xref: /linux/drivers/dma/ti/omap-dma.c (revision f474808acb3c4b30552d9c59b181244e0300d218)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * OMAP DMAengine support
4  */
5 #include <linux/delay.h>
6 #include <linux/dmaengine.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/dmapool.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/omap-dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/of_dma.h>
19 #include <linux/of_device.h>
20 
21 #include "../virt-dma.h"
22 
23 #define OMAP_SDMA_REQUESTS	127
24 #define OMAP_SDMA_CHANNELS	32
25 
26 struct omap_dmadev {
27 	struct dma_device ddev;
28 	spinlock_t lock;
29 	void __iomem *base;
30 	const struct omap_dma_reg *reg_map;
31 	struct omap_system_dma_plat_info *plat;
32 	bool legacy;
33 	bool ll123_supported;
34 	struct dma_pool *desc_pool;
35 	unsigned dma_requests;
36 	spinlock_t irq_lock;
37 	uint32_t irq_enable_mask;
38 	struct omap_chan **lch_map;
39 };
40 
41 struct omap_chan {
42 	struct virt_dma_chan vc;
43 	void __iomem *channel_base;
44 	const struct omap_dma_reg *reg_map;
45 	uint32_t ccr;
46 
47 	struct dma_slave_config	cfg;
48 	unsigned dma_sig;
49 	bool cyclic;
50 	bool paused;
51 	bool running;
52 
53 	int dma_ch;
54 	struct omap_desc *desc;
55 	unsigned sgidx;
56 };
57 
58 #define DESC_NXT_SV_REFRESH	(0x1 << 24)
59 #define DESC_NXT_SV_REUSE	(0x2 << 24)
60 #define DESC_NXT_DV_REFRESH	(0x1 << 26)
61 #define DESC_NXT_DV_REUSE	(0x2 << 26)
62 #define DESC_NTYPE_TYPE2	(0x2 << 29)
63 
64 /* Type 2 descriptor with Source or Destination address update */
65 struct omap_type2_desc {
66 	uint32_t next_desc;
67 	uint32_t en;
68 	uint32_t addr; /* src or dst */
69 	uint16_t fn;
70 	uint16_t cicr;
71 	int16_t cdei;
72 	int16_t csei;
73 	int32_t cdfi;
74 	int32_t csfi;
75 } __packed;
76 
77 struct omap_sg {
78 	dma_addr_t addr;
79 	uint32_t en;		/* number of elements (24-bit) */
80 	uint32_t fn;		/* number of frames (16-bit) */
81 	int32_t fi;		/* for double indexing */
82 	int16_t ei;		/* for double indexing */
83 
84 	/* Linked list */
85 	struct omap_type2_desc *t2_desc;
86 	dma_addr_t t2_desc_paddr;
87 };
88 
89 struct omap_desc {
90 	struct virt_dma_desc vd;
91 	bool using_ll;
92 	enum dma_transfer_direction dir;
93 	dma_addr_t dev_addr;
94 
95 	int32_t fi;		/* for OMAP_DMA_SYNC_PACKET / double indexing */
96 	int16_t ei;		/* for double indexing */
97 	uint8_t es;		/* CSDP_DATA_TYPE_xxx */
98 	uint32_t ccr;		/* CCR value */
99 	uint16_t clnk_ctrl;	/* CLNK_CTRL value */
100 	uint16_t cicr;		/* CICR value */
101 	uint32_t csdp;		/* CSDP value */
102 
103 	unsigned sglen;
104 	struct omap_sg sg[0];
105 };
106 
107 enum {
108 	CAPS_0_SUPPORT_LL123	= BIT(20),	/* Linked List type1/2/3 */
109 	CAPS_0_SUPPORT_LL4	= BIT(21),	/* Linked List type4 */
110 
111 	CCR_FS			= BIT(5),
112 	CCR_READ_PRIORITY	= BIT(6),
113 	CCR_ENABLE		= BIT(7),
114 	CCR_AUTO_INIT		= BIT(8),	/* OMAP1 only */
115 	CCR_REPEAT		= BIT(9),	/* OMAP1 only */
116 	CCR_OMAP31_DISABLE	= BIT(10),	/* OMAP1 only */
117 	CCR_SUSPEND_SENSITIVE	= BIT(8),	/* OMAP2+ only */
118 	CCR_RD_ACTIVE		= BIT(9),	/* OMAP2+ only */
119 	CCR_WR_ACTIVE		= BIT(10),	/* OMAP2+ only */
120 	CCR_SRC_AMODE_CONSTANT	= 0 << 12,
121 	CCR_SRC_AMODE_POSTINC	= 1 << 12,
122 	CCR_SRC_AMODE_SGLIDX	= 2 << 12,
123 	CCR_SRC_AMODE_DBLIDX	= 3 << 12,
124 	CCR_DST_AMODE_CONSTANT	= 0 << 14,
125 	CCR_DST_AMODE_POSTINC	= 1 << 14,
126 	CCR_DST_AMODE_SGLIDX	= 2 << 14,
127 	CCR_DST_AMODE_DBLIDX	= 3 << 14,
128 	CCR_CONSTANT_FILL	= BIT(16),
129 	CCR_TRANSPARENT_COPY	= BIT(17),
130 	CCR_BS			= BIT(18),
131 	CCR_SUPERVISOR		= BIT(22),
132 	CCR_PREFETCH		= BIT(23),
133 	CCR_TRIGGER_SRC		= BIT(24),
134 	CCR_BUFFERING_DISABLE	= BIT(25),
135 	CCR_WRITE_PRIORITY	= BIT(26),
136 	CCR_SYNC_ELEMENT	= 0,
137 	CCR_SYNC_FRAME		= CCR_FS,
138 	CCR_SYNC_BLOCK		= CCR_BS,
139 	CCR_SYNC_PACKET		= CCR_BS | CCR_FS,
140 
141 	CSDP_DATA_TYPE_8	= 0,
142 	CSDP_DATA_TYPE_16	= 1,
143 	CSDP_DATA_TYPE_32	= 2,
144 	CSDP_SRC_PORT_EMIFF	= 0 << 2, /* OMAP1 only */
145 	CSDP_SRC_PORT_EMIFS	= 1 << 2, /* OMAP1 only */
146 	CSDP_SRC_PORT_OCP_T1	= 2 << 2, /* OMAP1 only */
147 	CSDP_SRC_PORT_TIPB	= 3 << 2, /* OMAP1 only */
148 	CSDP_SRC_PORT_OCP_T2	= 4 << 2, /* OMAP1 only */
149 	CSDP_SRC_PORT_MPUI	= 5 << 2, /* OMAP1 only */
150 	CSDP_SRC_PACKED		= BIT(6),
151 	CSDP_SRC_BURST_1	= 0 << 7,
152 	CSDP_SRC_BURST_16	= 1 << 7,
153 	CSDP_SRC_BURST_32	= 2 << 7,
154 	CSDP_SRC_BURST_64	= 3 << 7,
155 	CSDP_DST_PORT_EMIFF	= 0 << 9, /* OMAP1 only */
156 	CSDP_DST_PORT_EMIFS	= 1 << 9, /* OMAP1 only */
157 	CSDP_DST_PORT_OCP_T1	= 2 << 9, /* OMAP1 only */
158 	CSDP_DST_PORT_TIPB	= 3 << 9, /* OMAP1 only */
159 	CSDP_DST_PORT_OCP_T2	= 4 << 9, /* OMAP1 only */
160 	CSDP_DST_PORT_MPUI	= 5 << 9, /* OMAP1 only */
161 	CSDP_DST_PACKED		= BIT(13),
162 	CSDP_DST_BURST_1	= 0 << 14,
163 	CSDP_DST_BURST_16	= 1 << 14,
164 	CSDP_DST_BURST_32	= 2 << 14,
165 	CSDP_DST_BURST_64	= 3 << 14,
166 	CSDP_WRITE_NON_POSTED	= 0 << 16,
167 	CSDP_WRITE_POSTED	= 1 << 16,
168 	CSDP_WRITE_LAST_NON_POSTED = 2 << 16,
169 
170 	CICR_TOUT_IE		= BIT(0),	/* OMAP1 only */
171 	CICR_DROP_IE		= BIT(1),
172 	CICR_HALF_IE		= BIT(2),
173 	CICR_FRAME_IE		= BIT(3),
174 	CICR_LAST_IE		= BIT(4),
175 	CICR_BLOCK_IE		= BIT(5),
176 	CICR_PKT_IE		= BIT(7),	/* OMAP2+ only */
177 	CICR_TRANS_ERR_IE	= BIT(8),	/* OMAP2+ only */
178 	CICR_SUPERVISOR_ERR_IE	= BIT(10),	/* OMAP2+ only */
179 	CICR_MISALIGNED_ERR_IE	= BIT(11),	/* OMAP2+ only */
180 	CICR_DRAIN_IE		= BIT(12),	/* OMAP2+ only */
181 	CICR_SUPER_BLOCK_IE	= BIT(14),	/* OMAP2+ only */
182 
183 	CLNK_CTRL_ENABLE_LNK	= BIT(15),
184 
185 	CDP_DST_VALID_INC	= 0 << 0,
186 	CDP_DST_VALID_RELOAD	= 1 << 0,
187 	CDP_DST_VALID_REUSE	= 2 << 0,
188 	CDP_SRC_VALID_INC	= 0 << 2,
189 	CDP_SRC_VALID_RELOAD	= 1 << 2,
190 	CDP_SRC_VALID_REUSE	= 2 << 2,
191 	CDP_NTYPE_TYPE1		= 1 << 4,
192 	CDP_NTYPE_TYPE2		= 2 << 4,
193 	CDP_NTYPE_TYPE3		= 3 << 4,
194 	CDP_TMODE_NORMAL	= 0 << 8,
195 	CDP_TMODE_LLIST		= 1 << 8,
196 	CDP_FAST		= BIT(10),
197 };
198 
199 static const unsigned es_bytes[] = {
200 	[CSDP_DATA_TYPE_8] = 1,
201 	[CSDP_DATA_TYPE_16] = 2,
202 	[CSDP_DATA_TYPE_32] = 4,
203 };
204 
205 static struct of_dma_filter_info omap_dma_info = {
206 	.filter_fn = omap_dma_filter_fn,
207 };
208 
209 static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
210 {
211 	return container_of(d, struct omap_dmadev, ddev);
212 }
213 
214 static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
215 {
216 	return container_of(c, struct omap_chan, vc.chan);
217 }
218 
219 static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
220 {
221 	return container_of(t, struct omap_desc, vd.tx);
222 }
223 
224 static void omap_dma_desc_free(struct virt_dma_desc *vd)
225 {
226 	struct omap_desc *d = to_omap_dma_desc(&vd->tx);
227 
228 	if (d->using_ll) {
229 		struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
230 		int i;
231 
232 		for (i = 0; i < d->sglen; i++) {
233 			if (d->sg[i].t2_desc)
234 				dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
235 					      d->sg[i].t2_desc_paddr);
236 		}
237 	}
238 
239 	kfree(d);
240 }
241 
242 static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
243 				     enum dma_transfer_direction dir, bool last)
244 {
245 	struct omap_sg *sg = &d->sg[idx];
246 	struct omap_type2_desc *t2_desc = sg->t2_desc;
247 
248 	if (idx)
249 		d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
250 	if (last)
251 		t2_desc->next_desc = 0xfffffffc;
252 
253 	t2_desc->en = sg->en;
254 	t2_desc->addr = sg->addr;
255 	t2_desc->fn = sg->fn & 0xffff;
256 	t2_desc->cicr = d->cicr;
257 	if (!last)
258 		t2_desc->cicr &= ~CICR_BLOCK_IE;
259 
260 	switch (dir) {
261 	case DMA_DEV_TO_MEM:
262 		t2_desc->cdei = sg->ei;
263 		t2_desc->csei = d->ei;
264 		t2_desc->cdfi = sg->fi;
265 		t2_desc->csfi = d->fi;
266 
267 		t2_desc->en |= DESC_NXT_DV_REFRESH;
268 		t2_desc->en |= DESC_NXT_SV_REUSE;
269 		break;
270 	case DMA_MEM_TO_DEV:
271 		t2_desc->cdei = d->ei;
272 		t2_desc->csei = sg->ei;
273 		t2_desc->cdfi = d->fi;
274 		t2_desc->csfi = sg->fi;
275 
276 		t2_desc->en |= DESC_NXT_SV_REFRESH;
277 		t2_desc->en |= DESC_NXT_DV_REUSE;
278 		break;
279 	default:
280 		return;
281 	}
282 
283 	t2_desc->en |= DESC_NTYPE_TYPE2;
284 }
285 
286 static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
287 {
288 	switch (type) {
289 	case OMAP_DMA_REG_16BIT:
290 		writew_relaxed(val, addr);
291 		break;
292 	case OMAP_DMA_REG_2X16BIT:
293 		writew_relaxed(val, addr);
294 		writew_relaxed(val >> 16, addr + 2);
295 		break;
296 	case OMAP_DMA_REG_32BIT:
297 		writel_relaxed(val, addr);
298 		break;
299 	default:
300 		WARN_ON(1);
301 	}
302 }
303 
304 static unsigned omap_dma_read(unsigned type, void __iomem *addr)
305 {
306 	unsigned val;
307 
308 	switch (type) {
309 	case OMAP_DMA_REG_16BIT:
310 		val = readw_relaxed(addr);
311 		break;
312 	case OMAP_DMA_REG_2X16BIT:
313 		val = readw_relaxed(addr);
314 		val |= readw_relaxed(addr + 2) << 16;
315 		break;
316 	case OMAP_DMA_REG_32BIT:
317 		val = readl_relaxed(addr);
318 		break;
319 	default:
320 		WARN_ON(1);
321 		val = 0;
322 	}
323 
324 	return val;
325 }
326 
327 static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
328 {
329 	const struct omap_dma_reg *r = od->reg_map + reg;
330 
331 	WARN_ON(r->stride);
332 
333 	omap_dma_write(val, r->type, od->base + r->offset);
334 }
335 
336 static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
337 {
338 	const struct omap_dma_reg *r = od->reg_map + reg;
339 
340 	WARN_ON(r->stride);
341 
342 	return omap_dma_read(r->type, od->base + r->offset);
343 }
344 
345 static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
346 {
347 	const struct omap_dma_reg *r = c->reg_map + reg;
348 
349 	omap_dma_write(val, r->type, c->channel_base + r->offset);
350 }
351 
352 static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
353 {
354 	const struct omap_dma_reg *r = c->reg_map + reg;
355 
356 	return omap_dma_read(r->type, c->channel_base + r->offset);
357 }
358 
359 static void omap_dma_clear_csr(struct omap_chan *c)
360 {
361 	if (dma_omap1())
362 		omap_dma_chan_read(c, CSR);
363 	else
364 		omap_dma_chan_write(c, CSR, ~0);
365 }
366 
367 static unsigned omap_dma_get_csr(struct omap_chan *c)
368 {
369 	unsigned val = omap_dma_chan_read(c, CSR);
370 
371 	if (!dma_omap1())
372 		omap_dma_chan_write(c, CSR, val);
373 
374 	return val;
375 }
376 
377 static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
378 	unsigned lch)
379 {
380 	c->channel_base = od->base + od->plat->channel_stride * lch;
381 
382 	od->lch_map[lch] = c;
383 }
384 
385 static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
386 {
387 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
388 	uint16_t cicr = d->cicr;
389 
390 	if (__dma_omap15xx(od->plat->dma_attr))
391 		omap_dma_chan_write(c, CPC, 0);
392 	else
393 		omap_dma_chan_write(c, CDAC, 0);
394 
395 	omap_dma_clear_csr(c);
396 
397 	if (d->using_ll) {
398 		uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
399 
400 		if (d->dir == DMA_DEV_TO_MEM)
401 			cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
402 		else
403 			cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
404 		omap_dma_chan_write(c, CDP, cdp);
405 
406 		omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
407 		omap_dma_chan_write(c, CCDN, 0);
408 		omap_dma_chan_write(c, CCFN, 0xffff);
409 		omap_dma_chan_write(c, CCEN, 0xffffff);
410 
411 		cicr &= ~CICR_BLOCK_IE;
412 	} else if (od->ll123_supported) {
413 		omap_dma_chan_write(c, CDP, 0);
414 	}
415 
416 	/* Enable interrupts */
417 	omap_dma_chan_write(c, CICR, cicr);
418 
419 	/* Enable channel */
420 	omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
421 
422 	c->running = true;
423 }
424 
425 static void omap_dma_drain_chan(struct omap_chan *c)
426 {
427 	int i;
428 	u32 val;
429 
430 	/* Wait for sDMA FIFO to drain */
431 	for (i = 0; ; i++) {
432 		val = omap_dma_chan_read(c, CCR);
433 		if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
434 			break;
435 
436 		if (i > 100)
437 			break;
438 
439 		udelay(5);
440 	}
441 
442 	if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
443 		dev_err(c->vc.chan.device->dev,
444 			"DMA drain did not complete on lch %d\n",
445 			c->dma_ch);
446 }
447 
448 static int omap_dma_stop(struct omap_chan *c)
449 {
450 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
451 	uint32_t val;
452 
453 	/* disable irq */
454 	omap_dma_chan_write(c, CICR, 0);
455 
456 	omap_dma_clear_csr(c);
457 
458 	val = omap_dma_chan_read(c, CCR);
459 	if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
460 		uint32_t sysconfig;
461 
462 		sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
463 		val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
464 		val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
465 		omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
466 
467 		val = omap_dma_chan_read(c, CCR);
468 		val &= ~CCR_ENABLE;
469 		omap_dma_chan_write(c, CCR, val);
470 
471 		if (!(c->ccr & CCR_BUFFERING_DISABLE))
472 			omap_dma_drain_chan(c);
473 
474 		omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
475 	} else {
476 		if (!(val & CCR_ENABLE))
477 			return -EINVAL;
478 
479 		val &= ~CCR_ENABLE;
480 		omap_dma_chan_write(c, CCR, val);
481 
482 		if (!(c->ccr & CCR_BUFFERING_DISABLE))
483 			omap_dma_drain_chan(c);
484 	}
485 
486 	mb();
487 
488 	if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
489 		val = omap_dma_chan_read(c, CLNK_CTRL);
490 
491 		if (dma_omap1())
492 			val |= 1 << 14; /* set the STOP_LNK bit */
493 		else
494 			val &= ~CLNK_CTRL_ENABLE_LNK;
495 
496 		omap_dma_chan_write(c, CLNK_CTRL, val);
497 	}
498 	c->running = false;
499 	return 0;
500 }
501 
502 static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
503 {
504 	struct omap_sg *sg = d->sg + c->sgidx;
505 	unsigned cxsa, cxei, cxfi;
506 
507 	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
508 		cxsa = CDSA;
509 		cxei = CDEI;
510 		cxfi = CDFI;
511 	} else {
512 		cxsa = CSSA;
513 		cxei = CSEI;
514 		cxfi = CSFI;
515 	}
516 
517 	omap_dma_chan_write(c, cxsa, sg->addr);
518 	omap_dma_chan_write(c, cxei, sg->ei);
519 	omap_dma_chan_write(c, cxfi, sg->fi);
520 	omap_dma_chan_write(c, CEN, sg->en);
521 	omap_dma_chan_write(c, CFN, sg->fn);
522 
523 	omap_dma_start(c, d);
524 	c->sgidx++;
525 }
526 
527 static void omap_dma_start_desc(struct omap_chan *c)
528 {
529 	struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
530 	struct omap_desc *d;
531 	unsigned cxsa, cxei, cxfi;
532 
533 	if (!vd) {
534 		c->desc = NULL;
535 		return;
536 	}
537 
538 	list_del(&vd->node);
539 
540 	c->desc = d = to_omap_dma_desc(&vd->tx);
541 	c->sgidx = 0;
542 
543 	/*
544 	 * This provides the necessary barrier to ensure data held in
545 	 * DMA coherent memory is visible to the DMA engine prior to
546 	 * the transfer starting.
547 	 */
548 	mb();
549 
550 	omap_dma_chan_write(c, CCR, d->ccr);
551 	if (dma_omap1())
552 		omap_dma_chan_write(c, CCR2, d->ccr >> 16);
553 
554 	if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
555 		cxsa = CSSA;
556 		cxei = CSEI;
557 		cxfi = CSFI;
558 	} else {
559 		cxsa = CDSA;
560 		cxei = CDEI;
561 		cxfi = CDFI;
562 	}
563 
564 	omap_dma_chan_write(c, cxsa, d->dev_addr);
565 	omap_dma_chan_write(c, cxei, d->ei);
566 	omap_dma_chan_write(c, cxfi, d->fi);
567 	omap_dma_chan_write(c, CSDP, d->csdp);
568 	omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
569 
570 	omap_dma_start_sg(c, d);
571 }
572 
573 static void omap_dma_callback(int ch, u16 status, void *data)
574 {
575 	struct omap_chan *c = data;
576 	struct omap_desc *d;
577 	unsigned long flags;
578 
579 	spin_lock_irqsave(&c->vc.lock, flags);
580 	d = c->desc;
581 	if (d) {
582 		if (c->cyclic) {
583 			vchan_cyclic_callback(&d->vd);
584 		} else if (d->using_ll || c->sgidx == d->sglen) {
585 			omap_dma_start_desc(c);
586 			vchan_cookie_complete(&d->vd);
587 		} else {
588 			omap_dma_start_sg(c, d);
589 		}
590 	}
591 	spin_unlock_irqrestore(&c->vc.lock, flags);
592 }
593 
594 static irqreturn_t omap_dma_irq(int irq, void *devid)
595 {
596 	struct omap_dmadev *od = devid;
597 	unsigned status, channel;
598 
599 	spin_lock(&od->irq_lock);
600 
601 	status = omap_dma_glbl_read(od, IRQSTATUS_L1);
602 	status &= od->irq_enable_mask;
603 	if (status == 0) {
604 		spin_unlock(&od->irq_lock);
605 		return IRQ_NONE;
606 	}
607 
608 	while ((channel = ffs(status)) != 0) {
609 		unsigned mask, csr;
610 		struct omap_chan *c;
611 
612 		channel -= 1;
613 		mask = BIT(channel);
614 		status &= ~mask;
615 
616 		c = od->lch_map[channel];
617 		if (c == NULL) {
618 			/* This should never happen */
619 			dev_err(od->ddev.dev, "invalid channel %u\n", channel);
620 			continue;
621 		}
622 
623 		csr = omap_dma_get_csr(c);
624 		omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
625 
626 		omap_dma_callback(channel, csr, c);
627 	}
628 
629 	spin_unlock(&od->irq_lock);
630 
631 	return IRQ_HANDLED;
632 }
633 
634 static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
635 {
636 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
637 	struct omap_chan *c = to_omap_dma_chan(chan);
638 	struct device *dev = od->ddev.dev;
639 	int ret;
640 
641 	if (od->legacy) {
642 		ret = omap_request_dma(c->dma_sig, "DMA engine",
643 				       omap_dma_callback, c, &c->dma_ch);
644 	} else {
645 		ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
646 				       &c->dma_ch);
647 	}
648 
649 	dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
650 
651 	if (ret >= 0) {
652 		omap_dma_assign(od, c, c->dma_ch);
653 
654 		if (!od->legacy) {
655 			unsigned val;
656 
657 			spin_lock_irq(&od->irq_lock);
658 			val = BIT(c->dma_ch);
659 			omap_dma_glbl_write(od, IRQSTATUS_L1, val);
660 			od->irq_enable_mask |= val;
661 			omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
662 
663 			val = omap_dma_glbl_read(od, IRQENABLE_L0);
664 			val &= ~BIT(c->dma_ch);
665 			omap_dma_glbl_write(od, IRQENABLE_L0, val);
666 			spin_unlock_irq(&od->irq_lock);
667 		}
668 	}
669 
670 	if (dma_omap1()) {
671 		if (__dma_omap16xx(od->plat->dma_attr)) {
672 			c->ccr = CCR_OMAP31_DISABLE;
673 			/* Duplicate what plat-omap/dma.c does */
674 			c->ccr |= c->dma_ch + 1;
675 		} else {
676 			c->ccr = c->dma_sig & 0x1f;
677 		}
678 	} else {
679 		c->ccr = c->dma_sig & 0x1f;
680 		c->ccr |= (c->dma_sig & ~0x1f) << 14;
681 	}
682 	if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
683 		c->ccr |= CCR_BUFFERING_DISABLE;
684 
685 	return ret;
686 }
687 
688 static void omap_dma_free_chan_resources(struct dma_chan *chan)
689 {
690 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
691 	struct omap_chan *c = to_omap_dma_chan(chan);
692 
693 	if (!od->legacy) {
694 		spin_lock_irq(&od->irq_lock);
695 		od->irq_enable_mask &= ~BIT(c->dma_ch);
696 		omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
697 		spin_unlock_irq(&od->irq_lock);
698 	}
699 
700 	c->channel_base = NULL;
701 	od->lch_map[c->dma_ch] = NULL;
702 	vchan_free_chan_resources(&c->vc);
703 	omap_free_dma(c->dma_ch);
704 
705 	dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
706 		c->dma_sig);
707 	c->dma_sig = 0;
708 }
709 
710 static size_t omap_dma_sg_size(struct omap_sg *sg)
711 {
712 	return sg->en * sg->fn;
713 }
714 
715 static size_t omap_dma_desc_size(struct omap_desc *d)
716 {
717 	unsigned i;
718 	size_t size;
719 
720 	for (size = i = 0; i < d->sglen; i++)
721 		size += omap_dma_sg_size(&d->sg[i]);
722 
723 	return size * es_bytes[d->es];
724 }
725 
726 static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
727 {
728 	unsigned i;
729 	size_t size, es_size = es_bytes[d->es];
730 
731 	for (size = i = 0; i < d->sglen; i++) {
732 		size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
733 
734 		if (size)
735 			size += this_size;
736 		else if (addr >= d->sg[i].addr &&
737 			 addr < d->sg[i].addr + this_size)
738 			size += d->sg[i].addr + this_size - addr;
739 	}
740 	return size;
741 }
742 
743 /*
744  * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
745  * read before the DMA controller finished disabling the channel.
746  */
747 static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
748 {
749 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
750 	uint32_t val;
751 
752 	val = omap_dma_chan_read(c, reg);
753 	if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
754 		val = omap_dma_chan_read(c, reg);
755 
756 	return val;
757 }
758 
759 static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
760 {
761 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
762 	dma_addr_t addr, cdac;
763 
764 	if (__dma_omap15xx(od->plat->dma_attr)) {
765 		addr = omap_dma_chan_read(c, CPC);
766 	} else {
767 		addr = omap_dma_chan_read_3_3(c, CSAC);
768 		cdac = omap_dma_chan_read_3_3(c, CDAC);
769 
770 		/*
771 		 * CDAC == 0 indicates that the DMA transfer on the channel has
772 		 * not been started (no data has been transferred so far).
773 		 * Return the programmed source start address in this case.
774 		 */
775 		if (cdac == 0)
776 			addr = omap_dma_chan_read(c, CSSA);
777 	}
778 
779 	if (dma_omap1())
780 		addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
781 
782 	return addr;
783 }
784 
785 static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
786 {
787 	struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
788 	dma_addr_t addr;
789 
790 	if (__dma_omap15xx(od->plat->dma_attr)) {
791 		addr = omap_dma_chan_read(c, CPC);
792 	} else {
793 		addr = omap_dma_chan_read_3_3(c, CDAC);
794 
795 		/*
796 		 * CDAC == 0 indicates that the DMA transfer on the channel
797 		 * has not been started (no data has been transferred so
798 		 * far).  Return the programmed destination start address in
799 		 * this case.
800 		 */
801 		if (addr == 0)
802 			addr = omap_dma_chan_read(c, CDSA);
803 	}
804 
805 	if (dma_omap1())
806 		addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
807 
808 	return addr;
809 }
810 
811 static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
812 	dma_cookie_t cookie, struct dma_tx_state *txstate)
813 {
814 	struct omap_chan *c = to_omap_dma_chan(chan);
815 	struct virt_dma_desc *vd;
816 	enum dma_status ret;
817 	unsigned long flags;
818 
819 	ret = dma_cookie_status(chan, cookie, txstate);
820 
821 	if (!c->paused && c->running) {
822 		uint32_t ccr = omap_dma_chan_read(c, CCR);
823 		/*
824 		 * The channel is no longer active, set the return value
825 		 * accordingly
826 		 */
827 		if (!(ccr & CCR_ENABLE))
828 			ret = DMA_COMPLETE;
829 	}
830 
831 	if (ret == DMA_COMPLETE || !txstate)
832 		return ret;
833 
834 	spin_lock_irqsave(&c->vc.lock, flags);
835 	vd = vchan_find_desc(&c->vc, cookie);
836 	if (vd) {
837 		txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
838 	} else if (c->desc && c->desc->vd.tx.cookie == cookie) {
839 		struct omap_desc *d = c->desc;
840 		dma_addr_t pos;
841 
842 		if (d->dir == DMA_MEM_TO_DEV)
843 			pos = omap_dma_get_src_pos(c);
844 		else if (d->dir == DMA_DEV_TO_MEM  || d->dir == DMA_MEM_TO_MEM)
845 			pos = omap_dma_get_dst_pos(c);
846 		else
847 			pos = 0;
848 
849 		txstate->residue = omap_dma_desc_size_pos(d, pos);
850 	} else {
851 		txstate->residue = 0;
852 	}
853 	if (ret == DMA_IN_PROGRESS && c->paused)
854 		ret = DMA_PAUSED;
855 	spin_unlock_irqrestore(&c->vc.lock, flags);
856 
857 	return ret;
858 }
859 
860 static void omap_dma_issue_pending(struct dma_chan *chan)
861 {
862 	struct omap_chan *c = to_omap_dma_chan(chan);
863 	unsigned long flags;
864 
865 	spin_lock_irqsave(&c->vc.lock, flags);
866 	if (vchan_issue_pending(&c->vc) && !c->desc)
867 		omap_dma_start_desc(c);
868 	spin_unlock_irqrestore(&c->vc.lock, flags);
869 }
870 
871 static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
872 	struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
873 	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
874 {
875 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
876 	struct omap_chan *c = to_omap_dma_chan(chan);
877 	enum dma_slave_buswidth dev_width;
878 	struct scatterlist *sgent;
879 	struct omap_desc *d;
880 	dma_addr_t dev_addr;
881 	unsigned i, es, en, frame_bytes;
882 	bool ll_failed = false;
883 	u32 burst;
884 	u32 port_window, port_window_bytes;
885 
886 	if (dir == DMA_DEV_TO_MEM) {
887 		dev_addr = c->cfg.src_addr;
888 		dev_width = c->cfg.src_addr_width;
889 		burst = c->cfg.src_maxburst;
890 		port_window = c->cfg.src_port_window_size;
891 	} else if (dir == DMA_MEM_TO_DEV) {
892 		dev_addr = c->cfg.dst_addr;
893 		dev_width = c->cfg.dst_addr_width;
894 		burst = c->cfg.dst_maxburst;
895 		port_window = c->cfg.dst_port_window_size;
896 	} else {
897 		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
898 		return NULL;
899 	}
900 
901 	/* Bus width translates to the element size (ES) */
902 	switch (dev_width) {
903 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
904 		es = CSDP_DATA_TYPE_8;
905 		break;
906 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
907 		es = CSDP_DATA_TYPE_16;
908 		break;
909 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
910 		es = CSDP_DATA_TYPE_32;
911 		break;
912 	default: /* not reached */
913 		return NULL;
914 	}
915 
916 	/* Now allocate and setup the descriptor. */
917 	d = kzalloc(struct_size(d, sg, sglen), GFP_ATOMIC);
918 	if (!d)
919 		return NULL;
920 
921 	d->dir = dir;
922 	d->dev_addr = dev_addr;
923 	d->es = es;
924 
925 	/* When the port_window is used, one frame must cover the window */
926 	if (port_window) {
927 		burst = port_window;
928 		port_window_bytes = port_window * es_bytes[es];
929 
930 		d->ei = 1;
931 		/*
932 		 * One frame covers the port_window and by  configure
933 		 * the source frame index to be -1 * (port_window - 1)
934 		 * we instruct the sDMA that after a frame is processed
935 		 * it should move back to the start of the window.
936 		 */
937 		d->fi = -(port_window_bytes - 1);
938 	}
939 
940 	d->ccr = c->ccr | CCR_SYNC_FRAME;
941 	if (dir == DMA_DEV_TO_MEM) {
942 		d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
943 
944 		d->ccr |= CCR_DST_AMODE_POSTINC;
945 		if (port_window) {
946 			d->ccr |= CCR_SRC_AMODE_DBLIDX;
947 
948 			if (port_window_bytes >= 64)
949 				d->csdp |= CSDP_SRC_BURST_64;
950 			else if (port_window_bytes >= 32)
951 				d->csdp |= CSDP_SRC_BURST_32;
952 			else if (port_window_bytes >= 16)
953 				d->csdp |= CSDP_SRC_BURST_16;
954 
955 		} else {
956 			d->ccr |= CCR_SRC_AMODE_CONSTANT;
957 		}
958 	} else {
959 		d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
960 
961 		d->ccr |= CCR_SRC_AMODE_POSTINC;
962 		if (port_window) {
963 			d->ccr |= CCR_DST_AMODE_DBLIDX;
964 
965 			if (port_window_bytes >= 64)
966 				d->csdp |= CSDP_DST_BURST_64;
967 			else if (port_window_bytes >= 32)
968 				d->csdp |= CSDP_DST_BURST_32;
969 			else if (port_window_bytes >= 16)
970 				d->csdp |= CSDP_DST_BURST_16;
971 		} else {
972 			d->ccr |= CCR_DST_AMODE_CONSTANT;
973 		}
974 	}
975 
976 	d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
977 	d->csdp |= es;
978 
979 	if (dma_omap1()) {
980 		d->cicr |= CICR_TOUT_IE;
981 
982 		if (dir == DMA_DEV_TO_MEM)
983 			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
984 		else
985 			d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
986 	} else {
987 		if (dir == DMA_DEV_TO_MEM)
988 			d->ccr |= CCR_TRIGGER_SRC;
989 
990 		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
991 
992 		if (port_window)
993 			d->csdp |= CSDP_WRITE_LAST_NON_POSTED;
994 	}
995 	if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
996 		d->clnk_ctrl = c->dma_ch;
997 
998 	/*
999 	 * Build our scatterlist entries: each contains the address,
1000 	 * the number of elements (EN) in each frame, and the number of
1001 	 * frames (FN).  Number of bytes for this entry = ES * EN * FN.
1002 	 *
1003 	 * Burst size translates to number of elements with frame sync.
1004 	 * Note: DMA engine defines burst to be the number of dev-width
1005 	 * transfers.
1006 	 */
1007 	en = burst;
1008 	frame_bytes = es_bytes[es] * en;
1009 
1010 	if (sglen >= 2)
1011 		d->using_ll = od->ll123_supported;
1012 
1013 	for_each_sg(sgl, sgent, sglen, i) {
1014 		struct omap_sg *osg = &d->sg[i];
1015 
1016 		osg->addr = sg_dma_address(sgent);
1017 		osg->en = en;
1018 		osg->fn = sg_dma_len(sgent) / frame_bytes;
1019 
1020 		if (d->using_ll) {
1021 			osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
1022 						      &osg->t2_desc_paddr);
1023 			if (!osg->t2_desc) {
1024 				dev_err(chan->device->dev,
1025 					"t2_desc[%d] allocation failed\n", i);
1026 				ll_failed = true;
1027 				d->using_ll = false;
1028 				continue;
1029 			}
1030 
1031 			omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
1032 		}
1033 	}
1034 
1035 	d->sglen = sglen;
1036 
1037 	/* Release the dma_pool entries if one allocation failed */
1038 	if (ll_failed) {
1039 		for (i = 0; i < d->sglen; i++) {
1040 			struct omap_sg *osg = &d->sg[i];
1041 
1042 			if (osg->t2_desc) {
1043 				dma_pool_free(od->desc_pool, osg->t2_desc,
1044 					      osg->t2_desc_paddr);
1045 				osg->t2_desc = NULL;
1046 			}
1047 		}
1048 	}
1049 
1050 	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1051 }
1052 
1053 static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
1054 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1055 	size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
1056 {
1057 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1058 	struct omap_chan *c = to_omap_dma_chan(chan);
1059 	enum dma_slave_buswidth dev_width;
1060 	struct omap_desc *d;
1061 	dma_addr_t dev_addr;
1062 	unsigned es;
1063 	u32 burst;
1064 
1065 	if (dir == DMA_DEV_TO_MEM) {
1066 		dev_addr = c->cfg.src_addr;
1067 		dev_width = c->cfg.src_addr_width;
1068 		burst = c->cfg.src_maxburst;
1069 	} else if (dir == DMA_MEM_TO_DEV) {
1070 		dev_addr = c->cfg.dst_addr;
1071 		dev_width = c->cfg.dst_addr_width;
1072 		burst = c->cfg.dst_maxburst;
1073 	} else {
1074 		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
1075 		return NULL;
1076 	}
1077 
1078 	/* Bus width translates to the element size (ES) */
1079 	switch (dev_width) {
1080 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1081 		es = CSDP_DATA_TYPE_8;
1082 		break;
1083 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1084 		es = CSDP_DATA_TYPE_16;
1085 		break;
1086 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1087 		es = CSDP_DATA_TYPE_32;
1088 		break;
1089 	default: /* not reached */
1090 		return NULL;
1091 	}
1092 
1093 	/* Now allocate and setup the descriptor. */
1094 	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1095 	if (!d)
1096 		return NULL;
1097 
1098 	d->dir = dir;
1099 	d->dev_addr = dev_addr;
1100 	d->fi = burst;
1101 	d->es = es;
1102 	d->sg[0].addr = buf_addr;
1103 	d->sg[0].en = period_len / es_bytes[es];
1104 	d->sg[0].fn = buf_len / period_len;
1105 	d->sglen = 1;
1106 
1107 	d->ccr = c->ccr;
1108 	if (dir == DMA_DEV_TO_MEM)
1109 		d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
1110 	else
1111 		d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
1112 
1113 	d->cicr = CICR_DROP_IE;
1114 	if (flags & DMA_PREP_INTERRUPT)
1115 		d->cicr |= CICR_FRAME_IE;
1116 
1117 	d->csdp = es;
1118 
1119 	if (dma_omap1()) {
1120 		d->cicr |= CICR_TOUT_IE;
1121 
1122 		if (dir == DMA_DEV_TO_MEM)
1123 			d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
1124 		else
1125 			d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
1126 	} else {
1127 		if (burst)
1128 			d->ccr |= CCR_SYNC_PACKET;
1129 		else
1130 			d->ccr |= CCR_SYNC_ELEMENT;
1131 
1132 		if (dir == DMA_DEV_TO_MEM) {
1133 			d->ccr |= CCR_TRIGGER_SRC;
1134 			d->csdp |= CSDP_DST_PACKED;
1135 		} else {
1136 			d->csdp |= CSDP_SRC_PACKED;
1137 		}
1138 
1139 		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1140 
1141 		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1142 	}
1143 
1144 	if (__dma_omap15xx(od->plat->dma_attr))
1145 		d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
1146 	else
1147 		d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
1148 
1149 	c->cyclic = true;
1150 
1151 	return vchan_tx_prep(&c->vc, &d->vd, flags);
1152 }
1153 
1154 static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
1155 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1156 	size_t len, unsigned long tx_flags)
1157 {
1158 	struct omap_chan *c = to_omap_dma_chan(chan);
1159 	struct omap_desc *d;
1160 	uint8_t data_type;
1161 
1162 	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1163 	if (!d)
1164 		return NULL;
1165 
1166 	data_type = __ffs((src | dest | len));
1167 	if (data_type > CSDP_DATA_TYPE_32)
1168 		data_type = CSDP_DATA_TYPE_32;
1169 
1170 	d->dir = DMA_MEM_TO_MEM;
1171 	d->dev_addr = src;
1172 	d->fi = 0;
1173 	d->es = data_type;
1174 	d->sg[0].en = len / BIT(data_type);
1175 	d->sg[0].fn = 1;
1176 	d->sg[0].addr = dest;
1177 	d->sglen = 1;
1178 	d->ccr = c->ccr;
1179 	d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
1180 
1181 	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1182 
1183 	d->csdp = data_type;
1184 
1185 	if (dma_omap1()) {
1186 		d->cicr |= CICR_TOUT_IE;
1187 		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1188 	} else {
1189 		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1190 		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1191 		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1192 	}
1193 
1194 	return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1195 }
1196 
1197 static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
1198 	struct dma_chan *chan, struct dma_interleaved_template *xt,
1199 	unsigned long flags)
1200 {
1201 	struct omap_chan *c = to_omap_dma_chan(chan);
1202 	struct omap_desc *d;
1203 	struct omap_sg *sg;
1204 	uint8_t data_type;
1205 	size_t src_icg, dst_icg;
1206 
1207 	/* Slave mode is not supported */
1208 	if (is_slave_direction(xt->dir))
1209 		return NULL;
1210 
1211 	if (xt->frame_size != 1 || xt->numf == 0)
1212 		return NULL;
1213 
1214 	d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1215 	if (!d)
1216 		return NULL;
1217 
1218 	data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
1219 	if (data_type > CSDP_DATA_TYPE_32)
1220 		data_type = CSDP_DATA_TYPE_32;
1221 
1222 	sg = &d->sg[0];
1223 	d->dir = DMA_MEM_TO_MEM;
1224 	d->dev_addr = xt->src_start;
1225 	d->es = data_type;
1226 	sg->en = xt->sgl[0].size / BIT(data_type);
1227 	sg->fn = xt->numf;
1228 	sg->addr = xt->dst_start;
1229 	d->sglen = 1;
1230 	d->ccr = c->ccr;
1231 
1232 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1233 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1234 	if (src_icg) {
1235 		d->ccr |= CCR_SRC_AMODE_DBLIDX;
1236 		d->ei = 1;
1237 		d->fi = src_icg;
1238 	} else if (xt->src_inc) {
1239 		d->ccr |= CCR_SRC_AMODE_POSTINC;
1240 		d->fi = 0;
1241 	} else {
1242 		dev_err(chan->device->dev,
1243 			"%s: SRC constant addressing is not supported\n",
1244 			__func__);
1245 		kfree(d);
1246 		return NULL;
1247 	}
1248 
1249 	if (dst_icg) {
1250 		d->ccr |= CCR_DST_AMODE_DBLIDX;
1251 		sg->ei = 1;
1252 		sg->fi = dst_icg;
1253 	} else if (xt->dst_inc) {
1254 		d->ccr |= CCR_DST_AMODE_POSTINC;
1255 		sg->fi = 0;
1256 	} else {
1257 		dev_err(chan->device->dev,
1258 			"%s: DST constant addressing is not supported\n",
1259 			__func__);
1260 		kfree(d);
1261 		return NULL;
1262 	}
1263 
1264 	d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1265 
1266 	d->csdp = data_type;
1267 
1268 	if (dma_omap1()) {
1269 		d->cicr |= CICR_TOUT_IE;
1270 		d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1271 	} else {
1272 		d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1273 		d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1274 		d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1275 	}
1276 
1277 	return vchan_tx_prep(&c->vc, &d->vd, flags);
1278 }
1279 
1280 static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
1281 {
1282 	struct omap_chan *c = to_omap_dma_chan(chan);
1283 
1284 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1285 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1286 		return -EINVAL;
1287 
1288 	if (cfg->src_maxburst > chan->device->max_burst ||
1289 	    cfg->dst_maxburst > chan->device->max_burst)
1290 		return -EINVAL;
1291 
1292 	memcpy(&c->cfg, cfg, sizeof(c->cfg));
1293 
1294 	return 0;
1295 }
1296 
1297 static int omap_dma_terminate_all(struct dma_chan *chan)
1298 {
1299 	struct omap_chan *c = to_omap_dma_chan(chan);
1300 	unsigned long flags;
1301 	LIST_HEAD(head);
1302 
1303 	spin_lock_irqsave(&c->vc.lock, flags);
1304 
1305 	/*
1306 	 * Stop DMA activity: we assume the callback will not be called
1307 	 * after omap_dma_stop() returns (even if it does, it will see
1308 	 * c->desc is NULL and exit.)
1309 	 */
1310 	if (c->desc) {
1311 		vchan_terminate_vdesc(&c->desc->vd);
1312 		c->desc = NULL;
1313 		/* Avoid stopping the dma twice */
1314 		if (!c->paused)
1315 			omap_dma_stop(c);
1316 	}
1317 
1318 	c->cyclic = false;
1319 	c->paused = false;
1320 
1321 	vchan_get_all_descriptors(&c->vc, &head);
1322 	spin_unlock_irqrestore(&c->vc.lock, flags);
1323 	vchan_dma_desc_free_list(&c->vc, &head);
1324 
1325 	return 0;
1326 }
1327 
1328 static void omap_dma_synchronize(struct dma_chan *chan)
1329 {
1330 	struct omap_chan *c = to_omap_dma_chan(chan);
1331 
1332 	vchan_synchronize(&c->vc);
1333 }
1334 
1335 static int omap_dma_pause(struct dma_chan *chan)
1336 {
1337 	struct omap_chan *c = to_omap_dma_chan(chan);
1338 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1339 	unsigned long flags;
1340 	int ret = -EINVAL;
1341 	bool can_pause = false;
1342 
1343 	spin_lock_irqsave(&od->irq_lock, flags);
1344 
1345 	if (!c->desc)
1346 		goto out;
1347 
1348 	if (c->cyclic)
1349 		can_pause = true;
1350 
1351 	/*
1352 	 * We do not allow DMA_MEM_TO_DEV transfers to be paused.
1353 	 * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer:
1354 	 * "When a channel is disabled during a transfer, the channel undergoes
1355 	 * an abort, unless it is hardware-source-synchronized …".
1356 	 * A source-synchronised channel is one where the fetching of data is
1357 	 * under control of the device. In other words, a device-to-memory
1358 	 * transfer. So, a destination-synchronised channel (which would be a
1359 	 * memory-to-device transfer) undergoes an abort if the the CCR_ENABLE
1360 	 * bit is cleared.
1361 	 * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel
1362 	 * aborts immediately after completion of current read/write
1363 	 * transactions and then the FIFO is cleaned up." The term "cleaned up"
1364 	 * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE
1365 	 * are both clear _before_ disabling the channel, otherwise data loss
1366 	 * will occur.
1367 	 * The problem is that if the channel is active, then device activity
1368 	 * can result in DMA activity starting between reading those as both
1369 	 * clear and the write to DMA_CCR to clear the enable bit hitting the
1370 	 * hardware. If the DMA hardware can't drain the data in its FIFO to the
1371 	 * destination, then data loss "might" occur (say if we write to an UART
1372 	 * and the UART is not accepting any further data).
1373 	 */
1374 	else if (c->desc->dir == DMA_DEV_TO_MEM)
1375 		can_pause = true;
1376 
1377 	if (can_pause && !c->paused) {
1378 		ret = omap_dma_stop(c);
1379 		if (!ret)
1380 			c->paused = true;
1381 	}
1382 out:
1383 	spin_unlock_irqrestore(&od->irq_lock, flags);
1384 
1385 	return ret;
1386 }
1387 
1388 static int omap_dma_resume(struct dma_chan *chan)
1389 {
1390 	struct omap_chan *c = to_omap_dma_chan(chan);
1391 	struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1392 	unsigned long flags;
1393 	int ret = -EINVAL;
1394 
1395 	spin_lock_irqsave(&od->irq_lock, flags);
1396 
1397 	if (c->paused && c->desc) {
1398 		mb();
1399 
1400 		/* Restore channel link register */
1401 		omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
1402 
1403 		omap_dma_start(c, c->desc);
1404 		c->paused = false;
1405 		ret = 0;
1406 	}
1407 	spin_unlock_irqrestore(&od->irq_lock, flags);
1408 
1409 	return ret;
1410 }
1411 
1412 static int omap_dma_chan_init(struct omap_dmadev *od)
1413 {
1414 	struct omap_chan *c;
1415 
1416 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1417 	if (!c)
1418 		return -ENOMEM;
1419 
1420 	c->reg_map = od->reg_map;
1421 	c->vc.desc_free = omap_dma_desc_free;
1422 	vchan_init(&c->vc, &od->ddev);
1423 
1424 	return 0;
1425 }
1426 
1427 static void omap_dma_free(struct omap_dmadev *od)
1428 {
1429 	while (!list_empty(&od->ddev.channels)) {
1430 		struct omap_chan *c = list_first_entry(&od->ddev.channels,
1431 			struct omap_chan, vc.chan.device_node);
1432 
1433 		list_del(&c->vc.chan.device_node);
1434 		tasklet_kill(&c->vc.task);
1435 		kfree(c);
1436 	}
1437 }
1438 
1439 #define OMAP_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1440 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1441 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1442 
1443 static int omap_dma_probe(struct platform_device *pdev)
1444 {
1445 	struct omap_dmadev *od;
1446 	struct resource *res;
1447 	int rc, i, irq;
1448 	u32 lch_count;
1449 
1450 	od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1451 	if (!od)
1452 		return -ENOMEM;
1453 
1454 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1455 	od->base = devm_ioremap_resource(&pdev->dev, res);
1456 	if (IS_ERR(od->base))
1457 		return PTR_ERR(od->base);
1458 
1459 	od->plat = omap_get_plat_info();
1460 	if (!od->plat)
1461 		return -EPROBE_DEFER;
1462 
1463 	od->reg_map = od->plat->reg_map;
1464 
1465 	dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1466 	dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1467 	dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1468 	dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
1469 	od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
1470 	od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
1471 	od->ddev.device_tx_status = omap_dma_tx_status;
1472 	od->ddev.device_issue_pending = omap_dma_issue_pending;
1473 	od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1474 	od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1475 	od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1476 	od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
1477 	od->ddev.device_config = omap_dma_slave_config;
1478 	od->ddev.device_pause = omap_dma_pause;
1479 	od->ddev.device_resume = omap_dma_resume;
1480 	od->ddev.device_terminate_all = omap_dma_terminate_all;
1481 	od->ddev.device_synchronize = omap_dma_synchronize;
1482 	od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
1483 	od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
1484 	od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1485 	if (__dma_omap15xx(od->plat->dma_attr))
1486 		od->ddev.residue_granularity =
1487 				DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1488 	else
1489 		od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1490 	od->ddev.max_burst = SZ_16M - 1; /* CCEN: 24bit unsigned */
1491 	od->ddev.dev = &pdev->dev;
1492 	INIT_LIST_HEAD(&od->ddev.channels);
1493 	spin_lock_init(&od->lock);
1494 	spin_lock_init(&od->irq_lock);
1495 
1496 	/* Number of DMA requests */
1497 	od->dma_requests = OMAP_SDMA_REQUESTS;
1498 	if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
1499 						      "dma-requests",
1500 						      &od->dma_requests)) {
1501 		dev_info(&pdev->dev,
1502 			 "Missing dma-requests property, using %u.\n",
1503 			 OMAP_SDMA_REQUESTS);
1504 	}
1505 
1506 	/* Number of available logical channels */
1507 	if (!pdev->dev.of_node) {
1508 		lch_count = od->plat->dma_attr->lch_count;
1509 		if (unlikely(!lch_count))
1510 			lch_count = OMAP_SDMA_CHANNELS;
1511 	} else if (of_property_read_u32(pdev->dev.of_node, "dma-channels",
1512 					&lch_count)) {
1513 		dev_info(&pdev->dev,
1514 			 "Missing dma-channels property, using %u.\n",
1515 			 OMAP_SDMA_CHANNELS);
1516 		lch_count = OMAP_SDMA_CHANNELS;
1517 	}
1518 
1519 	od->lch_map = devm_kcalloc(&pdev->dev, lch_count, sizeof(*od->lch_map),
1520 				   GFP_KERNEL);
1521 	if (!od->lch_map)
1522 		return -ENOMEM;
1523 
1524 	for (i = 0; i < od->dma_requests; i++) {
1525 		rc = omap_dma_chan_init(od);
1526 		if (rc) {
1527 			omap_dma_free(od);
1528 			return rc;
1529 		}
1530 	}
1531 
1532 	irq = platform_get_irq(pdev, 1);
1533 	if (irq <= 0) {
1534 		dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
1535 		od->legacy = true;
1536 	} else {
1537 		/* Disable all interrupts */
1538 		od->irq_enable_mask = 0;
1539 		omap_dma_glbl_write(od, IRQENABLE_L1, 0);
1540 
1541 		rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
1542 				      IRQF_SHARED, "omap-dma-engine", od);
1543 		if (rc)
1544 			return rc;
1545 	}
1546 
1547 	if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
1548 		od->ll123_supported = true;
1549 
1550 	od->ddev.filter.map = od->plat->slave_map;
1551 	od->ddev.filter.mapcnt = od->plat->slavecnt;
1552 	od->ddev.filter.fn = omap_dma_filter_fn;
1553 
1554 	if (od->ll123_supported) {
1555 		od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
1556 						&pdev->dev,
1557 						sizeof(struct omap_type2_desc),
1558 						4, 0);
1559 		if (!od->desc_pool) {
1560 			dev_err(&pdev->dev,
1561 				"unable to allocate descriptor pool\n");
1562 			od->ll123_supported = false;
1563 		}
1564 	}
1565 
1566 	rc = dma_async_device_register(&od->ddev);
1567 	if (rc) {
1568 		pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
1569 			rc);
1570 		omap_dma_free(od);
1571 		return rc;
1572 	}
1573 
1574 	platform_set_drvdata(pdev, od);
1575 
1576 	if (pdev->dev.of_node) {
1577 		omap_dma_info.dma_cap = od->ddev.cap_mask;
1578 
1579 		/* Device-tree DMA controller registration */
1580 		rc = of_dma_controller_register(pdev->dev.of_node,
1581 				of_dma_simple_xlate, &omap_dma_info);
1582 		if (rc) {
1583 			pr_warn("OMAP-DMA: failed to register DMA controller\n");
1584 			dma_async_device_unregister(&od->ddev);
1585 			omap_dma_free(od);
1586 		}
1587 	}
1588 
1589 	dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
1590 		 od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
1591 
1592 	return rc;
1593 }
1594 
1595 static int omap_dma_remove(struct platform_device *pdev)
1596 {
1597 	struct omap_dmadev *od = platform_get_drvdata(pdev);
1598 	int irq;
1599 
1600 	if (pdev->dev.of_node)
1601 		of_dma_controller_free(pdev->dev.of_node);
1602 
1603 	irq = platform_get_irq(pdev, 1);
1604 	devm_free_irq(&pdev->dev, irq, od);
1605 
1606 	dma_async_device_unregister(&od->ddev);
1607 
1608 	if (!od->legacy) {
1609 		/* Disable all interrupts */
1610 		omap_dma_glbl_write(od, IRQENABLE_L0, 0);
1611 	}
1612 
1613 	if (od->ll123_supported)
1614 		dma_pool_destroy(od->desc_pool);
1615 
1616 	omap_dma_free(od);
1617 
1618 	return 0;
1619 }
1620 
1621 static const struct of_device_id omap_dma_match[] = {
1622 	{ .compatible = "ti,omap2420-sdma", },
1623 	{ .compatible = "ti,omap2430-sdma", },
1624 	{ .compatible = "ti,omap3430-sdma", },
1625 	{ .compatible = "ti,omap3630-sdma", },
1626 	{ .compatible = "ti,omap4430-sdma", },
1627 	{},
1628 };
1629 MODULE_DEVICE_TABLE(of, omap_dma_match);
1630 
1631 static struct platform_driver omap_dma_driver = {
1632 	.probe	= omap_dma_probe,
1633 	.remove	= omap_dma_remove,
1634 	.driver = {
1635 		.name = "omap-dma-engine",
1636 		.of_match_table = of_match_ptr(omap_dma_match),
1637 	},
1638 };
1639 
1640 bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
1641 {
1642 	if (chan->device->dev->driver == &omap_dma_driver.driver) {
1643 		struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1644 		struct omap_chan *c = to_omap_dma_chan(chan);
1645 		unsigned req = *(unsigned *)param;
1646 
1647 		if (req <= od->dma_requests) {
1648 			c->dma_sig = req;
1649 			return true;
1650 		}
1651 	}
1652 	return false;
1653 }
1654 EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
1655 
1656 static int omap_dma_init(void)
1657 {
1658 	return platform_driver_register(&omap_dma_driver);
1659 }
1660 subsys_initcall(omap_dma_init);
1661 
1662 static void __exit omap_dma_exit(void)
1663 {
1664 	platform_driver_unregister(&omap_dma_driver);
1665 }
1666 module_exit(omap_dma_exit);
1667 
1668 MODULE_AUTHOR("Russell King");
1669 MODULE_LICENSE("GPL");
1670