727 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) { 728 /* 729 * Check if have pushed max number of transactions to hw 730 * as capable, so let's stop here and will push remaining 731 * elements from pening ld queue after completing some 732 * descriptors that we have already pushed 733 */ 734 if (chan->pending >= chan->max_outstanding) 735 return; 736 737 ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw); 738 if (ret) 739 return; 740 741 /* 742 * Delete this element from ld pending queue and append it to 743 * ld running queue 744 */ 745 list_move_tail(&desc_sw->node, &chan->ld_running); 746 747 /* Increment the pending transaction count */ 748 chan->pending++; 749 } 750 } 751 752 /** 753 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed 754 * and move them to ld_completed to free until flag 'ack' is set 755 * @chan: X-Gene DMA channel 756 * 757 * This function is used on descriptors which have been executed by the DMA 758 * controller. It will run any callbacks, submit any dependencies, then 759 * free these descriptors if flag 'ack' is set. 760 */ 761 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan) 762 { 763 struct xgene_dma_ring *ring = &chan->rx_ring; 764 struct xgene_dma_desc_sw *desc_sw, *_desc_sw; 765 struct xgene_dma_desc_hw *desc_hw; 766 u8 status; 767 768 /* Clean already completed and acked descriptors */ 769 xgene_dma_clean_completed_descriptor(chan); 770 771 /* Run the callback for each descriptor, in order */ 772 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) { 773 /* Get subsequent hw descriptor from DMA rx ring */ 774 desc_hw = &ring->desc_hw[ring->head]; 775 776 /* Check if this descriptor has been completed */ 777 if (unlikely(le64_to_cpu(desc_hw->m0) == 778 XGENE_DMA_DESC_EMPTY_SIGNATURE)) 779 break; 780 781 if (++ring->head == ring->slots) 782 ring->head = 0; 783 784 /* Check if we have any error with DMA transactions */ 785 status = XGENE_DMA_DESC_STATUS( 786 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu( 787 desc_hw->m0)), 788 XGENE_DMA_DESC_LERR_RD(le64_to_cpu( 789 desc_hw->m0))); 790 if (status) { 791 /* Print the DMA error type */ 792 chan_err(chan, "%s\n", xgene_dma_desc_err[status]); 793 794 /* 795 * We have DMA transactions error here. Dump DMA Tx 796 * and Rx descriptors for this request */ 797 XGENE_DMA_DESC_DUMP(&desc_sw->desc1, 798 "X-Gene DMA TX DESC1: "); 799 800 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) 801 XGENE_DMA_DESC_DUMP(&desc_sw->desc2, 802 "X-Gene DMA TX DESC2: "); 803 804 XGENE_DMA_DESC_DUMP(desc_hw, 805 "X-Gene DMA RX ERR DESC: "); 806 } 807 808 /* Notify the hw about this completed descriptor */ 809 iowrite32(-1, ring->cmd); 810 811 /* Mark this hw descriptor as processed */ 812 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE); 813 814 xgene_dma_run_tx_complete_actions(chan, desc_sw); 815 816 xgene_dma_clean_running_descriptor(chan, desc_sw); 817 818 /* 819 * Decrement the pending transaction count 820 * as we have processed one 821 */ 822 chan->pending--; 823 } 824 825 /* 826 * Start any pending transactions automatically 827 * In the ideal case, we keep the DMA controller busy while we go 828 * ahead and free the descriptors below. 829 */ 830 xgene_chan_xfer_ld_pending(chan); 831 } 832 833 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan) 834 { 835 struct xgene_dma_chan *chan = to_dma_chan(dchan); 836 837 /* Has this channel already been allocated? */ 838 if (chan->desc_pool) 839 return 1; 840 841 chan->desc_pool = dma_pool_create(chan->name, chan->dev, 842 sizeof(struct xgene_dma_desc_sw), 843 0, 0); 844 if (!chan->desc_pool) { 845 chan_err(chan, "Failed to allocate descriptor pool\n"); 846 return -ENOMEM; 847 } 848 849 chan_dbg(chan, "Allocate descripto pool\n"); 850 851 return 1; 852 } 853 854 /** 855 * xgene_dma_free_desc_list - Free all descriptors in a queue 856 * @chan: X-Gene DMA channel 857 * @list: the list to free 858 * 859 * LOCKING: must hold chan->lock 860 */ 861 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan, 862 struct list_head *list) 863 { 864 struct xgene_dma_desc_sw *desc, *_desc; 865 866 list_for_each_entry_safe(desc, _desc, list, node) 867 xgene_dma_clean_descriptor(chan, desc); 868 } 869 870 static void xgene_dma_free_chan_resources(struct dma_chan *dchan) 871 { 872 struct xgene_dma_chan *chan = to_dma_chan(dchan); 873 874 chan_dbg(chan, "Free all resources\n"); 875 876 if (!chan->desc_pool) 877 return; 878 879 spin_lock_bh(&chan->lock); 880 881 /* Process all running descriptor */ 882 xgene_dma_cleanup_descriptors(chan); 883 884 /* Clean all link descriptor queues */ 885 xgene_dma_free_desc_list(chan, &chan->ld_pending); 886 xgene_dma_free_desc_list(chan, &chan->ld_running); 887 xgene_dma_free_desc_list(chan, &chan->ld_completed); 888 889 spin_unlock_bh(&chan->lock); 890 891 /* Delete this channel DMA pool */ 892 dma_pool_destroy(chan->desc_pool); 893 chan->desc_pool = NULL; 894 } 895 896 static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy( 897 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src, 898 size_t len, unsigned long flags) 899 { 900 struct xgene_dma_desc_sw *first = NULL, *new; 901 struct xgene_dma_chan *chan; 902 size_t copy; 903 904 if (unlikely(!dchan || !len)) 905 return NULL; 906 907 chan = to_dma_chan(dchan); 908 909 do { 910 /* Allocate the link descriptor from DMA pool */ 911 new = xgene_dma_alloc_descriptor(chan); 912 if (!new) 913 goto fail; 914 915 /* Create the largest transaction possible */ 916 copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT); 917 918 /* Prepare DMA descriptor */ 919 xgene_dma_prep_cpy_desc(chan, new, dst, src, copy); 920 921 if (!first) 922 first = new; 923 924 new->tx.cookie = 0; 925 async_tx_ack(&new->tx); 926 927 /* Update metadata */ 928 len -= copy; 929 dst += copy; 930 src += copy; 931 932 /* Insert the link descriptor to the LD ring */ 933 list_add_tail(&new->node, &first->tx_list); 934 } while (len); 935 936 new->tx.flags = flags; /* client is in control of this ack */ 937 new->tx.cookie = -EBUSY; 938 list_splice(&first->tx_list, &new->tx_list); 939 940 return &new->tx; 941 942 fail: 943 if (!first) 944 return NULL; 945 946 xgene_dma_free_desc_list(chan, &first->tx_list); 947 return NULL; 948 } 949 950 static struct dma_async_tx_descriptor *xgene_dma_prep_sg( 951 struct dma_chan *dchan, struct scatterlist *dst_sg, 952 u32 dst_nents, struct scatterlist *src_sg, 953 u32 src_nents, unsigned long flags) 954 { 955 struct xgene_dma_desc_sw *first = NULL, *new = NULL; 956 struct xgene_dma_chan *chan; 957 size_t dst_avail, src_avail; 958 dma_addr_t dst, src; 959 size_t len; 960 961 if (unlikely(!dchan)) 962 return NULL; 963 964 if (unlikely(!dst_nents || !src_nents)) 965 return NULL; 966 967 if (unlikely(!dst_sg || !src_sg)) 968 return NULL; 969 970 chan = to_dma_chan(dchan); 971 972 /* Get prepared for the loop */ 973 dst_avail = sg_dma_len(dst_sg); 974 src_avail = sg_dma_len(src_sg); 975 dst_nents--; 976 src_nents--; 977 978 /* Run until we are out of scatterlist entries */ 979 while (true) { 980 /* Create the largest transaction possible */ 981 len = min_t(size_t, src_avail, dst_avail); 982 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT); 983 if (len == 0) 984 goto fetch; 985 986 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; 987 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; 988 989 /* Allocate the link descriptor from DMA pool */ 990 new = xgene_dma_alloc_descriptor(chan); 991 if (!new) 992 goto fail; 993 994 /* Prepare DMA descriptor */ 995 xgene_dma_prep_cpy_desc(chan, new, dst, src, len); 996 997 if (!first) 998 first = new; 999 1000 new->tx.cookie = 0; 1001 async_tx_ack(&new->tx); 1002 1003 /* update metadata */ 1004 dst_avail -= len; 1005 src_avail -= len; 1006 1007 /* Insert the link descriptor to the LD ring */ 1008 list_add_tail(&new->node, &first->tx_list); 1009 1010 fetch: 1011 /* fetch the next dst scatterlist entry */ 1012 if (dst_avail == 0) { 1013 /* no more entries: we're done */ 1014 if (dst_nents == 0) 1015 break; 1016 1017 /* fetch the next entry: if there are no more: done */ 1018 dst_sg = sg_next(dst_sg); 1019 if (!dst_sg) 1020 break; 1021 1022 dst_nents--; 1023 dst_avail = sg_dma_len(dst_sg); 1024 } 1025 1026 /* fetch the next src scatterlist entry */ 1027 if (src_avail == 0) { 1028 /* no more entries: we're done */ 1029 if (src_nents == 0) 1030 break; 1031 1032 /* fetch the next entry: if there are no more: done */ 1033 src_sg = sg_next(src_sg); 1034 if (!src_sg) 1035 break; 1036 1037 src_nents--; 1038 src_avail = sg_dma_len(src_sg); 1039 } 1040 } 1041 1042 if (!new) 1043 return NULL; 1044 1045 new->tx.flags = flags; /* client is in control of this ack */ 1046 new->tx.cookie = -EBUSY; 1047 list_splice(&first->tx_list, &new->tx_list); 1048 1049 return &new->tx; 1050 fail: 1051 if (!first) 1052 return NULL; 1053 1054 xgene_dma_free_desc_list(chan, &first->tx_list); 1055 return NULL; 1056 } 1057 1058 static struct dma_async_tx_descriptor *xgene_dma_prep_xor( 1059 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src, 1060 u32 src_cnt, size_t len, unsigned long flags) 1061 { 1062 struct xgene_dma_desc_sw *first = NULL, *new; 1063 struct xgene_dma_chan *chan; 1064 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = { 1065 0x01, 0x01, 0x01, 0x01, 0x01}; 1066 1067 if (unlikely(!dchan || !len)) 1068 return NULL; 1069 1070 chan = to_dma_chan(dchan); 1071 1072 do { 1073 /* Allocate the link descriptor from DMA pool */ 1074 new = xgene_dma_alloc_descriptor(chan); 1075 if (!new) 1076 goto fail; 1077 1078 /* Prepare xor DMA descriptor */ 1079 xgene_dma_prep_xor_desc(chan, new, &dst, src, 1080 src_cnt, &len, multi); 1081 1082 if (!first) 1083 first = new; 1084 1085 new->tx.cookie = 0; 1086 async_tx_ack(&new->tx); 1087 1088 /* Insert the link descriptor to the LD ring */ 1089 list_add_tail(&new->node, &first->tx_list); 1090 } while (len); 1091 1092 new->tx.flags = flags; /* client is in control of this ack */ 1093 new->tx.cookie = -EBUSY; 1094 list_splice(&first->tx_list, &new->tx_list); 1095 1096 return &new->tx; 1097 1098 fail: 1099 if (!first) 1100 return NULL; 1101 1102 xgene_dma_free_desc_list(chan, &first->tx_list); 1103 return NULL; 1104 } 1105 1106 static struct dma_async_tx_descriptor *xgene_dma_prep_pq( 1107 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src, 1108 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags) 1109 { 1110 struct xgene_dma_desc_sw *first = NULL, *new; 1111 struct xgene_dma_chan *chan; 1112 size_t _len = len; 1113 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC]; 1114 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01}; 1115 1116 if (unlikely(!dchan || !len)) 1117 return NULL; 1118 1119 chan = to_dma_chan(dchan); 1120 1121 /* 1122 * Save source addresses on local variable, may be we have to 1123 * prepare two descriptor to generate P and Q if both enabled 1124 * in the flags by client 1125 */ 1126 memcpy(_src, src, sizeof(*src) * src_cnt); 1127 1128 if (flags & DMA_PREP_PQ_DISABLE_P) 1129 len = 0; 1130 1131 if (flags & DMA_PREP_PQ_DISABLE_Q) 1132 _len = 0; 1133 1134 do { 1135 /* Allocate the link descriptor from DMA pool */ 1136 new = xgene_dma_alloc_descriptor(chan); 1137 if (!new) 1138 goto fail; 1139 1140 if (!first) 1141 first = new; 1142 1143 new->tx.cookie = 0; 1144 async_tx_ack(&new->tx); 1145 1146 /* Insert the link descriptor to the LD ring */ 1147 list_add_tail(&new->node, &first->tx_list); 1148 1149 /* 1150 * Prepare DMA descriptor to generate P, 1151 * if DMA_PREP_PQ_DISABLE_P flag is not set 1152 */ 1153 if (len) { 1154 xgene_dma_prep_xor_desc(chan, new, &dst[0], src, 1155 src_cnt, &len, multi); 1156 continue; 1157 } 1158 1159 /* 1160 * Prepare DMA descriptor to generate Q, 1161 * if DMA_PREP_PQ_DISABLE_Q flag is not set 1162 */ 1163 if (_len) { 1164 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src, 1165 src_cnt, &_len, scf); 1166 } 1167 } while (len || _len); 1168 1169 new->tx.flags = flags; /* client is in control of this ack */ 1170 new->tx.cookie = -EBUSY; 1171 list_splice(&first->tx_list, &new->tx_list); 1172 1173 return &new->tx; 1174 1175 fail: 1176 if (!first) 1177 return NULL; 1178 1179 xgene_dma_free_desc_list(chan, &first->tx_list); 1180 return NULL; 1181 } 1182 1183 static void xgene_dma_issue_pending(struct dma_chan *dchan) 1184 { 1185 struct xgene_dma_chan *chan = to_dma_chan(dchan); 1186 1187 spin_lock_bh(&chan->lock); 1188 xgene_chan_xfer_ld_pending(chan); 1189 spin_unlock_bh(&chan->lock); 1190 } 1191 1192 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan, 1193 dma_cookie_t cookie, 1194 struct dma_tx_state *txstate) 1195 { 1196 return dma_cookie_status(dchan, cookie, txstate); 1197 } 1198 1199 static void xgene_dma_tasklet_cb(unsigned long data) 1200 { 1201 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data; 1202 1203 spin_lock_bh(&chan->lock); 1204 1205 /* Run all cleanup for descriptors which have been completed */ 1206 xgene_dma_cleanup_descriptors(chan); 1207 1208 /* Re-enable DMA channel IRQ */ 1209 enable_irq(chan->rx_irq); 1210 1211 spin_unlock_bh(&chan->lock); 1212 } 1213 1214 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id) 1215 { 1216 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id; 1217 1218 BUG_ON(!chan); 1219 1220 /* 1221 * Disable DMA channel IRQ until we process completed 1222 * descriptors 1223 */ 1224 disable_irq_nosync(chan->rx_irq); 1225 1226 /* 1227 * Schedule the tasklet to handle all cleanup of the current 1228 * transaction. It will start a new transaction if there is 1229 * one pending. 1230 */ 1231 tasklet_schedule(&chan->tasklet); 1232 1233 return IRQ_HANDLED; 1234 } 1235 1236 static irqreturn_t xgene_dma_err_isr(int irq, void *id) 1237 { 1238 struct xgene_dma *pdma = (struct xgene_dma *)id; 1239 unsigned long int_mask; 1240 u32 val, i; 1241 1242 val = ioread32(pdma->csr_dma + XGENE_DMA_INT); 1243 1244 /* Clear DMA interrupts */ 1245 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT); 1246 1247 /* Print DMA error info */ 1248 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT; 1249 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err)) 1250 dev_err(pdma->dev, 1251 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]); 1252 1253 return IRQ_HANDLED; 1254 } 1255 1256 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring) 1257 { 1258 int i; 1259 1260 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE); 1261 1262 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++) 1263 iowrite32(ring->state[i], ring->pdma->csr_ring + 1264 XGENE_DMA_RING_STATE_WR_BASE + (i * 4)); 1265 } 1266 1267 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring) 1268 { 1269 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG); 1270 xgene_dma_wr_ring_state(ring); 1271 } 1272 1273 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring) 1274 { 1275 void *ring_cfg = ring->state; 1276 u64 addr = ring->desc_paddr; 1277 u32 i, val; 1278 1279 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE; 1280 1281 /* Clear DMA ring state */ 1282 xgene_dma_clr_ring_state(ring); 1283 1284 /* Set DMA ring type */ 1285 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR); 1286 1287 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) { 1288 /* Set recombination buffer and timeout */ 1289 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg); 1290 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg); 1291 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg); 1292 } 1293 1294 /* Initialize DMA ring state */ 1295 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg); 1296 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg); 1297 XGENE_DMA_RING_COHERENT_SET(ring_cfg); 1298 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr); 1299 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr); 1300 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize); 1301 1302 /* Write DMA ring configurations */ 1303 xgene_dma_wr_ring_state(ring); 1304 1305 /* Set DMA ring id */ 1306 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id), 1307 ring->pdma->csr_ring + XGENE_DMA_RING_ID); 1308 1309 /* Set DMA ring buffer */ 1310 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num), 1311 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF); 1312 1313 if (ring->owner != XGENE_DMA_RING_OWNER_CPU) 1314 return; 1315 1316 /* Set empty signature to DMA Rx ring descriptors */ 1317 for (i = 0; i < ring->slots; i++) { 1318 struct xgene_dma_desc_hw *desc; 1319 1320 desc = &ring->desc_hw[i]; 1321 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE); 1322 } 1323 1324 /* Enable DMA Rx ring interrupt */ 1325 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); 1326 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num); 1327 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE); 1328 } 1329 1330 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring) 1331 { 1332 u32 ring_id, val; 1333 1334 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) { 1335 /* Disable DMA Rx ring interrupt */ 1336 val = ioread32(ring->pdma->csr_ring + 1337 XGENE_DMA_RING_NE_INT_MODE); 1338 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num); 1339 iowrite32(val, ring->pdma->csr_ring + 1340 XGENE_DMA_RING_NE_INT_MODE); 1341 } 1342 1343 /* Clear DMA ring state */ 1344 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id); 1345 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID); 1346 1347 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF); 1348 xgene_dma_clr_ring_state(ring); 1349 } 1350 1351 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring) 1352 { 1353 ring->cmd_base = ring->pdma->csr_ring_cmd + 1354 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num - 1355 XGENE_DMA_RING_NUM)); 1356 1357 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET; 1358 } 1359 1360 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan, 1361 enum xgene_dma_ring_cfgsize cfgsize) 1362 { 1363 int size; 1364 1365 switch (cfgsize) { 1366 case XGENE_DMA_RING_CFG_SIZE_512B: 1367 size = 0x200; 1368 break; 1369 case XGENE_DMA_RING_CFG_SIZE_2KB: 1370 size = 0x800; 1371 break; 1372 case XGENE_DMA_RING_CFG_SIZE_16KB: 1373 size = 0x4000; 1374 break; 1375 case XGENE_DMA_RING_CFG_SIZE_64KB: 1376 size = 0x10000; 1377 break; 1378 case XGENE_DMA_RING_CFG_SIZE_512KB: 1379 size = 0x80000; 1380 break; 1381 default: 1382 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize); 1383 return -EINVAL; 1384 } 1385 1386 return size; 1387 } 1388 1389 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring) 1390 { 1391 /* Clear DMA ring configurations */ 1392 xgene_dma_clear_ring(ring); 1393 1394 /* De-allocate DMA ring descriptor */ 1395 if (ring->desc_vaddr) { 1396 dma_free_coherent(ring->pdma->dev, ring->size, 1397 ring->desc_vaddr, ring->desc_paddr); 1398 ring->desc_vaddr = NULL; 1399 } 1400 } 1401 1402 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan) 1403 { 1404 xgene_dma_delete_ring_one(&chan->rx_ring); 1405 xgene_dma_delete_ring_one(&chan->tx_ring); 1406 } 1407 1408 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan, 1409 struct xgene_dma_ring *ring, 1410 enum xgene_dma_ring_cfgsize cfgsize) 1411 { 1412 /* Setup DMA ring descriptor variables */ 1413 ring->pdma = chan->pdma; 1414 ring->cfgsize = cfgsize; 1415 ring->num = chan->pdma->ring_num++; 1416 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num); 1417 1418 ring->size = xgene_dma_get_ring_size(chan, cfgsize); 1419 if (ring->size <= 0) 1420 return ring->size; 1421 1422 /* Allocate memory for DMA ring descriptor */ 1423 ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size, 1424 &ring->desc_paddr, GFP_KERNEL); 1425 if (!ring->desc_vaddr) { 1426 chan_err(chan, "Failed to allocate ring desc\n"); 1427 return -ENOMEM; 1428 } 1429 1430 /* Configure and enable DMA ring */ 1431 xgene_dma_set_ring_cmd(ring); 1432 xgene_dma_setup_ring(ring); 1433 1434 return 0; 1435 } 1436 1437 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan) 1438 { 1439 struct xgene_dma_ring *rx_ring = &chan->rx_ring; 1440 struct xgene_dma_ring *tx_ring = &chan->tx_ring; 1441 int ret; 1442 1443 /* Create DMA Rx ring descriptor */ 1444 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU; 1445 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id; 1446 1447 ret = xgene_dma_create_ring_one(chan, rx_ring, 1448 XGENE_DMA_RING_CFG_SIZE_64KB); 1449 if (ret) 1450 return ret; 1451 1452 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n", 1453 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr); 1454 1455 /* Create DMA Tx ring descriptor */ 1456 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA; 1457 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id; 1458 1459 ret = xgene_dma_create_ring_one(chan, tx_ring, 1460 XGENE_DMA_RING_CFG_SIZE_64KB); 1461 if (ret) { 1462 xgene_dma_delete_ring_one(rx_ring); 1463 return ret; 1464 } 1465 1466 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num); 1467 1468 chan_dbg(chan, 1469 "Tx ring id 0x%X num %d desc 0x%p\n", 1470 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr); 1471 1472 /* Set the max outstanding request possible to this channel */ 1473 chan->max_outstanding = rx_ring->slots; 1474 1475 return ret; 1476 } 1477 1478 static int xgene_dma_init_rings(struct xgene_dma *pdma) 1479 { 1480 int ret, i, j; 1481 1482 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1483 ret = xgene_dma_create_chan_rings(&pdma->chan[i]); 1484 if (ret) { 1485 for (j = 0; j < i; j++) 1486 xgene_dma_delete_chan_rings(&pdma->chan[j]); 1487 return ret; 1488 } 1489 } 1490 1491 return ret; 1492 } 1493 1494 static void xgene_dma_enable(struct xgene_dma *pdma) 1495 { 1496 u32 val; 1497 1498 /* Configure and enable DMA engine */ 1499 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR); 1500 XGENE_DMA_CH_SETUP(val); 1501 XGENE_DMA_ENABLE(val); 1502 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR); 1503 } 1504 1505 static void xgene_dma_disable(struct xgene_dma *pdma) 1506 { 1507 u32 val; 1508 1509 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR); 1510 XGENE_DMA_DISABLE(val); 1511 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR); 1512 } 1513 1514 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma) 1515 { 1516 /* 1517 * Mask DMA ring overflow, underflow and 1518 * AXI write/read error interrupts 1519 */ 1520 iowrite32(XGENE_DMA_INT_ALL_MASK, 1521 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK); 1522 iowrite32(XGENE_DMA_INT_ALL_MASK, 1523 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK); 1524 iowrite32(XGENE_DMA_INT_ALL_MASK, 1525 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK); 1526 iowrite32(XGENE_DMA_INT_ALL_MASK, 1527 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK); 1528 iowrite32(XGENE_DMA_INT_ALL_MASK, 1529 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK); 1530 1531 /* Mask DMA error interrupts */ 1532 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK); 1533 } 1534 1535 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma) 1536 { 1537 /* 1538 * Unmask DMA ring overflow, underflow and 1539 * AXI write/read error interrupts 1540 */ 1541 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1542 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK); 1543 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1544 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK); 1545 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1546 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK); 1547 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1548 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK); 1549 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1550 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK); 1551 1552 /* Unmask DMA error interrupts */ 1553 iowrite32(XGENE_DMA_INT_ALL_UNMASK, 1554 pdma->csr_dma + XGENE_DMA_INT_MASK); 1555 } 1556 1557 static void xgene_dma_init_hw(struct xgene_dma *pdma) 1558 { 1559 u32 val; 1560 1561 /* Associate DMA ring to corresponding ring HW */ 1562 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1, 1563 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC); 1564 1565 /* Configure RAID6 polynomial control setting */ 1566 if (is_pq_enabled(pdma)) 1567 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D), 1568 pdma->csr_dma + XGENE_DMA_RAID6_CONT); 1569 else 1570 dev_info(pdma->dev, "PQ is disabled in HW\n"); 1571 1572 xgene_dma_enable(pdma); 1573 xgene_dma_unmask_interrupts(pdma); 1574 1575 /* Get DMA id and version info */ 1576 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR); 1577 1578 /* DMA device info */ 1579 dev_info(pdma->dev, 1580 "X-Gene DMA v%d.%02d.%02d driver registered %d channels", 1581 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val), 1582 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL); 1583 } 1584 1585 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma) 1586 { 1587 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) && 1588 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST))) 1589 return 0; 1590 1591 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN); 1592 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST); 1593 1594 /* Bring up memory */ 1595 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN); 1596 1597 /* Force a barrier */ 1598 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN); 1599 1600 /* reset may take up to 1ms */ 1601 usleep_range(1000, 1100); 1602 1603 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY) 1604 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) { 1605 dev_err(pdma->dev, 1606 "Failed to release ring mngr memory from shutdown\n"); 1607 return -ENODEV; 1608 } 1609 1610 /* program threshold set 1 and all hysteresis */ 1611 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL, 1612 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1); 1613 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL, 1614 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1); 1615 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL, 1616 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS); 1617 1618 /* Enable QPcore and assign error queue */ 1619 iowrite32(XGENE_DMA_RING_ENABLE, 1620 pdma->csr_ring + XGENE_DMA_RING_CONFIG); 1621 1622 return 0; 1623 } 1624 1625 static int xgene_dma_init_mem(struct xgene_dma *pdma) 1626 { 1627 int ret; 1628 1629 ret = xgene_dma_init_ring_mngr(pdma); 1630 if (ret) 1631 return ret; 1632 1633 /* Bring up memory */ 1634 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN); 1635 1636 /* Force a barrier */ 1637 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN); 1638 1639 /* reset may take up to 1ms */ 1640 usleep_range(1000, 1100); 1641 1642 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY) 1643 != XGENE_DMA_BLK_MEM_RDY_VAL) { 1644 dev_err(pdma->dev, 1645 "Failed to release DMA memory from shutdown\n"); 1646 return -ENODEV; 1647 } 1648 1649 return 0; 1650 } 1651 1652 static int xgene_dma_request_irqs(struct xgene_dma *pdma) 1653 { 1654 struct xgene_dma_chan *chan; 1655 int ret, i, j; 1656 1657 /* Register DMA error irq */ 1658 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr, 1659 0, "dma_error", pdma); 1660 if (ret) { 1661 dev_err(pdma->dev, 1662 "Failed to register error IRQ %d\n", pdma->err_irq); 1663 return ret; 1664 } 1665 1666 /* Register DMA channel rx irq */ 1667 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1668 chan = &pdma->chan[i]; 1669 ret = devm_request_irq(chan->dev, chan->rx_irq, 1670 xgene_dma_chan_ring_isr, 1671 0, chan->name, chan); 1672 if (ret) { 1673 chan_err(chan, "Failed to register Rx IRQ %d\n", 1674 chan->rx_irq); 1675 devm_free_irq(pdma->dev, pdma->err_irq, pdma); 1676 1677 for (j = 0; j < i; j++) { 1678 chan = &pdma->chan[i]; 1679 devm_free_irq(chan->dev, chan->rx_irq, chan); 1680 } 1681 1682 return ret; 1683 } 1684 } 1685 1686 return 0; 1687 } 1688 1689 static void xgene_dma_free_irqs(struct xgene_dma *pdma) 1690 { 1691 struct xgene_dma_chan *chan; 1692 int i; 1693 1694 /* Free DMA device error irq */ 1695 devm_free_irq(pdma->dev, pdma->err_irq, pdma); 1696 1697 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1698 chan = &pdma->chan[i]; 1699 devm_free_irq(chan->dev, chan->rx_irq, chan); 1700 } 1701 } 1702 1703 static void xgene_dma_set_caps(struct xgene_dma_chan *chan, 1704 struct dma_device *dma_dev) 1705 { 1706 /* Initialize DMA device capability mask */ 1707 dma_cap_zero(dma_dev->cap_mask); 1708 1709 /* Set DMA device capability */ 1710 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); 1711 dma_cap_set(DMA_SG, dma_dev->cap_mask); 1712 1713 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR 1714 * and channel 1 supports XOR, PQ both. First thing here is we have 1715 * mechanism in hw to enable/disable PQ/XOR supports on channel 1, 1716 * we can make sure this by reading SoC Efuse register. 1717 * Second thing, we have hw errata that if we run channel 0 and 1718 * channel 1 simultaneously with executing XOR and PQ request, 1719 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only 1720 * if XOR and PQ supports on channel 1 is disabled. 1721 */ 1722 if ((chan->id == XGENE_DMA_PQ_CHANNEL) && 1723 is_pq_enabled(chan->pdma)) { 1724 dma_cap_set(DMA_PQ, dma_dev->cap_mask); 1725 dma_cap_set(DMA_XOR, dma_dev->cap_mask); 1726 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) && 1727 !is_pq_enabled(chan->pdma)) { 1728 dma_cap_set(DMA_XOR, dma_dev->cap_mask); 1729 } 1730 1731 /* Set base and prep routines */ 1732 dma_dev->dev = chan->dev; 1733 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources; 1734 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources; 1735 dma_dev->device_issue_pending = xgene_dma_issue_pending; 1736 dma_dev->device_tx_status = xgene_dma_tx_status; 1737 dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy; 1738 dma_dev->device_prep_dma_sg = xgene_dma_prep_sg; 1739 1740 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) { 1741 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor; 1742 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC; 1743 dma_dev->xor_align = XGENE_DMA_XOR_ALIGNMENT; 1744 } 1745 1746 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) { 1747 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq; 1748 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC; 1749 dma_dev->pq_align = XGENE_DMA_XOR_ALIGNMENT; 1750 } 1751 } 1752 1753 static int xgene_dma_async_register(struct xgene_dma *pdma, int id) 1754 { 1755 struct xgene_dma_chan *chan = &pdma->chan[id]; 1756 struct dma_device *dma_dev = &pdma->dma_dev[id]; 1757 int ret; 1758 1759 chan->dma_chan.device = dma_dev; 1760 1761 spin_lock_init(&chan->lock); 1762 INIT_LIST_HEAD(&chan->ld_pending); 1763 INIT_LIST_HEAD(&chan->ld_running); 1764 INIT_LIST_HEAD(&chan->ld_completed); 1765 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb, 1766 (unsigned long)chan); 1767 1768 chan->pending = 0; 1769 chan->desc_pool = NULL; 1770 dma_cookie_init(&chan->dma_chan); 1771 1772 /* Setup dma device capabilities and prep routines */ 1773 xgene_dma_set_caps(chan, dma_dev); 1774 1775 /* Initialize DMA device list head */ 1776 INIT_LIST_HEAD(&dma_dev->channels); 1777 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels); 1778 1779 /* Register with Linux async DMA framework*/ 1780 ret = dma_async_device_register(dma_dev); 1781 if (ret) { 1782 chan_err(chan, "Failed to register async device %d", ret); 1783 tasklet_kill(&chan->tasklet); 1784 1785 return ret; 1786 } 1787 1788 /* DMA capability info */ 1789 dev_info(pdma->dev, 1790 "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan), 1791 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "", 1792 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "", 1793 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "", 1794 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : ""); 1795 1796 return 0; 1797 } 1798 1799 static int xgene_dma_init_async(struct xgene_dma *pdma) 1800 { 1801 int ret, i, j; 1802 1803 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) { 1804 ret = xgene_dma_async_register(pdma, i); 1805 if (ret) { 1806 for (j = 0; j < i; j++) { 1807 dma_async_device_unregister(&pdma->dma_dev[j]); 1808 tasklet_kill(&pdma->chan[j].tasklet); 1809 } 1810 1811 return ret; 1812 } 1813 } 1814 1815 return ret; 1816 } 1817 1818 static void xgene_dma_async_unregister(struct xgene_dma *pdma) 1819 { 1820 int i; 1821 1822 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) 1823 dma_async_device_unregister(&pdma->dma_dev[i]); 1824 } 1825 1826 static void xgene_dma_init_channels(struct xgene_dma *pdma) 1827 { 1828 struct xgene_dma_chan *chan; 1829 int i; 1830 1831 pdma->ring_num = XGENE_DMA_RING_NUM; 1832 1833 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 1834 chan = &pdma->chan[i]; 1835 chan->dev = pdma->dev; 1836 chan->pdma = pdma; 1837 chan->id = i; 1838 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id); 1839 } 1840 } 1841 1842 static int xgene_dma_get_resources(struct platform_device *pdev, 1843 struct xgene_dma *pdma) 1844 { 1845 struct resource *res; 1846 int irq, i; 1847 1848 /* Get DMA csr region */ 1849 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1850 if (!res) { 1851 dev_err(&pdev->dev, "Failed to get csr region\n"); 1852 return -ENXIO; 1853 } 1854 1855 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start, 1856 resource_size(res)); 1857 if (!pdma->csr_dma) { 1858 dev_err(&pdev->dev, "Failed to ioremap csr region"); 1859 return -ENOMEM; 1860 } 1861 1862 /* Get DMA ring csr region */ 1863 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1864 if (!res) { 1865 dev_err(&pdev->dev, "Failed to get ring csr region\n"); 1866 return -ENXIO; 1867 } 1868 1869 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start, 1870 resource_size(res)); 1871 if (!pdma->csr_ring) { 1872 dev_err(&pdev->dev, "Failed to ioremap ring csr region"); 1873 return -ENOMEM; 1874 } 1875 1876 /* Get DMA ring cmd csr region */ 1877 res = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1878 if (!res) { 1879 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n"); 1880 return -ENXIO; 1881 } 1882 1883 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start, 1884 resource_size(res)); 1885 if (!pdma->csr_ring_cmd) { 1886 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region"); 1887 return -ENOMEM; 1888 } 1889 1890 /* Get efuse csr region */ 1891 res = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1892 if (!res) { 1893 dev_err(&pdev->dev, "Failed to get efuse csr region\n"); 1894 return -ENXIO; 1895 } 1896 1897 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start, 1898 resource_size(res)); 1899 if (!pdma->csr_efuse) { 1900 dev_err(&pdev->dev, "Failed to ioremap efuse csr region"); 1901 return -ENOMEM; 1902 } 1903 1904 /* Get DMA error interrupt */ 1905 irq = platform_get_irq(pdev, 0); 1906 if (irq <= 0) { 1907 dev_err(&pdev->dev, "Failed to get Error IRQ\n"); 1908 return -ENXIO; 1909 } 1910 1911 pdma->err_irq = irq; 1912 1913 /* Get DMA Rx ring descriptor interrupts for all DMA channels */ 1914 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) { 1915 irq = platform_get_irq(pdev, i); 1916 if (irq <= 0) { 1917 dev_err(&pdev->dev, "Failed to get Rx IRQ\n"); 1918 return -ENXIO; 1919 } 1920 1921 pdma->chan[i - 1].rx_irq = irq; 1922 } 1923 1924 return 0; 1925 } 1926 1927 static int xgene_dma_probe(struct platform_device *pdev) 1928 { 1929 struct xgene_dma *pdma; 1930 int ret, i; 1931 1932 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL); 1933 if (!pdma) 1934 return -ENOMEM; 1935 1936 pdma->dev = &pdev->dev; 1937 platform_set_drvdata(pdev, pdma); 1938 1939 ret = xgene_dma_get_resources(pdev, pdma); 1940 if (ret) 1941 return ret; 1942 1943 pdma->clk = devm_clk_get(&pdev->dev, NULL); 1944 if (IS_ERR(pdma->clk)) { 1945 dev_err(&pdev->dev, "Failed to get clk\n"); 1946 return PTR_ERR(pdma->clk); 1947 } 1948 1949 /* Enable clk before accessing registers */ 1950 ret = clk_prepare_enable(pdma->clk); 1951 if (ret) { 1952 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret); 1953 return ret; 1954 } 1955 1956 /* Remove DMA RAM out of shutdown */ 1957 ret = xgene_dma_init_mem(pdma); 1958 if (ret) 1959 goto err_clk_enable; 1960 1961 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42)); 1962 if (ret) { 1963 dev_err(&pdev->dev, "No usable DMA configuration\n"); 1964 goto err_dma_mask; 1965 } 1966 1967 /* Initialize DMA channels software state */ 1968 xgene_dma_init_channels(pdma); 1969 1970 /* Configue DMA rings */ 1971 ret = xgene_dma_init_rings(pdma); 1972 if (ret) 1973 goto err_clk_enable; 1974 1975 ret = xgene_dma_request_irqs(pdma); 1976 if (ret) 1977 goto err_request_irq; 1978 1979 /* Configure and enable DMA engine */ 1980 xgene_dma_init_hw(pdma); 1981 1982 /* Register DMA device with linux async framework */ 1983 ret = xgene_dma_init_async(pdma); 1984 if (ret) 1985 goto err_async_init; 1986 1987 return 0; 1988 1989 err_async_init: 1990 xgene_dma_free_irqs(pdma); 1991 1992 err_request_irq: 1993 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) 1994 xgene_dma_delete_chan_rings(&pdma->chan[i]); 1995 1996 err_dma_mask: 1997 err_clk_enable: 1998 clk_disable_unprepare(pdma->clk); 1999 2000 return ret; 2001 } 2002 2003 static int xgene_dma_remove(struct platform_device *pdev) 2004 { 2005 struct xgene_dma *pdma = platform_get_drvdata(pdev); 2006 struct xgene_dma_chan *chan; 2007 int i; 2008 2009 xgene_dma_async_unregister(pdma); 2010 2011 /* Mask interrupts and disable DMA engine */ 2012 xgene_dma_mask_interrupts(pdma); 2013 xgene_dma_disable(pdma); 2014 xgene_dma_free_irqs(pdma); 2015 2016 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) { 2017 chan = &pdma->chan[i]; 2018 tasklet_kill(&chan->tasklet); 2019 xgene_dma_delete_chan_rings(chan); 2020 } 2021 2022 clk_disable_unprepare(pdma->clk); 2023 2024 return 0; 2025 } 2026 2027 static const struct of_device_id xgene_dma_of_match_ptr[] = { 2028 {.compatible = "apm,xgene-storm-dma",}, 2029 {}, 2030 }; 2031 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr); 2032 2033 static struct platform_driver xgene_dma_driver = { 2034 .probe = xgene_dma_probe, 2035 .remove = xgene_dma_remove, 2036 .driver = { 2037 .name = "X-Gene-DMA", 2038 .of_match_table = xgene_dma_of_match_ptr, 2039 }, 2040 }; 2041 2042 module_platform_driver(xgene_dma_driver); 2043 2044 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver"); 2045 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>"); 2046 MODULE_AUTHOR("Loc Ho <lho@apm.com>"); 2047 MODULE_LICENSE("GPL"); 2048 MODULE_VERSION("1.0"); 2049