xref: /linux/drivers/dma/ti/k3-udma.c (revision f082c6df970e6e9aa97af35e826fec824007fbae)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com
4  *  Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/list.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/sys_soc.h>
20 #include <linux/of.h>
21 #include <linux/of_dma.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/workqueue.h>
25 #include <linux/completion.h>
26 #include <linux/soc/ti/k3-ringacc.h>
27 #include <linux/soc/ti/ti_sci_protocol.h>
28 #include <linux/soc/ti/ti_sci_inta_msi.h>
29 #include <linux/dma/ti-cppi5.h>
30 
31 #include "../virt-dma.h"
32 #include "k3-udma.h"
33 #include "k3-psil-priv.h"
34 
35 struct udma_static_tr {
36 	u8 elsize; /* RPSTR0 */
37 	u16 elcnt; /* RPSTR0 */
38 	u16 bstcnt; /* RPSTR1 */
39 };
40 
41 #define K3_UDMA_MAX_RFLOWS		1024
42 #define K3_UDMA_DEFAULT_RING_SIZE	16
43 
44 /* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */
45 #define UDMA_RFLOW_SRCTAG_NONE		0
46 #define UDMA_RFLOW_SRCTAG_CFG_TAG	1
47 #define UDMA_RFLOW_SRCTAG_FLOW_ID	2
48 #define UDMA_RFLOW_SRCTAG_SRC_TAG	4
49 
50 #define UDMA_RFLOW_DSTTAG_NONE		0
51 #define UDMA_RFLOW_DSTTAG_CFG_TAG	1
52 #define UDMA_RFLOW_DSTTAG_FLOW_ID	2
53 #define UDMA_RFLOW_DSTTAG_DST_TAG_LO	4
54 #define UDMA_RFLOW_DSTTAG_DST_TAG_HI	5
55 
56 struct udma_chan;
57 
58 enum udma_mmr {
59 	MMR_GCFG = 0,
60 	MMR_RCHANRT,
61 	MMR_TCHANRT,
62 	MMR_LAST,
63 };
64 
65 static const char * const mmr_names[] = { "gcfg", "rchanrt", "tchanrt" };
66 
67 struct udma_tchan {
68 	void __iomem *reg_rt;
69 
70 	int id;
71 	struct k3_ring *t_ring; /* Transmit ring */
72 	struct k3_ring *tc_ring; /* Transmit Completion ring */
73 };
74 
75 struct udma_rflow {
76 	int id;
77 	struct k3_ring *fd_ring; /* Free Descriptor ring */
78 	struct k3_ring *r_ring; /* Receive ring */
79 };
80 
81 struct udma_rchan {
82 	void __iomem *reg_rt;
83 
84 	int id;
85 };
86 
87 #define UDMA_FLAG_PDMA_ACC32		BIT(0)
88 #define UDMA_FLAG_PDMA_BURST		BIT(1)
89 #define UDMA_FLAG_TDTYPE		BIT(2)
90 
91 struct udma_match_data {
92 	u32 psil_base;
93 	bool enable_memcpy_support;
94 	u32 flags;
95 	u32 statictr_z_mask;
96 };
97 
98 struct udma_soc_data {
99 	u32 rchan_oes_offset;
100 };
101 
102 struct udma_hwdesc {
103 	size_t cppi5_desc_size;
104 	void *cppi5_desc_vaddr;
105 	dma_addr_t cppi5_desc_paddr;
106 
107 	/* TR descriptor internal pointers */
108 	void *tr_req_base;
109 	struct cppi5_tr_resp_t *tr_resp_base;
110 };
111 
112 struct udma_rx_flush {
113 	struct udma_hwdesc hwdescs[2];
114 
115 	size_t buffer_size;
116 	void *buffer_vaddr;
117 	dma_addr_t buffer_paddr;
118 };
119 
120 struct udma_dev {
121 	struct dma_device ddev;
122 	struct device *dev;
123 	void __iomem *mmrs[MMR_LAST];
124 	const struct udma_match_data *match_data;
125 	const struct udma_soc_data *soc_data;
126 
127 	u8 tpl_levels;
128 	u32 tpl_start_idx[3];
129 
130 	size_t desc_align; /* alignment to use for descriptors */
131 
132 	struct udma_tisci_rm tisci_rm;
133 
134 	struct k3_ringacc *ringacc;
135 
136 	struct work_struct purge_work;
137 	struct list_head desc_to_purge;
138 	spinlock_t lock;
139 
140 	struct udma_rx_flush rx_flush;
141 
142 	int tchan_cnt;
143 	int echan_cnt;
144 	int rchan_cnt;
145 	int rflow_cnt;
146 	unsigned long *tchan_map;
147 	unsigned long *rchan_map;
148 	unsigned long *rflow_gp_map;
149 	unsigned long *rflow_gp_map_allocated;
150 	unsigned long *rflow_in_use;
151 
152 	struct udma_tchan *tchans;
153 	struct udma_rchan *rchans;
154 	struct udma_rflow *rflows;
155 
156 	struct udma_chan *channels;
157 	u32 psil_base;
158 	u32 atype;
159 };
160 
161 struct udma_desc {
162 	struct virt_dma_desc vd;
163 
164 	bool terminated;
165 
166 	enum dma_transfer_direction dir;
167 
168 	struct udma_static_tr static_tr;
169 	u32 residue;
170 
171 	unsigned int sglen;
172 	unsigned int desc_idx; /* Only used for cyclic in packet mode */
173 	unsigned int tr_idx;
174 
175 	u32 metadata_size;
176 	void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */
177 
178 	unsigned int hwdesc_count;
179 	struct udma_hwdesc hwdesc[];
180 };
181 
182 enum udma_chan_state {
183 	UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */
184 	UDMA_CHAN_IS_ACTIVE, /* Normal operation */
185 	UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */
186 };
187 
188 struct udma_tx_drain {
189 	struct delayed_work work;
190 	ktime_t tstamp;
191 	u32 residue;
192 };
193 
194 struct udma_chan_config {
195 	bool pkt_mode; /* TR or packet */
196 	bool needs_epib; /* EPIB is needed for the communication or not */
197 	u32 psd_size; /* size of Protocol Specific Data */
198 	u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */
199 	u32 hdesc_size; /* Size of a packet descriptor in packet mode */
200 	bool notdpkt; /* Suppress sending TDC packet */
201 	int remote_thread_id;
202 	u32 atype;
203 	u32 src_thread;
204 	u32 dst_thread;
205 	enum psil_endpoint_type ep_type;
206 	bool enable_acc32;
207 	bool enable_burst;
208 	enum udma_tp_level channel_tpl; /* Channel Throughput Level */
209 
210 	enum dma_transfer_direction dir;
211 };
212 
213 struct udma_chan {
214 	struct virt_dma_chan vc;
215 	struct dma_slave_config	cfg;
216 	struct udma_dev *ud;
217 	struct udma_desc *desc;
218 	struct udma_desc *terminated_desc;
219 	struct udma_static_tr static_tr;
220 	char *name;
221 
222 	struct udma_tchan *tchan;
223 	struct udma_rchan *rchan;
224 	struct udma_rflow *rflow;
225 
226 	bool psil_paired;
227 
228 	int irq_num_ring;
229 	int irq_num_udma;
230 
231 	bool cyclic;
232 	bool paused;
233 
234 	enum udma_chan_state state;
235 	struct completion teardown_completed;
236 
237 	struct udma_tx_drain tx_drain;
238 
239 	u32 bcnt; /* number of bytes completed since the start of the channel */
240 
241 	/* Channel configuration parameters */
242 	struct udma_chan_config config;
243 
244 	/* dmapool for packet mode descriptors */
245 	bool use_dma_pool;
246 	struct dma_pool *hdesc_pool;
247 
248 	u32 id;
249 };
250 
251 static inline struct udma_dev *to_udma_dev(struct dma_device *d)
252 {
253 	return container_of(d, struct udma_dev, ddev);
254 }
255 
256 static inline struct udma_chan *to_udma_chan(struct dma_chan *c)
257 {
258 	return container_of(c, struct udma_chan, vc.chan);
259 }
260 
261 static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t)
262 {
263 	return container_of(t, struct udma_desc, vd.tx);
264 }
265 
266 /* Generic register access functions */
267 static inline u32 udma_read(void __iomem *base, int reg)
268 {
269 	return readl(base + reg);
270 }
271 
272 static inline void udma_write(void __iomem *base, int reg, u32 val)
273 {
274 	writel(val, base + reg);
275 }
276 
277 static inline void udma_update_bits(void __iomem *base, int reg,
278 				    u32 mask, u32 val)
279 {
280 	u32 tmp, orig;
281 
282 	orig = readl(base + reg);
283 	tmp = orig & ~mask;
284 	tmp |= (val & mask);
285 
286 	if (tmp != orig)
287 		writel(tmp, base + reg);
288 }
289 
290 /* TCHANRT */
291 static inline u32 udma_tchanrt_read(struct udma_chan *uc, int reg)
292 {
293 	if (!uc->tchan)
294 		return 0;
295 	return udma_read(uc->tchan->reg_rt, reg);
296 }
297 
298 static inline void udma_tchanrt_write(struct udma_chan *uc, int reg, u32 val)
299 {
300 	if (!uc->tchan)
301 		return;
302 	udma_write(uc->tchan->reg_rt, reg, val);
303 }
304 
305 static inline void udma_tchanrt_update_bits(struct udma_chan *uc, int reg,
306 					    u32 mask, u32 val)
307 {
308 	if (!uc->tchan)
309 		return;
310 	udma_update_bits(uc->tchan->reg_rt, reg, mask, val);
311 }
312 
313 /* RCHANRT */
314 static inline u32 udma_rchanrt_read(struct udma_chan *uc, int reg)
315 {
316 	if (!uc->rchan)
317 		return 0;
318 	return udma_read(uc->rchan->reg_rt, reg);
319 }
320 
321 static inline void udma_rchanrt_write(struct udma_chan *uc, int reg, u32 val)
322 {
323 	if (!uc->rchan)
324 		return;
325 	udma_write(uc->rchan->reg_rt, reg, val);
326 }
327 
328 static inline void udma_rchanrt_update_bits(struct udma_chan *uc, int reg,
329 					    u32 mask, u32 val)
330 {
331 	if (!uc->rchan)
332 		return;
333 	udma_update_bits(uc->rchan->reg_rt, reg, mask, val);
334 }
335 
336 static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread)
337 {
338 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
339 
340 	dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
341 	return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci,
342 					      tisci_rm->tisci_navss_dev_id,
343 					      src_thread, dst_thread);
344 }
345 
346 static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread,
347 			     u32 dst_thread)
348 {
349 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
350 
351 	dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
352 	return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci,
353 						tisci_rm->tisci_navss_dev_id,
354 						src_thread, dst_thread);
355 }
356 
357 static void udma_reset_uchan(struct udma_chan *uc)
358 {
359 	memset(&uc->config, 0, sizeof(uc->config));
360 	uc->config.remote_thread_id = -1;
361 	uc->state = UDMA_CHAN_IS_IDLE;
362 }
363 
364 static void udma_dump_chan_stdata(struct udma_chan *uc)
365 {
366 	struct device *dev = uc->ud->dev;
367 	u32 offset;
368 	int i;
369 
370 	if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) {
371 		dev_dbg(dev, "TCHAN State data:\n");
372 		for (i = 0; i < 32; i++) {
373 			offset = UDMA_CHAN_RT_STDATA_REG + i * 4;
374 			dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i,
375 				udma_tchanrt_read(uc, offset));
376 		}
377 	}
378 
379 	if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) {
380 		dev_dbg(dev, "RCHAN State data:\n");
381 		for (i = 0; i < 32; i++) {
382 			offset = UDMA_CHAN_RT_STDATA_REG + i * 4;
383 			dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i,
384 				udma_rchanrt_read(uc, offset));
385 		}
386 	}
387 }
388 
389 static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d,
390 						    int idx)
391 {
392 	return d->hwdesc[idx].cppi5_desc_paddr;
393 }
394 
395 static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx)
396 {
397 	return d->hwdesc[idx].cppi5_desc_vaddr;
398 }
399 
400 static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc,
401 						   dma_addr_t paddr)
402 {
403 	struct udma_desc *d = uc->terminated_desc;
404 
405 	if (d) {
406 		dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
407 								   d->desc_idx);
408 
409 		if (desc_paddr != paddr)
410 			d = NULL;
411 	}
412 
413 	if (!d) {
414 		d = uc->desc;
415 		if (d) {
416 			dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
417 								d->desc_idx);
418 
419 			if (desc_paddr != paddr)
420 				d = NULL;
421 		}
422 	}
423 
424 	return d;
425 }
426 
427 static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d)
428 {
429 	if (uc->use_dma_pool) {
430 		int i;
431 
432 		for (i = 0; i < d->hwdesc_count; i++) {
433 			if (!d->hwdesc[i].cppi5_desc_vaddr)
434 				continue;
435 
436 			dma_pool_free(uc->hdesc_pool,
437 				      d->hwdesc[i].cppi5_desc_vaddr,
438 				      d->hwdesc[i].cppi5_desc_paddr);
439 
440 			d->hwdesc[i].cppi5_desc_vaddr = NULL;
441 		}
442 	} else if (d->hwdesc[0].cppi5_desc_vaddr) {
443 		struct udma_dev *ud = uc->ud;
444 
445 		dma_free_coherent(ud->dev, d->hwdesc[0].cppi5_desc_size,
446 				  d->hwdesc[0].cppi5_desc_vaddr,
447 				  d->hwdesc[0].cppi5_desc_paddr);
448 
449 		d->hwdesc[0].cppi5_desc_vaddr = NULL;
450 	}
451 }
452 
453 static void udma_purge_desc_work(struct work_struct *work)
454 {
455 	struct udma_dev *ud = container_of(work, typeof(*ud), purge_work);
456 	struct virt_dma_desc *vd, *_vd;
457 	unsigned long flags;
458 	LIST_HEAD(head);
459 
460 	spin_lock_irqsave(&ud->lock, flags);
461 	list_splice_tail_init(&ud->desc_to_purge, &head);
462 	spin_unlock_irqrestore(&ud->lock, flags);
463 
464 	list_for_each_entry_safe(vd, _vd, &head, node) {
465 		struct udma_chan *uc = to_udma_chan(vd->tx.chan);
466 		struct udma_desc *d = to_udma_desc(&vd->tx);
467 
468 		udma_free_hwdesc(uc, d);
469 		list_del(&vd->node);
470 		kfree(d);
471 	}
472 
473 	/* If more to purge, schedule the work again */
474 	if (!list_empty(&ud->desc_to_purge))
475 		schedule_work(&ud->purge_work);
476 }
477 
478 static void udma_desc_free(struct virt_dma_desc *vd)
479 {
480 	struct udma_dev *ud = to_udma_dev(vd->tx.chan->device);
481 	struct udma_chan *uc = to_udma_chan(vd->tx.chan);
482 	struct udma_desc *d = to_udma_desc(&vd->tx);
483 	unsigned long flags;
484 
485 	if (uc->terminated_desc == d)
486 		uc->terminated_desc = NULL;
487 
488 	if (uc->use_dma_pool) {
489 		udma_free_hwdesc(uc, d);
490 		kfree(d);
491 		return;
492 	}
493 
494 	spin_lock_irqsave(&ud->lock, flags);
495 	list_add_tail(&vd->node, &ud->desc_to_purge);
496 	spin_unlock_irqrestore(&ud->lock, flags);
497 
498 	schedule_work(&ud->purge_work);
499 }
500 
501 static bool udma_is_chan_running(struct udma_chan *uc)
502 {
503 	u32 trt_ctl = 0;
504 	u32 rrt_ctl = 0;
505 
506 	if (uc->tchan)
507 		trt_ctl = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
508 	if (uc->rchan)
509 		rrt_ctl = udma_rchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
510 
511 	if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN)
512 		return true;
513 
514 	return false;
515 }
516 
517 static bool udma_is_chan_paused(struct udma_chan *uc)
518 {
519 	u32 val, pause_mask;
520 
521 	switch (uc->config.dir) {
522 	case DMA_DEV_TO_MEM:
523 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG);
524 		pause_mask = UDMA_PEER_RT_EN_PAUSE;
525 		break;
526 	case DMA_MEM_TO_DEV:
527 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG);
528 		pause_mask = UDMA_PEER_RT_EN_PAUSE;
529 		break;
530 	case DMA_MEM_TO_MEM:
531 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
532 		pause_mask = UDMA_CHAN_RT_CTL_PAUSE;
533 		break;
534 	default:
535 		return false;
536 	}
537 
538 	if (val & pause_mask)
539 		return true;
540 
541 	return false;
542 }
543 
544 static inline dma_addr_t udma_get_rx_flush_hwdesc_paddr(struct udma_chan *uc)
545 {
546 	return uc->ud->rx_flush.hwdescs[uc->config.pkt_mode].cppi5_desc_paddr;
547 }
548 
549 static int udma_push_to_ring(struct udma_chan *uc, int idx)
550 {
551 	struct udma_desc *d = uc->desc;
552 	struct k3_ring *ring = NULL;
553 	dma_addr_t paddr;
554 
555 	switch (uc->config.dir) {
556 	case DMA_DEV_TO_MEM:
557 		ring = uc->rflow->fd_ring;
558 		break;
559 	case DMA_MEM_TO_DEV:
560 	case DMA_MEM_TO_MEM:
561 		ring = uc->tchan->t_ring;
562 		break;
563 	default:
564 		return -EINVAL;
565 	}
566 
567 	/* RX flush packet: idx == -1 is only passed in case of DEV_TO_MEM */
568 	if (idx == -1) {
569 		paddr = udma_get_rx_flush_hwdesc_paddr(uc);
570 	} else {
571 		paddr = udma_curr_cppi5_desc_paddr(d, idx);
572 
573 		wmb(); /* Ensure that writes are not moved over this point */
574 	}
575 
576 	return k3_ringacc_ring_push(ring, &paddr);
577 }
578 
579 static bool udma_desc_is_rx_flush(struct udma_chan *uc, dma_addr_t addr)
580 {
581 	if (uc->config.dir != DMA_DEV_TO_MEM)
582 		return false;
583 
584 	if (addr == udma_get_rx_flush_hwdesc_paddr(uc))
585 		return true;
586 
587 	return false;
588 }
589 
590 static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr)
591 {
592 	struct k3_ring *ring = NULL;
593 	int ret;
594 
595 	switch (uc->config.dir) {
596 	case DMA_DEV_TO_MEM:
597 		ring = uc->rflow->r_ring;
598 		break;
599 	case DMA_MEM_TO_DEV:
600 	case DMA_MEM_TO_MEM:
601 		ring = uc->tchan->tc_ring;
602 		break;
603 	default:
604 		return -ENOENT;
605 	}
606 
607 	ret = k3_ringacc_ring_pop(ring, addr);
608 	if (ret)
609 		return ret;
610 
611 	rmb(); /* Ensure that reads are not moved before this point */
612 
613 	/* Teardown completion */
614 	if (cppi5_desc_is_tdcm(*addr))
615 		return 0;
616 
617 	/* Check for flush descriptor */
618 	if (udma_desc_is_rx_flush(uc, *addr))
619 		return -ENOENT;
620 
621 	return 0;
622 }
623 
624 static void udma_reset_rings(struct udma_chan *uc)
625 {
626 	struct k3_ring *ring1 = NULL;
627 	struct k3_ring *ring2 = NULL;
628 
629 	switch (uc->config.dir) {
630 	case DMA_DEV_TO_MEM:
631 		if (uc->rchan) {
632 			ring1 = uc->rflow->fd_ring;
633 			ring2 = uc->rflow->r_ring;
634 		}
635 		break;
636 	case DMA_MEM_TO_DEV:
637 	case DMA_MEM_TO_MEM:
638 		if (uc->tchan) {
639 			ring1 = uc->tchan->t_ring;
640 			ring2 = uc->tchan->tc_ring;
641 		}
642 		break;
643 	default:
644 		break;
645 	}
646 
647 	if (ring1)
648 		k3_ringacc_ring_reset_dma(ring1,
649 					  k3_ringacc_ring_get_occ(ring1));
650 	if (ring2)
651 		k3_ringacc_ring_reset(ring2);
652 
653 	/* make sure we are not leaking memory by stalled descriptor */
654 	if (uc->terminated_desc) {
655 		udma_desc_free(&uc->terminated_desc->vd);
656 		uc->terminated_desc = NULL;
657 	}
658 }
659 
660 static void udma_reset_counters(struct udma_chan *uc)
661 {
662 	u32 val;
663 
664 	if (uc->tchan) {
665 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
666 		udma_tchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
667 
668 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
669 		udma_tchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
670 
671 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG);
672 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val);
673 
674 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
675 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
676 	}
677 
678 	if (uc->rchan) {
679 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
680 		udma_rchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
681 
682 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
683 		udma_rchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
684 
685 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG);
686 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val);
687 
688 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
689 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
690 	}
691 
692 	uc->bcnt = 0;
693 }
694 
695 static int udma_reset_chan(struct udma_chan *uc, bool hard)
696 {
697 	switch (uc->config.dir) {
698 	case DMA_DEV_TO_MEM:
699 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0);
700 		udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
701 		break;
702 	case DMA_MEM_TO_DEV:
703 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
704 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0);
705 		break;
706 	case DMA_MEM_TO_MEM:
707 		udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
708 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
709 		break;
710 	default:
711 		return -EINVAL;
712 	}
713 
714 	/* Reset all counters */
715 	udma_reset_counters(uc);
716 
717 	/* Hard reset: re-initialize the channel to reset */
718 	if (hard) {
719 		struct udma_chan_config ucc_backup;
720 		int ret;
721 
722 		memcpy(&ucc_backup, &uc->config, sizeof(uc->config));
723 		uc->ud->ddev.device_free_chan_resources(&uc->vc.chan);
724 
725 		/* restore the channel configuration */
726 		memcpy(&uc->config, &ucc_backup, sizeof(uc->config));
727 		ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan);
728 		if (ret)
729 			return ret;
730 
731 		/*
732 		 * Setting forced teardown after forced reset helps recovering
733 		 * the rchan.
734 		 */
735 		if (uc->config.dir == DMA_DEV_TO_MEM)
736 			udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
737 					   UDMA_CHAN_RT_CTL_EN |
738 					   UDMA_CHAN_RT_CTL_TDOWN |
739 					   UDMA_CHAN_RT_CTL_FTDOWN);
740 	}
741 	uc->state = UDMA_CHAN_IS_IDLE;
742 
743 	return 0;
744 }
745 
746 static void udma_start_desc(struct udma_chan *uc)
747 {
748 	struct udma_chan_config *ucc = &uc->config;
749 
750 	if (ucc->pkt_mode && (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) {
751 		int i;
752 
753 		/* Push all descriptors to ring for packet mode cyclic or RX */
754 		for (i = 0; i < uc->desc->sglen; i++)
755 			udma_push_to_ring(uc, i);
756 	} else {
757 		udma_push_to_ring(uc, 0);
758 	}
759 }
760 
761 static bool udma_chan_needs_reconfiguration(struct udma_chan *uc)
762 {
763 	/* Only PDMAs have staticTR */
764 	if (uc->config.ep_type == PSIL_EP_NATIVE)
765 		return false;
766 
767 	/* Check if the staticTR configuration has changed for TX */
768 	if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr)))
769 		return true;
770 
771 	return false;
772 }
773 
774 static int udma_start(struct udma_chan *uc)
775 {
776 	struct virt_dma_desc *vd = vchan_next_desc(&uc->vc);
777 
778 	if (!vd) {
779 		uc->desc = NULL;
780 		return -ENOENT;
781 	}
782 
783 	list_del(&vd->node);
784 
785 	uc->desc = to_udma_desc(&vd->tx);
786 
787 	/* Channel is already running and does not need reconfiguration */
788 	if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) {
789 		udma_start_desc(uc);
790 		goto out;
791 	}
792 
793 	/* Make sure that we clear the teardown bit, if it is set */
794 	udma_reset_chan(uc, false);
795 
796 	/* Push descriptors before we start the channel */
797 	udma_start_desc(uc);
798 
799 	switch (uc->desc->dir) {
800 	case DMA_DEV_TO_MEM:
801 		/* Config remote TR */
802 		if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
803 			u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
804 				  PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
805 			const struct udma_match_data *match_data =
806 							uc->ud->match_data;
807 
808 			if (uc->config.enable_acc32)
809 				val |= PDMA_STATIC_TR_XY_ACC32;
810 			if (uc->config.enable_burst)
811 				val |= PDMA_STATIC_TR_XY_BURST;
812 
813 			udma_rchanrt_write(uc,
814 					   UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG,
815 					   val);
816 
817 			udma_rchanrt_write(uc,
818 				UDMA_CHAN_RT_PEER_STATIC_TR_Z_REG,
819 				PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt,
820 						 match_data->statictr_z_mask));
821 
822 			/* save the current staticTR configuration */
823 			memcpy(&uc->static_tr, &uc->desc->static_tr,
824 			       sizeof(uc->static_tr));
825 		}
826 
827 		udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
828 				   UDMA_CHAN_RT_CTL_EN);
829 
830 		/* Enable remote */
831 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
832 				   UDMA_PEER_RT_EN_ENABLE);
833 
834 		break;
835 	case DMA_MEM_TO_DEV:
836 		/* Config remote TR */
837 		if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
838 			u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
839 				  PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
840 
841 			if (uc->config.enable_acc32)
842 				val |= PDMA_STATIC_TR_XY_ACC32;
843 			if (uc->config.enable_burst)
844 				val |= PDMA_STATIC_TR_XY_BURST;
845 
846 			udma_tchanrt_write(uc,
847 					   UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG,
848 					   val);
849 
850 			/* save the current staticTR configuration */
851 			memcpy(&uc->static_tr, &uc->desc->static_tr,
852 			       sizeof(uc->static_tr));
853 		}
854 
855 		/* Enable remote */
856 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
857 				   UDMA_PEER_RT_EN_ENABLE);
858 
859 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
860 				   UDMA_CHAN_RT_CTL_EN);
861 
862 		break;
863 	case DMA_MEM_TO_MEM:
864 		udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
865 				   UDMA_CHAN_RT_CTL_EN);
866 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
867 				   UDMA_CHAN_RT_CTL_EN);
868 
869 		break;
870 	default:
871 		return -EINVAL;
872 	}
873 
874 	uc->state = UDMA_CHAN_IS_ACTIVE;
875 out:
876 
877 	return 0;
878 }
879 
880 static int udma_stop(struct udma_chan *uc)
881 {
882 	enum udma_chan_state old_state = uc->state;
883 
884 	uc->state = UDMA_CHAN_IS_TERMINATING;
885 	reinit_completion(&uc->teardown_completed);
886 
887 	switch (uc->config.dir) {
888 	case DMA_DEV_TO_MEM:
889 		if (!uc->cyclic && !uc->desc)
890 			udma_push_to_ring(uc, -1);
891 
892 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
893 				   UDMA_PEER_RT_EN_ENABLE |
894 				   UDMA_PEER_RT_EN_TEARDOWN);
895 		break;
896 	case DMA_MEM_TO_DEV:
897 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
898 				   UDMA_PEER_RT_EN_ENABLE |
899 				   UDMA_PEER_RT_EN_FLUSH);
900 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
901 				   UDMA_CHAN_RT_CTL_EN |
902 				   UDMA_CHAN_RT_CTL_TDOWN);
903 		break;
904 	case DMA_MEM_TO_MEM:
905 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
906 				   UDMA_CHAN_RT_CTL_EN |
907 				   UDMA_CHAN_RT_CTL_TDOWN);
908 		break;
909 	default:
910 		uc->state = old_state;
911 		complete_all(&uc->teardown_completed);
912 		return -EINVAL;
913 	}
914 
915 	return 0;
916 }
917 
918 static void udma_cyclic_packet_elapsed(struct udma_chan *uc)
919 {
920 	struct udma_desc *d = uc->desc;
921 	struct cppi5_host_desc_t *h_desc;
922 
923 	h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr;
924 	cppi5_hdesc_reset_to_original(h_desc);
925 	udma_push_to_ring(uc, d->desc_idx);
926 	d->desc_idx = (d->desc_idx + 1) % d->sglen;
927 }
928 
929 static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d)
930 {
931 	struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr;
932 
933 	memcpy(d->metadata, h_desc->epib, d->metadata_size);
934 }
935 
936 static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d)
937 {
938 	u32 peer_bcnt, bcnt;
939 
940 	/* Only TX towards PDMA is affected */
941 	if (uc->config.ep_type == PSIL_EP_NATIVE ||
942 	    uc->config.dir != DMA_MEM_TO_DEV)
943 		return true;
944 
945 	peer_bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
946 	bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
947 
948 	/* Transfer is incomplete, store current residue and time stamp */
949 	if (peer_bcnt < bcnt) {
950 		uc->tx_drain.residue = bcnt - peer_bcnt;
951 		uc->tx_drain.tstamp = ktime_get();
952 		return false;
953 	}
954 
955 	return true;
956 }
957 
958 static void udma_check_tx_completion(struct work_struct *work)
959 {
960 	struct udma_chan *uc = container_of(work, typeof(*uc),
961 					    tx_drain.work.work);
962 	bool desc_done = true;
963 	u32 residue_diff;
964 	ktime_t time_diff;
965 	unsigned long delay;
966 
967 	while (1) {
968 		if (uc->desc) {
969 			/* Get previous residue and time stamp */
970 			residue_diff = uc->tx_drain.residue;
971 			time_diff = uc->tx_drain.tstamp;
972 			/*
973 			 * Get current residue and time stamp or see if
974 			 * transfer is complete
975 			 */
976 			desc_done = udma_is_desc_really_done(uc, uc->desc);
977 		}
978 
979 		if (!desc_done) {
980 			/*
981 			 * Find the time delta and residue delta w.r.t
982 			 * previous poll
983 			 */
984 			time_diff = ktime_sub(uc->tx_drain.tstamp,
985 					      time_diff) + 1;
986 			residue_diff -= uc->tx_drain.residue;
987 			if (residue_diff) {
988 				/*
989 				 * Try to guess when we should check
990 				 * next time by calculating rate at
991 				 * which data is being drained at the
992 				 * peer device
993 				 */
994 				delay = (time_diff / residue_diff) *
995 					uc->tx_drain.residue;
996 			} else {
997 				/* No progress, check again in 1 second  */
998 				schedule_delayed_work(&uc->tx_drain.work, HZ);
999 				break;
1000 			}
1001 
1002 			usleep_range(ktime_to_us(delay),
1003 				     ktime_to_us(delay) + 10);
1004 			continue;
1005 		}
1006 
1007 		if (uc->desc) {
1008 			struct udma_desc *d = uc->desc;
1009 
1010 			uc->bcnt += d->residue;
1011 			udma_start(uc);
1012 			vchan_cookie_complete(&d->vd);
1013 			break;
1014 		}
1015 
1016 		break;
1017 	}
1018 }
1019 
1020 static irqreturn_t udma_ring_irq_handler(int irq, void *data)
1021 {
1022 	struct udma_chan *uc = data;
1023 	struct udma_desc *d;
1024 	dma_addr_t paddr = 0;
1025 
1026 	if (udma_pop_from_ring(uc, &paddr) || !paddr)
1027 		return IRQ_HANDLED;
1028 
1029 	spin_lock(&uc->vc.lock);
1030 
1031 	/* Teardown completion message */
1032 	if (cppi5_desc_is_tdcm(paddr)) {
1033 		complete_all(&uc->teardown_completed);
1034 
1035 		if (uc->terminated_desc) {
1036 			udma_desc_free(&uc->terminated_desc->vd);
1037 			uc->terminated_desc = NULL;
1038 		}
1039 
1040 		if (!uc->desc)
1041 			udma_start(uc);
1042 
1043 		goto out;
1044 	}
1045 
1046 	d = udma_udma_desc_from_paddr(uc, paddr);
1047 
1048 	if (d) {
1049 		dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
1050 								   d->desc_idx);
1051 		if (desc_paddr != paddr) {
1052 			dev_err(uc->ud->dev, "not matching descriptors!\n");
1053 			goto out;
1054 		}
1055 
1056 		if (d == uc->desc) {
1057 			/* active descriptor */
1058 			if (uc->cyclic) {
1059 				udma_cyclic_packet_elapsed(uc);
1060 				vchan_cyclic_callback(&d->vd);
1061 			} else {
1062 				if (udma_is_desc_really_done(uc, d)) {
1063 					uc->bcnt += d->residue;
1064 					udma_start(uc);
1065 					vchan_cookie_complete(&d->vd);
1066 				} else {
1067 					schedule_delayed_work(&uc->tx_drain.work,
1068 							      0);
1069 				}
1070 			}
1071 		} else {
1072 			/*
1073 			 * terminated descriptor, mark the descriptor as
1074 			 * completed to update the channel's cookie marker
1075 			 */
1076 			dma_cookie_complete(&d->vd.tx);
1077 		}
1078 	}
1079 out:
1080 	spin_unlock(&uc->vc.lock);
1081 
1082 	return IRQ_HANDLED;
1083 }
1084 
1085 static irqreturn_t udma_udma_irq_handler(int irq, void *data)
1086 {
1087 	struct udma_chan *uc = data;
1088 	struct udma_desc *d;
1089 
1090 	spin_lock(&uc->vc.lock);
1091 	d = uc->desc;
1092 	if (d) {
1093 		d->tr_idx = (d->tr_idx + 1) % d->sglen;
1094 
1095 		if (uc->cyclic) {
1096 			vchan_cyclic_callback(&d->vd);
1097 		} else {
1098 			/* TODO: figure out the real amount of data */
1099 			uc->bcnt += d->residue;
1100 			udma_start(uc);
1101 			vchan_cookie_complete(&d->vd);
1102 		}
1103 	}
1104 
1105 	spin_unlock(&uc->vc.lock);
1106 
1107 	return IRQ_HANDLED;
1108 }
1109 
1110 /**
1111  * __udma_alloc_gp_rflow_range - alloc range of GP RX flows
1112  * @ud: UDMA device
1113  * @from: Start the search from this flow id number
1114  * @cnt: Number of consecutive flow ids to allocate
1115  *
1116  * Allocate range of RX flow ids for future use, those flows can be requested
1117  * only using explicit flow id number. if @from is set to -1 it will try to find
1118  * first free range. if @from is positive value it will force allocation only
1119  * of the specified range of flows.
1120  *
1121  * Returns -ENOMEM if can't find free range.
1122  * -EEXIST if requested range is busy.
1123  * -EINVAL if wrong input values passed.
1124  * Returns flow id on success.
1125  */
1126 static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
1127 {
1128 	int start, tmp_from;
1129 	DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS);
1130 
1131 	tmp_from = from;
1132 	if (tmp_from < 0)
1133 		tmp_from = ud->rchan_cnt;
1134 	/* default flows can't be allocated and accessible only by id */
1135 	if (tmp_from < ud->rchan_cnt)
1136 		return -EINVAL;
1137 
1138 	if (tmp_from + cnt > ud->rflow_cnt)
1139 		return -EINVAL;
1140 
1141 	bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated,
1142 		  ud->rflow_cnt);
1143 
1144 	start = bitmap_find_next_zero_area(tmp,
1145 					   ud->rflow_cnt,
1146 					   tmp_from, cnt, 0);
1147 	if (start >= ud->rflow_cnt)
1148 		return -ENOMEM;
1149 
1150 	if (from >= 0 && start != from)
1151 		return -EEXIST;
1152 
1153 	bitmap_set(ud->rflow_gp_map_allocated, start, cnt);
1154 	return start;
1155 }
1156 
1157 static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
1158 {
1159 	if (from < ud->rchan_cnt)
1160 		return -EINVAL;
1161 	if (from + cnt > ud->rflow_cnt)
1162 		return -EINVAL;
1163 
1164 	bitmap_clear(ud->rflow_gp_map_allocated, from, cnt);
1165 	return 0;
1166 }
1167 
1168 static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id)
1169 {
1170 	/*
1171 	 * Attempt to request rflow by ID can be made for any rflow
1172 	 * if not in use with assumption that caller knows what's doing.
1173 	 * TI-SCI FW will perform additional permission check ant way, it's
1174 	 * safe
1175 	 */
1176 
1177 	if (id < 0 || id >= ud->rflow_cnt)
1178 		return ERR_PTR(-ENOENT);
1179 
1180 	if (test_bit(id, ud->rflow_in_use))
1181 		return ERR_PTR(-ENOENT);
1182 
1183 	/* GP rflow has to be allocated first */
1184 	if (!test_bit(id, ud->rflow_gp_map) &&
1185 	    !test_bit(id, ud->rflow_gp_map_allocated))
1186 		return ERR_PTR(-EINVAL);
1187 
1188 	dev_dbg(ud->dev, "get rflow%d\n", id);
1189 	set_bit(id, ud->rflow_in_use);
1190 	return &ud->rflows[id];
1191 }
1192 
1193 static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow)
1194 {
1195 	if (!test_bit(rflow->id, ud->rflow_in_use)) {
1196 		dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id);
1197 		return;
1198 	}
1199 
1200 	dev_dbg(ud->dev, "put rflow%d\n", rflow->id);
1201 	clear_bit(rflow->id, ud->rflow_in_use);
1202 }
1203 
1204 #define UDMA_RESERVE_RESOURCE(res)					\
1205 static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud,	\
1206 					       enum udma_tp_level tpl,	\
1207 					       int id)			\
1208 {									\
1209 	if (id >= 0) {							\
1210 		if (test_bit(id, ud->res##_map)) {			\
1211 			dev_err(ud->dev, "res##%d is in use\n", id);	\
1212 			return ERR_PTR(-ENOENT);			\
1213 		}							\
1214 	} else {							\
1215 		int start;						\
1216 									\
1217 		if (tpl >= ud->tpl_levels)				\
1218 			tpl = ud->tpl_levels - 1;			\
1219 									\
1220 		start = ud->tpl_start_idx[tpl];				\
1221 									\
1222 		id = find_next_zero_bit(ud->res##_map, ud->res##_cnt,	\
1223 					start);				\
1224 		if (id == ud->res##_cnt) {				\
1225 			return ERR_PTR(-ENOENT);			\
1226 		}							\
1227 	}								\
1228 									\
1229 	set_bit(id, ud->res##_map);					\
1230 	return &ud->res##s[id];						\
1231 }
1232 
1233 UDMA_RESERVE_RESOURCE(tchan);
1234 UDMA_RESERVE_RESOURCE(rchan);
1235 
1236 static int udma_get_tchan(struct udma_chan *uc)
1237 {
1238 	struct udma_dev *ud = uc->ud;
1239 
1240 	if (uc->tchan) {
1241 		dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n",
1242 			uc->id, uc->tchan->id);
1243 		return 0;
1244 	}
1245 
1246 	uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl, -1);
1247 
1248 	return PTR_ERR_OR_ZERO(uc->tchan);
1249 }
1250 
1251 static int udma_get_rchan(struct udma_chan *uc)
1252 {
1253 	struct udma_dev *ud = uc->ud;
1254 
1255 	if (uc->rchan) {
1256 		dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n",
1257 			uc->id, uc->rchan->id);
1258 		return 0;
1259 	}
1260 
1261 	uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl, -1);
1262 
1263 	return PTR_ERR_OR_ZERO(uc->rchan);
1264 }
1265 
1266 static int udma_get_chan_pair(struct udma_chan *uc)
1267 {
1268 	struct udma_dev *ud = uc->ud;
1269 	int chan_id, end;
1270 
1271 	if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) {
1272 		dev_info(ud->dev, "chan%d: already have %d pair allocated\n",
1273 			 uc->id, uc->tchan->id);
1274 		return 0;
1275 	}
1276 
1277 	if (uc->tchan) {
1278 		dev_err(ud->dev, "chan%d: already have tchan%d allocated\n",
1279 			uc->id, uc->tchan->id);
1280 		return -EBUSY;
1281 	} else if (uc->rchan) {
1282 		dev_err(ud->dev, "chan%d: already have rchan%d allocated\n",
1283 			uc->id, uc->rchan->id);
1284 		return -EBUSY;
1285 	}
1286 
1287 	/* Can be optimized, but let's have it like this for now */
1288 	end = min(ud->tchan_cnt, ud->rchan_cnt);
1289 	/* Try to use the highest TPL channel pair for MEM_TO_MEM channels */
1290 	chan_id = ud->tpl_start_idx[ud->tpl_levels - 1];
1291 	for (; chan_id < end; chan_id++) {
1292 		if (!test_bit(chan_id, ud->tchan_map) &&
1293 		    !test_bit(chan_id, ud->rchan_map))
1294 			break;
1295 	}
1296 
1297 	if (chan_id == end)
1298 		return -ENOENT;
1299 
1300 	set_bit(chan_id, ud->tchan_map);
1301 	set_bit(chan_id, ud->rchan_map);
1302 	uc->tchan = &ud->tchans[chan_id];
1303 	uc->rchan = &ud->rchans[chan_id];
1304 
1305 	return 0;
1306 }
1307 
1308 static int udma_get_rflow(struct udma_chan *uc, int flow_id)
1309 {
1310 	struct udma_dev *ud = uc->ud;
1311 
1312 	if (!uc->rchan) {
1313 		dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id);
1314 		return -EINVAL;
1315 	}
1316 
1317 	if (uc->rflow) {
1318 		dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n",
1319 			uc->id, uc->rflow->id);
1320 		return 0;
1321 	}
1322 
1323 	uc->rflow = __udma_get_rflow(ud, flow_id);
1324 
1325 	return PTR_ERR_OR_ZERO(uc->rflow);
1326 }
1327 
1328 static void udma_put_rchan(struct udma_chan *uc)
1329 {
1330 	struct udma_dev *ud = uc->ud;
1331 
1332 	if (uc->rchan) {
1333 		dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id,
1334 			uc->rchan->id);
1335 		clear_bit(uc->rchan->id, ud->rchan_map);
1336 		uc->rchan = NULL;
1337 	}
1338 }
1339 
1340 static void udma_put_tchan(struct udma_chan *uc)
1341 {
1342 	struct udma_dev *ud = uc->ud;
1343 
1344 	if (uc->tchan) {
1345 		dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id,
1346 			uc->tchan->id);
1347 		clear_bit(uc->tchan->id, ud->tchan_map);
1348 		uc->tchan = NULL;
1349 	}
1350 }
1351 
1352 static void udma_put_rflow(struct udma_chan *uc)
1353 {
1354 	struct udma_dev *ud = uc->ud;
1355 
1356 	if (uc->rflow) {
1357 		dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id,
1358 			uc->rflow->id);
1359 		__udma_put_rflow(ud, uc->rflow);
1360 		uc->rflow = NULL;
1361 	}
1362 }
1363 
1364 static void udma_free_tx_resources(struct udma_chan *uc)
1365 {
1366 	if (!uc->tchan)
1367 		return;
1368 
1369 	k3_ringacc_ring_free(uc->tchan->t_ring);
1370 	k3_ringacc_ring_free(uc->tchan->tc_ring);
1371 	uc->tchan->t_ring = NULL;
1372 	uc->tchan->tc_ring = NULL;
1373 
1374 	udma_put_tchan(uc);
1375 }
1376 
1377 static int udma_alloc_tx_resources(struct udma_chan *uc)
1378 {
1379 	struct k3_ring_cfg ring_cfg;
1380 	struct udma_dev *ud = uc->ud;
1381 	int ret;
1382 
1383 	ret = udma_get_tchan(uc);
1384 	if (ret)
1385 		return ret;
1386 
1387 	ret = k3_ringacc_request_rings_pair(ud->ringacc, uc->tchan->id, -1,
1388 					    &uc->tchan->t_ring,
1389 					    &uc->tchan->tc_ring);
1390 	if (ret) {
1391 		ret = -EBUSY;
1392 		goto err_ring;
1393 	}
1394 
1395 	memset(&ring_cfg, 0, sizeof(ring_cfg));
1396 	ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1397 	ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
1398 	ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
1399 
1400 	ret = k3_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg);
1401 	ret |= k3_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg);
1402 
1403 	if (ret)
1404 		goto err_ringcfg;
1405 
1406 	return 0;
1407 
1408 err_ringcfg:
1409 	k3_ringacc_ring_free(uc->tchan->tc_ring);
1410 	uc->tchan->tc_ring = NULL;
1411 	k3_ringacc_ring_free(uc->tchan->t_ring);
1412 	uc->tchan->t_ring = NULL;
1413 err_ring:
1414 	udma_put_tchan(uc);
1415 
1416 	return ret;
1417 }
1418 
1419 static void udma_free_rx_resources(struct udma_chan *uc)
1420 {
1421 	if (!uc->rchan)
1422 		return;
1423 
1424 	if (uc->rflow) {
1425 		struct udma_rflow *rflow = uc->rflow;
1426 
1427 		k3_ringacc_ring_free(rflow->fd_ring);
1428 		k3_ringacc_ring_free(rflow->r_ring);
1429 		rflow->fd_ring = NULL;
1430 		rflow->r_ring = NULL;
1431 
1432 		udma_put_rflow(uc);
1433 	}
1434 
1435 	udma_put_rchan(uc);
1436 }
1437 
1438 static int udma_alloc_rx_resources(struct udma_chan *uc)
1439 {
1440 	struct udma_dev *ud = uc->ud;
1441 	struct k3_ring_cfg ring_cfg;
1442 	struct udma_rflow *rflow;
1443 	int fd_ring_id;
1444 	int ret;
1445 
1446 	ret = udma_get_rchan(uc);
1447 	if (ret)
1448 		return ret;
1449 
1450 	/* For MEM_TO_MEM we don't need rflow or rings */
1451 	if (uc->config.dir == DMA_MEM_TO_MEM)
1452 		return 0;
1453 
1454 	ret = udma_get_rflow(uc, uc->rchan->id);
1455 	if (ret) {
1456 		ret = -EBUSY;
1457 		goto err_rflow;
1458 	}
1459 
1460 	rflow = uc->rflow;
1461 	fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id;
1462 	ret = k3_ringacc_request_rings_pair(ud->ringacc, fd_ring_id, -1,
1463 					    &rflow->fd_ring, &rflow->r_ring);
1464 	if (ret) {
1465 		ret = -EBUSY;
1466 		goto err_ring;
1467 	}
1468 
1469 	memset(&ring_cfg, 0, sizeof(ring_cfg));
1470 
1471 	if (uc->config.pkt_mode)
1472 		ring_cfg.size = SG_MAX_SEGMENTS;
1473 	else
1474 		ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1475 
1476 	ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
1477 	ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
1478 
1479 	ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg);
1480 	ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1481 	ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg);
1482 
1483 	if (ret)
1484 		goto err_ringcfg;
1485 
1486 	return 0;
1487 
1488 err_ringcfg:
1489 	k3_ringacc_ring_free(rflow->r_ring);
1490 	rflow->r_ring = NULL;
1491 	k3_ringacc_ring_free(rflow->fd_ring);
1492 	rflow->fd_ring = NULL;
1493 err_ring:
1494 	udma_put_rflow(uc);
1495 err_rflow:
1496 	udma_put_rchan(uc);
1497 
1498 	return ret;
1499 }
1500 
1501 #define TISCI_TCHAN_VALID_PARAMS (				\
1502 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID |	\
1503 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID |	\
1504 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID |	\
1505 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |		\
1506 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID |	\
1507 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |		\
1508 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID |		\
1509 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
1510 
1511 #define TISCI_RCHAN_VALID_PARAMS (				\
1512 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID |	\
1513 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |		\
1514 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID |		\
1515 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |		\
1516 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID |	\
1517 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID |	\
1518 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID |	\
1519 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID |	\
1520 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
1521 
1522 static int udma_tisci_m2m_channel_config(struct udma_chan *uc)
1523 {
1524 	struct udma_dev *ud = uc->ud;
1525 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1526 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1527 	struct udma_tchan *tchan = uc->tchan;
1528 	struct udma_rchan *rchan = uc->rchan;
1529 	int ret = 0;
1530 
1531 	/* Non synchronized - mem to mem type of transfer */
1532 	int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
1533 	struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
1534 	struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
1535 
1536 	req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
1537 	req_tx.nav_id = tisci_rm->tisci_dev_id;
1538 	req_tx.index = tchan->id;
1539 	req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
1540 	req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
1541 	req_tx.txcq_qnum = tc_ring;
1542 	req_tx.tx_atype = ud->atype;
1543 
1544 	ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
1545 	if (ret) {
1546 		dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
1547 		return ret;
1548 	}
1549 
1550 	req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
1551 	req_rx.nav_id = tisci_rm->tisci_dev_id;
1552 	req_rx.index = rchan->id;
1553 	req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
1554 	req_rx.rxcq_qnum = tc_ring;
1555 	req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
1556 	req_rx.rx_atype = ud->atype;
1557 
1558 	ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
1559 	if (ret)
1560 		dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret);
1561 
1562 	return ret;
1563 }
1564 
1565 static int udma_tisci_tx_channel_config(struct udma_chan *uc)
1566 {
1567 	struct udma_dev *ud = uc->ud;
1568 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1569 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1570 	struct udma_tchan *tchan = uc->tchan;
1571 	int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
1572 	struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
1573 	u32 mode, fetch_size;
1574 	int ret = 0;
1575 
1576 	if (uc->config.pkt_mode) {
1577 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
1578 		fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
1579 						   uc->config.psd_size, 0);
1580 	} else {
1581 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
1582 		fetch_size = sizeof(struct cppi5_desc_hdr_t);
1583 	}
1584 
1585 	req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
1586 	req_tx.nav_id = tisci_rm->tisci_dev_id;
1587 	req_tx.index = tchan->id;
1588 	req_tx.tx_chan_type = mode;
1589 	req_tx.tx_supr_tdpkt = uc->config.notdpkt;
1590 	req_tx.tx_fetch_size = fetch_size >> 2;
1591 	req_tx.txcq_qnum = tc_ring;
1592 	req_tx.tx_atype = uc->config.atype;
1593 	if (uc->config.ep_type == PSIL_EP_PDMA_XY &&
1594 	    ud->match_data->flags & UDMA_FLAG_TDTYPE) {
1595 		/* wait for peer to complete the teardown for PDMAs */
1596 		req_tx.valid_params |=
1597 				TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_TDTYPE_VALID;
1598 		req_tx.tx_tdtype = 1;
1599 	}
1600 
1601 	ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
1602 	if (ret)
1603 		dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
1604 
1605 	return ret;
1606 }
1607 
1608 static int udma_tisci_rx_channel_config(struct udma_chan *uc)
1609 {
1610 	struct udma_dev *ud = uc->ud;
1611 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1612 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1613 	struct udma_rchan *rchan = uc->rchan;
1614 	int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring);
1615 	int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring);
1616 	struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
1617 	struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 };
1618 	u32 mode, fetch_size;
1619 	int ret = 0;
1620 
1621 	if (uc->config.pkt_mode) {
1622 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
1623 		fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
1624 						   uc->config.psd_size, 0);
1625 	} else {
1626 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
1627 		fetch_size = sizeof(struct cppi5_desc_hdr_t);
1628 	}
1629 
1630 	req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
1631 	req_rx.nav_id = tisci_rm->tisci_dev_id;
1632 	req_rx.index = rchan->id;
1633 	req_rx.rx_fetch_size =  fetch_size >> 2;
1634 	req_rx.rxcq_qnum = rx_ring;
1635 	req_rx.rx_chan_type = mode;
1636 	req_rx.rx_atype = uc->config.atype;
1637 
1638 	ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
1639 	if (ret) {
1640 		dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret);
1641 		return ret;
1642 	}
1643 
1644 	flow_req.valid_params =
1645 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID |
1646 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID |
1647 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID |
1648 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID |
1649 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID |
1650 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID |
1651 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID |
1652 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID |
1653 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID |
1654 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID |
1655 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID |
1656 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID |
1657 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID;
1658 
1659 	flow_req.nav_id = tisci_rm->tisci_dev_id;
1660 	flow_req.flow_index = rchan->id;
1661 
1662 	if (uc->config.needs_epib)
1663 		flow_req.rx_einfo_present = 1;
1664 	else
1665 		flow_req.rx_einfo_present = 0;
1666 	if (uc->config.psd_size)
1667 		flow_req.rx_psinfo_present = 1;
1668 	else
1669 		flow_req.rx_psinfo_present = 0;
1670 	flow_req.rx_error_handling = 1;
1671 	flow_req.rx_dest_qnum = rx_ring;
1672 	flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE;
1673 	flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG;
1674 	flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI;
1675 	flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO;
1676 	flow_req.rx_fdq0_sz0_qnum = fd_ring;
1677 	flow_req.rx_fdq1_qnum = fd_ring;
1678 	flow_req.rx_fdq2_qnum = fd_ring;
1679 	flow_req.rx_fdq3_qnum = fd_ring;
1680 
1681 	ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req);
1682 
1683 	if (ret)
1684 		dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret);
1685 
1686 	return 0;
1687 }
1688 
1689 static int udma_alloc_chan_resources(struct dma_chan *chan)
1690 {
1691 	struct udma_chan *uc = to_udma_chan(chan);
1692 	struct udma_dev *ud = to_udma_dev(chan->device);
1693 	const struct udma_soc_data *soc_data = ud->soc_data;
1694 	struct k3_ring *irq_ring;
1695 	u32 irq_udma_idx;
1696 	int ret;
1697 
1698 	if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) {
1699 		uc->use_dma_pool = true;
1700 		/* in case of MEM_TO_MEM we have maximum of two TRs */
1701 		if (uc->config.dir == DMA_MEM_TO_MEM) {
1702 			uc->config.hdesc_size = cppi5_trdesc_calc_size(
1703 					sizeof(struct cppi5_tr_type15_t), 2);
1704 			uc->config.pkt_mode = false;
1705 		}
1706 	}
1707 
1708 	if (uc->use_dma_pool) {
1709 		uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev,
1710 						 uc->config.hdesc_size,
1711 						 ud->desc_align,
1712 						 0);
1713 		if (!uc->hdesc_pool) {
1714 			dev_err(ud->ddev.dev,
1715 				"Descriptor pool allocation failed\n");
1716 			uc->use_dma_pool = false;
1717 			ret = -ENOMEM;
1718 			goto err_cleanup;
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * Make sure that the completion is in a known state:
1724 	 * No teardown, the channel is idle
1725 	 */
1726 	reinit_completion(&uc->teardown_completed);
1727 	complete_all(&uc->teardown_completed);
1728 	uc->state = UDMA_CHAN_IS_IDLE;
1729 
1730 	switch (uc->config.dir) {
1731 	case DMA_MEM_TO_MEM:
1732 		/* Non synchronized - mem to mem type of transfer */
1733 		dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__,
1734 			uc->id);
1735 
1736 		ret = udma_get_chan_pair(uc);
1737 		if (ret)
1738 			goto err_cleanup;
1739 
1740 		ret = udma_alloc_tx_resources(uc);
1741 		if (ret) {
1742 			udma_put_rchan(uc);
1743 			goto err_cleanup;
1744 		}
1745 
1746 		ret = udma_alloc_rx_resources(uc);
1747 		if (ret) {
1748 			udma_free_tx_resources(uc);
1749 			goto err_cleanup;
1750 		}
1751 
1752 		uc->config.src_thread = ud->psil_base + uc->tchan->id;
1753 		uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
1754 					K3_PSIL_DST_THREAD_ID_OFFSET;
1755 
1756 		irq_ring = uc->tchan->tc_ring;
1757 		irq_udma_idx = uc->tchan->id;
1758 
1759 		ret = udma_tisci_m2m_channel_config(uc);
1760 		break;
1761 	case DMA_MEM_TO_DEV:
1762 		/* Slave transfer synchronized - mem to dev (TX) trasnfer */
1763 		dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__,
1764 			uc->id);
1765 
1766 		ret = udma_alloc_tx_resources(uc);
1767 		if (ret)
1768 			goto err_cleanup;
1769 
1770 		uc->config.src_thread = ud->psil_base + uc->tchan->id;
1771 		uc->config.dst_thread = uc->config.remote_thread_id;
1772 		uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
1773 
1774 		irq_ring = uc->tchan->tc_ring;
1775 		irq_udma_idx = uc->tchan->id;
1776 
1777 		ret = udma_tisci_tx_channel_config(uc);
1778 		break;
1779 	case DMA_DEV_TO_MEM:
1780 		/* Slave transfer synchronized - dev to mem (RX) trasnfer */
1781 		dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__,
1782 			uc->id);
1783 
1784 		ret = udma_alloc_rx_resources(uc);
1785 		if (ret)
1786 			goto err_cleanup;
1787 
1788 		uc->config.src_thread = uc->config.remote_thread_id;
1789 		uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
1790 					K3_PSIL_DST_THREAD_ID_OFFSET;
1791 
1792 		irq_ring = uc->rflow->r_ring;
1793 		irq_udma_idx = soc_data->rchan_oes_offset + uc->rchan->id;
1794 
1795 		ret = udma_tisci_rx_channel_config(uc);
1796 		break;
1797 	default:
1798 		/* Can not happen */
1799 		dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n",
1800 			__func__, uc->id, uc->config.dir);
1801 		ret = -EINVAL;
1802 		goto err_cleanup;
1803 
1804 	}
1805 
1806 	/* check if the channel configuration was successful */
1807 	if (ret)
1808 		goto err_res_free;
1809 
1810 	if (udma_is_chan_running(uc)) {
1811 		dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
1812 		udma_reset_chan(uc, false);
1813 		if (udma_is_chan_running(uc)) {
1814 			dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
1815 			ret = -EBUSY;
1816 			goto err_res_free;
1817 		}
1818 	}
1819 
1820 	/* PSI-L pairing */
1821 	ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread);
1822 	if (ret) {
1823 		dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n",
1824 			uc->config.src_thread, uc->config.dst_thread);
1825 		goto err_res_free;
1826 	}
1827 
1828 	uc->psil_paired = true;
1829 
1830 	uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring);
1831 	if (uc->irq_num_ring <= 0) {
1832 		dev_err(ud->dev, "Failed to get ring irq (index: %u)\n",
1833 			k3_ringacc_get_ring_id(irq_ring));
1834 		ret = -EINVAL;
1835 		goto err_psi_free;
1836 	}
1837 
1838 	ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler,
1839 			  IRQF_TRIGGER_HIGH, uc->name, uc);
1840 	if (ret) {
1841 		dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id);
1842 		goto err_irq_free;
1843 	}
1844 
1845 	/* Event from UDMA (TR events) only needed for slave TR mode channels */
1846 	if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) {
1847 		uc->irq_num_udma = ti_sci_inta_msi_get_virq(ud->dev,
1848 							    irq_udma_idx);
1849 		if (uc->irq_num_udma <= 0) {
1850 			dev_err(ud->dev, "Failed to get udma irq (index: %u)\n",
1851 				irq_udma_idx);
1852 			free_irq(uc->irq_num_ring, uc);
1853 			ret = -EINVAL;
1854 			goto err_irq_free;
1855 		}
1856 
1857 		ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0,
1858 				  uc->name, uc);
1859 		if (ret) {
1860 			dev_err(ud->dev, "chan%d: UDMA irq request failed\n",
1861 				uc->id);
1862 			free_irq(uc->irq_num_ring, uc);
1863 			goto err_irq_free;
1864 		}
1865 	} else {
1866 		uc->irq_num_udma = 0;
1867 	}
1868 
1869 	udma_reset_rings(uc);
1870 
1871 	return 0;
1872 
1873 err_irq_free:
1874 	uc->irq_num_ring = 0;
1875 	uc->irq_num_udma = 0;
1876 err_psi_free:
1877 	navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread);
1878 	uc->psil_paired = false;
1879 err_res_free:
1880 	udma_free_tx_resources(uc);
1881 	udma_free_rx_resources(uc);
1882 err_cleanup:
1883 	udma_reset_uchan(uc);
1884 
1885 	if (uc->use_dma_pool) {
1886 		dma_pool_destroy(uc->hdesc_pool);
1887 		uc->use_dma_pool = false;
1888 	}
1889 
1890 	return ret;
1891 }
1892 
1893 static int udma_slave_config(struct dma_chan *chan,
1894 			     struct dma_slave_config *cfg)
1895 {
1896 	struct udma_chan *uc = to_udma_chan(chan);
1897 
1898 	memcpy(&uc->cfg, cfg, sizeof(uc->cfg));
1899 
1900 	return 0;
1901 }
1902 
1903 static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc,
1904 					    size_t tr_size, int tr_count,
1905 					    enum dma_transfer_direction dir)
1906 {
1907 	struct udma_hwdesc *hwdesc;
1908 	struct cppi5_desc_hdr_t *tr_desc;
1909 	struct udma_desc *d;
1910 	u32 reload_count = 0;
1911 	u32 ring_id;
1912 
1913 	switch (tr_size) {
1914 	case 16:
1915 	case 32:
1916 	case 64:
1917 	case 128:
1918 		break;
1919 	default:
1920 		dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size);
1921 		return NULL;
1922 	}
1923 
1924 	/* We have only one descriptor containing multiple TRs */
1925 	d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT);
1926 	if (!d)
1927 		return NULL;
1928 
1929 	d->sglen = tr_count;
1930 
1931 	d->hwdesc_count = 1;
1932 	hwdesc = &d->hwdesc[0];
1933 
1934 	/* Allocate memory for DMA ring descriptor */
1935 	if (uc->use_dma_pool) {
1936 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
1937 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
1938 						GFP_NOWAIT,
1939 						&hwdesc->cppi5_desc_paddr);
1940 	} else {
1941 		hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size,
1942 								 tr_count);
1943 		hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
1944 						uc->ud->desc_align);
1945 		hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev,
1946 						hwdesc->cppi5_desc_size,
1947 						&hwdesc->cppi5_desc_paddr,
1948 						GFP_NOWAIT);
1949 	}
1950 
1951 	if (!hwdesc->cppi5_desc_vaddr) {
1952 		kfree(d);
1953 		return NULL;
1954 	}
1955 
1956 	/* Start of the TR req records */
1957 	hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
1958 	/* Start address of the TR response array */
1959 	hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count;
1960 
1961 	tr_desc = hwdesc->cppi5_desc_vaddr;
1962 
1963 	if (uc->cyclic)
1964 		reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE;
1965 
1966 	if (dir == DMA_DEV_TO_MEM)
1967 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
1968 	else
1969 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
1970 
1971 	cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count);
1972 	cppi5_desc_set_pktids(tr_desc, uc->id,
1973 			      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
1974 	cppi5_desc_set_retpolicy(tr_desc, 0, ring_id);
1975 
1976 	return d;
1977 }
1978 
1979 /**
1980  * udma_get_tr_counters - calculate TR counters for a given length
1981  * @len: Length of the trasnfer
1982  * @align_to: Preferred alignment
1983  * @tr0_cnt0: First TR icnt0
1984  * @tr0_cnt1: First TR icnt1
1985  * @tr1_cnt0: Second (if used) TR icnt0
1986  *
1987  * For len < SZ_64K only one TR is enough, tr1_cnt0 is not updated
1988  * For len >= SZ_64K two TRs are used in a simple way:
1989  * First TR: SZ_64K-alignment blocks (tr0_cnt0, tr0_cnt1)
1990  * Second TR: the remaining length (tr1_cnt0)
1991  *
1992  * Returns the number of TRs the length needs (1 or 2)
1993  * -EINVAL if the length can not be supported
1994  */
1995 static int udma_get_tr_counters(size_t len, unsigned long align_to,
1996 				u16 *tr0_cnt0, u16 *tr0_cnt1, u16 *tr1_cnt0)
1997 {
1998 	if (len < SZ_64K) {
1999 		*tr0_cnt0 = len;
2000 		*tr0_cnt1 = 1;
2001 
2002 		return 1;
2003 	}
2004 
2005 	if (align_to > 3)
2006 		align_to = 3;
2007 
2008 realign:
2009 	*tr0_cnt0 = SZ_64K - BIT(align_to);
2010 	if (len / *tr0_cnt0 >= SZ_64K) {
2011 		if (align_to) {
2012 			align_to--;
2013 			goto realign;
2014 		}
2015 		return -EINVAL;
2016 	}
2017 
2018 	*tr0_cnt1 = len / *tr0_cnt0;
2019 	*tr1_cnt0 = len % *tr0_cnt0;
2020 
2021 	return 2;
2022 }
2023 
2024 static struct udma_desc *
2025 udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl,
2026 		      unsigned int sglen, enum dma_transfer_direction dir,
2027 		      unsigned long tx_flags, void *context)
2028 {
2029 	struct scatterlist *sgent;
2030 	struct udma_desc *d;
2031 	struct cppi5_tr_type1_t *tr_req = NULL;
2032 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2033 	unsigned int i;
2034 	size_t tr_size;
2035 	int num_tr = 0;
2036 	int tr_idx = 0;
2037 
2038 	/* estimate the number of TRs we will need */
2039 	for_each_sg(sgl, sgent, sglen, i) {
2040 		if (sg_dma_len(sgent) < SZ_64K)
2041 			num_tr++;
2042 		else
2043 			num_tr += 2;
2044 	}
2045 
2046 	/* Now allocate and setup the descriptor. */
2047 	tr_size = sizeof(struct cppi5_tr_type1_t);
2048 	d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir);
2049 	if (!d)
2050 		return NULL;
2051 
2052 	d->sglen = sglen;
2053 
2054 	tr_req = d->hwdesc[0].tr_req_base;
2055 	for_each_sg(sgl, sgent, sglen, i) {
2056 		dma_addr_t sg_addr = sg_dma_address(sgent);
2057 
2058 		num_tr = udma_get_tr_counters(sg_dma_len(sgent), __ffs(sg_addr),
2059 					      &tr0_cnt0, &tr0_cnt1, &tr1_cnt0);
2060 		if (num_tr < 0) {
2061 			dev_err(uc->ud->dev, "size %u is not supported\n",
2062 				sg_dma_len(sgent));
2063 			udma_free_hwdesc(uc, d);
2064 			kfree(d);
2065 			return NULL;
2066 		}
2067 
2068 		cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false,
2069 			      false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2070 		cppi5_tr_csf_set(&tr_req[tr_idx].flags, CPPI5_TR_CSF_SUPR_EVT);
2071 
2072 		tr_req[tr_idx].addr = sg_addr;
2073 		tr_req[tr_idx].icnt0 = tr0_cnt0;
2074 		tr_req[tr_idx].icnt1 = tr0_cnt1;
2075 		tr_req[tr_idx].dim1 = tr0_cnt0;
2076 		tr_idx++;
2077 
2078 		if (num_tr == 2) {
2079 			cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
2080 				      false, false,
2081 				      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2082 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2083 					 CPPI5_TR_CSF_SUPR_EVT);
2084 
2085 			tr_req[tr_idx].addr = sg_addr + tr0_cnt1 * tr0_cnt0;
2086 			tr_req[tr_idx].icnt0 = tr1_cnt0;
2087 			tr_req[tr_idx].icnt1 = 1;
2088 			tr_req[tr_idx].dim1 = tr1_cnt0;
2089 			tr_idx++;
2090 		}
2091 
2092 		d->residue += sg_dma_len(sgent);
2093 	}
2094 
2095 	cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags,
2096 			 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
2097 
2098 	return d;
2099 }
2100 
2101 static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d,
2102 				   enum dma_slave_buswidth dev_width,
2103 				   u16 elcnt)
2104 {
2105 	if (uc->config.ep_type != PSIL_EP_PDMA_XY)
2106 		return 0;
2107 
2108 	/* Bus width translates to the element size (ES) */
2109 	switch (dev_width) {
2110 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2111 		d->static_tr.elsize = 0;
2112 		break;
2113 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2114 		d->static_tr.elsize = 1;
2115 		break;
2116 	case DMA_SLAVE_BUSWIDTH_3_BYTES:
2117 		d->static_tr.elsize = 2;
2118 		break;
2119 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2120 		d->static_tr.elsize = 3;
2121 		break;
2122 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2123 		d->static_tr.elsize = 4;
2124 		break;
2125 	default: /* not reached */
2126 		return -EINVAL;
2127 	}
2128 
2129 	d->static_tr.elcnt = elcnt;
2130 
2131 	/*
2132 	 * PDMA must to close the packet when the channel is in packet mode.
2133 	 * For TR mode when the channel is not cyclic we also need PDMA to close
2134 	 * the packet otherwise the transfer will stall because PDMA holds on
2135 	 * the data it has received from the peripheral.
2136 	 */
2137 	if (uc->config.pkt_mode || !uc->cyclic) {
2138 		unsigned int div = dev_width * elcnt;
2139 
2140 		if (uc->cyclic)
2141 			d->static_tr.bstcnt = d->residue / d->sglen / div;
2142 		else
2143 			d->static_tr.bstcnt = d->residue / div;
2144 
2145 		if (uc->config.dir == DMA_DEV_TO_MEM &&
2146 		    d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask)
2147 			return -EINVAL;
2148 	} else {
2149 		d->static_tr.bstcnt = 0;
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 static struct udma_desc *
2156 udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl,
2157 		       unsigned int sglen, enum dma_transfer_direction dir,
2158 		       unsigned long tx_flags, void *context)
2159 {
2160 	struct scatterlist *sgent;
2161 	struct cppi5_host_desc_t *h_desc = NULL;
2162 	struct udma_desc *d;
2163 	u32 ring_id;
2164 	unsigned int i;
2165 
2166 	d = kzalloc(struct_size(d, hwdesc, sglen), GFP_NOWAIT);
2167 	if (!d)
2168 		return NULL;
2169 
2170 	d->sglen = sglen;
2171 	d->hwdesc_count = sglen;
2172 
2173 	if (dir == DMA_DEV_TO_MEM)
2174 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2175 	else
2176 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2177 
2178 	for_each_sg(sgl, sgent, sglen, i) {
2179 		struct udma_hwdesc *hwdesc = &d->hwdesc[i];
2180 		dma_addr_t sg_addr = sg_dma_address(sgent);
2181 		struct cppi5_host_desc_t *desc;
2182 		size_t sg_len = sg_dma_len(sgent);
2183 
2184 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
2185 						GFP_NOWAIT,
2186 						&hwdesc->cppi5_desc_paddr);
2187 		if (!hwdesc->cppi5_desc_vaddr) {
2188 			dev_err(uc->ud->dev,
2189 				"descriptor%d allocation failed\n", i);
2190 
2191 			udma_free_hwdesc(uc, d);
2192 			kfree(d);
2193 			return NULL;
2194 		}
2195 
2196 		d->residue += sg_len;
2197 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
2198 		desc = hwdesc->cppi5_desc_vaddr;
2199 
2200 		if (i == 0) {
2201 			cppi5_hdesc_init(desc, 0, 0);
2202 			/* Flow and Packed ID */
2203 			cppi5_desc_set_pktids(&desc->hdr, uc->id,
2204 					      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2205 			cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id);
2206 		} else {
2207 			cppi5_hdesc_reset_hbdesc(desc);
2208 			cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff);
2209 		}
2210 
2211 		/* attach the sg buffer to the descriptor */
2212 		cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len);
2213 
2214 		/* Attach link as host buffer descriptor */
2215 		if (h_desc)
2216 			cppi5_hdesc_link_hbdesc(h_desc,
2217 						hwdesc->cppi5_desc_paddr);
2218 
2219 		if (dir == DMA_MEM_TO_DEV)
2220 			h_desc = desc;
2221 	}
2222 
2223 	if (d->residue >= SZ_4M) {
2224 		dev_err(uc->ud->dev,
2225 			"%s: Transfer size %u is over the supported 4M range\n",
2226 			__func__, d->residue);
2227 		udma_free_hwdesc(uc, d);
2228 		kfree(d);
2229 		return NULL;
2230 	}
2231 
2232 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2233 	cppi5_hdesc_set_pktlen(h_desc, d->residue);
2234 
2235 	return d;
2236 }
2237 
2238 static int udma_attach_metadata(struct dma_async_tx_descriptor *desc,
2239 				void *data, size_t len)
2240 {
2241 	struct udma_desc *d = to_udma_desc(desc);
2242 	struct udma_chan *uc = to_udma_chan(desc->chan);
2243 	struct cppi5_host_desc_t *h_desc;
2244 	u32 psd_size = len;
2245 	u32 flags = 0;
2246 
2247 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2248 		return -ENOTSUPP;
2249 
2250 	if (!data || len > uc->config.metadata_size)
2251 		return -EINVAL;
2252 
2253 	if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE)
2254 		return -EINVAL;
2255 
2256 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2257 	if (d->dir == DMA_MEM_TO_DEV)
2258 		memcpy(h_desc->epib, data, len);
2259 
2260 	if (uc->config.needs_epib)
2261 		psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
2262 
2263 	d->metadata = data;
2264 	d->metadata_size = len;
2265 	if (uc->config.needs_epib)
2266 		flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
2267 
2268 	cppi5_hdesc_update_flags(h_desc, flags);
2269 	cppi5_hdesc_update_psdata_size(h_desc, psd_size);
2270 
2271 	return 0;
2272 }
2273 
2274 static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
2275 				   size_t *payload_len, size_t *max_len)
2276 {
2277 	struct udma_desc *d = to_udma_desc(desc);
2278 	struct udma_chan *uc = to_udma_chan(desc->chan);
2279 	struct cppi5_host_desc_t *h_desc;
2280 
2281 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2282 		return ERR_PTR(-ENOTSUPP);
2283 
2284 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2285 
2286 	*max_len = uc->config.metadata_size;
2287 
2288 	*payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ?
2289 		       CPPI5_INFO0_HDESC_EPIB_SIZE : 0;
2290 	*payload_len += cppi5_hdesc_get_psdata_size(h_desc);
2291 
2292 	return h_desc->epib;
2293 }
2294 
2295 static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc,
2296 				 size_t payload_len)
2297 {
2298 	struct udma_desc *d = to_udma_desc(desc);
2299 	struct udma_chan *uc = to_udma_chan(desc->chan);
2300 	struct cppi5_host_desc_t *h_desc;
2301 	u32 psd_size = payload_len;
2302 	u32 flags = 0;
2303 
2304 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2305 		return -ENOTSUPP;
2306 
2307 	if (payload_len > uc->config.metadata_size)
2308 		return -EINVAL;
2309 
2310 	if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE)
2311 		return -EINVAL;
2312 
2313 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2314 
2315 	if (uc->config.needs_epib) {
2316 		psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
2317 		flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
2318 	}
2319 
2320 	cppi5_hdesc_update_flags(h_desc, flags);
2321 	cppi5_hdesc_update_psdata_size(h_desc, psd_size);
2322 
2323 	return 0;
2324 }
2325 
2326 static struct dma_descriptor_metadata_ops metadata_ops = {
2327 	.attach = udma_attach_metadata,
2328 	.get_ptr = udma_get_metadata_ptr,
2329 	.set_len = udma_set_metadata_len,
2330 };
2331 
2332 static struct dma_async_tx_descriptor *
2333 udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2334 		   unsigned int sglen, enum dma_transfer_direction dir,
2335 		   unsigned long tx_flags, void *context)
2336 {
2337 	struct udma_chan *uc = to_udma_chan(chan);
2338 	enum dma_slave_buswidth dev_width;
2339 	struct udma_desc *d;
2340 	u32 burst;
2341 
2342 	if (dir != uc->config.dir) {
2343 		dev_err(chan->device->dev,
2344 			"%s: chan%d is for %s, not supporting %s\n",
2345 			__func__, uc->id,
2346 			dmaengine_get_direction_text(uc->config.dir),
2347 			dmaengine_get_direction_text(dir));
2348 		return NULL;
2349 	}
2350 
2351 	if (dir == DMA_DEV_TO_MEM) {
2352 		dev_width = uc->cfg.src_addr_width;
2353 		burst = uc->cfg.src_maxburst;
2354 	} else if (dir == DMA_MEM_TO_DEV) {
2355 		dev_width = uc->cfg.dst_addr_width;
2356 		burst = uc->cfg.dst_maxburst;
2357 	} else {
2358 		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
2359 		return NULL;
2360 	}
2361 
2362 	if (!burst)
2363 		burst = 1;
2364 
2365 	if (uc->config.pkt_mode)
2366 		d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags,
2367 					   context);
2368 	else
2369 		d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags,
2370 					  context);
2371 
2372 	if (!d)
2373 		return NULL;
2374 
2375 	d->dir = dir;
2376 	d->desc_idx = 0;
2377 	d->tr_idx = 0;
2378 
2379 	/* static TR for remote PDMA */
2380 	if (udma_configure_statictr(uc, d, dev_width, burst)) {
2381 		dev_err(uc->ud->dev,
2382 			"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
2383 			__func__, d->static_tr.bstcnt);
2384 
2385 		udma_free_hwdesc(uc, d);
2386 		kfree(d);
2387 		return NULL;
2388 	}
2389 
2390 	if (uc->config.metadata_size)
2391 		d->vd.tx.metadata_ops = &metadata_ops;
2392 
2393 	return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
2394 }
2395 
2396 static struct udma_desc *
2397 udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr,
2398 			size_t buf_len, size_t period_len,
2399 			enum dma_transfer_direction dir, unsigned long flags)
2400 {
2401 	struct udma_desc *d;
2402 	size_t tr_size, period_addr;
2403 	struct cppi5_tr_type1_t *tr_req;
2404 	unsigned int periods = buf_len / period_len;
2405 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2406 	unsigned int i;
2407 	int num_tr;
2408 
2409 	num_tr = udma_get_tr_counters(period_len, __ffs(buf_addr), &tr0_cnt0,
2410 				      &tr0_cnt1, &tr1_cnt0);
2411 	if (num_tr < 0) {
2412 		dev_err(uc->ud->dev, "size %zu is not supported\n",
2413 			period_len);
2414 		return NULL;
2415 	}
2416 
2417 	/* Now allocate and setup the descriptor. */
2418 	tr_size = sizeof(struct cppi5_tr_type1_t);
2419 	d = udma_alloc_tr_desc(uc, tr_size, periods * num_tr, dir);
2420 	if (!d)
2421 		return NULL;
2422 
2423 	tr_req = d->hwdesc[0].tr_req_base;
2424 	period_addr = buf_addr;
2425 	for (i = 0; i < periods; i++) {
2426 		int tr_idx = i * num_tr;
2427 
2428 		cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false,
2429 			      false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2430 
2431 		tr_req[tr_idx].addr = period_addr;
2432 		tr_req[tr_idx].icnt0 = tr0_cnt0;
2433 		tr_req[tr_idx].icnt1 = tr0_cnt1;
2434 		tr_req[tr_idx].dim1 = tr0_cnt0;
2435 
2436 		if (num_tr == 2) {
2437 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2438 					 CPPI5_TR_CSF_SUPR_EVT);
2439 			tr_idx++;
2440 
2441 			cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
2442 				      false, false,
2443 				      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2444 
2445 			tr_req[tr_idx].addr = period_addr + tr0_cnt1 * tr0_cnt0;
2446 			tr_req[tr_idx].icnt0 = tr1_cnt0;
2447 			tr_req[tr_idx].icnt1 = 1;
2448 			tr_req[tr_idx].dim1 = tr1_cnt0;
2449 		}
2450 
2451 		if (!(flags & DMA_PREP_INTERRUPT))
2452 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2453 					 CPPI5_TR_CSF_SUPR_EVT);
2454 
2455 		period_addr += period_len;
2456 	}
2457 
2458 	return d;
2459 }
2460 
2461 static struct udma_desc *
2462 udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr,
2463 			 size_t buf_len, size_t period_len,
2464 			 enum dma_transfer_direction dir, unsigned long flags)
2465 {
2466 	struct udma_desc *d;
2467 	u32 ring_id;
2468 	int i;
2469 	int periods = buf_len / period_len;
2470 
2471 	if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1))
2472 		return NULL;
2473 
2474 	if (period_len >= SZ_4M)
2475 		return NULL;
2476 
2477 	d = kzalloc(struct_size(d, hwdesc, periods), GFP_NOWAIT);
2478 	if (!d)
2479 		return NULL;
2480 
2481 	d->hwdesc_count = periods;
2482 
2483 	/* TODO: re-check this... */
2484 	if (dir == DMA_DEV_TO_MEM)
2485 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2486 	else
2487 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2488 
2489 	for (i = 0; i < periods; i++) {
2490 		struct udma_hwdesc *hwdesc = &d->hwdesc[i];
2491 		dma_addr_t period_addr = buf_addr + (period_len * i);
2492 		struct cppi5_host_desc_t *h_desc;
2493 
2494 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
2495 						GFP_NOWAIT,
2496 						&hwdesc->cppi5_desc_paddr);
2497 		if (!hwdesc->cppi5_desc_vaddr) {
2498 			dev_err(uc->ud->dev,
2499 				"descriptor%d allocation failed\n", i);
2500 
2501 			udma_free_hwdesc(uc, d);
2502 			kfree(d);
2503 			return NULL;
2504 		}
2505 
2506 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
2507 		h_desc = hwdesc->cppi5_desc_vaddr;
2508 
2509 		cppi5_hdesc_init(h_desc, 0, 0);
2510 		cppi5_hdesc_set_pktlen(h_desc, period_len);
2511 
2512 		/* Flow and Packed ID */
2513 		cppi5_desc_set_pktids(&h_desc->hdr, uc->id,
2514 				      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2515 		cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id);
2516 
2517 		/* attach each period to a new descriptor */
2518 		cppi5_hdesc_attach_buf(h_desc,
2519 				       period_addr, period_len,
2520 				       period_addr, period_len);
2521 	}
2522 
2523 	return d;
2524 }
2525 
2526 static struct dma_async_tx_descriptor *
2527 udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2528 		     size_t period_len, enum dma_transfer_direction dir,
2529 		     unsigned long flags)
2530 {
2531 	struct udma_chan *uc = to_udma_chan(chan);
2532 	enum dma_slave_buswidth dev_width;
2533 	struct udma_desc *d;
2534 	u32 burst;
2535 
2536 	if (dir != uc->config.dir) {
2537 		dev_err(chan->device->dev,
2538 			"%s: chan%d is for %s, not supporting %s\n",
2539 			__func__, uc->id,
2540 			dmaengine_get_direction_text(uc->config.dir),
2541 			dmaengine_get_direction_text(dir));
2542 		return NULL;
2543 	}
2544 
2545 	uc->cyclic = true;
2546 
2547 	if (dir == DMA_DEV_TO_MEM) {
2548 		dev_width = uc->cfg.src_addr_width;
2549 		burst = uc->cfg.src_maxburst;
2550 	} else if (dir == DMA_MEM_TO_DEV) {
2551 		dev_width = uc->cfg.dst_addr_width;
2552 		burst = uc->cfg.dst_maxburst;
2553 	} else {
2554 		dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
2555 		return NULL;
2556 	}
2557 
2558 	if (!burst)
2559 		burst = 1;
2560 
2561 	if (uc->config.pkt_mode)
2562 		d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len,
2563 					     dir, flags);
2564 	else
2565 		d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len,
2566 					    dir, flags);
2567 
2568 	if (!d)
2569 		return NULL;
2570 
2571 	d->sglen = buf_len / period_len;
2572 
2573 	d->dir = dir;
2574 	d->residue = buf_len;
2575 
2576 	/* static TR for remote PDMA */
2577 	if (udma_configure_statictr(uc, d, dev_width, burst)) {
2578 		dev_err(uc->ud->dev,
2579 			"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
2580 			__func__, d->static_tr.bstcnt);
2581 
2582 		udma_free_hwdesc(uc, d);
2583 		kfree(d);
2584 		return NULL;
2585 	}
2586 
2587 	if (uc->config.metadata_size)
2588 		d->vd.tx.metadata_ops = &metadata_ops;
2589 
2590 	return vchan_tx_prep(&uc->vc, &d->vd, flags);
2591 }
2592 
2593 static struct dma_async_tx_descriptor *
2594 udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
2595 		     size_t len, unsigned long tx_flags)
2596 {
2597 	struct udma_chan *uc = to_udma_chan(chan);
2598 	struct udma_desc *d;
2599 	struct cppi5_tr_type15_t *tr_req;
2600 	int num_tr;
2601 	size_t tr_size = sizeof(struct cppi5_tr_type15_t);
2602 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2603 
2604 	if (uc->config.dir != DMA_MEM_TO_MEM) {
2605 		dev_err(chan->device->dev,
2606 			"%s: chan%d is for %s, not supporting %s\n",
2607 			__func__, uc->id,
2608 			dmaengine_get_direction_text(uc->config.dir),
2609 			dmaengine_get_direction_text(DMA_MEM_TO_MEM));
2610 		return NULL;
2611 	}
2612 
2613 	num_tr = udma_get_tr_counters(len, __ffs(src | dest), &tr0_cnt0,
2614 				      &tr0_cnt1, &tr1_cnt0);
2615 	if (num_tr < 0) {
2616 		dev_err(uc->ud->dev, "size %zu is not supported\n",
2617 			len);
2618 		return NULL;
2619 	}
2620 
2621 	d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM);
2622 	if (!d)
2623 		return NULL;
2624 
2625 	d->dir = DMA_MEM_TO_MEM;
2626 	d->desc_idx = 0;
2627 	d->tr_idx = 0;
2628 	d->residue = len;
2629 
2630 	tr_req = d->hwdesc[0].tr_req_base;
2631 
2632 	cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true,
2633 		      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2634 	cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT);
2635 
2636 	tr_req[0].addr = src;
2637 	tr_req[0].icnt0 = tr0_cnt0;
2638 	tr_req[0].icnt1 = tr0_cnt1;
2639 	tr_req[0].icnt2 = 1;
2640 	tr_req[0].icnt3 = 1;
2641 	tr_req[0].dim1 = tr0_cnt0;
2642 
2643 	tr_req[0].daddr = dest;
2644 	tr_req[0].dicnt0 = tr0_cnt0;
2645 	tr_req[0].dicnt1 = tr0_cnt1;
2646 	tr_req[0].dicnt2 = 1;
2647 	tr_req[0].dicnt3 = 1;
2648 	tr_req[0].ddim1 = tr0_cnt0;
2649 
2650 	if (num_tr == 2) {
2651 		cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true,
2652 			      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2653 		cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT);
2654 
2655 		tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0;
2656 		tr_req[1].icnt0 = tr1_cnt0;
2657 		tr_req[1].icnt1 = 1;
2658 		tr_req[1].icnt2 = 1;
2659 		tr_req[1].icnt3 = 1;
2660 
2661 		tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0;
2662 		tr_req[1].dicnt0 = tr1_cnt0;
2663 		tr_req[1].dicnt1 = 1;
2664 		tr_req[1].dicnt2 = 1;
2665 		tr_req[1].dicnt3 = 1;
2666 	}
2667 
2668 	cppi5_tr_csf_set(&tr_req[num_tr - 1].flags,
2669 			 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
2670 
2671 	if (uc->config.metadata_size)
2672 		d->vd.tx.metadata_ops = &metadata_ops;
2673 
2674 	return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
2675 }
2676 
2677 static void udma_issue_pending(struct dma_chan *chan)
2678 {
2679 	struct udma_chan *uc = to_udma_chan(chan);
2680 	unsigned long flags;
2681 
2682 	spin_lock_irqsave(&uc->vc.lock, flags);
2683 
2684 	/* If we have something pending and no active descriptor, then */
2685 	if (vchan_issue_pending(&uc->vc) && !uc->desc) {
2686 		/*
2687 		 * start a descriptor if the channel is NOT [marked as
2688 		 * terminating _and_ it is still running (teardown has not
2689 		 * completed yet)].
2690 		 */
2691 		if (!(uc->state == UDMA_CHAN_IS_TERMINATING &&
2692 		      udma_is_chan_running(uc)))
2693 			udma_start(uc);
2694 	}
2695 
2696 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2697 }
2698 
2699 static enum dma_status udma_tx_status(struct dma_chan *chan,
2700 				      dma_cookie_t cookie,
2701 				      struct dma_tx_state *txstate)
2702 {
2703 	struct udma_chan *uc = to_udma_chan(chan);
2704 	enum dma_status ret;
2705 	unsigned long flags;
2706 
2707 	spin_lock_irqsave(&uc->vc.lock, flags);
2708 
2709 	ret = dma_cookie_status(chan, cookie, txstate);
2710 
2711 	if (!udma_is_chan_running(uc))
2712 		ret = DMA_COMPLETE;
2713 
2714 	if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc))
2715 		ret = DMA_PAUSED;
2716 
2717 	if (ret == DMA_COMPLETE || !txstate)
2718 		goto out;
2719 
2720 	if (uc->desc && uc->desc->vd.tx.cookie == cookie) {
2721 		u32 peer_bcnt = 0;
2722 		u32 bcnt = 0;
2723 		u32 residue = uc->desc->residue;
2724 		u32 delay = 0;
2725 
2726 		if (uc->desc->dir == DMA_MEM_TO_DEV) {
2727 			bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
2728 
2729 			if (uc->config.ep_type != PSIL_EP_NATIVE) {
2730 				peer_bcnt = udma_tchanrt_read(uc,
2731 						UDMA_CHAN_RT_PEER_BCNT_REG);
2732 
2733 				if (bcnt > peer_bcnt)
2734 					delay = bcnt - peer_bcnt;
2735 			}
2736 		} else if (uc->desc->dir == DMA_DEV_TO_MEM) {
2737 			bcnt = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
2738 
2739 			if (uc->config.ep_type != PSIL_EP_NATIVE) {
2740 				peer_bcnt = udma_rchanrt_read(uc,
2741 						UDMA_CHAN_RT_PEER_BCNT_REG);
2742 
2743 				if (peer_bcnt > bcnt)
2744 					delay = peer_bcnt - bcnt;
2745 			}
2746 		} else {
2747 			bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
2748 		}
2749 
2750 		bcnt -= uc->bcnt;
2751 		if (bcnt && !(bcnt % uc->desc->residue))
2752 			residue = 0;
2753 		else
2754 			residue -= bcnt % uc->desc->residue;
2755 
2756 		if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) {
2757 			ret = DMA_COMPLETE;
2758 			delay = 0;
2759 		}
2760 
2761 		dma_set_residue(txstate, residue);
2762 		dma_set_in_flight_bytes(txstate, delay);
2763 
2764 	} else {
2765 		ret = DMA_COMPLETE;
2766 	}
2767 
2768 out:
2769 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2770 	return ret;
2771 }
2772 
2773 static int udma_pause(struct dma_chan *chan)
2774 {
2775 	struct udma_chan *uc = to_udma_chan(chan);
2776 
2777 	/* pause the channel */
2778 	switch (uc->config.dir) {
2779 	case DMA_DEV_TO_MEM:
2780 		udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
2781 					 UDMA_PEER_RT_EN_PAUSE,
2782 					 UDMA_PEER_RT_EN_PAUSE);
2783 		break;
2784 	case DMA_MEM_TO_DEV:
2785 		udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
2786 					 UDMA_PEER_RT_EN_PAUSE,
2787 					 UDMA_PEER_RT_EN_PAUSE);
2788 		break;
2789 	case DMA_MEM_TO_MEM:
2790 		udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG,
2791 					 UDMA_CHAN_RT_CTL_PAUSE,
2792 					 UDMA_CHAN_RT_CTL_PAUSE);
2793 		break;
2794 	default:
2795 		return -EINVAL;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static int udma_resume(struct dma_chan *chan)
2802 {
2803 	struct udma_chan *uc = to_udma_chan(chan);
2804 
2805 	/* resume the channel */
2806 	switch (uc->config.dir) {
2807 	case DMA_DEV_TO_MEM:
2808 		udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
2809 					 UDMA_PEER_RT_EN_PAUSE, 0);
2810 
2811 		break;
2812 	case DMA_MEM_TO_DEV:
2813 		udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
2814 					 UDMA_PEER_RT_EN_PAUSE, 0);
2815 		break;
2816 	case DMA_MEM_TO_MEM:
2817 		udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG,
2818 					 UDMA_CHAN_RT_CTL_PAUSE, 0);
2819 		break;
2820 	default:
2821 		return -EINVAL;
2822 	}
2823 
2824 	return 0;
2825 }
2826 
2827 static int udma_terminate_all(struct dma_chan *chan)
2828 {
2829 	struct udma_chan *uc = to_udma_chan(chan);
2830 	unsigned long flags;
2831 	LIST_HEAD(head);
2832 
2833 	spin_lock_irqsave(&uc->vc.lock, flags);
2834 
2835 	if (udma_is_chan_running(uc))
2836 		udma_stop(uc);
2837 
2838 	if (uc->desc) {
2839 		uc->terminated_desc = uc->desc;
2840 		uc->desc = NULL;
2841 		uc->terminated_desc->terminated = true;
2842 		cancel_delayed_work(&uc->tx_drain.work);
2843 	}
2844 
2845 	uc->paused = false;
2846 
2847 	vchan_get_all_descriptors(&uc->vc, &head);
2848 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2849 	vchan_dma_desc_free_list(&uc->vc, &head);
2850 
2851 	return 0;
2852 }
2853 
2854 static void udma_synchronize(struct dma_chan *chan)
2855 {
2856 	struct udma_chan *uc = to_udma_chan(chan);
2857 	unsigned long timeout = msecs_to_jiffies(1000);
2858 
2859 	vchan_synchronize(&uc->vc);
2860 
2861 	if (uc->state == UDMA_CHAN_IS_TERMINATING) {
2862 		timeout = wait_for_completion_timeout(&uc->teardown_completed,
2863 						      timeout);
2864 		if (!timeout) {
2865 			dev_warn(uc->ud->dev, "chan%d teardown timeout!\n",
2866 				 uc->id);
2867 			udma_dump_chan_stdata(uc);
2868 			udma_reset_chan(uc, true);
2869 		}
2870 	}
2871 
2872 	udma_reset_chan(uc, false);
2873 	if (udma_is_chan_running(uc))
2874 		dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id);
2875 
2876 	cancel_delayed_work_sync(&uc->tx_drain.work);
2877 	udma_reset_rings(uc);
2878 }
2879 
2880 static void udma_desc_pre_callback(struct virt_dma_chan *vc,
2881 				   struct virt_dma_desc *vd,
2882 				   struct dmaengine_result *result)
2883 {
2884 	struct udma_chan *uc = to_udma_chan(&vc->chan);
2885 	struct udma_desc *d;
2886 
2887 	if (!vd)
2888 		return;
2889 
2890 	d = to_udma_desc(&vd->tx);
2891 
2892 	if (d->metadata_size)
2893 		udma_fetch_epib(uc, d);
2894 
2895 	/* Provide residue information for the client */
2896 	if (result) {
2897 		void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx);
2898 
2899 		if (cppi5_desc_get_type(desc_vaddr) ==
2900 		    CPPI5_INFO0_DESC_TYPE_VAL_HOST) {
2901 			result->residue = d->residue -
2902 					  cppi5_hdesc_get_pktlen(desc_vaddr);
2903 			if (result->residue)
2904 				result->result = DMA_TRANS_ABORTED;
2905 			else
2906 				result->result = DMA_TRANS_NOERROR;
2907 		} else {
2908 			result->residue = 0;
2909 			result->result = DMA_TRANS_NOERROR;
2910 		}
2911 	}
2912 }
2913 
2914 /*
2915  * This tasklet handles the completion of a DMA descriptor by
2916  * calling its callback and freeing it.
2917  */
2918 static void udma_vchan_complete(struct tasklet_struct *t)
2919 {
2920 	struct virt_dma_chan *vc = from_tasklet(vc, t, task);
2921 	struct virt_dma_desc *vd, *_vd;
2922 	struct dmaengine_desc_callback cb;
2923 	LIST_HEAD(head);
2924 
2925 	spin_lock_irq(&vc->lock);
2926 	list_splice_tail_init(&vc->desc_completed, &head);
2927 	vd = vc->cyclic;
2928 	if (vd) {
2929 		vc->cyclic = NULL;
2930 		dmaengine_desc_get_callback(&vd->tx, &cb);
2931 	} else {
2932 		memset(&cb, 0, sizeof(cb));
2933 	}
2934 	spin_unlock_irq(&vc->lock);
2935 
2936 	udma_desc_pre_callback(vc, vd, NULL);
2937 	dmaengine_desc_callback_invoke(&cb, NULL);
2938 
2939 	list_for_each_entry_safe(vd, _vd, &head, node) {
2940 		struct dmaengine_result result;
2941 
2942 		dmaengine_desc_get_callback(&vd->tx, &cb);
2943 
2944 		list_del(&vd->node);
2945 
2946 		udma_desc_pre_callback(vc, vd, &result);
2947 		dmaengine_desc_callback_invoke(&cb, &result);
2948 
2949 		vchan_vdesc_fini(vd);
2950 	}
2951 }
2952 
2953 static void udma_free_chan_resources(struct dma_chan *chan)
2954 {
2955 	struct udma_chan *uc = to_udma_chan(chan);
2956 	struct udma_dev *ud = to_udma_dev(chan->device);
2957 
2958 	udma_terminate_all(chan);
2959 	if (uc->terminated_desc) {
2960 		udma_reset_chan(uc, false);
2961 		udma_reset_rings(uc);
2962 	}
2963 
2964 	cancel_delayed_work_sync(&uc->tx_drain.work);
2965 
2966 	if (uc->irq_num_ring > 0) {
2967 		free_irq(uc->irq_num_ring, uc);
2968 
2969 		uc->irq_num_ring = 0;
2970 	}
2971 	if (uc->irq_num_udma > 0) {
2972 		free_irq(uc->irq_num_udma, uc);
2973 
2974 		uc->irq_num_udma = 0;
2975 	}
2976 
2977 	/* Release PSI-L pairing */
2978 	if (uc->psil_paired) {
2979 		navss_psil_unpair(ud, uc->config.src_thread,
2980 				  uc->config.dst_thread);
2981 		uc->psil_paired = false;
2982 	}
2983 
2984 	vchan_free_chan_resources(&uc->vc);
2985 	tasklet_kill(&uc->vc.task);
2986 
2987 	udma_free_tx_resources(uc);
2988 	udma_free_rx_resources(uc);
2989 	udma_reset_uchan(uc);
2990 
2991 	if (uc->use_dma_pool) {
2992 		dma_pool_destroy(uc->hdesc_pool);
2993 		uc->use_dma_pool = false;
2994 	}
2995 }
2996 
2997 static struct platform_driver udma_driver;
2998 
2999 struct udma_filter_param {
3000 	int remote_thread_id;
3001 	u32 atype;
3002 };
3003 
3004 static bool udma_dma_filter_fn(struct dma_chan *chan, void *param)
3005 {
3006 	struct udma_chan_config *ucc;
3007 	struct psil_endpoint_config *ep_config;
3008 	struct udma_filter_param *filter_param;
3009 	struct udma_chan *uc;
3010 	struct udma_dev *ud;
3011 
3012 	if (chan->device->dev->driver != &udma_driver.driver)
3013 		return false;
3014 
3015 	uc = to_udma_chan(chan);
3016 	ucc = &uc->config;
3017 	ud = uc->ud;
3018 	filter_param = param;
3019 
3020 	if (filter_param->atype > 2) {
3021 		dev_err(ud->dev, "Invalid channel atype: %u\n",
3022 			filter_param->atype);
3023 		return false;
3024 	}
3025 
3026 	ucc->remote_thread_id = filter_param->remote_thread_id;
3027 	ucc->atype = filter_param->atype;
3028 
3029 	if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET)
3030 		ucc->dir = DMA_MEM_TO_DEV;
3031 	else
3032 		ucc->dir = DMA_DEV_TO_MEM;
3033 
3034 	ep_config = psil_get_ep_config(ucc->remote_thread_id);
3035 	if (IS_ERR(ep_config)) {
3036 		dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n",
3037 			ucc->remote_thread_id);
3038 		ucc->dir = DMA_MEM_TO_MEM;
3039 		ucc->remote_thread_id = -1;
3040 		ucc->atype = 0;
3041 		return false;
3042 	}
3043 
3044 	ucc->pkt_mode = ep_config->pkt_mode;
3045 	ucc->channel_tpl = ep_config->channel_tpl;
3046 	ucc->notdpkt = ep_config->notdpkt;
3047 	ucc->ep_type = ep_config->ep_type;
3048 
3049 	if (ucc->ep_type != PSIL_EP_NATIVE) {
3050 		const struct udma_match_data *match_data = ud->match_data;
3051 
3052 		if (match_data->flags & UDMA_FLAG_PDMA_ACC32)
3053 			ucc->enable_acc32 = ep_config->pdma_acc32;
3054 		if (match_data->flags & UDMA_FLAG_PDMA_BURST)
3055 			ucc->enable_burst = ep_config->pdma_burst;
3056 	}
3057 
3058 	ucc->needs_epib = ep_config->needs_epib;
3059 	ucc->psd_size = ep_config->psd_size;
3060 	ucc->metadata_size =
3061 			(ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) +
3062 			ucc->psd_size;
3063 
3064 	if (ucc->pkt_mode)
3065 		ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
3066 				 ucc->metadata_size, ud->desc_align);
3067 
3068 	dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id,
3069 		ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir));
3070 
3071 	return true;
3072 }
3073 
3074 static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec,
3075 				      struct of_dma *ofdma)
3076 {
3077 	struct udma_dev *ud = ofdma->of_dma_data;
3078 	dma_cap_mask_t mask = ud->ddev.cap_mask;
3079 	struct udma_filter_param filter_param;
3080 	struct dma_chan *chan;
3081 
3082 	if (dma_spec->args_count != 1 && dma_spec->args_count != 2)
3083 		return NULL;
3084 
3085 	filter_param.remote_thread_id = dma_spec->args[0];
3086 	if (dma_spec->args_count == 2)
3087 		filter_param.atype = dma_spec->args[1];
3088 	else
3089 		filter_param.atype = 0;
3090 
3091 	chan = __dma_request_channel(&mask, udma_dma_filter_fn, &filter_param,
3092 				     ofdma->of_node);
3093 	if (!chan) {
3094 		dev_err(ud->dev, "get channel fail in %s.\n", __func__);
3095 		return ERR_PTR(-EINVAL);
3096 	}
3097 
3098 	return chan;
3099 }
3100 
3101 static struct udma_match_data am654_main_data = {
3102 	.psil_base = 0x1000,
3103 	.enable_memcpy_support = true,
3104 	.statictr_z_mask = GENMASK(11, 0),
3105 };
3106 
3107 static struct udma_match_data am654_mcu_data = {
3108 	.psil_base = 0x6000,
3109 	.enable_memcpy_support = false,
3110 	.statictr_z_mask = GENMASK(11, 0),
3111 };
3112 
3113 static struct udma_match_data j721e_main_data = {
3114 	.psil_base = 0x1000,
3115 	.enable_memcpy_support = true,
3116 	.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST | UDMA_FLAG_TDTYPE,
3117 	.statictr_z_mask = GENMASK(23, 0),
3118 };
3119 
3120 static struct udma_match_data j721e_mcu_data = {
3121 	.psil_base = 0x6000,
3122 	.enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */
3123 	.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST | UDMA_FLAG_TDTYPE,
3124 	.statictr_z_mask = GENMASK(23, 0),
3125 };
3126 
3127 static const struct of_device_id udma_of_match[] = {
3128 	{
3129 		.compatible = "ti,am654-navss-main-udmap",
3130 		.data = &am654_main_data,
3131 	},
3132 	{
3133 		.compatible = "ti,am654-navss-mcu-udmap",
3134 		.data = &am654_mcu_data,
3135 	}, {
3136 		.compatible = "ti,j721e-navss-main-udmap",
3137 		.data = &j721e_main_data,
3138 	}, {
3139 		.compatible = "ti,j721e-navss-mcu-udmap",
3140 		.data = &j721e_mcu_data,
3141 	},
3142 	{ /* Sentinel */ },
3143 };
3144 
3145 static struct udma_soc_data am654_soc_data = {
3146 	.rchan_oes_offset = 0x200,
3147 };
3148 
3149 static struct udma_soc_data j721e_soc_data = {
3150 	.rchan_oes_offset = 0x400,
3151 };
3152 
3153 static struct udma_soc_data j7200_soc_data = {
3154 	.rchan_oes_offset = 0x80,
3155 };
3156 
3157 static const struct soc_device_attribute k3_soc_devices[] = {
3158 	{ .family = "AM65X", .data = &am654_soc_data },
3159 	{ .family = "J721E", .data = &j721e_soc_data },
3160 	{ .family = "J7200", .data = &j7200_soc_data },
3161 	{ /* sentinel */ }
3162 };
3163 
3164 static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud)
3165 {
3166 	int i;
3167 
3168 	for (i = 0; i < MMR_LAST; i++) {
3169 		ud->mmrs[i] = devm_platform_ioremap_resource_byname(pdev, mmr_names[i]);
3170 		if (IS_ERR(ud->mmrs[i]))
3171 			return PTR_ERR(ud->mmrs[i]);
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 static void udma_mark_resource_ranges(struct udma_dev *ud, unsigned long *map,
3178 				      struct ti_sci_resource_desc *rm_desc,
3179 				      char *name)
3180 {
3181 	bitmap_clear(map, rm_desc->start, rm_desc->num);
3182 	bitmap_clear(map, rm_desc->start_sec, rm_desc->num_sec);
3183 	dev_dbg(ud->dev, "ti_sci resource range for %s: %d:%d | %d:%d\n", name,
3184 		rm_desc->start, rm_desc->num, rm_desc->start_sec,
3185 		rm_desc->num_sec);
3186 }
3187 
3188 static int udma_setup_resources(struct udma_dev *ud)
3189 {
3190 	struct device *dev = ud->dev;
3191 	int ch_count, ret, i, j;
3192 	u32 cap2, cap3;
3193 	struct ti_sci_resource *rm_res, irq_res;
3194 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
3195 	static const char * const range_names[] = { "ti,sci-rm-range-tchan",
3196 						    "ti,sci-rm-range-rchan",
3197 						    "ti,sci-rm-range-rflow" };
3198 
3199 	cap2 = udma_read(ud->mmrs[MMR_GCFG], UDMA_CAP_REG(2));
3200 	cap3 = udma_read(ud->mmrs[MMR_GCFG], UDMA_CAP_REG(3));
3201 
3202 	ud->rflow_cnt = UDMA_CAP3_RFLOW_CNT(cap3);
3203 	ud->tchan_cnt = UDMA_CAP2_TCHAN_CNT(cap2);
3204 	ud->echan_cnt = UDMA_CAP2_ECHAN_CNT(cap2);
3205 	ud->rchan_cnt = UDMA_CAP2_RCHAN_CNT(cap2);
3206 	ch_count  = ud->tchan_cnt + ud->rchan_cnt;
3207 
3208 	/* Set up the throughput level start indexes */
3209 	if (of_device_is_compatible(dev->of_node,
3210 				    "ti,am654-navss-main-udmap")) {
3211 		ud->tpl_levels = 2;
3212 		ud->tpl_start_idx[0] = 8;
3213 	} else if (of_device_is_compatible(dev->of_node,
3214 					   "ti,am654-navss-mcu-udmap")) {
3215 		ud->tpl_levels = 2;
3216 		ud->tpl_start_idx[0] = 2;
3217 	} else if (UDMA_CAP3_UCHAN_CNT(cap3)) {
3218 		ud->tpl_levels = 3;
3219 		ud->tpl_start_idx[1] = UDMA_CAP3_UCHAN_CNT(cap3);
3220 		ud->tpl_start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3);
3221 	} else if (UDMA_CAP3_HCHAN_CNT(cap3)) {
3222 		ud->tpl_levels = 2;
3223 		ud->tpl_start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3);
3224 	} else {
3225 		ud->tpl_levels = 1;
3226 	}
3227 
3228 	ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt),
3229 					   sizeof(unsigned long), GFP_KERNEL);
3230 	ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans),
3231 				  GFP_KERNEL);
3232 	ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt),
3233 					   sizeof(unsigned long), GFP_KERNEL);
3234 	ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans),
3235 				  GFP_KERNEL);
3236 	ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt),
3237 					      sizeof(unsigned long),
3238 					      GFP_KERNEL);
3239 	ud->rflow_gp_map_allocated = devm_kcalloc(dev,
3240 						  BITS_TO_LONGS(ud->rflow_cnt),
3241 						  sizeof(unsigned long),
3242 						  GFP_KERNEL);
3243 	ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt),
3244 					sizeof(unsigned long),
3245 					GFP_KERNEL);
3246 	ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows),
3247 				  GFP_KERNEL);
3248 
3249 	if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map ||
3250 	    !ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans ||
3251 	    !ud->rflows || !ud->rflow_in_use)
3252 		return -ENOMEM;
3253 
3254 	/*
3255 	 * RX flows with the same Ids as RX channels are reserved to be used
3256 	 * as default flows if remote HW can't generate flow_ids. Those
3257 	 * RX flows can be requested only explicitly by id.
3258 	 */
3259 	bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt);
3260 
3261 	/* by default no GP rflows are assigned to Linux */
3262 	bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt);
3263 
3264 	/* Get resource ranges from tisci */
3265 	for (i = 0; i < RM_RANGE_LAST; i++)
3266 		tisci_rm->rm_ranges[i] =
3267 			devm_ti_sci_get_of_resource(tisci_rm->tisci, dev,
3268 						    tisci_rm->tisci_dev_id,
3269 						    (char *)range_names[i]);
3270 
3271 	/* tchan ranges */
3272 	rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
3273 	if (IS_ERR(rm_res)) {
3274 		bitmap_zero(ud->tchan_map, ud->tchan_cnt);
3275 	} else {
3276 		bitmap_fill(ud->tchan_map, ud->tchan_cnt);
3277 		for (i = 0; i < rm_res->sets; i++)
3278 			udma_mark_resource_ranges(ud, ud->tchan_map,
3279 						  &rm_res->desc[i], "tchan");
3280 	}
3281 	irq_res.sets = rm_res->sets;
3282 
3283 	/* rchan and matching default flow ranges */
3284 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
3285 	if (IS_ERR(rm_res)) {
3286 		bitmap_zero(ud->rchan_map, ud->rchan_cnt);
3287 	} else {
3288 		bitmap_fill(ud->rchan_map, ud->rchan_cnt);
3289 		for (i = 0; i < rm_res->sets; i++)
3290 			udma_mark_resource_ranges(ud, ud->rchan_map,
3291 						  &rm_res->desc[i], "rchan");
3292 	}
3293 
3294 	irq_res.sets += rm_res->sets;
3295 	irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL);
3296 	rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
3297 	for (i = 0; i < rm_res->sets; i++) {
3298 		irq_res.desc[i].start = rm_res->desc[i].start;
3299 		irq_res.desc[i].num = rm_res->desc[i].num;
3300 		irq_res.desc[i].start_sec = rm_res->desc[i].start_sec;
3301 		irq_res.desc[i].num_sec = rm_res->desc[i].num_sec;
3302 	}
3303 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
3304 	for (j = 0; j < rm_res->sets; j++, i++) {
3305 		if (rm_res->desc[j].num) {
3306 			irq_res.desc[i].start = rm_res->desc[j].start +
3307 					ud->soc_data->rchan_oes_offset;
3308 			irq_res.desc[i].num = rm_res->desc[j].num;
3309 		}
3310 		if (rm_res->desc[j].num_sec) {
3311 			irq_res.desc[i].start_sec = rm_res->desc[j].start_sec +
3312 					ud->soc_data->rchan_oes_offset;
3313 			irq_res.desc[i].num_sec = rm_res->desc[j].num_sec;
3314 		}
3315 	}
3316 	ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res);
3317 	kfree(irq_res.desc);
3318 	if (ret) {
3319 		dev_err(ud->dev, "Failed to allocate MSI interrupts\n");
3320 		return ret;
3321 	}
3322 
3323 	/* GP rflow ranges */
3324 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW];
3325 	if (IS_ERR(rm_res)) {
3326 		/* all gp flows are assigned exclusively to Linux */
3327 		bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt,
3328 			     ud->rflow_cnt - ud->rchan_cnt);
3329 	} else {
3330 		for (i = 0; i < rm_res->sets; i++)
3331 			udma_mark_resource_ranges(ud, ud->rflow_gp_map,
3332 						  &rm_res->desc[i], "gp-rflow");
3333 	}
3334 
3335 	ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt);
3336 	ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt);
3337 	if (!ch_count)
3338 		return -ENODEV;
3339 
3340 	ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels),
3341 				    GFP_KERNEL);
3342 	if (!ud->channels)
3343 		return -ENOMEM;
3344 
3345 	dev_info(dev, "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n",
3346 		 ch_count,
3347 		 ud->tchan_cnt - bitmap_weight(ud->tchan_map, ud->tchan_cnt),
3348 		 ud->rchan_cnt - bitmap_weight(ud->rchan_map, ud->rchan_cnt),
3349 		 ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map,
3350 					       ud->rflow_cnt));
3351 
3352 	return ch_count;
3353 }
3354 
3355 static int udma_setup_rx_flush(struct udma_dev *ud)
3356 {
3357 	struct udma_rx_flush *rx_flush = &ud->rx_flush;
3358 	struct cppi5_desc_hdr_t *tr_desc;
3359 	struct cppi5_tr_type1_t *tr_req;
3360 	struct cppi5_host_desc_t *desc;
3361 	struct device *dev = ud->dev;
3362 	struct udma_hwdesc *hwdesc;
3363 	size_t tr_size;
3364 
3365 	/* Allocate 1K buffer for discarded data on RX channel teardown */
3366 	rx_flush->buffer_size = SZ_1K;
3367 	rx_flush->buffer_vaddr = devm_kzalloc(dev, rx_flush->buffer_size,
3368 					      GFP_KERNEL);
3369 	if (!rx_flush->buffer_vaddr)
3370 		return -ENOMEM;
3371 
3372 	rx_flush->buffer_paddr = dma_map_single(dev, rx_flush->buffer_vaddr,
3373 						rx_flush->buffer_size,
3374 						DMA_TO_DEVICE);
3375 	if (dma_mapping_error(dev, rx_flush->buffer_paddr))
3376 		return -ENOMEM;
3377 
3378 	/* Set up descriptor to be used for TR mode */
3379 	hwdesc = &rx_flush->hwdescs[0];
3380 	tr_size = sizeof(struct cppi5_tr_type1_t);
3381 	hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1);
3382 	hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
3383 					ud->desc_align);
3384 
3385 	hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
3386 						GFP_KERNEL);
3387 	if (!hwdesc->cppi5_desc_vaddr)
3388 		return -ENOMEM;
3389 
3390 	hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
3391 						  hwdesc->cppi5_desc_size,
3392 						  DMA_TO_DEVICE);
3393 	if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
3394 		return -ENOMEM;
3395 
3396 	/* Start of the TR req records */
3397 	hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
3398 	/* Start address of the TR response array */
3399 	hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size;
3400 
3401 	tr_desc = hwdesc->cppi5_desc_vaddr;
3402 	cppi5_trdesc_init(tr_desc, 1, tr_size, 0, 0);
3403 	cppi5_desc_set_pktids(tr_desc, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
3404 	cppi5_desc_set_retpolicy(tr_desc, 0, 0);
3405 
3406 	tr_req = hwdesc->tr_req_base;
3407 	cppi5_tr_init(&tr_req->flags, CPPI5_TR_TYPE1, false, false,
3408 		      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
3409 	cppi5_tr_csf_set(&tr_req->flags, CPPI5_TR_CSF_SUPR_EVT);
3410 
3411 	tr_req->addr = rx_flush->buffer_paddr;
3412 	tr_req->icnt0 = rx_flush->buffer_size;
3413 	tr_req->icnt1 = 1;
3414 
3415 	dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
3416 				   hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
3417 
3418 	/* Set up descriptor to be used for packet mode */
3419 	hwdesc = &rx_flush->hwdescs[1];
3420 	hwdesc->cppi5_desc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
3421 					CPPI5_INFO0_HDESC_EPIB_SIZE +
3422 					CPPI5_INFO0_HDESC_PSDATA_MAX_SIZE,
3423 					ud->desc_align);
3424 
3425 	hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
3426 						GFP_KERNEL);
3427 	if (!hwdesc->cppi5_desc_vaddr)
3428 		return -ENOMEM;
3429 
3430 	hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
3431 						  hwdesc->cppi5_desc_size,
3432 						  DMA_TO_DEVICE);
3433 	if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
3434 		return -ENOMEM;
3435 
3436 	desc = hwdesc->cppi5_desc_vaddr;
3437 	cppi5_hdesc_init(desc, 0, 0);
3438 	cppi5_desc_set_pktids(&desc->hdr, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
3439 	cppi5_desc_set_retpolicy(&desc->hdr, 0, 0);
3440 
3441 	cppi5_hdesc_attach_buf(desc,
3442 			       rx_flush->buffer_paddr, rx_flush->buffer_size,
3443 			       rx_flush->buffer_paddr, rx_flush->buffer_size);
3444 
3445 	dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
3446 				   hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
3447 	return 0;
3448 }
3449 
3450 #ifdef CONFIG_DEBUG_FS
3451 static void udma_dbg_summary_show_chan(struct seq_file *s,
3452 				       struct dma_chan *chan)
3453 {
3454 	struct udma_chan *uc = to_udma_chan(chan);
3455 	struct udma_chan_config *ucc = &uc->config;
3456 
3457 	seq_printf(s, " %-13s| %s", dma_chan_name(chan),
3458 		   chan->dbg_client_name ?: "in-use");
3459 	seq_printf(s, " (%s, ", dmaengine_get_direction_text(uc->config.dir));
3460 
3461 	switch (uc->config.dir) {
3462 	case DMA_MEM_TO_MEM:
3463 		seq_printf(s, "chan%d pair [0x%04x -> 0x%04x], ", uc->tchan->id,
3464 			   ucc->src_thread, ucc->dst_thread);
3465 		break;
3466 	case DMA_DEV_TO_MEM:
3467 		seq_printf(s, "rchan%d [0x%04x -> 0x%04x], ", uc->rchan->id,
3468 			   ucc->src_thread, ucc->dst_thread);
3469 		break;
3470 	case DMA_MEM_TO_DEV:
3471 		seq_printf(s, "tchan%d [0x%04x -> 0x%04x], ", uc->tchan->id,
3472 			   ucc->src_thread, ucc->dst_thread);
3473 		break;
3474 	default:
3475 		seq_printf(s, ")\n");
3476 		return;
3477 	}
3478 
3479 	if (ucc->ep_type == PSIL_EP_NATIVE) {
3480 		seq_printf(s, "PSI-L Native");
3481 		if (ucc->metadata_size) {
3482 			seq_printf(s, "[%s", ucc->needs_epib ? " EPIB" : "");
3483 			if (ucc->psd_size)
3484 				seq_printf(s, " PSDsize:%u", ucc->psd_size);
3485 			seq_printf(s, " ]");
3486 		}
3487 	} else {
3488 		seq_printf(s, "PDMA");
3489 		if (ucc->enable_acc32 || ucc->enable_burst)
3490 			seq_printf(s, "[%s%s ]",
3491 				   ucc->enable_acc32 ? " ACC32" : "",
3492 				   ucc->enable_burst ? " BURST" : "");
3493 	}
3494 
3495 	seq_printf(s, ", %s)\n", ucc->pkt_mode ? "Packet mode" : "TR mode");
3496 }
3497 
3498 static void udma_dbg_summary_show(struct seq_file *s,
3499 				  struct dma_device *dma_dev)
3500 {
3501 	struct dma_chan *chan;
3502 
3503 	list_for_each_entry(chan, &dma_dev->channels, device_node) {
3504 		if (chan->client_count)
3505 			udma_dbg_summary_show_chan(s, chan);
3506 	}
3507 }
3508 #endif /* CONFIG_DEBUG_FS */
3509 
3510 #define TI_UDMAC_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
3511 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
3512 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
3513 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
3514 				 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
3515 
3516 static int udma_probe(struct platform_device *pdev)
3517 {
3518 	struct device_node *navss_node = pdev->dev.parent->of_node;
3519 	const struct soc_device_attribute *soc;
3520 	struct device *dev = &pdev->dev;
3521 	struct udma_dev *ud;
3522 	const struct of_device_id *match;
3523 	int i, ret;
3524 	int ch_count;
3525 
3526 	ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48));
3527 	if (ret)
3528 		dev_err(dev, "failed to set dma mask stuff\n");
3529 
3530 	ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL);
3531 	if (!ud)
3532 		return -ENOMEM;
3533 
3534 	ret = udma_get_mmrs(pdev, ud);
3535 	if (ret)
3536 		return ret;
3537 
3538 	ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci");
3539 	if (IS_ERR(ud->tisci_rm.tisci))
3540 		return PTR_ERR(ud->tisci_rm.tisci);
3541 
3542 	ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id",
3543 				   &ud->tisci_rm.tisci_dev_id);
3544 	if (ret) {
3545 		dev_err(dev, "ti,sci-dev-id read failure %d\n", ret);
3546 		return ret;
3547 	}
3548 	pdev->id = ud->tisci_rm.tisci_dev_id;
3549 
3550 	ret = of_property_read_u32(navss_node, "ti,sci-dev-id",
3551 				   &ud->tisci_rm.tisci_navss_dev_id);
3552 	if (ret) {
3553 		dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret);
3554 		return ret;
3555 	}
3556 
3557 	ret = of_property_read_u32(dev->of_node, "ti,udma-atype", &ud->atype);
3558 	if (!ret && ud->atype > 2) {
3559 		dev_err(dev, "Invalid atype: %u\n", ud->atype);
3560 		return -EINVAL;
3561 	}
3562 
3563 	ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops;
3564 	ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops;
3565 
3566 	ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc");
3567 	if (IS_ERR(ud->ringacc))
3568 		return PTR_ERR(ud->ringacc);
3569 
3570 	dev->msi_domain = of_msi_get_domain(dev, dev->of_node,
3571 					    DOMAIN_BUS_TI_SCI_INTA_MSI);
3572 	if (!dev->msi_domain) {
3573 		dev_err(dev, "Failed to get MSI domain\n");
3574 		return -EPROBE_DEFER;
3575 	}
3576 
3577 	match = of_match_node(udma_of_match, dev->of_node);
3578 	if (!match) {
3579 		dev_err(dev, "No compatible match found\n");
3580 		return -ENODEV;
3581 	}
3582 	ud->match_data = match->data;
3583 
3584 	soc = soc_device_match(k3_soc_devices);
3585 	if (!soc) {
3586 		dev_err(dev, "No compatible SoC found\n");
3587 		return -ENODEV;
3588 	}
3589 	ud->soc_data = soc->data;
3590 
3591 	dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask);
3592 	dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask);
3593 
3594 	ud->ddev.device_alloc_chan_resources = udma_alloc_chan_resources;
3595 	ud->ddev.device_config = udma_slave_config;
3596 	ud->ddev.device_prep_slave_sg = udma_prep_slave_sg;
3597 	ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic;
3598 	ud->ddev.device_issue_pending = udma_issue_pending;
3599 	ud->ddev.device_tx_status = udma_tx_status;
3600 	ud->ddev.device_pause = udma_pause;
3601 	ud->ddev.device_resume = udma_resume;
3602 	ud->ddev.device_terminate_all = udma_terminate_all;
3603 	ud->ddev.device_synchronize = udma_synchronize;
3604 #ifdef CONFIG_DEBUG_FS
3605 	ud->ddev.dbg_summary_show = udma_dbg_summary_show;
3606 #endif
3607 
3608 	ud->ddev.device_free_chan_resources = udma_free_chan_resources;
3609 	ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS;
3610 	ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS;
3611 	ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3612 	ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3613 	ud->ddev.copy_align = DMAENGINE_ALIGN_8_BYTES;
3614 	ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT |
3615 				       DESC_METADATA_ENGINE;
3616 	if (ud->match_data->enable_memcpy_support) {
3617 		dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask);
3618 		ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy;
3619 		ud->ddev.directions |= BIT(DMA_MEM_TO_MEM);
3620 	}
3621 
3622 	ud->ddev.dev = dev;
3623 	ud->dev = dev;
3624 	ud->psil_base = ud->match_data->psil_base;
3625 
3626 	INIT_LIST_HEAD(&ud->ddev.channels);
3627 	INIT_LIST_HEAD(&ud->desc_to_purge);
3628 
3629 	ch_count = udma_setup_resources(ud);
3630 	if (ch_count <= 0)
3631 		return ch_count;
3632 
3633 	spin_lock_init(&ud->lock);
3634 	INIT_WORK(&ud->purge_work, udma_purge_desc_work);
3635 
3636 	ud->desc_align = 64;
3637 	if (ud->desc_align < dma_get_cache_alignment())
3638 		ud->desc_align = dma_get_cache_alignment();
3639 
3640 	ret = udma_setup_rx_flush(ud);
3641 	if (ret)
3642 		return ret;
3643 
3644 	for (i = 0; i < ud->tchan_cnt; i++) {
3645 		struct udma_tchan *tchan = &ud->tchans[i];
3646 
3647 		tchan->id = i;
3648 		tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000;
3649 	}
3650 
3651 	for (i = 0; i < ud->rchan_cnt; i++) {
3652 		struct udma_rchan *rchan = &ud->rchans[i];
3653 
3654 		rchan->id = i;
3655 		rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000;
3656 	}
3657 
3658 	for (i = 0; i < ud->rflow_cnt; i++) {
3659 		struct udma_rflow *rflow = &ud->rflows[i];
3660 
3661 		rflow->id = i;
3662 	}
3663 
3664 	for (i = 0; i < ch_count; i++) {
3665 		struct udma_chan *uc = &ud->channels[i];
3666 
3667 		uc->ud = ud;
3668 		uc->vc.desc_free = udma_desc_free;
3669 		uc->id = i;
3670 		uc->tchan = NULL;
3671 		uc->rchan = NULL;
3672 		uc->config.remote_thread_id = -1;
3673 		uc->config.dir = DMA_MEM_TO_MEM;
3674 		uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d",
3675 					  dev_name(dev), i);
3676 
3677 		vchan_init(&uc->vc, &ud->ddev);
3678 		/* Use custom vchan completion handling */
3679 		tasklet_setup(&uc->vc.task, udma_vchan_complete);
3680 		init_completion(&uc->teardown_completed);
3681 		INIT_DELAYED_WORK(&uc->tx_drain.work, udma_check_tx_completion);
3682 	}
3683 
3684 	ret = dma_async_device_register(&ud->ddev);
3685 	if (ret) {
3686 		dev_err(dev, "failed to register slave DMA engine: %d\n", ret);
3687 		return ret;
3688 	}
3689 
3690 	platform_set_drvdata(pdev, ud);
3691 
3692 	ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud);
3693 	if (ret) {
3694 		dev_err(dev, "failed to register of_dma controller\n");
3695 		dma_async_device_unregister(&ud->ddev);
3696 	}
3697 
3698 	return ret;
3699 }
3700 
3701 static struct platform_driver udma_driver = {
3702 	.driver = {
3703 		.name	= "ti-udma",
3704 		.of_match_table = udma_of_match,
3705 		.suppress_bind_attrs = true,
3706 	},
3707 	.probe		= udma_probe,
3708 };
3709 builtin_platform_driver(udma_driver);
3710 
3711 /* Private interfaces to UDMA */
3712 #include "k3-udma-private.c"
3713