1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com 4 * Author: Peter Ujfalusi <peter.ujfalusi@ti.com> 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/delay.h> 9 #include <linux/dmaengine.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmapool.h> 12 #include <linux/err.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/list.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/sys_soc.h> 20 #include <linux/of.h> 21 #include <linux/of_dma.h> 22 #include <linux/of_device.h> 23 #include <linux/of_irq.h> 24 #include <linux/workqueue.h> 25 #include <linux/completion.h> 26 #include <linux/soc/ti/k3-ringacc.h> 27 #include <linux/soc/ti/ti_sci_protocol.h> 28 #include <linux/soc/ti/ti_sci_inta_msi.h> 29 #include <linux/dma/ti-cppi5.h> 30 31 #include "../virt-dma.h" 32 #include "k3-udma.h" 33 #include "k3-psil-priv.h" 34 35 struct udma_static_tr { 36 u8 elsize; /* RPSTR0 */ 37 u16 elcnt; /* RPSTR0 */ 38 u16 bstcnt; /* RPSTR1 */ 39 }; 40 41 #define K3_UDMA_MAX_RFLOWS 1024 42 #define K3_UDMA_DEFAULT_RING_SIZE 16 43 44 /* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */ 45 #define UDMA_RFLOW_SRCTAG_NONE 0 46 #define UDMA_RFLOW_SRCTAG_CFG_TAG 1 47 #define UDMA_RFLOW_SRCTAG_FLOW_ID 2 48 #define UDMA_RFLOW_SRCTAG_SRC_TAG 4 49 50 #define UDMA_RFLOW_DSTTAG_NONE 0 51 #define UDMA_RFLOW_DSTTAG_CFG_TAG 1 52 #define UDMA_RFLOW_DSTTAG_FLOW_ID 2 53 #define UDMA_RFLOW_DSTTAG_DST_TAG_LO 4 54 #define UDMA_RFLOW_DSTTAG_DST_TAG_HI 5 55 56 struct udma_chan; 57 58 enum udma_mmr { 59 MMR_GCFG = 0, 60 MMR_RCHANRT, 61 MMR_TCHANRT, 62 MMR_LAST, 63 }; 64 65 static const char * const mmr_names[] = { "gcfg", "rchanrt", "tchanrt" }; 66 67 struct udma_tchan { 68 void __iomem *reg_rt; 69 70 int id; 71 struct k3_ring *t_ring; /* Transmit ring */ 72 struct k3_ring *tc_ring; /* Transmit Completion ring */ 73 }; 74 75 struct udma_rflow { 76 int id; 77 struct k3_ring *fd_ring; /* Free Descriptor ring */ 78 struct k3_ring *r_ring; /* Receive ring */ 79 }; 80 81 struct udma_rchan { 82 void __iomem *reg_rt; 83 84 int id; 85 }; 86 87 #define UDMA_FLAG_PDMA_ACC32 BIT(0) 88 #define UDMA_FLAG_PDMA_BURST BIT(1) 89 #define UDMA_FLAG_TDTYPE BIT(2) 90 91 struct udma_match_data { 92 u32 psil_base; 93 bool enable_memcpy_support; 94 u32 flags; 95 u32 statictr_z_mask; 96 }; 97 98 struct udma_soc_data { 99 u32 rchan_oes_offset; 100 }; 101 102 struct udma_hwdesc { 103 size_t cppi5_desc_size; 104 void *cppi5_desc_vaddr; 105 dma_addr_t cppi5_desc_paddr; 106 107 /* TR descriptor internal pointers */ 108 void *tr_req_base; 109 struct cppi5_tr_resp_t *tr_resp_base; 110 }; 111 112 struct udma_rx_flush { 113 struct udma_hwdesc hwdescs[2]; 114 115 size_t buffer_size; 116 void *buffer_vaddr; 117 dma_addr_t buffer_paddr; 118 }; 119 120 struct udma_dev { 121 struct dma_device ddev; 122 struct device *dev; 123 void __iomem *mmrs[MMR_LAST]; 124 const struct udma_match_data *match_data; 125 const struct udma_soc_data *soc_data; 126 127 u8 tpl_levels; 128 u32 tpl_start_idx[3]; 129 130 size_t desc_align; /* alignment to use for descriptors */ 131 132 struct udma_tisci_rm tisci_rm; 133 134 struct k3_ringacc *ringacc; 135 136 struct work_struct purge_work; 137 struct list_head desc_to_purge; 138 spinlock_t lock; 139 140 struct udma_rx_flush rx_flush; 141 142 int tchan_cnt; 143 int echan_cnt; 144 int rchan_cnt; 145 int rflow_cnt; 146 unsigned long *tchan_map; 147 unsigned long *rchan_map; 148 unsigned long *rflow_gp_map; 149 unsigned long *rflow_gp_map_allocated; 150 unsigned long *rflow_in_use; 151 152 struct udma_tchan *tchans; 153 struct udma_rchan *rchans; 154 struct udma_rflow *rflows; 155 156 struct udma_chan *channels; 157 u32 psil_base; 158 u32 atype; 159 }; 160 161 struct udma_desc { 162 struct virt_dma_desc vd; 163 164 bool terminated; 165 166 enum dma_transfer_direction dir; 167 168 struct udma_static_tr static_tr; 169 u32 residue; 170 171 unsigned int sglen; 172 unsigned int desc_idx; /* Only used for cyclic in packet mode */ 173 unsigned int tr_idx; 174 175 u32 metadata_size; 176 void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */ 177 178 unsigned int hwdesc_count; 179 struct udma_hwdesc hwdesc[]; 180 }; 181 182 enum udma_chan_state { 183 UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */ 184 UDMA_CHAN_IS_ACTIVE, /* Normal operation */ 185 UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */ 186 }; 187 188 struct udma_tx_drain { 189 struct delayed_work work; 190 ktime_t tstamp; 191 u32 residue; 192 }; 193 194 struct udma_chan_config { 195 bool pkt_mode; /* TR or packet */ 196 bool needs_epib; /* EPIB is needed for the communication or not */ 197 u32 psd_size; /* size of Protocol Specific Data */ 198 u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */ 199 u32 hdesc_size; /* Size of a packet descriptor in packet mode */ 200 bool notdpkt; /* Suppress sending TDC packet */ 201 int remote_thread_id; 202 u32 atype; 203 u32 src_thread; 204 u32 dst_thread; 205 enum psil_endpoint_type ep_type; 206 bool enable_acc32; 207 bool enable_burst; 208 enum udma_tp_level channel_tpl; /* Channel Throughput Level */ 209 210 enum dma_transfer_direction dir; 211 }; 212 213 struct udma_chan { 214 struct virt_dma_chan vc; 215 struct dma_slave_config cfg; 216 struct udma_dev *ud; 217 struct udma_desc *desc; 218 struct udma_desc *terminated_desc; 219 struct udma_static_tr static_tr; 220 char *name; 221 222 struct udma_tchan *tchan; 223 struct udma_rchan *rchan; 224 struct udma_rflow *rflow; 225 226 bool psil_paired; 227 228 int irq_num_ring; 229 int irq_num_udma; 230 231 bool cyclic; 232 bool paused; 233 234 enum udma_chan_state state; 235 struct completion teardown_completed; 236 237 struct udma_tx_drain tx_drain; 238 239 u32 bcnt; /* number of bytes completed since the start of the channel */ 240 241 /* Channel configuration parameters */ 242 struct udma_chan_config config; 243 244 /* dmapool for packet mode descriptors */ 245 bool use_dma_pool; 246 struct dma_pool *hdesc_pool; 247 248 u32 id; 249 }; 250 251 static inline struct udma_dev *to_udma_dev(struct dma_device *d) 252 { 253 return container_of(d, struct udma_dev, ddev); 254 } 255 256 static inline struct udma_chan *to_udma_chan(struct dma_chan *c) 257 { 258 return container_of(c, struct udma_chan, vc.chan); 259 } 260 261 static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t) 262 { 263 return container_of(t, struct udma_desc, vd.tx); 264 } 265 266 /* Generic register access functions */ 267 static inline u32 udma_read(void __iomem *base, int reg) 268 { 269 return readl(base + reg); 270 } 271 272 static inline void udma_write(void __iomem *base, int reg, u32 val) 273 { 274 writel(val, base + reg); 275 } 276 277 static inline void udma_update_bits(void __iomem *base, int reg, 278 u32 mask, u32 val) 279 { 280 u32 tmp, orig; 281 282 orig = readl(base + reg); 283 tmp = orig & ~mask; 284 tmp |= (val & mask); 285 286 if (tmp != orig) 287 writel(tmp, base + reg); 288 } 289 290 /* TCHANRT */ 291 static inline u32 udma_tchanrt_read(struct udma_chan *uc, int reg) 292 { 293 if (!uc->tchan) 294 return 0; 295 return udma_read(uc->tchan->reg_rt, reg); 296 } 297 298 static inline void udma_tchanrt_write(struct udma_chan *uc, int reg, u32 val) 299 { 300 if (!uc->tchan) 301 return; 302 udma_write(uc->tchan->reg_rt, reg, val); 303 } 304 305 static inline void udma_tchanrt_update_bits(struct udma_chan *uc, int reg, 306 u32 mask, u32 val) 307 { 308 if (!uc->tchan) 309 return; 310 udma_update_bits(uc->tchan->reg_rt, reg, mask, val); 311 } 312 313 /* RCHANRT */ 314 static inline u32 udma_rchanrt_read(struct udma_chan *uc, int reg) 315 { 316 if (!uc->rchan) 317 return 0; 318 return udma_read(uc->rchan->reg_rt, reg); 319 } 320 321 static inline void udma_rchanrt_write(struct udma_chan *uc, int reg, u32 val) 322 { 323 if (!uc->rchan) 324 return; 325 udma_write(uc->rchan->reg_rt, reg, val); 326 } 327 328 static inline void udma_rchanrt_update_bits(struct udma_chan *uc, int reg, 329 u32 mask, u32 val) 330 { 331 if (!uc->rchan) 332 return; 333 udma_update_bits(uc->rchan->reg_rt, reg, mask, val); 334 } 335 336 static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread) 337 { 338 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 339 340 dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; 341 return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci, 342 tisci_rm->tisci_navss_dev_id, 343 src_thread, dst_thread); 344 } 345 346 static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread, 347 u32 dst_thread) 348 { 349 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 350 351 dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; 352 return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci, 353 tisci_rm->tisci_navss_dev_id, 354 src_thread, dst_thread); 355 } 356 357 static void udma_reset_uchan(struct udma_chan *uc) 358 { 359 memset(&uc->config, 0, sizeof(uc->config)); 360 uc->config.remote_thread_id = -1; 361 uc->state = UDMA_CHAN_IS_IDLE; 362 } 363 364 static void udma_dump_chan_stdata(struct udma_chan *uc) 365 { 366 struct device *dev = uc->ud->dev; 367 u32 offset; 368 int i; 369 370 if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) { 371 dev_dbg(dev, "TCHAN State data:\n"); 372 for (i = 0; i < 32; i++) { 373 offset = UDMA_CHAN_RT_STDATA_REG + i * 4; 374 dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i, 375 udma_tchanrt_read(uc, offset)); 376 } 377 } 378 379 if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) { 380 dev_dbg(dev, "RCHAN State data:\n"); 381 for (i = 0; i < 32; i++) { 382 offset = UDMA_CHAN_RT_STDATA_REG + i * 4; 383 dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i, 384 udma_rchanrt_read(uc, offset)); 385 } 386 } 387 } 388 389 static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d, 390 int idx) 391 { 392 return d->hwdesc[idx].cppi5_desc_paddr; 393 } 394 395 static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx) 396 { 397 return d->hwdesc[idx].cppi5_desc_vaddr; 398 } 399 400 static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc, 401 dma_addr_t paddr) 402 { 403 struct udma_desc *d = uc->terminated_desc; 404 405 if (d) { 406 dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, 407 d->desc_idx); 408 409 if (desc_paddr != paddr) 410 d = NULL; 411 } 412 413 if (!d) { 414 d = uc->desc; 415 if (d) { 416 dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, 417 d->desc_idx); 418 419 if (desc_paddr != paddr) 420 d = NULL; 421 } 422 } 423 424 return d; 425 } 426 427 static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d) 428 { 429 if (uc->use_dma_pool) { 430 int i; 431 432 for (i = 0; i < d->hwdesc_count; i++) { 433 if (!d->hwdesc[i].cppi5_desc_vaddr) 434 continue; 435 436 dma_pool_free(uc->hdesc_pool, 437 d->hwdesc[i].cppi5_desc_vaddr, 438 d->hwdesc[i].cppi5_desc_paddr); 439 440 d->hwdesc[i].cppi5_desc_vaddr = NULL; 441 } 442 } else if (d->hwdesc[0].cppi5_desc_vaddr) { 443 struct udma_dev *ud = uc->ud; 444 445 dma_free_coherent(ud->dev, d->hwdesc[0].cppi5_desc_size, 446 d->hwdesc[0].cppi5_desc_vaddr, 447 d->hwdesc[0].cppi5_desc_paddr); 448 449 d->hwdesc[0].cppi5_desc_vaddr = NULL; 450 } 451 } 452 453 static void udma_purge_desc_work(struct work_struct *work) 454 { 455 struct udma_dev *ud = container_of(work, typeof(*ud), purge_work); 456 struct virt_dma_desc *vd, *_vd; 457 unsigned long flags; 458 LIST_HEAD(head); 459 460 spin_lock_irqsave(&ud->lock, flags); 461 list_splice_tail_init(&ud->desc_to_purge, &head); 462 spin_unlock_irqrestore(&ud->lock, flags); 463 464 list_for_each_entry_safe(vd, _vd, &head, node) { 465 struct udma_chan *uc = to_udma_chan(vd->tx.chan); 466 struct udma_desc *d = to_udma_desc(&vd->tx); 467 468 udma_free_hwdesc(uc, d); 469 list_del(&vd->node); 470 kfree(d); 471 } 472 473 /* If more to purge, schedule the work again */ 474 if (!list_empty(&ud->desc_to_purge)) 475 schedule_work(&ud->purge_work); 476 } 477 478 static void udma_desc_free(struct virt_dma_desc *vd) 479 { 480 struct udma_dev *ud = to_udma_dev(vd->tx.chan->device); 481 struct udma_chan *uc = to_udma_chan(vd->tx.chan); 482 struct udma_desc *d = to_udma_desc(&vd->tx); 483 unsigned long flags; 484 485 if (uc->terminated_desc == d) 486 uc->terminated_desc = NULL; 487 488 if (uc->use_dma_pool) { 489 udma_free_hwdesc(uc, d); 490 kfree(d); 491 return; 492 } 493 494 spin_lock_irqsave(&ud->lock, flags); 495 list_add_tail(&vd->node, &ud->desc_to_purge); 496 spin_unlock_irqrestore(&ud->lock, flags); 497 498 schedule_work(&ud->purge_work); 499 } 500 501 static bool udma_is_chan_running(struct udma_chan *uc) 502 { 503 u32 trt_ctl = 0; 504 u32 rrt_ctl = 0; 505 506 if (uc->tchan) 507 trt_ctl = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG); 508 if (uc->rchan) 509 rrt_ctl = udma_rchanrt_read(uc, UDMA_CHAN_RT_CTL_REG); 510 511 if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN) 512 return true; 513 514 return false; 515 } 516 517 static bool udma_is_chan_paused(struct udma_chan *uc) 518 { 519 u32 val, pause_mask; 520 521 switch (uc->config.dir) { 522 case DMA_DEV_TO_MEM: 523 val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG); 524 pause_mask = UDMA_PEER_RT_EN_PAUSE; 525 break; 526 case DMA_MEM_TO_DEV: 527 val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG); 528 pause_mask = UDMA_PEER_RT_EN_PAUSE; 529 break; 530 case DMA_MEM_TO_MEM: 531 val = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG); 532 pause_mask = UDMA_CHAN_RT_CTL_PAUSE; 533 break; 534 default: 535 return false; 536 } 537 538 if (val & pause_mask) 539 return true; 540 541 return false; 542 } 543 544 static inline dma_addr_t udma_get_rx_flush_hwdesc_paddr(struct udma_chan *uc) 545 { 546 return uc->ud->rx_flush.hwdescs[uc->config.pkt_mode].cppi5_desc_paddr; 547 } 548 549 static int udma_push_to_ring(struct udma_chan *uc, int idx) 550 { 551 struct udma_desc *d = uc->desc; 552 struct k3_ring *ring = NULL; 553 dma_addr_t paddr; 554 555 switch (uc->config.dir) { 556 case DMA_DEV_TO_MEM: 557 ring = uc->rflow->fd_ring; 558 break; 559 case DMA_MEM_TO_DEV: 560 case DMA_MEM_TO_MEM: 561 ring = uc->tchan->t_ring; 562 break; 563 default: 564 return -EINVAL; 565 } 566 567 /* RX flush packet: idx == -1 is only passed in case of DEV_TO_MEM */ 568 if (idx == -1) { 569 paddr = udma_get_rx_flush_hwdesc_paddr(uc); 570 } else { 571 paddr = udma_curr_cppi5_desc_paddr(d, idx); 572 573 wmb(); /* Ensure that writes are not moved over this point */ 574 } 575 576 return k3_ringacc_ring_push(ring, &paddr); 577 } 578 579 static bool udma_desc_is_rx_flush(struct udma_chan *uc, dma_addr_t addr) 580 { 581 if (uc->config.dir != DMA_DEV_TO_MEM) 582 return false; 583 584 if (addr == udma_get_rx_flush_hwdesc_paddr(uc)) 585 return true; 586 587 return false; 588 } 589 590 static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr) 591 { 592 struct k3_ring *ring = NULL; 593 int ret; 594 595 switch (uc->config.dir) { 596 case DMA_DEV_TO_MEM: 597 ring = uc->rflow->r_ring; 598 break; 599 case DMA_MEM_TO_DEV: 600 case DMA_MEM_TO_MEM: 601 ring = uc->tchan->tc_ring; 602 break; 603 default: 604 return -ENOENT; 605 } 606 607 ret = k3_ringacc_ring_pop(ring, addr); 608 if (ret) 609 return ret; 610 611 rmb(); /* Ensure that reads are not moved before this point */ 612 613 /* Teardown completion */ 614 if (cppi5_desc_is_tdcm(*addr)) 615 return 0; 616 617 /* Check for flush descriptor */ 618 if (udma_desc_is_rx_flush(uc, *addr)) 619 return -ENOENT; 620 621 return 0; 622 } 623 624 static void udma_reset_rings(struct udma_chan *uc) 625 { 626 struct k3_ring *ring1 = NULL; 627 struct k3_ring *ring2 = NULL; 628 629 switch (uc->config.dir) { 630 case DMA_DEV_TO_MEM: 631 if (uc->rchan) { 632 ring1 = uc->rflow->fd_ring; 633 ring2 = uc->rflow->r_ring; 634 } 635 break; 636 case DMA_MEM_TO_DEV: 637 case DMA_MEM_TO_MEM: 638 if (uc->tchan) { 639 ring1 = uc->tchan->t_ring; 640 ring2 = uc->tchan->tc_ring; 641 } 642 break; 643 default: 644 break; 645 } 646 647 if (ring1) 648 k3_ringacc_ring_reset_dma(ring1, 649 k3_ringacc_ring_get_occ(ring1)); 650 if (ring2) 651 k3_ringacc_ring_reset(ring2); 652 653 /* make sure we are not leaking memory by stalled descriptor */ 654 if (uc->terminated_desc) { 655 udma_desc_free(&uc->terminated_desc->vd); 656 uc->terminated_desc = NULL; 657 } 658 } 659 660 static void udma_reset_counters(struct udma_chan *uc) 661 { 662 u32 val; 663 664 if (uc->tchan) { 665 val = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG); 666 udma_tchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val); 667 668 val = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG); 669 udma_tchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val); 670 671 val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG); 672 udma_tchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val); 673 674 val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG); 675 udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val); 676 } 677 678 if (uc->rchan) { 679 val = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG); 680 udma_rchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val); 681 682 val = udma_rchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG); 683 udma_rchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val); 684 685 val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG); 686 udma_rchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val); 687 688 val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG); 689 udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val); 690 } 691 692 uc->bcnt = 0; 693 } 694 695 static int udma_reset_chan(struct udma_chan *uc, bool hard) 696 { 697 switch (uc->config.dir) { 698 case DMA_DEV_TO_MEM: 699 udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0); 700 udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0); 701 break; 702 case DMA_MEM_TO_DEV: 703 udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0); 704 udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0); 705 break; 706 case DMA_MEM_TO_MEM: 707 udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0); 708 udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0); 709 break; 710 default: 711 return -EINVAL; 712 } 713 714 /* Reset all counters */ 715 udma_reset_counters(uc); 716 717 /* Hard reset: re-initialize the channel to reset */ 718 if (hard) { 719 struct udma_chan_config ucc_backup; 720 int ret; 721 722 memcpy(&ucc_backup, &uc->config, sizeof(uc->config)); 723 uc->ud->ddev.device_free_chan_resources(&uc->vc.chan); 724 725 /* restore the channel configuration */ 726 memcpy(&uc->config, &ucc_backup, sizeof(uc->config)); 727 ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan); 728 if (ret) 729 return ret; 730 731 /* 732 * Setting forced teardown after forced reset helps recovering 733 * the rchan. 734 */ 735 if (uc->config.dir == DMA_DEV_TO_MEM) 736 udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 737 UDMA_CHAN_RT_CTL_EN | 738 UDMA_CHAN_RT_CTL_TDOWN | 739 UDMA_CHAN_RT_CTL_FTDOWN); 740 } 741 uc->state = UDMA_CHAN_IS_IDLE; 742 743 return 0; 744 } 745 746 static void udma_start_desc(struct udma_chan *uc) 747 { 748 struct udma_chan_config *ucc = &uc->config; 749 750 if (ucc->pkt_mode && (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) { 751 int i; 752 753 /* Push all descriptors to ring for packet mode cyclic or RX */ 754 for (i = 0; i < uc->desc->sglen; i++) 755 udma_push_to_ring(uc, i); 756 } else { 757 udma_push_to_ring(uc, 0); 758 } 759 } 760 761 static bool udma_chan_needs_reconfiguration(struct udma_chan *uc) 762 { 763 /* Only PDMAs have staticTR */ 764 if (uc->config.ep_type == PSIL_EP_NATIVE) 765 return false; 766 767 /* Check if the staticTR configuration has changed for TX */ 768 if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr))) 769 return true; 770 771 return false; 772 } 773 774 static int udma_start(struct udma_chan *uc) 775 { 776 struct virt_dma_desc *vd = vchan_next_desc(&uc->vc); 777 778 if (!vd) { 779 uc->desc = NULL; 780 return -ENOENT; 781 } 782 783 list_del(&vd->node); 784 785 uc->desc = to_udma_desc(&vd->tx); 786 787 /* Channel is already running and does not need reconfiguration */ 788 if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) { 789 udma_start_desc(uc); 790 goto out; 791 } 792 793 /* Make sure that we clear the teardown bit, if it is set */ 794 udma_reset_chan(uc, false); 795 796 /* Push descriptors before we start the channel */ 797 udma_start_desc(uc); 798 799 switch (uc->desc->dir) { 800 case DMA_DEV_TO_MEM: 801 /* Config remote TR */ 802 if (uc->config.ep_type == PSIL_EP_PDMA_XY) { 803 u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) | 804 PDMA_STATIC_TR_X(uc->desc->static_tr.elsize); 805 const struct udma_match_data *match_data = 806 uc->ud->match_data; 807 808 if (uc->config.enable_acc32) 809 val |= PDMA_STATIC_TR_XY_ACC32; 810 if (uc->config.enable_burst) 811 val |= PDMA_STATIC_TR_XY_BURST; 812 813 udma_rchanrt_write(uc, 814 UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG, 815 val); 816 817 udma_rchanrt_write(uc, 818 UDMA_CHAN_RT_PEER_STATIC_TR_Z_REG, 819 PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt, 820 match_data->statictr_z_mask)); 821 822 /* save the current staticTR configuration */ 823 memcpy(&uc->static_tr, &uc->desc->static_tr, 824 sizeof(uc->static_tr)); 825 } 826 827 udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 828 UDMA_CHAN_RT_CTL_EN); 829 830 /* Enable remote */ 831 udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 832 UDMA_PEER_RT_EN_ENABLE); 833 834 break; 835 case DMA_MEM_TO_DEV: 836 /* Config remote TR */ 837 if (uc->config.ep_type == PSIL_EP_PDMA_XY) { 838 u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) | 839 PDMA_STATIC_TR_X(uc->desc->static_tr.elsize); 840 841 if (uc->config.enable_acc32) 842 val |= PDMA_STATIC_TR_XY_ACC32; 843 if (uc->config.enable_burst) 844 val |= PDMA_STATIC_TR_XY_BURST; 845 846 udma_tchanrt_write(uc, 847 UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG, 848 val); 849 850 /* save the current staticTR configuration */ 851 memcpy(&uc->static_tr, &uc->desc->static_tr, 852 sizeof(uc->static_tr)); 853 } 854 855 /* Enable remote */ 856 udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 857 UDMA_PEER_RT_EN_ENABLE); 858 859 udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 860 UDMA_CHAN_RT_CTL_EN); 861 862 break; 863 case DMA_MEM_TO_MEM: 864 udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 865 UDMA_CHAN_RT_CTL_EN); 866 udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 867 UDMA_CHAN_RT_CTL_EN); 868 869 break; 870 default: 871 return -EINVAL; 872 } 873 874 uc->state = UDMA_CHAN_IS_ACTIVE; 875 out: 876 877 return 0; 878 } 879 880 static int udma_stop(struct udma_chan *uc) 881 { 882 enum udma_chan_state old_state = uc->state; 883 884 uc->state = UDMA_CHAN_IS_TERMINATING; 885 reinit_completion(&uc->teardown_completed); 886 887 switch (uc->config.dir) { 888 case DMA_DEV_TO_MEM: 889 if (!uc->cyclic && !uc->desc) 890 udma_push_to_ring(uc, -1); 891 892 udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 893 UDMA_PEER_RT_EN_ENABLE | 894 UDMA_PEER_RT_EN_TEARDOWN); 895 break; 896 case DMA_MEM_TO_DEV: 897 udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 898 UDMA_PEER_RT_EN_ENABLE | 899 UDMA_PEER_RT_EN_FLUSH); 900 udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 901 UDMA_CHAN_RT_CTL_EN | 902 UDMA_CHAN_RT_CTL_TDOWN); 903 break; 904 case DMA_MEM_TO_MEM: 905 udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 906 UDMA_CHAN_RT_CTL_EN | 907 UDMA_CHAN_RT_CTL_TDOWN); 908 break; 909 default: 910 uc->state = old_state; 911 complete_all(&uc->teardown_completed); 912 return -EINVAL; 913 } 914 915 return 0; 916 } 917 918 static void udma_cyclic_packet_elapsed(struct udma_chan *uc) 919 { 920 struct udma_desc *d = uc->desc; 921 struct cppi5_host_desc_t *h_desc; 922 923 h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr; 924 cppi5_hdesc_reset_to_original(h_desc); 925 udma_push_to_ring(uc, d->desc_idx); 926 d->desc_idx = (d->desc_idx + 1) % d->sglen; 927 } 928 929 static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d) 930 { 931 struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr; 932 933 memcpy(d->metadata, h_desc->epib, d->metadata_size); 934 } 935 936 static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d) 937 { 938 u32 peer_bcnt, bcnt; 939 940 /* Only TX towards PDMA is affected */ 941 if (uc->config.ep_type == PSIL_EP_NATIVE || 942 uc->config.dir != DMA_MEM_TO_DEV) 943 return true; 944 945 peer_bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG); 946 bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG); 947 948 /* Transfer is incomplete, store current residue and time stamp */ 949 if (peer_bcnt < bcnt) { 950 uc->tx_drain.residue = bcnt - peer_bcnt; 951 uc->tx_drain.tstamp = ktime_get(); 952 return false; 953 } 954 955 return true; 956 } 957 958 static void udma_check_tx_completion(struct work_struct *work) 959 { 960 struct udma_chan *uc = container_of(work, typeof(*uc), 961 tx_drain.work.work); 962 bool desc_done = true; 963 u32 residue_diff; 964 ktime_t time_diff; 965 unsigned long delay; 966 967 while (1) { 968 if (uc->desc) { 969 /* Get previous residue and time stamp */ 970 residue_diff = uc->tx_drain.residue; 971 time_diff = uc->tx_drain.tstamp; 972 /* 973 * Get current residue and time stamp or see if 974 * transfer is complete 975 */ 976 desc_done = udma_is_desc_really_done(uc, uc->desc); 977 } 978 979 if (!desc_done) { 980 /* 981 * Find the time delta and residue delta w.r.t 982 * previous poll 983 */ 984 time_diff = ktime_sub(uc->tx_drain.tstamp, 985 time_diff) + 1; 986 residue_diff -= uc->tx_drain.residue; 987 if (residue_diff) { 988 /* 989 * Try to guess when we should check 990 * next time by calculating rate at 991 * which data is being drained at the 992 * peer device 993 */ 994 delay = (time_diff / residue_diff) * 995 uc->tx_drain.residue; 996 } else { 997 /* No progress, check again in 1 second */ 998 schedule_delayed_work(&uc->tx_drain.work, HZ); 999 break; 1000 } 1001 1002 usleep_range(ktime_to_us(delay), 1003 ktime_to_us(delay) + 10); 1004 continue; 1005 } 1006 1007 if (uc->desc) { 1008 struct udma_desc *d = uc->desc; 1009 1010 uc->bcnt += d->residue; 1011 udma_start(uc); 1012 vchan_cookie_complete(&d->vd); 1013 break; 1014 } 1015 1016 break; 1017 } 1018 } 1019 1020 static irqreturn_t udma_ring_irq_handler(int irq, void *data) 1021 { 1022 struct udma_chan *uc = data; 1023 struct udma_desc *d; 1024 dma_addr_t paddr = 0; 1025 1026 if (udma_pop_from_ring(uc, &paddr) || !paddr) 1027 return IRQ_HANDLED; 1028 1029 spin_lock(&uc->vc.lock); 1030 1031 /* Teardown completion message */ 1032 if (cppi5_desc_is_tdcm(paddr)) { 1033 complete_all(&uc->teardown_completed); 1034 1035 if (uc->terminated_desc) { 1036 udma_desc_free(&uc->terminated_desc->vd); 1037 uc->terminated_desc = NULL; 1038 } 1039 1040 if (!uc->desc) 1041 udma_start(uc); 1042 1043 goto out; 1044 } 1045 1046 d = udma_udma_desc_from_paddr(uc, paddr); 1047 1048 if (d) { 1049 dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d, 1050 d->desc_idx); 1051 if (desc_paddr != paddr) { 1052 dev_err(uc->ud->dev, "not matching descriptors!\n"); 1053 goto out; 1054 } 1055 1056 if (d == uc->desc) { 1057 /* active descriptor */ 1058 if (uc->cyclic) { 1059 udma_cyclic_packet_elapsed(uc); 1060 vchan_cyclic_callback(&d->vd); 1061 } else { 1062 if (udma_is_desc_really_done(uc, d)) { 1063 uc->bcnt += d->residue; 1064 udma_start(uc); 1065 vchan_cookie_complete(&d->vd); 1066 } else { 1067 schedule_delayed_work(&uc->tx_drain.work, 1068 0); 1069 } 1070 } 1071 } else { 1072 /* 1073 * terminated descriptor, mark the descriptor as 1074 * completed to update the channel's cookie marker 1075 */ 1076 dma_cookie_complete(&d->vd.tx); 1077 } 1078 } 1079 out: 1080 spin_unlock(&uc->vc.lock); 1081 1082 return IRQ_HANDLED; 1083 } 1084 1085 static irqreturn_t udma_udma_irq_handler(int irq, void *data) 1086 { 1087 struct udma_chan *uc = data; 1088 struct udma_desc *d; 1089 1090 spin_lock(&uc->vc.lock); 1091 d = uc->desc; 1092 if (d) { 1093 d->tr_idx = (d->tr_idx + 1) % d->sglen; 1094 1095 if (uc->cyclic) { 1096 vchan_cyclic_callback(&d->vd); 1097 } else { 1098 /* TODO: figure out the real amount of data */ 1099 uc->bcnt += d->residue; 1100 udma_start(uc); 1101 vchan_cookie_complete(&d->vd); 1102 } 1103 } 1104 1105 spin_unlock(&uc->vc.lock); 1106 1107 return IRQ_HANDLED; 1108 } 1109 1110 /** 1111 * __udma_alloc_gp_rflow_range - alloc range of GP RX flows 1112 * @ud: UDMA device 1113 * @from: Start the search from this flow id number 1114 * @cnt: Number of consecutive flow ids to allocate 1115 * 1116 * Allocate range of RX flow ids for future use, those flows can be requested 1117 * only using explicit flow id number. if @from is set to -1 it will try to find 1118 * first free range. if @from is positive value it will force allocation only 1119 * of the specified range of flows. 1120 * 1121 * Returns -ENOMEM if can't find free range. 1122 * -EEXIST if requested range is busy. 1123 * -EINVAL if wrong input values passed. 1124 * Returns flow id on success. 1125 */ 1126 static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt) 1127 { 1128 int start, tmp_from; 1129 DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS); 1130 1131 tmp_from = from; 1132 if (tmp_from < 0) 1133 tmp_from = ud->rchan_cnt; 1134 /* default flows can't be allocated and accessible only by id */ 1135 if (tmp_from < ud->rchan_cnt) 1136 return -EINVAL; 1137 1138 if (tmp_from + cnt > ud->rflow_cnt) 1139 return -EINVAL; 1140 1141 bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated, 1142 ud->rflow_cnt); 1143 1144 start = bitmap_find_next_zero_area(tmp, 1145 ud->rflow_cnt, 1146 tmp_from, cnt, 0); 1147 if (start >= ud->rflow_cnt) 1148 return -ENOMEM; 1149 1150 if (from >= 0 && start != from) 1151 return -EEXIST; 1152 1153 bitmap_set(ud->rflow_gp_map_allocated, start, cnt); 1154 return start; 1155 } 1156 1157 static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt) 1158 { 1159 if (from < ud->rchan_cnt) 1160 return -EINVAL; 1161 if (from + cnt > ud->rflow_cnt) 1162 return -EINVAL; 1163 1164 bitmap_clear(ud->rflow_gp_map_allocated, from, cnt); 1165 return 0; 1166 } 1167 1168 static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id) 1169 { 1170 /* 1171 * Attempt to request rflow by ID can be made for any rflow 1172 * if not in use with assumption that caller knows what's doing. 1173 * TI-SCI FW will perform additional permission check ant way, it's 1174 * safe 1175 */ 1176 1177 if (id < 0 || id >= ud->rflow_cnt) 1178 return ERR_PTR(-ENOENT); 1179 1180 if (test_bit(id, ud->rflow_in_use)) 1181 return ERR_PTR(-ENOENT); 1182 1183 /* GP rflow has to be allocated first */ 1184 if (!test_bit(id, ud->rflow_gp_map) && 1185 !test_bit(id, ud->rflow_gp_map_allocated)) 1186 return ERR_PTR(-EINVAL); 1187 1188 dev_dbg(ud->dev, "get rflow%d\n", id); 1189 set_bit(id, ud->rflow_in_use); 1190 return &ud->rflows[id]; 1191 } 1192 1193 static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow) 1194 { 1195 if (!test_bit(rflow->id, ud->rflow_in_use)) { 1196 dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id); 1197 return; 1198 } 1199 1200 dev_dbg(ud->dev, "put rflow%d\n", rflow->id); 1201 clear_bit(rflow->id, ud->rflow_in_use); 1202 } 1203 1204 #define UDMA_RESERVE_RESOURCE(res) \ 1205 static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud, \ 1206 enum udma_tp_level tpl, \ 1207 int id) \ 1208 { \ 1209 if (id >= 0) { \ 1210 if (test_bit(id, ud->res##_map)) { \ 1211 dev_err(ud->dev, "res##%d is in use\n", id); \ 1212 return ERR_PTR(-ENOENT); \ 1213 } \ 1214 } else { \ 1215 int start; \ 1216 \ 1217 if (tpl >= ud->tpl_levels) \ 1218 tpl = ud->tpl_levels - 1; \ 1219 \ 1220 start = ud->tpl_start_idx[tpl]; \ 1221 \ 1222 id = find_next_zero_bit(ud->res##_map, ud->res##_cnt, \ 1223 start); \ 1224 if (id == ud->res##_cnt) { \ 1225 return ERR_PTR(-ENOENT); \ 1226 } \ 1227 } \ 1228 \ 1229 set_bit(id, ud->res##_map); \ 1230 return &ud->res##s[id]; \ 1231 } 1232 1233 UDMA_RESERVE_RESOURCE(tchan); 1234 UDMA_RESERVE_RESOURCE(rchan); 1235 1236 static int udma_get_tchan(struct udma_chan *uc) 1237 { 1238 struct udma_dev *ud = uc->ud; 1239 1240 if (uc->tchan) { 1241 dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n", 1242 uc->id, uc->tchan->id); 1243 return 0; 1244 } 1245 1246 uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl, -1); 1247 1248 return PTR_ERR_OR_ZERO(uc->tchan); 1249 } 1250 1251 static int udma_get_rchan(struct udma_chan *uc) 1252 { 1253 struct udma_dev *ud = uc->ud; 1254 1255 if (uc->rchan) { 1256 dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n", 1257 uc->id, uc->rchan->id); 1258 return 0; 1259 } 1260 1261 uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl, -1); 1262 1263 return PTR_ERR_OR_ZERO(uc->rchan); 1264 } 1265 1266 static int udma_get_chan_pair(struct udma_chan *uc) 1267 { 1268 struct udma_dev *ud = uc->ud; 1269 int chan_id, end; 1270 1271 if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) { 1272 dev_info(ud->dev, "chan%d: already have %d pair allocated\n", 1273 uc->id, uc->tchan->id); 1274 return 0; 1275 } 1276 1277 if (uc->tchan) { 1278 dev_err(ud->dev, "chan%d: already have tchan%d allocated\n", 1279 uc->id, uc->tchan->id); 1280 return -EBUSY; 1281 } else if (uc->rchan) { 1282 dev_err(ud->dev, "chan%d: already have rchan%d allocated\n", 1283 uc->id, uc->rchan->id); 1284 return -EBUSY; 1285 } 1286 1287 /* Can be optimized, but let's have it like this for now */ 1288 end = min(ud->tchan_cnt, ud->rchan_cnt); 1289 /* Try to use the highest TPL channel pair for MEM_TO_MEM channels */ 1290 chan_id = ud->tpl_start_idx[ud->tpl_levels - 1]; 1291 for (; chan_id < end; chan_id++) { 1292 if (!test_bit(chan_id, ud->tchan_map) && 1293 !test_bit(chan_id, ud->rchan_map)) 1294 break; 1295 } 1296 1297 if (chan_id == end) 1298 return -ENOENT; 1299 1300 set_bit(chan_id, ud->tchan_map); 1301 set_bit(chan_id, ud->rchan_map); 1302 uc->tchan = &ud->tchans[chan_id]; 1303 uc->rchan = &ud->rchans[chan_id]; 1304 1305 return 0; 1306 } 1307 1308 static int udma_get_rflow(struct udma_chan *uc, int flow_id) 1309 { 1310 struct udma_dev *ud = uc->ud; 1311 1312 if (!uc->rchan) { 1313 dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id); 1314 return -EINVAL; 1315 } 1316 1317 if (uc->rflow) { 1318 dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n", 1319 uc->id, uc->rflow->id); 1320 return 0; 1321 } 1322 1323 uc->rflow = __udma_get_rflow(ud, flow_id); 1324 1325 return PTR_ERR_OR_ZERO(uc->rflow); 1326 } 1327 1328 static void udma_put_rchan(struct udma_chan *uc) 1329 { 1330 struct udma_dev *ud = uc->ud; 1331 1332 if (uc->rchan) { 1333 dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id, 1334 uc->rchan->id); 1335 clear_bit(uc->rchan->id, ud->rchan_map); 1336 uc->rchan = NULL; 1337 } 1338 } 1339 1340 static void udma_put_tchan(struct udma_chan *uc) 1341 { 1342 struct udma_dev *ud = uc->ud; 1343 1344 if (uc->tchan) { 1345 dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id, 1346 uc->tchan->id); 1347 clear_bit(uc->tchan->id, ud->tchan_map); 1348 uc->tchan = NULL; 1349 } 1350 } 1351 1352 static void udma_put_rflow(struct udma_chan *uc) 1353 { 1354 struct udma_dev *ud = uc->ud; 1355 1356 if (uc->rflow) { 1357 dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id, 1358 uc->rflow->id); 1359 __udma_put_rflow(ud, uc->rflow); 1360 uc->rflow = NULL; 1361 } 1362 } 1363 1364 static void udma_free_tx_resources(struct udma_chan *uc) 1365 { 1366 if (!uc->tchan) 1367 return; 1368 1369 k3_ringacc_ring_free(uc->tchan->t_ring); 1370 k3_ringacc_ring_free(uc->tchan->tc_ring); 1371 uc->tchan->t_ring = NULL; 1372 uc->tchan->tc_ring = NULL; 1373 1374 udma_put_tchan(uc); 1375 } 1376 1377 static int udma_alloc_tx_resources(struct udma_chan *uc) 1378 { 1379 struct k3_ring_cfg ring_cfg; 1380 struct udma_dev *ud = uc->ud; 1381 int ret; 1382 1383 ret = udma_get_tchan(uc); 1384 if (ret) 1385 return ret; 1386 1387 ret = k3_ringacc_request_rings_pair(ud->ringacc, uc->tchan->id, -1, 1388 &uc->tchan->t_ring, 1389 &uc->tchan->tc_ring); 1390 if (ret) { 1391 ret = -EBUSY; 1392 goto err_ring; 1393 } 1394 1395 memset(&ring_cfg, 0, sizeof(ring_cfg)); 1396 ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; 1397 ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8; 1398 ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE; 1399 1400 ret = k3_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg); 1401 ret |= k3_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg); 1402 1403 if (ret) 1404 goto err_ringcfg; 1405 1406 return 0; 1407 1408 err_ringcfg: 1409 k3_ringacc_ring_free(uc->tchan->tc_ring); 1410 uc->tchan->tc_ring = NULL; 1411 k3_ringacc_ring_free(uc->tchan->t_ring); 1412 uc->tchan->t_ring = NULL; 1413 err_ring: 1414 udma_put_tchan(uc); 1415 1416 return ret; 1417 } 1418 1419 static void udma_free_rx_resources(struct udma_chan *uc) 1420 { 1421 if (!uc->rchan) 1422 return; 1423 1424 if (uc->rflow) { 1425 struct udma_rflow *rflow = uc->rflow; 1426 1427 k3_ringacc_ring_free(rflow->fd_ring); 1428 k3_ringacc_ring_free(rflow->r_ring); 1429 rflow->fd_ring = NULL; 1430 rflow->r_ring = NULL; 1431 1432 udma_put_rflow(uc); 1433 } 1434 1435 udma_put_rchan(uc); 1436 } 1437 1438 static int udma_alloc_rx_resources(struct udma_chan *uc) 1439 { 1440 struct udma_dev *ud = uc->ud; 1441 struct k3_ring_cfg ring_cfg; 1442 struct udma_rflow *rflow; 1443 int fd_ring_id; 1444 int ret; 1445 1446 ret = udma_get_rchan(uc); 1447 if (ret) 1448 return ret; 1449 1450 /* For MEM_TO_MEM we don't need rflow or rings */ 1451 if (uc->config.dir == DMA_MEM_TO_MEM) 1452 return 0; 1453 1454 ret = udma_get_rflow(uc, uc->rchan->id); 1455 if (ret) { 1456 ret = -EBUSY; 1457 goto err_rflow; 1458 } 1459 1460 rflow = uc->rflow; 1461 fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id; 1462 ret = k3_ringacc_request_rings_pair(ud->ringacc, fd_ring_id, -1, 1463 &rflow->fd_ring, &rflow->r_ring); 1464 if (ret) { 1465 ret = -EBUSY; 1466 goto err_ring; 1467 } 1468 1469 memset(&ring_cfg, 0, sizeof(ring_cfg)); 1470 1471 if (uc->config.pkt_mode) 1472 ring_cfg.size = SG_MAX_SEGMENTS; 1473 else 1474 ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; 1475 1476 ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8; 1477 ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE; 1478 1479 ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg); 1480 ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE; 1481 ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg); 1482 1483 if (ret) 1484 goto err_ringcfg; 1485 1486 return 0; 1487 1488 err_ringcfg: 1489 k3_ringacc_ring_free(rflow->r_ring); 1490 rflow->r_ring = NULL; 1491 k3_ringacc_ring_free(rflow->fd_ring); 1492 rflow->fd_ring = NULL; 1493 err_ring: 1494 udma_put_rflow(uc); 1495 err_rflow: 1496 udma_put_rchan(uc); 1497 1498 return ret; 1499 } 1500 1501 #define TISCI_TCHAN_VALID_PARAMS ( \ 1502 TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \ 1503 TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID | \ 1504 TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID | \ 1505 TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \ 1506 TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID | \ 1507 TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \ 1508 TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \ 1509 TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID) 1510 1511 #define TISCI_RCHAN_VALID_PARAMS ( \ 1512 TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \ 1513 TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \ 1514 TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \ 1515 TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \ 1516 TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID | \ 1517 TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID | \ 1518 TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID | \ 1519 TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID | \ 1520 TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID) 1521 1522 static int udma_tisci_m2m_channel_config(struct udma_chan *uc) 1523 { 1524 struct udma_dev *ud = uc->ud; 1525 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 1526 const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; 1527 struct udma_tchan *tchan = uc->tchan; 1528 struct udma_rchan *rchan = uc->rchan; 1529 int ret = 0; 1530 1531 /* Non synchronized - mem to mem type of transfer */ 1532 int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring); 1533 struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 }; 1534 struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 }; 1535 1536 req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS; 1537 req_tx.nav_id = tisci_rm->tisci_dev_id; 1538 req_tx.index = tchan->id; 1539 req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR; 1540 req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2; 1541 req_tx.txcq_qnum = tc_ring; 1542 req_tx.tx_atype = ud->atype; 1543 1544 ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx); 1545 if (ret) { 1546 dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret); 1547 return ret; 1548 } 1549 1550 req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS; 1551 req_rx.nav_id = tisci_rm->tisci_dev_id; 1552 req_rx.index = rchan->id; 1553 req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2; 1554 req_rx.rxcq_qnum = tc_ring; 1555 req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR; 1556 req_rx.rx_atype = ud->atype; 1557 1558 ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx); 1559 if (ret) 1560 dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret); 1561 1562 return ret; 1563 } 1564 1565 static int udma_tisci_tx_channel_config(struct udma_chan *uc) 1566 { 1567 struct udma_dev *ud = uc->ud; 1568 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 1569 const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; 1570 struct udma_tchan *tchan = uc->tchan; 1571 int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring); 1572 struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 }; 1573 u32 mode, fetch_size; 1574 int ret = 0; 1575 1576 if (uc->config.pkt_mode) { 1577 mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR; 1578 fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib, 1579 uc->config.psd_size, 0); 1580 } else { 1581 mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR; 1582 fetch_size = sizeof(struct cppi5_desc_hdr_t); 1583 } 1584 1585 req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS; 1586 req_tx.nav_id = tisci_rm->tisci_dev_id; 1587 req_tx.index = tchan->id; 1588 req_tx.tx_chan_type = mode; 1589 req_tx.tx_supr_tdpkt = uc->config.notdpkt; 1590 req_tx.tx_fetch_size = fetch_size >> 2; 1591 req_tx.txcq_qnum = tc_ring; 1592 req_tx.tx_atype = uc->config.atype; 1593 if (uc->config.ep_type == PSIL_EP_PDMA_XY && 1594 ud->match_data->flags & UDMA_FLAG_TDTYPE) { 1595 /* wait for peer to complete the teardown for PDMAs */ 1596 req_tx.valid_params |= 1597 TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_TDTYPE_VALID; 1598 req_tx.tx_tdtype = 1; 1599 } 1600 1601 ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx); 1602 if (ret) 1603 dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret); 1604 1605 return ret; 1606 } 1607 1608 static int udma_tisci_rx_channel_config(struct udma_chan *uc) 1609 { 1610 struct udma_dev *ud = uc->ud; 1611 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 1612 const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops; 1613 struct udma_rchan *rchan = uc->rchan; 1614 int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring); 1615 int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring); 1616 struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 }; 1617 struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 }; 1618 u32 mode, fetch_size; 1619 int ret = 0; 1620 1621 if (uc->config.pkt_mode) { 1622 mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR; 1623 fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib, 1624 uc->config.psd_size, 0); 1625 } else { 1626 mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR; 1627 fetch_size = sizeof(struct cppi5_desc_hdr_t); 1628 } 1629 1630 req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS; 1631 req_rx.nav_id = tisci_rm->tisci_dev_id; 1632 req_rx.index = rchan->id; 1633 req_rx.rx_fetch_size = fetch_size >> 2; 1634 req_rx.rxcq_qnum = rx_ring; 1635 req_rx.rx_chan_type = mode; 1636 req_rx.rx_atype = uc->config.atype; 1637 1638 ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx); 1639 if (ret) { 1640 dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret); 1641 return ret; 1642 } 1643 1644 flow_req.valid_params = 1645 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID | 1646 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID | 1647 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID | 1648 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID | 1649 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID | 1650 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID | 1651 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID | 1652 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID | 1653 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID | 1654 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID | 1655 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID | 1656 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID | 1657 TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID; 1658 1659 flow_req.nav_id = tisci_rm->tisci_dev_id; 1660 flow_req.flow_index = rchan->id; 1661 1662 if (uc->config.needs_epib) 1663 flow_req.rx_einfo_present = 1; 1664 else 1665 flow_req.rx_einfo_present = 0; 1666 if (uc->config.psd_size) 1667 flow_req.rx_psinfo_present = 1; 1668 else 1669 flow_req.rx_psinfo_present = 0; 1670 flow_req.rx_error_handling = 1; 1671 flow_req.rx_dest_qnum = rx_ring; 1672 flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE; 1673 flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG; 1674 flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI; 1675 flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO; 1676 flow_req.rx_fdq0_sz0_qnum = fd_ring; 1677 flow_req.rx_fdq1_qnum = fd_ring; 1678 flow_req.rx_fdq2_qnum = fd_ring; 1679 flow_req.rx_fdq3_qnum = fd_ring; 1680 1681 ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req); 1682 1683 if (ret) 1684 dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret); 1685 1686 return 0; 1687 } 1688 1689 static int udma_alloc_chan_resources(struct dma_chan *chan) 1690 { 1691 struct udma_chan *uc = to_udma_chan(chan); 1692 struct udma_dev *ud = to_udma_dev(chan->device); 1693 const struct udma_soc_data *soc_data = ud->soc_data; 1694 struct k3_ring *irq_ring; 1695 u32 irq_udma_idx; 1696 int ret; 1697 1698 if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) { 1699 uc->use_dma_pool = true; 1700 /* in case of MEM_TO_MEM we have maximum of two TRs */ 1701 if (uc->config.dir == DMA_MEM_TO_MEM) { 1702 uc->config.hdesc_size = cppi5_trdesc_calc_size( 1703 sizeof(struct cppi5_tr_type15_t), 2); 1704 uc->config.pkt_mode = false; 1705 } 1706 } 1707 1708 if (uc->use_dma_pool) { 1709 uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev, 1710 uc->config.hdesc_size, 1711 ud->desc_align, 1712 0); 1713 if (!uc->hdesc_pool) { 1714 dev_err(ud->ddev.dev, 1715 "Descriptor pool allocation failed\n"); 1716 uc->use_dma_pool = false; 1717 ret = -ENOMEM; 1718 goto err_cleanup; 1719 } 1720 } 1721 1722 /* 1723 * Make sure that the completion is in a known state: 1724 * No teardown, the channel is idle 1725 */ 1726 reinit_completion(&uc->teardown_completed); 1727 complete_all(&uc->teardown_completed); 1728 uc->state = UDMA_CHAN_IS_IDLE; 1729 1730 switch (uc->config.dir) { 1731 case DMA_MEM_TO_MEM: 1732 /* Non synchronized - mem to mem type of transfer */ 1733 dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__, 1734 uc->id); 1735 1736 ret = udma_get_chan_pair(uc); 1737 if (ret) 1738 goto err_cleanup; 1739 1740 ret = udma_alloc_tx_resources(uc); 1741 if (ret) { 1742 udma_put_rchan(uc); 1743 goto err_cleanup; 1744 } 1745 1746 ret = udma_alloc_rx_resources(uc); 1747 if (ret) { 1748 udma_free_tx_resources(uc); 1749 goto err_cleanup; 1750 } 1751 1752 uc->config.src_thread = ud->psil_base + uc->tchan->id; 1753 uc->config.dst_thread = (ud->psil_base + uc->rchan->id) | 1754 K3_PSIL_DST_THREAD_ID_OFFSET; 1755 1756 irq_ring = uc->tchan->tc_ring; 1757 irq_udma_idx = uc->tchan->id; 1758 1759 ret = udma_tisci_m2m_channel_config(uc); 1760 break; 1761 case DMA_MEM_TO_DEV: 1762 /* Slave transfer synchronized - mem to dev (TX) trasnfer */ 1763 dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__, 1764 uc->id); 1765 1766 ret = udma_alloc_tx_resources(uc); 1767 if (ret) 1768 goto err_cleanup; 1769 1770 uc->config.src_thread = ud->psil_base + uc->tchan->id; 1771 uc->config.dst_thread = uc->config.remote_thread_id; 1772 uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET; 1773 1774 irq_ring = uc->tchan->tc_ring; 1775 irq_udma_idx = uc->tchan->id; 1776 1777 ret = udma_tisci_tx_channel_config(uc); 1778 break; 1779 case DMA_DEV_TO_MEM: 1780 /* Slave transfer synchronized - dev to mem (RX) trasnfer */ 1781 dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__, 1782 uc->id); 1783 1784 ret = udma_alloc_rx_resources(uc); 1785 if (ret) 1786 goto err_cleanup; 1787 1788 uc->config.src_thread = uc->config.remote_thread_id; 1789 uc->config.dst_thread = (ud->psil_base + uc->rchan->id) | 1790 K3_PSIL_DST_THREAD_ID_OFFSET; 1791 1792 irq_ring = uc->rflow->r_ring; 1793 irq_udma_idx = soc_data->rchan_oes_offset + uc->rchan->id; 1794 1795 ret = udma_tisci_rx_channel_config(uc); 1796 break; 1797 default: 1798 /* Can not happen */ 1799 dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n", 1800 __func__, uc->id, uc->config.dir); 1801 ret = -EINVAL; 1802 goto err_cleanup; 1803 1804 } 1805 1806 /* check if the channel configuration was successful */ 1807 if (ret) 1808 goto err_res_free; 1809 1810 if (udma_is_chan_running(uc)) { 1811 dev_warn(ud->dev, "chan%d: is running!\n", uc->id); 1812 udma_reset_chan(uc, false); 1813 if (udma_is_chan_running(uc)) { 1814 dev_err(ud->dev, "chan%d: won't stop!\n", uc->id); 1815 ret = -EBUSY; 1816 goto err_res_free; 1817 } 1818 } 1819 1820 /* PSI-L pairing */ 1821 ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread); 1822 if (ret) { 1823 dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n", 1824 uc->config.src_thread, uc->config.dst_thread); 1825 goto err_res_free; 1826 } 1827 1828 uc->psil_paired = true; 1829 1830 uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring); 1831 if (uc->irq_num_ring <= 0) { 1832 dev_err(ud->dev, "Failed to get ring irq (index: %u)\n", 1833 k3_ringacc_get_ring_id(irq_ring)); 1834 ret = -EINVAL; 1835 goto err_psi_free; 1836 } 1837 1838 ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler, 1839 IRQF_TRIGGER_HIGH, uc->name, uc); 1840 if (ret) { 1841 dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id); 1842 goto err_irq_free; 1843 } 1844 1845 /* Event from UDMA (TR events) only needed for slave TR mode channels */ 1846 if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) { 1847 uc->irq_num_udma = ti_sci_inta_msi_get_virq(ud->dev, 1848 irq_udma_idx); 1849 if (uc->irq_num_udma <= 0) { 1850 dev_err(ud->dev, "Failed to get udma irq (index: %u)\n", 1851 irq_udma_idx); 1852 free_irq(uc->irq_num_ring, uc); 1853 ret = -EINVAL; 1854 goto err_irq_free; 1855 } 1856 1857 ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0, 1858 uc->name, uc); 1859 if (ret) { 1860 dev_err(ud->dev, "chan%d: UDMA irq request failed\n", 1861 uc->id); 1862 free_irq(uc->irq_num_ring, uc); 1863 goto err_irq_free; 1864 } 1865 } else { 1866 uc->irq_num_udma = 0; 1867 } 1868 1869 udma_reset_rings(uc); 1870 1871 return 0; 1872 1873 err_irq_free: 1874 uc->irq_num_ring = 0; 1875 uc->irq_num_udma = 0; 1876 err_psi_free: 1877 navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread); 1878 uc->psil_paired = false; 1879 err_res_free: 1880 udma_free_tx_resources(uc); 1881 udma_free_rx_resources(uc); 1882 err_cleanup: 1883 udma_reset_uchan(uc); 1884 1885 if (uc->use_dma_pool) { 1886 dma_pool_destroy(uc->hdesc_pool); 1887 uc->use_dma_pool = false; 1888 } 1889 1890 return ret; 1891 } 1892 1893 static int udma_slave_config(struct dma_chan *chan, 1894 struct dma_slave_config *cfg) 1895 { 1896 struct udma_chan *uc = to_udma_chan(chan); 1897 1898 memcpy(&uc->cfg, cfg, sizeof(uc->cfg)); 1899 1900 return 0; 1901 } 1902 1903 static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc, 1904 size_t tr_size, int tr_count, 1905 enum dma_transfer_direction dir) 1906 { 1907 struct udma_hwdesc *hwdesc; 1908 struct cppi5_desc_hdr_t *tr_desc; 1909 struct udma_desc *d; 1910 u32 reload_count = 0; 1911 u32 ring_id; 1912 1913 switch (tr_size) { 1914 case 16: 1915 case 32: 1916 case 64: 1917 case 128: 1918 break; 1919 default: 1920 dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size); 1921 return NULL; 1922 } 1923 1924 /* We have only one descriptor containing multiple TRs */ 1925 d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT); 1926 if (!d) 1927 return NULL; 1928 1929 d->sglen = tr_count; 1930 1931 d->hwdesc_count = 1; 1932 hwdesc = &d->hwdesc[0]; 1933 1934 /* Allocate memory for DMA ring descriptor */ 1935 if (uc->use_dma_pool) { 1936 hwdesc->cppi5_desc_size = uc->config.hdesc_size; 1937 hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, 1938 GFP_NOWAIT, 1939 &hwdesc->cppi5_desc_paddr); 1940 } else { 1941 hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1942 tr_count); 1943 hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size, 1944 uc->ud->desc_align); 1945 hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev, 1946 hwdesc->cppi5_desc_size, 1947 &hwdesc->cppi5_desc_paddr, 1948 GFP_NOWAIT); 1949 } 1950 1951 if (!hwdesc->cppi5_desc_vaddr) { 1952 kfree(d); 1953 return NULL; 1954 } 1955 1956 /* Start of the TR req records */ 1957 hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size; 1958 /* Start address of the TR response array */ 1959 hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count; 1960 1961 tr_desc = hwdesc->cppi5_desc_vaddr; 1962 1963 if (uc->cyclic) 1964 reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE; 1965 1966 if (dir == DMA_DEV_TO_MEM) 1967 ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); 1968 else 1969 ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); 1970 1971 cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count); 1972 cppi5_desc_set_pktids(tr_desc, uc->id, 1973 CPPI5_INFO1_DESC_FLOWID_DEFAULT); 1974 cppi5_desc_set_retpolicy(tr_desc, 0, ring_id); 1975 1976 return d; 1977 } 1978 1979 /** 1980 * udma_get_tr_counters - calculate TR counters for a given length 1981 * @len: Length of the trasnfer 1982 * @align_to: Preferred alignment 1983 * @tr0_cnt0: First TR icnt0 1984 * @tr0_cnt1: First TR icnt1 1985 * @tr1_cnt0: Second (if used) TR icnt0 1986 * 1987 * For len < SZ_64K only one TR is enough, tr1_cnt0 is not updated 1988 * For len >= SZ_64K two TRs are used in a simple way: 1989 * First TR: SZ_64K-alignment blocks (tr0_cnt0, tr0_cnt1) 1990 * Second TR: the remaining length (tr1_cnt0) 1991 * 1992 * Returns the number of TRs the length needs (1 or 2) 1993 * -EINVAL if the length can not be supported 1994 */ 1995 static int udma_get_tr_counters(size_t len, unsigned long align_to, 1996 u16 *tr0_cnt0, u16 *tr0_cnt1, u16 *tr1_cnt0) 1997 { 1998 if (len < SZ_64K) { 1999 *tr0_cnt0 = len; 2000 *tr0_cnt1 = 1; 2001 2002 return 1; 2003 } 2004 2005 if (align_to > 3) 2006 align_to = 3; 2007 2008 realign: 2009 *tr0_cnt0 = SZ_64K - BIT(align_to); 2010 if (len / *tr0_cnt0 >= SZ_64K) { 2011 if (align_to) { 2012 align_to--; 2013 goto realign; 2014 } 2015 return -EINVAL; 2016 } 2017 2018 *tr0_cnt1 = len / *tr0_cnt0; 2019 *tr1_cnt0 = len % *tr0_cnt0; 2020 2021 return 2; 2022 } 2023 2024 static struct udma_desc * 2025 udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl, 2026 unsigned int sglen, enum dma_transfer_direction dir, 2027 unsigned long tx_flags, void *context) 2028 { 2029 struct scatterlist *sgent; 2030 struct udma_desc *d; 2031 struct cppi5_tr_type1_t *tr_req = NULL; 2032 u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; 2033 unsigned int i; 2034 size_t tr_size; 2035 int num_tr = 0; 2036 int tr_idx = 0; 2037 2038 /* estimate the number of TRs we will need */ 2039 for_each_sg(sgl, sgent, sglen, i) { 2040 if (sg_dma_len(sgent) < SZ_64K) 2041 num_tr++; 2042 else 2043 num_tr += 2; 2044 } 2045 2046 /* Now allocate and setup the descriptor. */ 2047 tr_size = sizeof(struct cppi5_tr_type1_t); 2048 d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir); 2049 if (!d) 2050 return NULL; 2051 2052 d->sglen = sglen; 2053 2054 tr_req = d->hwdesc[0].tr_req_base; 2055 for_each_sg(sgl, sgent, sglen, i) { 2056 dma_addr_t sg_addr = sg_dma_address(sgent); 2057 2058 num_tr = udma_get_tr_counters(sg_dma_len(sgent), __ffs(sg_addr), 2059 &tr0_cnt0, &tr0_cnt1, &tr1_cnt0); 2060 if (num_tr < 0) { 2061 dev_err(uc->ud->dev, "size %u is not supported\n", 2062 sg_dma_len(sgent)); 2063 udma_free_hwdesc(uc, d); 2064 kfree(d); 2065 return NULL; 2066 } 2067 2068 cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false, 2069 false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2070 cppi5_tr_csf_set(&tr_req[tr_idx].flags, CPPI5_TR_CSF_SUPR_EVT); 2071 2072 tr_req[tr_idx].addr = sg_addr; 2073 tr_req[tr_idx].icnt0 = tr0_cnt0; 2074 tr_req[tr_idx].icnt1 = tr0_cnt1; 2075 tr_req[tr_idx].dim1 = tr0_cnt0; 2076 tr_idx++; 2077 2078 if (num_tr == 2) { 2079 cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, 2080 false, false, 2081 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2082 cppi5_tr_csf_set(&tr_req[tr_idx].flags, 2083 CPPI5_TR_CSF_SUPR_EVT); 2084 2085 tr_req[tr_idx].addr = sg_addr + tr0_cnt1 * tr0_cnt0; 2086 tr_req[tr_idx].icnt0 = tr1_cnt0; 2087 tr_req[tr_idx].icnt1 = 1; 2088 tr_req[tr_idx].dim1 = tr1_cnt0; 2089 tr_idx++; 2090 } 2091 2092 d->residue += sg_dma_len(sgent); 2093 } 2094 2095 cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags, 2096 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP); 2097 2098 return d; 2099 } 2100 2101 static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d, 2102 enum dma_slave_buswidth dev_width, 2103 u16 elcnt) 2104 { 2105 if (uc->config.ep_type != PSIL_EP_PDMA_XY) 2106 return 0; 2107 2108 /* Bus width translates to the element size (ES) */ 2109 switch (dev_width) { 2110 case DMA_SLAVE_BUSWIDTH_1_BYTE: 2111 d->static_tr.elsize = 0; 2112 break; 2113 case DMA_SLAVE_BUSWIDTH_2_BYTES: 2114 d->static_tr.elsize = 1; 2115 break; 2116 case DMA_SLAVE_BUSWIDTH_3_BYTES: 2117 d->static_tr.elsize = 2; 2118 break; 2119 case DMA_SLAVE_BUSWIDTH_4_BYTES: 2120 d->static_tr.elsize = 3; 2121 break; 2122 case DMA_SLAVE_BUSWIDTH_8_BYTES: 2123 d->static_tr.elsize = 4; 2124 break; 2125 default: /* not reached */ 2126 return -EINVAL; 2127 } 2128 2129 d->static_tr.elcnt = elcnt; 2130 2131 /* 2132 * PDMA must to close the packet when the channel is in packet mode. 2133 * For TR mode when the channel is not cyclic we also need PDMA to close 2134 * the packet otherwise the transfer will stall because PDMA holds on 2135 * the data it has received from the peripheral. 2136 */ 2137 if (uc->config.pkt_mode || !uc->cyclic) { 2138 unsigned int div = dev_width * elcnt; 2139 2140 if (uc->cyclic) 2141 d->static_tr.bstcnt = d->residue / d->sglen / div; 2142 else 2143 d->static_tr.bstcnt = d->residue / div; 2144 2145 if (uc->config.dir == DMA_DEV_TO_MEM && 2146 d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask) 2147 return -EINVAL; 2148 } else { 2149 d->static_tr.bstcnt = 0; 2150 } 2151 2152 return 0; 2153 } 2154 2155 static struct udma_desc * 2156 udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl, 2157 unsigned int sglen, enum dma_transfer_direction dir, 2158 unsigned long tx_flags, void *context) 2159 { 2160 struct scatterlist *sgent; 2161 struct cppi5_host_desc_t *h_desc = NULL; 2162 struct udma_desc *d; 2163 u32 ring_id; 2164 unsigned int i; 2165 2166 d = kzalloc(struct_size(d, hwdesc, sglen), GFP_NOWAIT); 2167 if (!d) 2168 return NULL; 2169 2170 d->sglen = sglen; 2171 d->hwdesc_count = sglen; 2172 2173 if (dir == DMA_DEV_TO_MEM) 2174 ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); 2175 else 2176 ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); 2177 2178 for_each_sg(sgl, sgent, sglen, i) { 2179 struct udma_hwdesc *hwdesc = &d->hwdesc[i]; 2180 dma_addr_t sg_addr = sg_dma_address(sgent); 2181 struct cppi5_host_desc_t *desc; 2182 size_t sg_len = sg_dma_len(sgent); 2183 2184 hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, 2185 GFP_NOWAIT, 2186 &hwdesc->cppi5_desc_paddr); 2187 if (!hwdesc->cppi5_desc_vaddr) { 2188 dev_err(uc->ud->dev, 2189 "descriptor%d allocation failed\n", i); 2190 2191 udma_free_hwdesc(uc, d); 2192 kfree(d); 2193 return NULL; 2194 } 2195 2196 d->residue += sg_len; 2197 hwdesc->cppi5_desc_size = uc->config.hdesc_size; 2198 desc = hwdesc->cppi5_desc_vaddr; 2199 2200 if (i == 0) { 2201 cppi5_hdesc_init(desc, 0, 0); 2202 /* Flow and Packed ID */ 2203 cppi5_desc_set_pktids(&desc->hdr, uc->id, 2204 CPPI5_INFO1_DESC_FLOWID_DEFAULT); 2205 cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id); 2206 } else { 2207 cppi5_hdesc_reset_hbdesc(desc); 2208 cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff); 2209 } 2210 2211 /* attach the sg buffer to the descriptor */ 2212 cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len); 2213 2214 /* Attach link as host buffer descriptor */ 2215 if (h_desc) 2216 cppi5_hdesc_link_hbdesc(h_desc, 2217 hwdesc->cppi5_desc_paddr); 2218 2219 if (dir == DMA_MEM_TO_DEV) 2220 h_desc = desc; 2221 } 2222 2223 if (d->residue >= SZ_4M) { 2224 dev_err(uc->ud->dev, 2225 "%s: Transfer size %u is over the supported 4M range\n", 2226 __func__, d->residue); 2227 udma_free_hwdesc(uc, d); 2228 kfree(d); 2229 return NULL; 2230 } 2231 2232 h_desc = d->hwdesc[0].cppi5_desc_vaddr; 2233 cppi5_hdesc_set_pktlen(h_desc, d->residue); 2234 2235 return d; 2236 } 2237 2238 static int udma_attach_metadata(struct dma_async_tx_descriptor *desc, 2239 void *data, size_t len) 2240 { 2241 struct udma_desc *d = to_udma_desc(desc); 2242 struct udma_chan *uc = to_udma_chan(desc->chan); 2243 struct cppi5_host_desc_t *h_desc; 2244 u32 psd_size = len; 2245 u32 flags = 0; 2246 2247 if (!uc->config.pkt_mode || !uc->config.metadata_size) 2248 return -ENOTSUPP; 2249 2250 if (!data || len > uc->config.metadata_size) 2251 return -EINVAL; 2252 2253 if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE) 2254 return -EINVAL; 2255 2256 h_desc = d->hwdesc[0].cppi5_desc_vaddr; 2257 if (d->dir == DMA_MEM_TO_DEV) 2258 memcpy(h_desc->epib, data, len); 2259 2260 if (uc->config.needs_epib) 2261 psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE; 2262 2263 d->metadata = data; 2264 d->metadata_size = len; 2265 if (uc->config.needs_epib) 2266 flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT; 2267 2268 cppi5_hdesc_update_flags(h_desc, flags); 2269 cppi5_hdesc_update_psdata_size(h_desc, psd_size); 2270 2271 return 0; 2272 } 2273 2274 static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 2275 size_t *payload_len, size_t *max_len) 2276 { 2277 struct udma_desc *d = to_udma_desc(desc); 2278 struct udma_chan *uc = to_udma_chan(desc->chan); 2279 struct cppi5_host_desc_t *h_desc; 2280 2281 if (!uc->config.pkt_mode || !uc->config.metadata_size) 2282 return ERR_PTR(-ENOTSUPP); 2283 2284 h_desc = d->hwdesc[0].cppi5_desc_vaddr; 2285 2286 *max_len = uc->config.metadata_size; 2287 2288 *payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ? 2289 CPPI5_INFO0_HDESC_EPIB_SIZE : 0; 2290 *payload_len += cppi5_hdesc_get_psdata_size(h_desc); 2291 2292 return h_desc->epib; 2293 } 2294 2295 static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc, 2296 size_t payload_len) 2297 { 2298 struct udma_desc *d = to_udma_desc(desc); 2299 struct udma_chan *uc = to_udma_chan(desc->chan); 2300 struct cppi5_host_desc_t *h_desc; 2301 u32 psd_size = payload_len; 2302 u32 flags = 0; 2303 2304 if (!uc->config.pkt_mode || !uc->config.metadata_size) 2305 return -ENOTSUPP; 2306 2307 if (payload_len > uc->config.metadata_size) 2308 return -EINVAL; 2309 2310 if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE) 2311 return -EINVAL; 2312 2313 h_desc = d->hwdesc[0].cppi5_desc_vaddr; 2314 2315 if (uc->config.needs_epib) { 2316 psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE; 2317 flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT; 2318 } 2319 2320 cppi5_hdesc_update_flags(h_desc, flags); 2321 cppi5_hdesc_update_psdata_size(h_desc, psd_size); 2322 2323 return 0; 2324 } 2325 2326 static struct dma_descriptor_metadata_ops metadata_ops = { 2327 .attach = udma_attach_metadata, 2328 .get_ptr = udma_get_metadata_ptr, 2329 .set_len = udma_set_metadata_len, 2330 }; 2331 2332 static struct dma_async_tx_descriptor * 2333 udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 2334 unsigned int sglen, enum dma_transfer_direction dir, 2335 unsigned long tx_flags, void *context) 2336 { 2337 struct udma_chan *uc = to_udma_chan(chan); 2338 enum dma_slave_buswidth dev_width; 2339 struct udma_desc *d; 2340 u32 burst; 2341 2342 if (dir != uc->config.dir) { 2343 dev_err(chan->device->dev, 2344 "%s: chan%d is for %s, not supporting %s\n", 2345 __func__, uc->id, 2346 dmaengine_get_direction_text(uc->config.dir), 2347 dmaengine_get_direction_text(dir)); 2348 return NULL; 2349 } 2350 2351 if (dir == DMA_DEV_TO_MEM) { 2352 dev_width = uc->cfg.src_addr_width; 2353 burst = uc->cfg.src_maxburst; 2354 } else if (dir == DMA_MEM_TO_DEV) { 2355 dev_width = uc->cfg.dst_addr_width; 2356 burst = uc->cfg.dst_maxburst; 2357 } else { 2358 dev_err(chan->device->dev, "%s: bad direction?\n", __func__); 2359 return NULL; 2360 } 2361 2362 if (!burst) 2363 burst = 1; 2364 2365 if (uc->config.pkt_mode) 2366 d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags, 2367 context); 2368 else 2369 d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags, 2370 context); 2371 2372 if (!d) 2373 return NULL; 2374 2375 d->dir = dir; 2376 d->desc_idx = 0; 2377 d->tr_idx = 0; 2378 2379 /* static TR for remote PDMA */ 2380 if (udma_configure_statictr(uc, d, dev_width, burst)) { 2381 dev_err(uc->ud->dev, 2382 "%s: StaticTR Z is limited to maximum 4095 (%u)\n", 2383 __func__, d->static_tr.bstcnt); 2384 2385 udma_free_hwdesc(uc, d); 2386 kfree(d); 2387 return NULL; 2388 } 2389 2390 if (uc->config.metadata_size) 2391 d->vd.tx.metadata_ops = &metadata_ops; 2392 2393 return vchan_tx_prep(&uc->vc, &d->vd, tx_flags); 2394 } 2395 2396 static struct udma_desc * 2397 udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr, 2398 size_t buf_len, size_t period_len, 2399 enum dma_transfer_direction dir, unsigned long flags) 2400 { 2401 struct udma_desc *d; 2402 size_t tr_size, period_addr; 2403 struct cppi5_tr_type1_t *tr_req; 2404 unsigned int periods = buf_len / period_len; 2405 u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; 2406 unsigned int i; 2407 int num_tr; 2408 2409 num_tr = udma_get_tr_counters(period_len, __ffs(buf_addr), &tr0_cnt0, 2410 &tr0_cnt1, &tr1_cnt0); 2411 if (num_tr < 0) { 2412 dev_err(uc->ud->dev, "size %zu is not supported\n", 2413 period_len); 2414 return NULL; 2415 } 2416 2417 /* Now allocate and setup the descriptor. */ 2418 tr_size = sizeof(struct cppi5_tr_type1_t); 2419 d = udma_alloc_tr_desc(uc, tr_size, periods * num_tr, dir); 2420 if (!d) 2421 return NULL; 2422 2423 tr_req = d->hwdesc[0].tr_req_base; 2424 period_addr = buf_addr; 2425 for (i = 0; i < periods; i++) { 2426 int tr_idx = i * num_tr; 2427 2428 cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false, 2429 false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2430 2431 tr_req[tr_idx].addr = period_addr; 2432 tr_req[tr_idx].icnt0 = tr0_cnt0; 2433 tr_req[tr_idx].icnt1 = tr0_cnt1; 2434 tr_req[tr_idx].dim1 = tr0_cnt0; 2435 2436 if (num_tr == 2) { 2437 cppi5_tr_csf_set(&tr_req[tr_idx].flags, 2438 CPPI5_TR_CSF_SUPR_EVT); 2439 tr_idx++; 2440 2441 cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, 2442 false, false, 2443 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2444 2445 tr_req[tr_idx].addr = period_addr + tr0_cnt1 * tr0_cnt0; 2446 tr_req[tr_idx].icnt0 = tr1_cnt0; 2447 tr_req[tr_idx].icnt1 = 1; 2448 tr_req[tr_idx].dim1 = tr1_cnt0; 2449 } 2450 2451 if (!(flags & DMA_PREP_INTERRUPT)) 2452 cppi5_tr_csf_set(&tr_req[tr_idx].flags, 2453 CPPI5_TR_CSF_SUPR_EVT); 2454 2455 period_addr += period_len; 2456 } 2457 2458 return d; 2459 } 2460 2461 static struct udma_desc * 2462 udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr, 2463 size_t buf_len, size_t period_len, 2464 enum dma_transfer_direction dir, unsigned long flags) 2465 { 2466 struct udma_desc *d; 2467 u32 ring_id; 2468 int i; 2469 int periods = buf_len / period_len; 2470 2471 if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1)) 2472 return NULL; 2473 2474 if (period_len >= SZ_4M) 2475 return NULL; 2476 2477 d = kzalloc(struct_size(d, hwdesc, periods), GFP_NOWAIT); 2478 if (!d) 2479 return NULL; 2480 2481 d->hwdesc_count = periods; 2482 2483 /* TODO: re-check this... */ 2484 if (dir == DMA_DEV_TO_MEM) 2485 ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring); 2486 else 2487 ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring); 2488 2489 for (i = 0; i < periods; i++) { 2490 struct udma_hwdesc *hwdesc = &d->hwdesc[i]; 2491 dma_addr_t period_addr = buf_addr + (period_len * i); 2492 struct cppi5_host_desc_t *h_desc; 2493 2494 hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool, 2495 GFP_NOWAIT, 2496 &hwdesc->cppi5_desc_paddr); 2497 if (!hwdesc->cppi5_desc_vaddr) { 2498 dev_err(uc->ud->dev, 2499 "descriptor%d allocation failed\n", i); 2500 2501 udma_free_hwdesc(uc, d); 2502 kfree(d); 2503 return NULL; 2504 } 2505 2506 hwdesc->cppi5_desc_size = uc->config.hdesc_size; 2507 h_desc = hwdesc->cppi5_desc_vaddr; 2508 2509 cppi5_hdesc_init(h_desc, 0, 0); 2510 cppi5_hdesc_set_pktlen(h_desc, period_len); 2511 2512 /* Flow and Packed ID */ 2513 cppi5_desc_set_pktids(&h_desc->hdr, uc->id, 2514 CPPI5_INFO1_DESC_FLOWID_DEFAULT); 2515 cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id); 2516 2517 /* attach each period to a new descriptor */ 2518 cppi5_hdesc_attach_buf(h_desc, 2519 period_addr, period_len, 2520 period_addr, period_len); 2521 } 2522 2523 return d; 2524 } 2525 2526 static struct dma_async_tx_descriptor * 2527 udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 2528 size_t period_len, enum dma_transfer_direction dir, 2529 unsigned long flags) 2530 { 2531 struct udma_chan *uc = to_udma_chan(chan); 2532 enum dma_slave_buswidth dev_width; 2533 struct udma_desc *d; 2534 u32 burst; 2535 2536 if (dir != uc->config.dir) { 2537 dev_err(chan->device->dev, 2538 "%s: chan%d is for %s, not supporting %s\n", 2539 __func__, uc->id, 2540 dmaengine_get_direction_text(uc->config.dir), 2541 dmaengine_get_direction_text(dir)); 2542 return NULL; 2543 } 2544 2545 uc->cyclic = true; 2546 2547 if (dir == DMA_DEV_TO_MEM) { 2548 dev_width = uc->cfg.src_addr_width; 2549 burst = uc->cfg.src_maxburst; 2550 } else if (dir == DMA_MEM_TO_DEV) { 2551 dev_width = uc->cfg.dst_addr_width; 2552 burst = uc->cfg.dst_maxburst; 2553 } else { 2554 dev_err(uc->ud->dev, "%s: bad direction?\n", __func__); 2555 return NULL; 2556 } 2557 2558 if (!burst) 2559 burst = 1; 2560 2561 if (uc->config.pkt_mode) 2562 d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len, 2563 dir, flags); 2564 else 2565 d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len, 2566 dir, flags); 2567 2568 if (!d) 2569 return NULL; 2570 2571 d->sglen = buf_len / period_len; 2572 2573 d->dir = dir; 2574 d->residue = buf_len; 2575 2576 /* static TR for remote PDMA */ 2577 if (udma_configure_statictr(uc, d, dev_width, burst)) { 2578 dev_err(uc->ud->dev, 2579 "%s: StaticTR Z is limited to maximum 4095 (%u)\n", 2580 __func__, d->static_tr.bstcnt); 2581 2582 udma_free_hwdesc(uc, d); 2583 kfree(d); 2584 return NULL; 2585 } 2586 2587 if (uc->config.metadata_size) 2588 d->vd.tx.metadata_ops = &metadata_ops; 2589 2590 return vchan_tx_prep(&uc->vc, &d->vd, flags); 2591 } 2592 2593 static struct dma_async_tx_descriptor * 2594 udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 2595 size_t len, unsigned long tx_flags) 2596 { 2597 struct udma_chan *uc = to_udma_chan(chan); 2598 struct udma_desc *d; 2599 struct cppi5_tr_type15_t *tr_req; 2600 int num_tr; 2601 size_t tr_size = sizeof(struct cppi5_tr_type15_t); 2602 u16 tr0_cnt0, tr0_cnt1, tr1_cnt0; 2603 2604 if (uc->config.dir != DMA_MEM_TO_MEM) { 2605 dev_err(chan->device->dev, 2606 "%s: chan%d is for %s, not supporting %s\n", 2607 __func__, uc->id, 2608 dmaengine_get_direction_text(uc->config.dir), 2609 dmaengine_get_direction_text(DMA_MEM_TO_MEM)); 2610 return NULL; 2611 } 2612 2613 num_tr = udma_get_tr_counters(len, __ffs(src | dest), &tr0_cnt0, 2614 &tr0_cnt1, &tr1_cnt0); 2615 if (num_tr < 0) { 2616 dev_err(uc->ud->dev, "size %zu is not supported\n", 2617 len); 2618 return NULL; 2619 } 2620 2621 d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM); 2622 if (!d) 2623 return NULL; 2624 2625 d->dir = DMA_MEM_TO_MEM; 2626 d->desc_idx = 0; 2627 d->tr_idx = 0; 2628 d->residue = len; 2629 2630 tr_req = d->hwdesc[0].tr_req_base; 2631 2632 cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true, 2633 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2634 cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT); 2635 2636 tr_req[0].addr = src; 2637 tr_req[0].icnt0 = tr0_cnt0; 2638 tr_req[0].icnt1 = tr0_cnt1; 2639 tr_req[0].icnt2 = 1; 2640 tr_req[0].icnt3 = 1; 2641 tr_req[0].dim1 = tr0_cnt0; 2642 2643 tr_req[0].daddr = dest; 2644 tr_req[0].dicnt0 = tr0_cnt0; 2645 tr_req[0].dicnt1 = tr0_cnt1; 2646 tr_req[0].dicnt2 = 1; 2647 tr_req[0].dicnt3 = 1; 2648 tr_req[0].ddim1 = tr0_cnt0; 2649 2650 if (num_tr == 2) { 2651 cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true, 2652 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 2653 cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT); 2654 2655 tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0; 2656 tr_req[1].icnt0 = tr1_cnt0; 2657 tr_req[1].icnt1 = 1; 2658 tr_req[1].icnt2 = 1; 2659 tr_req[1].icnt3 = 1; 2660 2661 tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0; 2662 tr_req[1].dicnt0 = tr1_cnt0; 2663 tr_req[1].dicnt1 = 1; 2664 tr_req[1].dicnt2 = 1; 2665 tr_req[1].dicnt3 = 1; 2666 } 2667 2668 cppi5_tr_csf_set(&tr_req[num_tr - 1].flags, 2669 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP); 2670 2671 if (uc->config.metadata_size) 2672 d->vd.tx.metadata_ops = &metadata_ops; 2673 2674 return vchan_tx_prep(&uc->vc, &d->vd, tx_flags); 2675 } 2676 2677 static void udma_issue_pending(struct dma_chan *chan) 2678 { 2679 struct udma_chan *uc = to_udma_chan(chan); 2680 unsigned long flags; 2681 2682 spin_lock_irqsave(&uc->vc.lock, flags); 2683 2684 /* If we have something pending and no active descriptor, then */ 2685 if (vchan_issue_pending(&uc->vc) && !uc->desc) { 2686 /* 2687 * start a descriptor if the channel is NOT [marked as 2688 * terminating _and_ it is still running (teardown has not 2689 * completed yet)]. 2690 */ 2691 if (!(uc->state == UDMA_CHAN_IS_TERMINATING && 2692 udma_is_chan_running(uc))) 2693 udma_start(uc); 2694 } 2695 2696 spin_unlock_irqrestore(&uc->vc.lock, flags); 2697 } 2698 2699 static enum dma_status udma_tx_status(struct dma_chan *chan, 2700 dma_cookie_t cookie, 2701 struct dma_tx_state *txstate) 2702 { 2703 struct udma_chan *uc = to_udma_chan(chan); 2704 enum dma_status ret; 2705 unsigned long flags; 2706 2707 spin_lock_irqsave(&uc->vc.lock, flags); 2708 2709 ret = dma_cookie_status(chan, cookie, txstate); 2710 2711 if (!udma_is_chan_running(uc)) 2712 ret = DMA_COMPLETE; 2713 2714 if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc)) 2715 ret = DMA_PAUSED; 2716 2717 if (ret == DMA_COMPLETE || !txstate) 2718 goto out; 2719 2720 if (uc->desc && uc->desc->vd.tx.cookie == cookie) { 2721 u32 peer_bcnt = 0; 2722 u32 bcnt = 0; 2723 u32 residue = uc->desc->residue; 2724 u32 delay = 0; 2725 2726 if (uc->desc->dir == DMA_MEM_TO_DEV) { 2727 bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG); 2728 2729 if (uc->config.ep_type != PSIL_EP_NATIVE) { 2730 peer_bcnt = udma_tchanrt_read(uc, 2731 UDMA_CHAN_RT_PEER_BCNT_REG); 2732 2733 if (bcnt > peer_bcnt) 2734 delay = bcnt - peer_bcnt; 2735 } 2736 } else if (uc->desc->dir == DMA_DEV_TO_MEM) { 2737 bcnt = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG); 2738 2739 if (uc->config.ep_type != PSIL_EP_NATIVE) { 2740 peer_bcnt = udma_rchanrt_read(uc, 2741 UDMA_CHAN_RT_PEER_BCNT_REG); 2742 2743 if (peer_bcnt > bcnt) 2744 delay = peer_bcnt - bcnt; 2745 } 2746 } else { 2747 bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG); 2748 } 2749 2750 bcnt -= uc->bcnt; 2751 if (bcnt && !(bcnt % uc->desc->residue)) 2752 residue = 0; 2753 else 2754 residue -= bcnt % uc->desc->residue; 2755 2756 if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) { 2757 ret = DMA_COMPLETE; 2758 delay = 0; 2759 } 2760 2761 dma_set_residue(txstate, residue); 2762 dma_set_in_flight_bytes(txstate, delay); 2763 2764 } else { 2765 ret = DMA_COMPLETE; 2766 } 2767 2768 out: 2769 spin_unlock_irqrestore(&uc->vc.lock, flags); 2770 return ret; 2771 } 2772 2773 static int udma_pause(struct dma_chan *chan) 2774 { 2775 struct udma_chan *uc = to_udma_chan(chan); 2776 2777 /* pause the channel */ 2778 switch (uc->config.dir) { 2779 case DMA_DEV_TO_MEM: 2780 udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 2781 UDMA_PEER_RT_EN_PAUSE, 2782 UDMA_PEER_RT_EN_PAUSE); 2783 break; 2784 case DMA_MEM_TO_DEV: 2785 udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 2786 UDMA_PEER_RT_EN_PAUSE, 2787 UDMA_PEER_RT_EN_PAUSE); 2788 break; 2789 case DMA_MEM_TO_MEM: 2790 udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG, 2791 UDMA_CHAN_RT_CTL_PAUSE, 2792 UDMA_CHAN_RT_CTL_PAUSE); 2793 break; 2794 default: 2795 return -EINVAL; 2796 } 2797 2798 return 0; 2799 } 2800 2801 static int udma_resume(struct dma_chan *chan) 2802 { 2803 struct udma_chan *uc = to_udma_chan(chan); 2804 2805 /* resume the channel */ 2806 switch (uc->config.dir) { 2807 case DMA_DEV_TO_MEM: 2808 udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 2809 UDMA_PEER_RT_EN_PAUSE, 0); 2810 2811 break; 2812 case DMA_MEM_TO_DEV: 2813 udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 2814 UDMA_PEER_RT_EN_PAUSE, 0); 2815 break; 2816 case DMA_MEM_TO_MEM: 2817 udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG, 2818 UDMA_CHAN_RT_CTL_PAUSE, 0); 2819 break; 2820 default: 2821 return -EINVAL; 2822 } 2823 2824 return 0; 2825 } 2826 2827 static int udma_terminate_all(struct dma_chan *chan) 2828 { 2829 struct udma_chan *uc = to_udma_chan(chan); 2830 unsigned long flags; 2831 LIST_HEAD(head); 2832 2833 spin_lock_irqsave(&uc->vc.lock, flags); 2834 2835 if (udma_is_chan_running(uc)) 2836 udma_stop(uc); 2837 2838 if (uc->desc) { 2839 uc->terminated_desc = uc->desc; 2840 uc->desc = NULL; 2841 uc->terminated_desc->terminated = true; 2842 cancel_delayed_work(&uc->tx_drain.work); 2843 } 2844 2845 uc->paused = false; 2846 2847 vchan_get_all_descriptors(&uc->vc, &head); 2848 spin_unlock_irqrestore(&uc->vc.lock, flags); 2849 vchan_dma_desc_free_list(&uc->vc, &head); 2850 2851 return 0; 2852 } 2853 2854 static void udma_synchronize(struct dma_chan *chan) 2855 { 2856 struct udma_chan *uc = to_udma_chan(chan); 2857 unsigned long timeout = msecs_to_jiffies(1000); 2858 2859 vchan_synchronize(&uc->vc); 2860 2861 if (uc->state == UDMA_CHAN_IS_TERMINATING) { 2862 timeout = wait_for_completion_timeout(&uc->teardown_completed, 2863 timeout); 2864 if (!timeout) { 2865 dev_warn(uc->ud->dev, "chan%d teardown timeout!\n", 2866 uc->id); 2867 udma_dump_chan_stdata(uc); 2868 udma_reset_chan(uc, true); 2869 } 2870 } 2871 2872 udma_reset_chan(uc, false); 2873 if (udma_is_chan_running(uc)) 2874 dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id); 2875 2876 cancel_delayed_work_sync(&uc->tx_drain.work); 2877 udma_reset_rings(uc); 2878 } 2879 2880 static void udma_desc_pre_callback(struct virt_dma_chan *vc, 2881 struct virt_dma_desc *vd, 2882 struct dmaengine_result *result) 2883 { 2884 struct udma_chan *uc = to_udma_chan(&vc->chan); 2885 struct udma_desc *d; 2886 2887 if (!vd) 2888 return; 2889 2890 d = to_udma_desc(&vd->tx); 2891 2892 if (d->metadata_size) 2893 udma_fetch_epib(uc, d); 2894 2895 /* Provide residue information for the client */ 2896 if (result) { 2897 void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx); 2898 2899 if (cppi5_desc_get_type(desc_vaddr) == 2900 CPPI5_INFO0_DESC_TYPE_VAL_HOST) { 2901 result->residue = d->residue - 2902 cppi5_hdesc_get_pktlen(desc_vaddr); 2903 if (result->residue) 2904 result->result = DMA_TRANS_ABORTED; 2905 else 2906 result->result = DMA_TRANS_NOERROR; 2907 } else { 2908 result->residue = 0; 2909 result->result = DMA_TRANS_NOERROR; 2910 } 2911 } 2912 } 2913 2914 /* 2915 * This tasklet handles the completion of a DMA descriptor by 2916 * calling its callback and freeing it. 2917 */ 2918 static void udma_vchan_complete(struct tasklet_struct *t) 2919 { 2920 struct virt_dma_chan *vc = from_tasklet(vc, t, task); 2921 struct virt_dma_desc *vd, *_vd; 2922 struct dmaengine_desc_callback cb; 2923 LIST_HEAD(head); 2924 2925 spin_lock_irq(&vc->lock); 2926 list_splice_tail_init(&vc->desc_completed, &head); 2927 vd = vc->cyclic; 2928 if (vd) { 2929 vc->cyclic = NULL; 2930 dmaengine_desc_get_callback(&vd->tx, &cb); 2931 } else { 2932 memset(&cb, 0, sizeof(cb)); 2933 } 2934 spin_unlock_irq(&vc->lock); 2935 2936 udma_desc_pre_callback(vc, vd, NULL); 2937 dmaengine_desc_callback_invoke(&cb, NULL); 2938 2939 list_for_each_entry_safe(vd, _vd, &head, node) { 2940 struct dmaengine_result result; 2941 2942 dmaengine_desc_get_callback(&vd->tx, &cb); 2943 2944 list_del(&vd->node); 2945 2946 udma_desc_pre_callback(vc, vd, &result); 2947 dmaengine_desc_callback_invoke(&cb, &result); 2948 2949 vchan_vdesc_fini(vd); 2950 } 2951 } 2952 2953 static void udma_free_chan_resources(struct dma_chan *chan) 2954 { 2955 struct udma_chan *uc = to_udma_chan(chan); 2956 struct udma_dev *ud = to_udma_dev(chan->device); 2957 2958 udma_terminate_all(chan); 2959 if (uc->terminated_desc) { 2960 udma_reset_chan(uc, false); 2961 udma_reset_rings(uc); 2962 } 2963 2964 cancel_delayed_work_sync(&uc->tx_drain.work); 2965 2966 if (uc->irq_num_ring > 0) { 2967 free_irq(uc->irq_num_ring, uc); 2968 2969 uc->irq_num_ring = 0; 2970 } 2971 if (uc->irq_num_udma > 0) { 2972 free_irq(uc->irq_num_udma, uc); 2973 2974 uc->irq_num_udma = 0; 2975 } 2976 2977 /* Release PSI-L pairing */ 2978 if (uc->psil_paired) { 2979 navss_psil_unpair(ud, uc->config.src_thread, 2980 uc->config.dst_thread); 2981 uc->psil_paired = false; 2982 } 2983 2984 vchan_free_chan_resources(&uc->vc); 2985 tasklet_kill(&uc->vc.task); 2986 2987 udma_free_tx_resources(uc); 2988 udma_free_rx_resources(uc); 2989 udma_reset_uchan(uc); 2990 2991 if (uc->use_dma_pool) { 2992 dma_pool_destroy(uc->hdesc_pool); 2993 uc->use_dma_pool = false; 2994 } 2995 } 2996 2997 static struct platform_driver udma_driver; 2998 2999 struct udma_filter_param { 3000 int remote_thread_id; 3001 u32 atype; 3002 }; 3003 3004 static bool udma_dma_filter_fn(struct dma_chan *chan, void *param) 3005 { 3006 struct udma_chan_config *ucc; 3007 struct psil_endpoint_config *ep_config; 3008 struct udma_filter_param *filter_param; 3009 struct udma_chan *uc; 3010 struct udma_dev *ud; 3011 3012 if (chan->device->dev->driver != &udma_driver.driver) 3013 return false; 3014 3015 uc = to_udma_chan(chan); 3016 ucc = &uc->config; 3017 ud = uc->ud; 3018 filter_param = param; 3019 3020 if (filter_param->atype > 2) { 3021 dev_err(ud->dev, "Invalid channel atype: %u\n", 3022 filter_param->atype); 3023 return false; 3024 } 3025 3026 ucc->remote_thread_id = filter_param->remote_thread_id; 3027 ucc->atype = filter_param->atype; 3028 3029 if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET) 3030 ucc->dir = DMA_MEM_TO_DEV; 3031 else 3032 ucc->dir = DMA_DEV_TO_MEM; 3033 3034 ep_config = psil_get_ep_config(ucc->remote_thread_id); 3035 if (IS_ERR(ep_config)) { 3036 dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n", 3037 ucc->remote_thread_id); 3038 ucc->dir = DMA_MEM_TO_MEM; 3039 ucc->remote_thread_id = -1; 3040 ucc->atype = 0; 3041 return false; 3042 } 3043 3044 ucc->pkt_mode = ep_config->pkt_mode; 3045 ucc->channel_tpl = ep_config->channel_tpl; 3046 ucc->notdpkt = ep_config->notdpkt; 3047 ucc->ep_type = ep_config->ep_type; 3048 3049 if (ucc->ep_type != PSIL_EP_NATIVE) { 3050 const struct udma_match_data *match_data = ud->match_data; 3051 3052 if (match_data->flags & UDMA_FLAG_PDMA_ACC32) 3053 ucc->enable_acc32 = ep_config->pdma_acc32; 3054 if (match_data->flags & UDMA_FLAG_PDMA_BURST) 3055 ucc->enable_burst = ep_config->pdma_burst; 3056 } 3057 3058 ucc->needs_epib = ep_config->needs_epib; 3059 ucc->psd_size = ep_config->psd_size; 3060 ucc->metadata_size = 3061 (ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) + 3062 ucc->psd_size; 3063 3064 if (ucc->pkt_mode) 3065 ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) + 3066 ucc->metadata_size, ud->desc_align); 3067 3068 dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id, 3069 ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir)); 3070 3071 return true; 3072 } 3073 3074 static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec, 3075 struct of_dma *ofdma) 3076 { 3077 struct udma_dev *ud = ofdma->of_dma_data; 3078 dma_cap_mask_t mask = ud->ddev.cap_mask; 3079 struct udma_filter_param filter_param; 3080 struct dma_chan *chan; 3081 3082 if (dma_spec->args_count != 1 && dma_spec->args_count != 2) 3083 return NULL; 3084 3085 filter_param.remote_thread_id = dma_spec->args[0]; 3086 if (dma_spec->args_count == 2) 3087 filter_param.atype = dma_spec->args[1]; 3088 else 3089 filter_param.atype = 0; 3090 3091 chan = __dma_request_channel(&mask, udma_dma_filter_fn, &filter_param, 3092 ofdma->of_node); 3093 if (!chan) { 3094 dev_err(ud->dev, "get channel fail in %s.\n", __func__); 3095 return ERR_PTR(-EINVAL); 3096 } 3097 3098 return chan; 3099 } 3100 3101 static struct udma_match_data am654_main_data = { 3102 .psil_base = 0x1000, 3103 .enable_memcpy_support = true, 3104 .statictr_z_mask = GENMASK(11, 0), 3105 }; 3106 3107 static struct udma_match_data am654_mcu_data = { 3108 .psil_base = 0x6000, 3109 .enable_memcpy_support = false, 3110 .statictr_z_mask = GENMASK(11, 0), 3111 }; 3112 3113 static struct udma_match_data j721e_main_data = { 3114 .psil_base = 0x1000, 3115 .enable_memcpy_support = true, 3116 .flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST | UDMA_FLAG_TDTYPE, 3117 .statictr_z_mask = GENMASK(23, 0), 3118 }; 3119 3120 static struct udma_match_data j721e_mcu_data = { 3121 .psil_base = 0x6000, 3122 .enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */ 3123 .flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST | UDMA_FLAG_TDTYPE, 3124 .statictr_z_mask = GENMASK(23, 0), 3125 }; 3126 3127 static const struct of_device_id udma_of_match[] = { 3128 { 3129 .compatible = "ti,am654-navss-main-udmap", 3130 .data = &am654_main_data, 3131 }, 3132 { 3133 .compatible = "ti,am654-navss-mcu-udmap", 3134 .data = &am654_mcu_data, 3135 }, { 3136 .compatible = "ti,j721e-navss-main-udmap", 3137 .data = &j721e_main_data, 3138 }, { 3139 .compatible = "ti,j721e-navss-mcu-udmap", 3140 .data = &j721e_mcu_data, 3141 }, 3142 { /* Sentinel */ }, 3143 }; 3144 3145 static struct udma_soc_data am654_soc_data = { 3146 .rchan_oes_offset = 0x200, 3147 }; 3148 3149 static struct udma_soc_data j721e_soc_data = { 3150 .rchan_oes_offset = 0x400, 3151 }; 3152 3153 static struct udma_soc_data j7200_soc_data = { 3154 .rchan_oes_offset = 0x80, 3155 }; 3156 3157 static const struct soc_device_attribute k3_soc_devices[] = { 3158 { .family = "AM65X", .data = &am654_soc_data }, 3159 { .family = "J721E", .data = &j721e_soc_data }, 3160 { .family = "J7200", .data = &j7200_soc_data }, 3161 { /* sentinel */ } 3162 }; 3163 3164 static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud) 3165 { 3166 int i; 3167 3168 for (i = 0; i < MMR_LAST; i++) { 3169 ud->mmrs[i] = devm_platform_ioremap_resource_byname(pdev, mmr_names[i]); 3170 if (IS_ERR(ud->mmrs[i])) 3171 return PTR_ERR(ud->mmrs[i]); 3172 } 3173 3174 return 0; 3175 } 3176 3177 static void udma_mark_resource_ranges(struct udma_dev *ud, unsigned long *map, 3178 struct ti_sci_resource_desc *rm_desc, 3179 char *name) 3180 { 3181 bitmap_clear(map, rm_desc->start, rm_desc->num); 3182 bitmap_clear(map, rm_desc->start_sec, rm_desc->num_sec); 3183 dev_dbg(ud->dev, "ti_sci resource range for %s: %d:%d | %d:%d\n", name, 3184 rm_desc->start, rm_desc->num, rm_desc->start_sec, 3185 rm_desc->num_sec); 3186 } 3187 3188 static int udma_setup_resources(struct udma_dev *ud) 3189 { 3190 struct device *dev = ud->dev; 3191 int ch_count, ret, i, j; 3192 u32 cap2, cap3; 3193 struct ti_sci_resource *rm_res, irq_res; 3194 struct udma_tisci_rm *tisci_rm = &ud->tisci_rm; 3195 static const char * const range_names[] = { "ti,sci-rm-range-tchan", 3196 "ti,sci-rm-range-rchan", 3197 "ti,sci-rm-range-rflow" }; 3198 3199 cap2 = udma_read(ud->mmrs[MMR_GCFG], UDMA_CAP_REG(2)); 3200 cap3 = udma_read(ud->mmrs[MMR_GCFG], UDMA_CAP_REG(3)); 3201 3202 ud->rflow_cnt = UDMA_CAP3_RFLOW_CNT(cap3); 3203 ud->tchan_cnt = UDMA_CAP2_TCHAN_CNT(cap2); 3204 ud->echan_cnt = UDMA_CAP2_ECHAN_CNT(cap2); 3205 ud->rchan_cnt = UDMA_CAP2_RCHAN_CNT(cap2); 3206 ch_count = ud->tchan_cnt + ud->rchan_cnt; 3207 3208 /* Set up the throughput level start indexes */ 3209 if (of_device_is_compatible(dev->of_node, 3210 "ti,am654-navss-main-udmap")) { 3211 ud->tpl_levels = 2; 3212 ud->tpl_start_idx[0] = 8; 3213 } else if (of_device_is_compatible(dev->of_node, 3214 "ti,am654-navss-mcu-udmap")) { 3215 ud->tpl_levels = 2; 3216 ud->tpl_start_idx[0] = 2; 3217 } else if (UDMA_CAP3_UCHAN_CNT(cap3)) { 3218 ud->tpl_levels = 3; 3219 ud->tpl_start_idx[1] = UDMA_CAP3_UCHAN_CNT(cap3); 3220 ud->tpl_start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3); 3221 } else if (UDMA_CAP3_HCHAN_CNT(cap3)) { 3222 ud->tpl_levels = 2; 3223 ud->tpl_start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3); 3224 } else { 3225 ud->tpl_levels = 1; 3226 } 3227 3228 ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt), 3229 sizeof(unsigned long), GFP_KERNEL); 3230 ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans), 3231 GFP_KERNEL); 3232 ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt), 3233 sizeof(unsigned long), GFP_KERNEL); 3234 ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans), 3235 GFP_KERNEL); 3236 ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt), 3237 sizeof(unsigned long), 3238 GFP_KERNEL); 3239 ud->rflow_gp_map_allocated = devm_kcalloc(dev, 3240 BITS_TO_LONGS(ud->rflow_cnt), 3241 sizeof(unsigned long), 3242 GFP_KERNEL); 3243 ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt), 3244 sizeof(unsigned long), 3245 GFP_KERNEL); 3246 ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows), 3247 GFP_KERNEL); 3248 3249 if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map || 3250 !ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans || 3251 !ud->rflows || !ud->rflow_in_use) 3252 return -ENOMEM; 3253 3254 /* 3255 * RX flows with the same Ids as RX channels are reserved to be used 3256 * as default flows if remote HW can't generate flow_ids. Those 3257 * RX flows can be requested only explicitly by id. 3258 */ 3259 bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt); 3260 3261 /* by default no GP rflows are assigned to Linux */ 3262 bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt); 3263 3264 /* Get resource ranges from tisci */ 3265 for (i = 0; i < RM_RANGE_LAST; i++) 3266 tisci_rm->rm_ranges[i] = 3267 devm_ti_sci_get_of_resource(tisci_rm->tisci, dev, 3268 tisci_rm->tisci_dev_id, 3269 (char *)range_names[i]); 3270 3271 /* tchan ranges */ 3272 rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN]; 3273 if (IS_ERR(rm_res)) { 3274 bitmap_zero(ud->tchan_map, ud->tchan_cnt); 3275 } else { 3276 bitmap_fill(ud->tchan_map, ud->tchan_cnt); 3277 for (i = 0; i < rm_res->sets; i++) 3278 udma_mark_resource_ranges(ud, ud->tchan_map, 3279 &rm_res->desc[i], "tchan"); 3280 } 3281 irq_res.sets = rm_res->sets; 3282 3283 /* rchan and matching default flow ranges */ 3284 rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN]; 3285 if (IS_ERR(rm_res)) { 3286 bitmap_zero(ud->rchan_map, ud->rchan_cnt); 3287 } else { 3288 bitmap_fill(ud->rchan_map, ud->rchan_cnt); 3289 for (i = 0; i < rm_res->sets; i++) 3290 udma_mark_resource_ranges(ud, ud->rchan_map, 3291 &rm_res->desc[i], "rchan"); 3292 } 3293 3294 irq_res.sets += rm_res->sets; 3295 irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL); 3296 rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN]; 3297 for (i = 0; i < rm_res->sets; i++) { 3298 irq_res.desc[i].start = rm_res->desc[i].start; 3299 irq_res.desc[i].num = rm_res->desc[i].num; 3300 irq_res.desc[i].start_sec = rm_res->desc[i].start_sec; 3301 irq_res.desc[i].num_sec = rm_res->desc[i].num_sec; 3302 } 3303 rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN]; 3304 for (j = 0; j < rm_res->sets; j++, i++) { 3305 if (rm_res->desc[j].num) { 3306 irq_res.desc[i].start = rm_res->desc[j].start + 3307 ud->soc_data->rchan_oes_offset; 3308 irq_res.desc[i].num = rm_res->desc[j].num; 3309 } 3310 if (rm_res->desc[j].num_sec) { 3311 irq_res.desc[i].start_sec = rm_res->desc[j].start_sec + 3312 ud->soc_data->rchan_oes_offset; 3313 irq_res.desc[i].num_sec = rm_res->desc[j].num_sec; 3314 } 3315 } 3316 ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res); 3317 kfree(irq_res.desc); 3318 if (ret) { 3319 dev_err(ud->dev, "Failed to allocate MSI interrupts\n"); 3320 return ret; 3321 } 3322 3323 /* GP rflow ranges */ 3324 rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW]; 3325 if (IS_ERR(rm_res)) { 3326 /* all gp flows are assigned exclusively to Linux */ 3327 bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt, 3328 ud->rflow_cnt - ud->rchan_cnt); 3329 } else { 3330 for (i = 0; i < rm_res->sets; i++) 3331 udma_mark_resource_ranges(ud, ud->rflow_gp_map, 3332 &rm_res->desc[i], "gp-rflow"); 3333 } 3334 3335 ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt); 3336 ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt); 3337 if (!ch_count) 3338 return -ENODEV; 3339 3340 ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels), 3341 GFP_KERNEL); 3342 if (!ud->channels) 3343 return -ENOMEM; 3344 3345 dev_info(dev, "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n", 3346 ch_count, 3347 ud->tchan_cnt - bitmap_weight(ud->tchan_map, ud->tchan_cnt), 3348 ud->rchan_cnt - bitmap_weight(ud->rchan_map, ud->rchan_cnt), 3349 ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map, 3350 ud->rflow_cnt)); 3351 3352 return ch_count; 3353 } 3354 3355 static int udma_setup_rx_flush(struct udma_dev *ud) 3356 { 3357 struct udma_rx_flush *rx_flush = &ud->rx_flush; 3358 struct cppi5_desc_hdr_t *tr_desc; 3359 struct cppi5_tr_type1_t *tr_req; 3360 struct cppi5_host_desc_t *desc; 3361 struct device *dev = ud->dev; 3362 struct udma_hwdesc *hwdesc; 3363 size_t tr_size; 3364 3365 /* Allocate 1K buffer for discarded data on RX channel teardown */ 3366 rx_flush->buffer_size = SZ_1K; 3367 rx_flush->buffer_vaddr = devm_kzalloc(dev, rx_flush->buffer_size, 3368 GFP_KERNEL); 3369 if (!rx_flush->buffer_vaddr) 3370 return -ENOMEM; 3371 3372 rx_flush->buffer_paddr = dma_map_single(dev, rx_flush->buffer_vaddr, 3373 rx_flush->buffer_size, 3374 DMA_TO_DEVICE); 3375 if (dma_mapping_error(dev, rx_flush->buffer_paddr)) 3376 return -ENOMEM; 3377 3378 /* Set up descriptor to be used for TR mode */ 3379 hwdesc = &rx_flush->hwdescs[0]; 3380 tr_size = sizeof(struct cppi5_tr_type1_t); 3381 hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1); 3382 hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size, 3383 ud->desc_align); 3384 3385 hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size, 3386 GFP_KERNEL); 3387 if (!hwdesc->cppi5_desc_vaddr) 3388 return -ENOMEM; 3389 3390 hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr, 3391 hwdesc->cppi5_desc_size, 3392 DMA_TO_DEVICE); 3393 if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr)) 3394 return -ENOMEM; 3395 3396 /* Start of the TR req records */ 3397 hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size; 3398 /* Start address of the TR response array */ 3399 hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size; 3400 3401 tr_desc = hwdesc->cppi5_desc_vaddr; 3402 cppi5_trdesc_init(tr_desc, 1, tr_size, 0, 0); 3403 cppi5_desc_set_pktids(tr_desc, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT); 3404 cppi5_desc_set_retpolicy(tr_desc, 0, 0); 3405 3406 tr_req = hwdesc->tr_req_base; 3407 cppi5_tr_init(&tr_req->flags, CPPI5_TR_TYPE1, false, false, 3408 CPPI5_TR_EVENT_SIZE_COMPLETION, 0); 3409 cppi5_tr_csf_set(&tr_req->flags, CPPI5_TR_CSF_SUPR_EVT); 3410 3411 tr_req->addr = rx_flush->buffer_paddr; 3412 tr_req->icnt0 = rx_flush->buffer_size; 3413 tr_req->icnt1 = 1; 3414 3415 dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr, 3416 hwdesc->cppi5_desc_size, DMA_TO_DEVICE); 3417 3418 /* Set up descriptor to be used for packet mode */ 3419 hwdesc = &rx_flush->hwdescs[1]; 3420 hwdesc->cppi5_desc_size = ALIGN(sizeof(struct cppi5_host_desc_t) + 3421 CPPI5_INFO0_HDESC_EPIB_SIZE + 3422 CPPI5_INFO0_HDESC_PSDATA_MAX_SIZE, 3423 ud->desc_align); 3424 3425 hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size, 3426 GFP_KERNEL); 3427 if (!hwdesc->cppi5_desc_vaddr) 3428 return -ENOMEM; 3429 3430 hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr, 3431 hwdesc->cppi5_desc_size, 3432 DMA_TO_DEVICE); 3433 if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr)) 3434 return -ENOMEM; 3435 3436 desc = hwdesc->cppi5_desc_vaddr; 3437 cppi5_hdesc_init(desc, 0, 0); 3438 cppi5_desc_set_pktids(&desc->hdr, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT); 3439 cppi5_desc_set_retpolicy(&desc->hdr, 0, 0); 3440 3441 cppi5_hdesc_attach_buf(desc, 3442 rx_flush->buffer_paddr, rx_flush->buffer_size, 3443 rx_flush->buffer_paddr, rx_flush->buffer_size); 3444 3445 dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr, 3446 hwdesc->cppi5_desc_size, DMA_TO_DEVICE); 3447 return 0; 3448 } 3449 3450 #ifdef CONFIG_DEBUG_FS 3451 static void udma_dbg_summary_show_chan(struct seq_file *s, 3452 struct dma_chan *chan) 3453 { 3454 struct udma_chan *uc = to_udma_chan(chan); 3455 struct udma_chan_config *ucc = &uc->config; 3456 3457 seq_printf(s, " %-13s| %s", dma_chan_name(chan), 3458 chan->dbg_client_name ?: "in-use"); 3459 seq_printf(s, " (%s, ", dmaengine_get_direction_text(uc->config.dir)); 3460 3461 switch (uc->config.dir) { 3462 case DMA_MEM_TO_MEM: 3463 seq_printf(s, "chan%d pair [0x%04x -> 0x%04x], ", uc->tchan->id, 3464 ucc->src_thread, ucc->dst_thread); 3465 break; 3466 case DMA_DEV_TO_MEM: 3467 seq_printf(s, "rchan%d [0x%04x -> 0x%04x], ", uc->rchan->id, 3468 ucc->src_thread, ucc->dst_thread); 3469 break; 3470 case DMA_MEM_TO_DEV: 3471 seq_printf(s, "tchan%d [0x%04x -> 0x%04x], ", uc->tchan->id, 3472 ucc->src_thread, ucc->dst_thread); 3473 break; 3474 default: 3475 seq_printf(s, ")\n"); 3476 return; 3477 } 3478 3479 if (ucc->ep_type == PSIL_EP_NATIVE) { 3480 seq_printf(s, "PSI-L Native"); 3481 if (ucc->metadata_size) { 3482 seq_printf(s, "[%s", ucc->needs_epib ? " EPIB" : ""); 3483 if (ucc->psd_size) 3484 seq_printf(s, " PSDsize:%u", ucc->psd_size); 3485 seq_printf(s, " ]"); 3486 } 3487 } else { 3488 seq_printf(s, "PDMA"); 3489 if (ucc->enable_acc32 || ucc->enable_burst) 3490 seq_printf(s, "[%s%s ]", 3491 ucc->enable_acc32 ? " ACC32" : "", 3492 ucc->enable_burst ? " BURST" : ""); 3493 } 3494 3495 seq_printf(s, ", %s)\n", ucc->pkt_mode ? "Packet mode" : "TR mode"); 3496 } 3497 3498 static void udma_dbg_summary_show(struct seq_file *s, 3499 struct dma_device *dma_dev) 3500 { 3501 struct dma_chan *chan; 3502 3503 list_for_each_entry(chan, &dma_dev->channels, device_node) { 3504 if (chan->client_count) 3505 udma_dbg_summary_show_chan(s, chan); 3506 } 3507 } 3508 #endif /* CONFIG_DEBUG_FS */ 3509 3510 #define TI_UDMAC_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 3511 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 3512 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 3513 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ 3514 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) 3515 3516 static int udma_probe(struct platform_device *pdev) 3517 { 3518 struct device_node *navss_node = pdev->dev.parent->of_node; 3519 const struct soc_device_attribute *soc; 3520 struct device *dev = &pdev->dev; 3521 struct udma_dev *ud; 3522 const struct of_device_id *match; 3523 int i, ret; 3524 int ch_count; 3525 3526 ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48)); 3527 if (ret) 3528 dev_err(dev, "failed to set dma mask stuff\n"); 3529 3530 ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL); 3531 if (!ud) 3532 return -ENOMEM; 3533 3534 ret = udma_get_mmrs(pdev, ud); 3535 if (ret) 3536 return ret; 3537 3538 ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci"); 3539 if (IS_ERR(ud->tisci_rm.tisci)) 3540 return PTR_ERR(ud->tisci_rm.tisci); 3541 3542 ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id", 3543 &ud->tisci_rm.tisci_dev_id); 3544 if (ret) { 3545 dev_err(dev, "ti,sci-dev-id read failure %d\n", ret); 3546 return ret; 3547 } 3548 pdev->id = ud->tisci_rm.tisci_dev_id; 3549 3550 ret = of_property_read_u32(navss_node, "ti,sci-dev-id", 3551 &ud->tisci_rm.tisci_navss_dev_id); 3552 if (ret) { 3553 dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret); 3554 return ret; 3555 } 3556 3557 ret = of_property_read_u32(dev->of_node, "ti,udma-atype", &ud->atype); 3558 if (!ret && ud->atype > 2) { 3559 dev_err(dev, "Invalid atype: %u\n", ud->atype); 3560 return -EINVAL; 3561 } 3562 3563 ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops; 3564 ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops; 3565 3566 ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc"); 3567 if (IS_ERR(ud->ringacc)) 3568 return PTR_ERR(ud->ringacc); 3569 3570 dev->msi_domain = of_msi_get_domain(dev, dev->of_node, 3571 DOMAIN_BUS_TI_SCI_INTA_MSI); 3572 if (!dev->msi_domain) { 3573 dev_err(dev, "Failed to get MSI domain\n"); 3574 return -EPROBE_DEFER; 3575 } 3576 3577 match = of_match_node(udma_of_match, dev->of_node); 3578 if (!match) { 3579 dev_err(dev, "No compatible match found\n"); 3580 return -ENODEV; 3581 } 3582 ud->match_data = match->data; 3583 3584 soc = soc_device_match(k3_soc_devices); 3585 if (!soc) { 3586 dev_err(dev, "No compatible SoC found\n"); 3587 return -ENODEV; 3588 } 3589 ud->soc_data = soc->data; 3590 3591 dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask); 3592 dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask); 3593 3594 ud->ddev.device_alloc_chan_resources = udma_alloc_chan_resources; 3595 ud->ddev.device_config = udma_slave_config; 3596 ud->ddev.device_prep_slave_sg = udma_prep_slave_sg; 3597 ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic; 3598 ud->ddev.device_issue_pending = udma_issue_pending; 3599 ud->ddev.device_tx_status = udma_tx_status; 3600 ud->ddev.device_pause = udma_pause; 3601 ud->ddev.device_resume = udma_resume; 3602 ud->ddev.device_terminate_all = udma_terminate_all; 3603 ud->ddev.device_synchronize = udma_synchronize; 3604 #ifdef CONFIG_DEBUG_FS 3605 ud->ddev.dbg_summary_show = udma_dbg_summary_show; 3606 #endif 3607 3608 ud->ddev.device_free_chan_resources = udma_free_chan_resources; 3609 ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS; 3610 ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS; 3611 ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 3612 ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 3613 ud->ddev.copy_align = DMAENGINE_ALIGN_8_BYTES; 3614 ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT | 3615 DESC_METADATA_ENGINE; 3616 if (ud->match_data->enable_memcpy_support) { 3617 dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask); 3618 ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy; 3619 ud->ddev.directions |= BIT(DMA_MEM_TO_MEM); 3620 } 3621 3622 ud->ddev.dev = dev; 3623 ud->dev = dev; 3624 ud->psil_base = ud->match_data->psil_base; 3625 3626 INIT_LIST_HEAD(&ud->ddev.channels); 3627 INIT_LIST_HEAD(&ud->desc_to_purge); 3628 3629 ch_count = udma_setup_resources(ud); 3630 if (ch_count <= 0) 3631 return ch_count; 3632 3633 spin_lock_init(&ud->lock); 3634 INIT_WORK(&ud->purge_work, udma_purge_desc_work); 3635 3636 ud->desc_align = 64; 3637 if (ud->desc_align < dma_get_cache_alignment()) 3638 ud->desc_align = dma_get_cache_alignment(); 3639 3640 ret = udma_setup_rx_flush(ud); 3641 if (ret) 3642 return ret; 3643 3644 for (i = 0; i < ud->tchan_cnt; i++) { 3645 struct udma_tchan *tchan = &ud->tchans[i]; 3646 3647 tchan->id = i; 3648 tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000; 3649 } 3650 3651 for (i = 0; i < ud->rchan_cnt; i++) { 3652 struct udma_rchan *rchan = &ud->rchans[i]; 3653 3654 rchan->id = i; 3655 rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000; 3656 } 3657 3658 for (i = 0; i < ud->rflow_cnt; i++) { 3659 struct udma_rflow *rflow = &ud->rflows[i]; 3660 3661 rflow->id = i; 3662 } 3663 3664 for (i = 0; i < ch_count; i++) { 3665 struct udma_chan *uc = &ud->channels[i]; 3666 3667 uc->ud = ud; 3668 uc->vc.desc_free = udma_desc_free; 3669 uc->id = i; 3670 uc->tchan = NULL; 3671 uc->rchan = NULL; 3672 uc->config.remote_thread_id = -1; 3673 uc->config.dir = DMA_MEM_TO_MEM; 3674 uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d", 3675 dev_name(dev), i); 3676 3677 vchan_init(&uc->vc, &ud->ddev); 3678 /* Use custom vchan completion handling */ 3679 tasklet_setup(&uc->vc.task, udma_vchan_complete); 3680 init_completion(&uc->teardown_completed); 3681 INIT_DELAYED_WORK(&uc->tx_drain.work, udma_check_tx_completion); 3682 } 3683 3684 ret = dma_async_device_register(&ud->ddev); 3685 if (ret) { 3686 dev_err(dev, "failed to register slave DMA engine: %d\n", ret); 3687 return ret; 3688 } 3689 3690 platform_set_drvdata(pdev, ud); 3691 3692 ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud); 3693 if (ret) { 3694 dev_err(dev, "failed to register of_dma controller\n"); 3695 dma_async_device_unregister(&ud->ddev); 3696 } 3697 3698 return ret; 3699 } 3700 3701 static struct platform_driver udma_driver = { 3702 .driver = { 3703 .name = "ti-udma", 3704 .of_match_table = udma_of_match, 3705 .suppress_bind_attrs = true, 3706 }, 3707 .probe = udma_probe, 3708 }; 3709 builtin_platform_driver(udma_driver); 3710 3711 /* Private interfaces to UDMA */ 3712 #include "k3-udma-private.c" 3713