xref: /linux/drivers/dma/ti/k3-udma.c (revision 00043a2689232631f39ebbf6719d545b1d799086)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com
4  *  Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/list.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_device.h>
22 #include <linux/of_irq.h>
23 #include <linux/workqueue.h>
24 #include <linux/completion.h>
25 #include <linux/soc/ti/k3-ringacc.h>
26 #include <linux/soc/ti/ti_sci_protocol.h>
27 #include <linux/soc/ti/ti_sci_inta_msi.h>
28 #include <linux/dma/ti-cppi5.h>
29 
30 #include "../virt-dma.h"
31 #include "k3-udma.h"
32 #include "k3-psil-priv.h"
33 
34 struct udma_static_tr {
35 	u8 elsize; /* RPSTR0 */
36 	u16 elcnt; /* RPSTR0 */
37 	u16 bstcnt; /* RPSTR1 */
38 };
39 
40 #define K3_UDMA_MAX_RFLOWS		1024
41 #define K3_UDMA_DEFAULT_RING_SIZE	16
42 
43 /* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */
44 #define UDMA_RFLOW_SRCTAG_NONE		0
45 #define UDMA_RFLOW_SRCTAG_CFG_TAG	1
46 #define UDMA_RFLOW_SRCTAG_FLOW_ID	2
47 #define UDMA_RFLOW_SRCTAG_SRC_TAG	4
48 
49 #define UDMA_RFLOW_DSTTAG_NONE		0
50 #define UDMA_RFLOW_DSTTAG_CFG_TAG	1
51 #define UDMA_RFLOW_DSTTAG_FLOW_ID	2
52 #define UDMA_RFLOW_DSTTAG_DST_TAG_LO	4
53 #define UDMA_RFLOW_DSTTAG_DST_TAG_HI	5
54 
55 struct udma_chan;
56 
57 enum udma_mmr {
58 	MMR_GCFG = 0,
59 	MMR_RCHANRT,
60 	MMR_TCHANRT,
61 	MMR_LAST,
62 };
63 
64 static const char * const mmr_names[] = { "gcfg", "rchanrt", "tchanrt" };
65 
66 struct udma_tchan {
67 	void __iomem *reg_rt;
68 
69 	int id;
70 	struct k3_ring *t_ring; /* Transmit ring */
71 	struct k3_ring *tc_ring; /* Transmit Completion ring */
72 };
73 
74 struct udma_rflow {
75 	int id;
76 	struct k3_ring *fd_ring; /* Free Descriptor ring */
77 	struct k3_ring *r_ring; /* Receive ring */
78 };
79 
80 struct udma_rchan {
81 	void __iomem *reg_rt;
82 
83 	int id;
84 };
85 
86 #define UDMA_FLAG_PDMA_ACC32		BIT(0)
87 #define UDMA_FLAG_PDMA_BURST		BIT(1)
88 
89 struct udma_match_data {
90 	u32 psil_base;
91 	bool enable_memcpy_support;
92 	u32 flags;
93 	u32 statictr_z_mask;
94 	u32 rchan_oes_offset;
95 };
96 
97 struct udma_hwdesc {
98 	size_t cppi5_desc_size;
99 	void *cppi5_desc_vaddr;
100 	dma_addr_t cppi5_desc_paddr;
101 
102 	/* TR descriptor internal pointers */
103 	void *tr_req_base;
104 	struct cppi5_tr_resp_t *tr_resp_base;
105 };
106 
107 struct udma_rx_flush {
108 	struct udma_hwdesc hwdescs[2];
109 
110 	size_t buffer_size;
111 	void *buffer_vaddr;
112 	dma_addr_t buffer_paddr;
113 };
114 
115 struct udma_dev {
116 	struct dma_device ddev;
117 	struct device *dev;
118 	void __iomem *mmrs[MMR_LAST];
119 	const struct udma_match_data *match_data;
120 
121 	u8 tpl_levels;
122 	u32 tpl_start_idx[3];
123 
124 	size_t desc_align; /* alignment to use for descriptors */
125 
126 	struct udma_tisci_rm tisci_rm;
127 
128 	struct k3_ringacc *ringacc;
129 
130 	struct work_struct purge_work;
131 	struct list_head desc_to_purge;
132 	spinlock_t lock;
133 
134 	struct udma_rx_flush rx_flush;
135 
136 	int tchan_cnt;
137 	int echan_cnt;
138 	int rchan_cnt;
139 	int rflow_cnt;
140 	unsigned long *tchan_map;
141 	unsigned long *rchan_map;
142 	unsigned long *rflow_gp_map;
143 	unsigned long *rflow_gp_map_allocated;
144 	unsigned long *rflow_in_use;
145 
146 	struct udma_tchan *tchans;
147 	struct udma_rchan *rchans;
148 	struct udma_rflow *rflows;
149 
150 	struct udma_chan *channels;
151 	u32 psil_base;
152 	u32 atype;
153 };
154 
155 struct udma_desc {
156 	struct virt_dma_desc vd;
157 
158 	bool terminated;
159 
160 	enum dma_transfer_direction dir;
161 
162 	struct udma_static_tr static_tr;
163 	u32 residue;
164 
165 	unsigned int sglen;
166 	unsigned int desc_idx; /* Only used for cyclic in packet mode */
167 	unsigned int tr_idx;
168 
169 	u32 metadata_size;
170 	void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */
171 
172 	unsigned int hwdesc_count;
173 	struct udma_hwdesc hwdesc[0];
174 };
175 
176 enum udma_chan_state {
177 	UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */
178 	UDMA_CHAN_IS_ACTIVE, /* Normal operation */
179 	UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */
180 };
181 
182 struct udma_tx_drain {
183 	struct delayed_work work;
184 	ktime_t tstamp;
185 	u32 residue;
186 };
187 
188 struct udma_chan_config {
189 	bool pkt_mode; /* TR or packet */
190 	bool needs_epib; /* EPIB is needed for the communication or not */
191 	u32 psd_size; /* size of Protocol Specific Data */
192 	u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */
193 	u32 hdesc_size; /* Size of a packet descriptor in packet mode */
194 	bool notdpkt; /* Suppress sending TDC packet */
195 	int remote_thread_id;
196 	u32 atype;
197 	u32 src_thread;
198 	u32 dst_thread;
199 	enum psil_endpoint_type ep_type;
200 	bool enable_acc32;
201 	bool enable_burst;
202 	enum udma_tp_level channel_tpl; /* Channel Throughput Level */
203 
204 	enum dma_transfer_direction dir;
205 };
206 
207 struct udma_chan {
208 	struct virt_dma_chan vc;
209 	struct dma_slave_config	cfg;
210 	struct udma_dev *ud;
211 	struct udma_desc *desc;
212 	struct udma_desc *terminated_desc;
213 	struct udma_static_tr static_tr;
214 	char *name;
215 
216 	struct udma_tchan *tchan;
217 	struct udma_rchan *rchan;
218 	struct udma_rflow *rflow;
219 
220 	bool psil_paired;
221 
222 	int irq_num_ring;
223 	int irq_num_udma;
224 
225 	bool cyclic;
226 	bool paused;
227 
228 	enum udma_chan_state state;
229 	struct completion teardown_completed;
230 
231 	struct udma_tx_drain tx_drain;
232 
233 	u32 bcnt; /* number of bytes completed since the start of the channel */
234 
235 	/* Channel configuration parameters */
236 	struct udma_chan_config config;
237 
238 	/* dmapool for packet mode descriptors */
239 	bool use_dma_pool;
240 	struct dma_pool *hdesc_pool;
241 
242 	u32 id;
243 };
244 
245 static inline struct udma_dev *to_udma_dev(struct dma_device *d)
246 {
247 	return container_of(d, struct udma_dev, ddev);
248 }
249 
250 static inline struct udma_chan *to_udma_chan(struct dma_chan *c)
251 {
252 	return container_of(c, struct udma_chan, vc.chan);
253 }
254 
255 static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t)
256 {
257 	return container_of(t, struct udma_desc, vd.tx);
258 }
259 
260 /* Generic register access functions */
261 static inline u32 udma_read(void __iomem *base, int reg)
262 {
263 	return readl(base + reg);
264 }
265 
266 static inline void udma_write(void __iomem *base, int reg, u32 val)
267 {
268 	writel(val, base + reg);
269 }
270 
271 static inline void udma_update_bits(void __iomem *base, int reg,
272 				    u32 mask, u32 val)
273 {
274 	u32 tmp, orig;
275 
276 	orig = readl(base + reg);
277 	tmp = orig & ~mask;
278 	tmp |= (val & mask);
279 
280 	if (tmp != orig)
281 		writel(tmp, base + reg);
282 }
283 
284 /* TCHANRT */
285 static inline u32 udma_tchanrt_read(struct udma_chan *uc, int reg)
286 {
287 	if (!uc->tchan)
288 		return 0;
289 	return udma_read(uc->tchan->reg_rt, reg);
290 }
291 
292 static inline void udma_tchanrt_write(struct udma_chan *uc, int reg, u32 val)
293 {
294 	if (!uc->tchan)
295 		return;
296 	udma_write(uc->tchan->reg_rt, reg, val);
297 }
298 
299 static inline void udma_tchanrt_update_bits(struct udma_chan *uc, int reg,
300 					    u32 mask, u32 val)
301 {
302 	if (!uc->tchan)
303 		return;
304 	udma_update_bits(uc->tchan->reg_rt, reg, mask, val);
305 }
306 
307 /* RCHANRT */
308 static inline u32 udma_rchanrt_read(struct udma_chan *uc, int reg)
309 {
310 	if (!uc->rchan)
311 		return 0;
312 	return udma_read(uc->rchan->reg_rt, reg);
313 }
314 
315 static inline void udma_rchanrt_write(struct udma_chan *uc, int reg, u32 val)
316 {
317 	if (!uc->rchan)
318 		return;
319 	udma_write(uc->rchan->reg_rt, reg, val);
320 }
321 
322 static inline void udma_rchanrt_update_bits(struct udma_chan *uc, int reg,
323 					    u32 mask, u32 val)
324 {
325 	if (!uc->rchan)
326 		return;
327 	udma_update_bits(uc->rchan->reg_rt, reg, mask, val);
328 }
329 
330 static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread)
331 {
332 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
333 
334 	dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
335 	return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci,
336 					      tisci_rm->tisci_navss_dev_id,
337 					      src_thread, dst_thread);
338 }
339 
340 static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread,
341 			     u32 dst_thread)
342 {
343 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
344 
345 	dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
346 	return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci,
347 						tisci_rm->tisci_navss_dev_id,
348 						src_thread, dst_thread);
349 }
350 
351 static void udma_reset_uchan(struct udma_chan *uc)
352 {
353 	memset(&uc->config, 0, sizeof(uc->config));
354 	uc->config.remote_thread_id = -1;
355 	uc->state = UDMA_CHAN_IS_IDLE;
356 }
357 
358 static void udma_dump_chan_stdata(struct udma_chan *uc)
359 {
360 	struct device *dev = uc->ud->dev;
361 	u32 offset;
362 	int i;
363 
364 	if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) {
365 		dev_dbg(dev, "TCHAN State data:\n");
366 		for (i = 0; i < 32; i++) {
367 			offset = UDMA_CHAN_RT_STDATA_REG + i * 4;
368 			dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i,
369 				udma_tchanrt_read(uc, offset));
370 		}
371 	}
372 
373 	if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) {
374 		dev_dbg(dev, "RCHAN State data:\n");
375 		for (i = 0; i < 32; i++) {
376 			offset = UDMA_CHAN_RT_STDATA_REG + i * 4;
377 			dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i,
378 				udma_rchanrt_read(uc, offset));
379 		}
380 	}
381 }
382 
383 static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d,
384 						    int idx)
385 {
386 	return d->hwdesc[idx].cppi5_desc_paddr;
387 }
388 
389 static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx)
390 {
391 	return d->hwdesc[idx].cppi5_desc_vaddr;
392 }
393 
394 static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc,
395 						   dma_addr_t paddr)
396 {
397 	struct udma_desc *d = uc->terminated_desc;
398 
399 	if (d) {
400 		dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
401 								   d->desc_idx);
402 
403 		if (desc_paddr != paddr)
404 			d = NULL;
405 	}
406 
407 	if (!d) {
408 		d = uc->desc;
409 		if (d) {
410 			dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
411 								d->desc_idx);
412 
413 			if (desc_paddr != paddr)
414 				d = NULL;
415 		}
416 	}
417 
418 	return d;
419 }
420 
421 static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d)
422 {
423 	if (uc->use_dma_pool) {
424 		int i;
425 
426 		for (i = 0; i < d->hwdesc_count; i++) {
427 			if (!d->hwdesc[i].cppi5_desc_vaddr)
428 				continue;
429 
430 			dma_pool_free(uc->hdesc_pool,
431 				      d->hwdesc[i].cppi5_desc_vaddr,
432 				      d->hwdesc[i].cppi5_desc_paddr);
433 
434 			d->hwdesc[i].cppi5_desc_vaddr = NULL;
435 		}
436 	} else if (d->hwdesc[0].cppi5_desc_vaddr) {
437 		struct udma_dev *ud = uc->ud;
438 
439 		dma_free_coherent(ud->dev, d->hwdesc[0].cppi5_desc_size,
440 				  d->hwdesc[0].cppi5_desc_vaddr,
441 				  d->hwdesc[0].cppi5_desc_paddr);
442 
443 		d->hwdesc[0].cppi5_desc_vaddr = NULL;
444 	}
445 }
446 
447 static void udma_purge_desc_work(struct work_struct *work)
448 {
449 	struct udma_dev *ud = container_of(work, typeof(*ud), purge_work);
450 	struct virt_dma_desc *vd, *_vd;
451 	unsigned long flags;
452 	LIST_HEAD(head);
453 
454 	spin_lock_irqsave(&ud->lock, flags);
455 	list_splice_tail_init(&ud->desc_to_purge, &head);
456 	spin_unlock_irqrestore(&ud->lock, flags);
457 
458 	list_for_each_entry_safe(vd, _vd, &head, node) {
459 		struct udma_chan *uc = to_udma_chan(vd->tx.chan);
460 		struct udma_desc *d = to_udma_desc(&vd->tx);
461 
462 		udma_free_hwdesc(uc, d);
463 		list_del(&vd->node);
464 		kfree(d);
465 	}
466 
467 	/* If more to purge, schedule the work again */
468 	if (!list_empty(&ud->desc_to_purge))
469 		schedule_work(&ud->purge_work);
470 }
471 
472 static void udma_desc_free(struct virt_dma_desc *vd)
473 {
474 	struct udma_dev *ud = to_udma_dev(vd->tx.chan->device);
475 	struct udma_chan *uc = to_udma_chan(vd->tx.chan);
476 	struct udma_desc *d = to_udma_desc(&vd->tx);
477 	unsigned long flags;
478 
479 	if (uc->terminated_desc == d)
480 		uc->terminated_desc = NULL;
481 
482 	if (uc->use_dma_pool) {
483 		udma_free_hwdesc(uc, d);
484 		kfree(d);
485 		return;
486 	}
487 
488 	spin_lock_irqsave(&ud->lock, flags);
489 	list_add_tail(&vd->node, &ud->desc_to_purge);
490 	spin_unlock_irqrestore(&ud->lock, flags);
491 
492 	schedule_work(&ud->purge_work);
493 }
494 
495 static bool udma_is_chan_running(struct udma_chan *uc)
496 {
497 	u32 trt_ctl = 0;
498 	u32 rrt_ctl = 0;
499 
500 	if (uc->tchan)
501 		trt_ctl = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
502 	if (uc->rchan)
503 		rrt_ctl = udma_rchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
504 
505 	if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN)
506 		return true;
507 
508 	return false;
509 }
510 
511 static bool udma_is_chan_paused(struct udma_chan *uc)
512 {
513 	u32 val, pause_mask;
514 
515 	switch (uc->config.dir) {
516 	case DMA_DEV_TO_MEM:
517 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG);
518 		pause_mask = UDMA_PEER_RT_EN_PAUSE;
519 		break;
520 	case DMA_MEM_TO_DEV:
521 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG);
522 		pause_mask = UDMA_PEER_RT_EN_PAUSE;
523 		break;
524 	case DMA_MEM_TO_MEM:
525 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
526 		pause_mask = UDMA_CHAN_RT_CTL_PAUSE;
527 		break;
528 	default:
529 		return false;
530 	}
531 
532 	if (val & pause_mask)
533 		return true;
534 
535 	return false;
536 }
537 
538 static inline dma_addr_t udma_get_rx_flush_hwdesc_paddr(struct udma_chan *uc)
539 {
540 	return uc->ud->rx_flush.hwdescs[uc->config.pkt_mode].cppi5_desc_paddr;
541 }
542 
543 static int udma_push_to_ring(struct udma_chan *uc, int idx)
544 {
545 	struct udma_desc *d = uc->desc;
546 	struct k3_ring *ring = NULL;
547 	dma_addr_t paddr;
548 
549 	switch (uc->config.dir) {
550 	case DMA_DEV_TO_MEM:
551 		ring = uc->rflow->fd_ring;
552 		break;
553 	case DMA_MEM_TO_DEV:
554 	case DMA_MEM_TO_MEM:
555 		ring = uc->tchan->t_ring;
556 		break;
557 	default:
558 		return -EINVAL;
559 	}
560 
561 	/* RX flush packet: idx == -1 is only passed in case of DEV_TO_MEM */
562 	if (idx == -1) {
563 		paddr = udma_get_rx_flush_hwdesc_paddr(uc);
564 	} else {
565 		paddr = udma_curr_cppi5_desc_paddr(d, idx);
566 
567 		wmb(); /* Ensure that writes are not moved over this point */
568 	}
569 
570 	return k3_ringacc_ring_push(ring, &paddr);
571 }
572 
573 static bool udma_desc_is_rx_flush(struct udma_chan *uc, dma_addr_t addr)
574 {
575 	if (uc->config.dir != DMA_DEV_TO_MEM)
576 		return false;
577 
578 	if (addr == udma_get_rx_flush_hwdesc_paddr(uc))
579 		return true;
580 
581 	return false;
582 }
583 
584 static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr)
585 {
586 	struct k3_ring *ring = NULL;
587 	int ret;
588 
589 	switch (uc->config.dir) {
590 	case DMA_DEV_TO_MEM:
591 		ring = uc->rflow->r_ring;
592 		break;
593 	case DMA_MEM_TO_DEV:
594 	case DMA_MEM_TO_MEM:
595 		ring = uc->tchan->tc_ring;
596 		break;
597 	default:
598 		return -ENOENT;
599 	}
600 
601 	ret = k3_ringacc_ring_pop(ring, addr);
602 	if (ret)
603 		return ret;
604 
605 	rmb(); /* Ensure that reads are not moved before this point */
606 
607 	/* Teardown completion */
608 	if (cppi5_desc_is_tdcm(*addr))
609 		return 0;
610 
611 	/* Check for flush descriptor */
612 	if (udma_desc_is_rx_flush(uc, *addr))
613 		return -ENOENT;
614 
615 	return 0;
616 }
617 
618 static void udma_reset_rings(struct udma_chan *uc)
619 {
620 	struct k3_ring *ring1 = NULL;
621 	struct k3_ring *ring2 = NULL;
622 
623 	switch (uc->config.dir) {
624 	case DMA_DEV_TO_MEM:
625 		if (uc->rchan) {
626 			ring1 = uc->rflow->fd_ring;
627 			ring2 = uc->rflow->r_ring;
628 		}
629 		break;
630 	case DMA_MEM_TO_DEV:
631 	case DMA_MEM_TO_MEM:
632 		if (uc->tchan) {
633 			ring1 = uc->tchan->t_ring;
634 			ring2 = uc->tchan->tc_ring;
635 		}
636 		break;
637 	default:
638 		break;
639 	}
640 
641 	if (ring1)
642 		k3_ringacc_ring_reset_dma(ring1,
643 					  k3_ringacc_ring_get_occ(ring1));
644 	if (ring2)
645 		k3_ringacc_ring_reset(ring2);
646 
647 	/* make sure we are not leaking memory by stalled descriptor */
648 	if (uc->terminated_desc) {
649 		udma_desc_free(&uc->terminated_desc->vd);
650 		uc->terminated_desc = NULL;
651 	}
652 }
653 
654 static void udma_reset_counters(struct udma_chan *uc)
655 {
656 	u32 val;
657 
658 	if (uc->tchan) {
659 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
660 		udma_tchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
661 
662 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
663 		udma_tchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
664 
665 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG);
666 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val);
667 
668 		val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
669 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
670 	}
671 
672 	if (uc->rchan) {
673 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
674 		udma_rchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
675 
676 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
677 		udma_rchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
678 
679 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG);
680 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val);
681 
682 		val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
683 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
684 	}
685 
686 	uc->bcnt = 0;
687 }
688 
689 static int udma_reset_chan(struct udma_chan *uc, bool hard)
690 {
691 	switch (uc->config.dir) {
692 	case DMA_DEV_TO_MEM:
693 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0);
694 		udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
695 		break;
696 	case DMA_MEM_TO_DEV:
697 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
698 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0);
699 		break;
700 	case DMA_MEM_TO_MEM:
701 		udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
702 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
703 		break;
704 	default:
705 		return -EINVAL;
706 	}
707 
708 	/* Reset all counters */
709 	udma_reset_counters(uc);
710 
711 	/* Hard reset: re-initialize the channel to reset */
712 	if (hard) {
713 		struct udma_chan_config ucc_backup;
714 		int ret;
715 
716 		memcpy(&ucc_backup, &uc->config, sizeof(uc->config));
717 		uc->ud->ddev.device_free_chan_resources(&uc->vc.chan);
718 
719 		/* restore the channel configuration */
720 		memcpy(&uc->config, &ucc_backup, sizeof(uc->config));
721 		ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan);
722 		if (ret)
723 			return ret;
724 
725 		/*
726 		 * Setting forced teardown after forced reset helps recovering
727 		 * the rchan.
728 		 */
729 		if (uc->config.dir == DMA_DEV_TO_MEM)
730 			udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
731 					   UDMA_CHAN_RT_CTL_EN |
732 					   UDMA_CHAN_RT_CTL_TDOWN |
733 					   UDMA_CHAN_RT_CTL_FTDOWN);
734 	}
735 	uc->state = UDMA_CHAN_IS_IDLE;
736 
737 	return 0;
738 }
739 
740 static void udma_start_desc(struct udma_chan *uc)
741 {
742 	struct udma_chan_config *ucc = &uc->config;
743 
744 	if (ucc->pkt_mode && (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) {
745 		int i;
746 
747 		/* Push all descriptors to ring for packet mode cyclic or RX */
748 		for (i = 0; i < uc->desc->sglen; i++)
749 			udma_push_to_ring(uc, i);
750 	} else {
751 		udma_push_to_ring(uc, 0);
752 	}
753 }
754 
755 static bool udma_chan_needs_reconfiguration(struct udma_chan *uc)
756 {
757 	/* Only PDMAs have staticTR */
758 	if (uc->config.ep_type == PSIL_EP_NATIVE)
759 		return false;
760 
761 	/* Check if the staticTR configuration has changed for TX */
762 	if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr)))
763 		return true;
764 
765 	return false;
766 }
767 
768 static int udma_start(struct udma_chan *uc)
769 {
770 	struct virt_dma_desc *vd = vchan_next_desc(&uc->vc);
771 
772 	if (!vd) {
773 		uc->desc = NULL;
774 		return -ENOENT;
775 	}
776 
777 	list_del(&vd->node);
778 
779 	uc->desc = to_udma_desc(&vd->tx);
780 
781 	/* Channel is already running and does not need reconfiguration */
782 	if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) {
783 		udma_start_desc(uc);
784 		goto out;
785 	}
786 
787 	/* Make sure that we clear the teardown bit, if it is set */
788 	udma_reset_chan(uc, false);
789 
790 	/* Push descriptors before we start the channel */
791 	udma_start_desc(uc);
792 
793 	switch (uc->desc->dir) {
794 	case DMA_DEV_TO_MEM:
795 		/* Config remote TR */
796 		if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
797 			u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
798 				  PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
799 			const struct udma_match_data *match_data =
800 							uc->ud->match_data;
801 
802 			if (uc->config.enable_acc32)
803 				val |= PDMA_STATIC_TR_XY_ACC32;
804 			if (uc->config.enable_burst)
805 				val |= PDMA_STATIC_TR_XY_BURST;
806 
807 			udma_rchanrt_write(uc,
808 					   UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG,
809 					   val);
810 
811 			udma_rchanrt_write(uc,
812 				UDMA_CHAN_RT_PEER_STATIC_TR_Z_REG,
813 				PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt,
814 						 match_data->statictr_z_mask));
815 
816 			/* save the current staticTR configuration */
817 			memcpy(&uc->static_tr, &uc->desc->static_tr,
818 			       sizeof(uc->static_tr));
819 		}
820 
821 		udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
822 				   UDMA_CHAN_RT_CTL_EN);
823 
824 		/* Enable remote */
825 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
826 				   UDMA_PEER_RT_EN_ENABLE);
827 
828 		break;
829 	case DMA_MEM_TO_DEV:
830 		/* Config remote TR */
831 		if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
832 			u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
833 				  PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
834 
835 			if (uc->config.enable_acc32)
836 				val |= PDMA_STATIC_TR_XY_ACC32;
837 			if (uc->config.enable_burst)
838 				val |= PDMA_STATIC_TR_XY_BURST;
839 
840 			udma_tchanrt_write(uc,
841 					   UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG,
842 					   val);
843 
844 			/* save the current staticTR configuration */
845 			memcpy(&uc->static_tr, &uc->desc->static_tr,
846 			       sizeof(uc->static_tr));
847 		}
848 
849 		/* Enable remote */
850 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
851 				   UDMA_PEER_RT_EN_ENABLE);
852 
853 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
854 				   UDMA_CHAN_RT_CTL_EN);
855 
856 		break;
857 	case DMA_MEM_TO_MEM:
858 		udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
859 				   UDMA_CHAN_RT_CTL_EN);
860 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
861 				   UDMA_CHAN_RT_CTL_EN);
862 
863 		break;
864 	default:
865 		return -EINVAL;
866 	}
867 
868 	uc->state = UDMA_CHAN_IS_ACTIVE;
869 out:
870 
871 	return 0;
872 }
873 
874 static int udma_stop(struct udma_chan *uc)
875 {
876 	enum udma_chan_state old_state = uc->state;
877 
878 	uc->state = UDMA_CHAN_IS_TERMINATING;
879 	reinit_completion(&uc->teardown_completed);
880 
881 	switch (uc->config.dir) {
882 	case DMA_DEV_TO_MEM:
883 		if (!uc->cyclic && !uc->desc)
884 			udma_push_to_ring(uc, -1);
885 
886 		udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
887 				   UDMA_PEER_RT_EN_ENABLE |
888 				   UDMA_PEER_RT_EN_TEARDOWN);
889 		break;
890 	case DMA_MEM_TO_DEV:
891 		udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
892 				   UDMA_PEER_RT_EN_ENABLE |
893 				   UDMA_PEER_RT_EN_FLUSH);
894 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
895 				   UDMA_CHAN_RT_CTL_EN |
896 				   UDMA_CHAN_RT_CTL_TDOWN);
897 		break;
898 	case DMA_MEM_TO_MEM:
899 		udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
900 				   UDMA_CHAN_RT_CTL_EN |
901 				   UDMA_CHAN_RT_CTL_TDOWN);
902 		break;
903 	default:
904 		uc->state = old_state;
905 		complete_all(&uc->teardown_completed);
906 		return -EINVAL;
907 	}
908 
909 	return 0;
910 }
911 
912 static void udma_cyclic_packet_elapsed(struct udma_chan *uc)
913 {
914 	struct udma_desc *d = uc->desc;
915 	struct cppi5_host_desc_t *h_desc;
916 
917 	h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr;
918 	cppi5_hdesc_reset_to_original(h_desc);
919 	udma_push_to_ring(uc, d->desc_idx);
920 	d->desc_idx = (d->desc_idx + 1) % d->sglen;
921 }
922 
923 static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d)
924 {
925 	struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr;
926 
927 	memcpy(d->metadata, h_desc->epib, d->metadata_size);
928 }
929 
930 static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d)
931 {
932 	u32 peer_bcnt, bcnt;
933 
934 	/* Only TX towards PDMA is affected */
935 	if (uc->config.ep_type == PSIL_EP_NATIVE ||
936 	    uc->config.dir != DMA_MEM_TO_DEV)
937 		return true;
938 
939 	peer_bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
940 	bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
941 
942 	/* Transfer is incomplete, store current residue and time stamp */
943 	if (peer_bcnt < bcnt) {
944 		uc->tx_drain.residue = bcnt - peer_bcnt;
945 		uc->tx_drain.tstamp = ktime_get();
946 		return false;
947 	}
948 
949 	return true;
950 }
951 
952 static void udma_check_tx_completion(struct work_struct *work)
953 {
954 	struct udma_chan *uc = container_of(work, typeof(*uc),
955 					    tx_drain.work.work);
956 	bool desc_done = true;
957 	u32 residue_diff;
958 	ktime_t time_diff;
959 	unsigned long delay;
960 
961 	while (1) {
962 		if (uc->desc) {
963 			/* Get previous residue and time stamp */
964 			residue_diff = uc->tx_drain.residue;
965 			time_diff = uc->tx_drain.tstamp;
966 			/*
967 			 * Get current residue and time stamp or see if
968 			 * transfer is complete
969 			 */
970 			desc_done = udma_is_desc_really_done(uc, uc->desc);
971 		}
972 
973 		if (!desc_done) {
974 			/*
975 			 * Find the time delta and residue delta w.r.t
976 			 * previous poll
977 			 */
978 			time_diff = ktime_sub(uc->tx_drain.tstamp,
979 					      time_diff) + 1;
980 			residue_diff -= uc->tx_drain.residue;
981 			if (residue_diff) {
982 				/*
983 				 * Try to guess when we should check
984 				 * next time by calculating rate at
985 				 * which data is being drained at the
986 				 * peer device
987 				 */
988 				delay = (time_diff / residue_diff) *
989 					uc->tx_drain.residue;
990 			} else {
991 				/* No progress, check again in 1 second  */
992 				schedule_delayed_work(&uc->tx_drain.work, HZ);
993 				break;
994 			}
995 
996 			usleep_range(ktime_to_us(delay),
997 				     ktime_to_us(delay) + 10);
998 			continue;
999 		}
1000 
1001 		if (uc->desc) {
1002 			struct udma_desc *d = uc->desc;
1003 
1004 			uc->bcnt += d->residue;
1005 			udma_start(uc);
1006 			vchan_cookie_complete(&d->vd);
1007 			break;
1008 		}
1009 
1010 		break;
1011 	}
1012 }
1013 
1014 static irqreturn_t udma_ring_irq_handler(int irq, void *data)
1015 {
1016 	struct udma_chan *uc = data;
1017 	struct udma_desc *d;
1018 	unsigned long flags;
1019 	dma_addr_t paddr = 0;
1020 
1021 	if (udma_pop_from_ring(uc, &paddr) || !paddr)
1022 		return IRQ_HANDLED;
1023 
1024 	spin_lock_irqsave(&uc->vc.lock, flags);
1025 
1026 	/* Teardown completion message */
1027 	if (cppi5_desc_is_tdcm(paddr)) {
1028 		complete_all(&uc->teardown_completed);
1029 
1030 		if (uc->terminated_desc) {
1031 			udma_desc_free(&uc->terminated_desc->vd);
1032 			uc->terminated_desc = NULL;
1033 		}
1034 
1035 		if (!uc->desc)
1036 			udma_start(uc);
1037 
1038 		goto out;
1039 	}
1040 
1041 	d = udma_udma_desc_from_paddr(uc, paddr);
1042 
1043 	if (d) {
1044 		dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
1045 								   d->desc_idx);
1046 		if (desc_paddr != paddr) {
1047 			dev_err(uc->ud->dev, "not matching descriptors!\n");
1048 			goto out;
1049 		}
1050 
1051 		if (d == uc->desc) {
1052 			/* active descriptor */
1053 			if (uc->cyclic) {
1054 				udma_cyclic_packet_elapsed(uc);
1055 				vchan_cyclic_callback(&d->vd);
1056 			} else {
1057 				if (udma_is_desc_really_done(uc, d)) {
1058 					uc->bcnt += d->residue;
1059 					udma_start(uc);
1060 					vchan_cookie_complete(&d->vd);
1061 				} else {
1062 					schedule_delayed_work(&uc->tx_drain.work,
1063 							      0);
1064 				}
1065 			}
1066 		} else {
1067 			/*
1068 			 * terminated descriptor, mark the descriptor as
1069 			 * completed to update the channel's cookie marker
1070 			 */
1071 			dma_cookie_complete(&d->vd.tx);
1072 		}
1073 	}
1074 out:
1075 	spin_unlock_irqrestore(&uc->vc.lock, flags);
1076 
1077 	return IRQ_HANDLED;
1078 }
1079 
1080 static irqreturn_t udma_udma_irq_handler(int irq, void *data)
1081 {
1082 	struct udma_chan *uc = data;
1083 	struct udma_desc *d;
1084 	unsigned long flags;
1085 
1086 	spin_lock_irqsave(&uc->vc.lock, flags);
1087 	d = uc->desc;
1088 	if (d) {
1089 		d->tr_idx = (d->tr_idx + 1) % d->sglen;
1090 
1091 		if (uc->cyclic) {
1092 			vchan_cyclic_callback(&d->vd);
1093 		} else {
1094 			/* TODO: figure out the real amount of data */
1095 			uc->bcnt += d->residue;
1096 			udma_start(uc);
1097 			vchan_cookie_complete(&d->vd);
1098 		}
1099 	}
1100 
1101 	spin_unlock_irqrestore(&uc->vc.lock, flags);
1102 
1103 	return IRQ_HANDLED;
1104 }
1105 
1106 /**
1107  * __udma_alloc_gp_rflow_range - alloc range of GP RX flows
1108  * @ud: UDMA device
1109  * @from: Start the search from this flow id number
1110  * @cnt: Number of consecutive flow ids to allocate
1111  *
1112  * Allocate range of RX flow ids for future use, those flows can be requested
1113  * only using explicit flow id number. if @from is set to -1 it will try to find
1114  * first free range. if @from is positive value it will force allocation only
1115  * of the specified range of flows.
1116  *
1117  * Returns -ENOMEM if can't find free range.
1118  * -EEXIST if requested range is busy.
1119  * -EINVAL if wrong input values passed.
1120  * Returns flow id on success.
1121  */
1122 static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
1123 {
1124 	int start, tmp_from;
1125 	DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS);
1126 
1127 	tmp_from = from;
1128 	if (tmp_from < 0)
1129 		tmp_from = ud->rchan_cnt;
1130 	/* default flows can't be allocated and accessible only by id */
1131 	if (tmp_from < ud->rchan_cnt)
1132 		return -EINVAL;
1133 
1134 	if (tmp_from + cnt > ud->rflow_cnt)
1135 		return -EINVAL;
1136 
1137 	bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated,
1138 		  ud->rflow_cnt);
1139 
1140 	start = bitmap_find_next_zero_area(tmp,
1141 					   ud->rflow_cnt,
1142 					   tmp_from, cnt, 0);
1143 	if (start >= ud->rflow_cnt)
1144 		return -ENOMEM;
1145 
1146 	if (from >= 0 && start != from)
1147 		return -EEXIST;
1148 
1149 	bitmap_set(ud->rflow_gp_map_allocated, start, cnt);
1150 	return start;
1151 }
1152 
1153 static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
1154 {
1155 	if (from < ud->rchan_cnt)
1156 		return -EINVAL;
1157 	if (from + cnt > ud->rflow_cnt)
1158 		return -EINVAL;
1159 
1160 	bitmap_clear(ud->rflow_gp_map_allocated, from, cnt);
1161 	return 0;
1162 }
1163 
1164 static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id)
1165 {
1166 	/*
1167 	 * Attempt to request rflow by ID can be made for any rflow
1168 	 * if not in use with assumption that caller knows what's doing.
1169 	 * TI-SCI FW will perform additional permission check ant way, it's
1170 	 * safe
1171 	 */
1172 
1173 	if (id < 0 || id >= ud->rflow_cnt)
1174 		return ERR_PTR(-ENOENT);
1175 
1176 	if (test_bit(id, ud->rflow_in_use))
1177 		return ERR_PTR(-ENOENT);
1178 
1179 	/* GP rflow has to be allocated first */
1180 	if (!test_bit(id, ud->rflow_gp_map) &&
1181 	    !test_bit(id, ud->rflow_gp_map_allocated))
1182 		return ERR_PTR(-EINVAL);
1183 
1184 	dev_dbg(ud->dev, "get rflow%d\n", id);
1185 	set_bit(id, ud->rflow_in_use);
1186 	return &ud->rflows[id];
1187 }
1188 
1189 static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow)
1190 {
1191 	if (!test_bit(rflow->id, ud->rflow_in_use)) {
1192 		dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id);
1193 		return;
1194 	}
1195 
1196 	dev_dbg(ud->dev, "put rflow%d\n", rflow->id);
1197 	clear_bit(rflow->id, ud->rflow_in_use);
1198 }
1199 
1200 #define UDMA_RESERVE_RESOURCE(res)					\
1201 static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud,	\
1202 					       enum udma_tp_level tpl,	\
1203 					       int id)			\
1204 {									\
1205 	if (id >= 0) {							\
1206 		if (test_bit(id, ud->res##_map)) {			\
1207 			dev_err(ud->dev, "res##%d is in use\n", id);	\
1208 			return ERR_PTR(-ENOENT);			\
1209 		}							\
1210 	} else {							\
1211 		int start;						\
1212 									\
1213 		if (tpl >= ud->tpl_levels)				\
1214 			tpl = ud->tpl_levels - 1;			\
1215 									\
1216 		start = ud->tpl_start_idx[tpl];				\
1217 									\
1218 		id = find_next_zero_bit(ud->res##_map, ud->res##_cnt,	\
1219 					start);				\
1220 		if (id == ud->res##_cnt) {				\
1221 			return ERR_PTR(-ENOENT);			\
1222 		}							\
1223 	}								\
1224 									\
1225 	set_bit(id, ud->res##_map);					\
1226 	return &ud->res##s[id];						\
1227 }
1228 
1229 UDMA_RESERVE_RESOURCE(tchan);
1230 UDMA_RESERVE_RESOURCE(rchan);
1231 
1232 static int udma_get_tchan(struct udma_chan *uc)
1233 {
1234 	struct udma_dev *ud = uc->ud;
1235 
1236 	if (uc->tchan) {
1237 		dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n",
1238 			uc->id, uc->tchan->id);
1239 		return 0;
1240 	}
1241 
1242 	uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl, -1);
1243 
1244 	return PTR_ERR_OR_ZERO(uc->tchan);
1245 }
1246 
1247 static int udma_get_rchan(struct udma_chan *uc)
1248 {
1249 	struct udma_dev *ud = uc->ud;
1250 
1251 	if (uc->rchan) {
1252 		dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n",
1253 			uc->id, uc->rchan->id);
1254 		return 0;
1255 	}
1256 
1257 	uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl, -1);
1258 
1259 	return PTR_ERR_OR_ZERO(uc->rchan);
1260 }
1261 
1262 static int udma_get_chan_pair(struct udma_chan *uc)
1263 {
1264 	struct udma_dev *ud = uc->ud;
1265 	int chan_id, end;
1266 
1267 	if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) {
1268 		dev_info(ud->dev, "chan%d: already have %d pair allocated\n",
1269 			 uc->id, uc->tchan->id);
1270 		return 0;
1271 	}
1272 
1273 	if (uc->tchan) {
1274 		dev_err(ud->dev, "chan%d: already have tchan%d allocated\n",
1275 			uc->id, uc->tchan->id);
1276 		return -EBUSY;
1277 	} else if (uc->rchan) {
1278 		dev_err(ud->dev, "chan%d: already have rchan%d allocated\n",
1279 			uc->id, uc->rchan->id);
1280 		return -EBUSY;
1281 	}
1282 
1283 	/* Can be optimized, but let's have it like this for now */
1284 	end = min(ud->tchan_cnt, ud->rchan_cnt);
1285 	/* Try to use the highest TPL channel pair for MEM_TO_MEM channels */
1286 	chan_id = ud->tpl_start_idx[ud->tpl_levels - 1];
1287 	for (; chan_id < end; chan_id++) {
1288 		if (!test_bit(chan_id, ud->tchan_map) &&
1289 		    !test_bit(chan_id, ud->rchan_map))
1290 			break;
1291 	}
1292 
1293 	if (chan_id == end)
1294 		return -ENOENT;
1295 
1296 	set_bit(chan_id, ud->tchan_map);
1297 	set_bit(chan_id, ud->rchan_map);
1298 	uc->tchan = &ud->tchans[chan_id];
1299 	uc->rchan = &ud->rchans[chan_id];
1300 
1301 	return 0;
1302 }
1303 
1304 static int udma_get_rflow(struct udma_chan *uc, int flow_id)
1305 {
1306 	struct udma_dev *ud = uc->ud;
1307 
1308 	if (!uc->rchan) {
1309 		dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id);
1310 		return -EINVAL;
1311 	}
1312 
1313 	if (uc->rflow) {
1314 		dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n",
1315 			uc->id, uc->rflow->id);
1316 		return 0;
1317 	}
1318 
1319 	uc->rflow = __udma_get_rflow(ud, flow_id);
1320 
1321 	return PTR_ERR_OR_ZERO(uc->rflow);
1322 }
1323 
1324 static void udma_put_rchan(struct udma_chan *uc)
1325 {
1326 	struct udma_dev *ud = uc->ud;
1327 
1328 	if (uc->rchan) {
1329 		dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id,
1330 			uc->rchan->id);
1331 		clear_bit(uc->rchan->id, ud->rchan_map);
1332 		uc->rchan = NULL;
1333 	}
1334 }
1335 
1336 static void udma_put_tchan(struct udma_chan *uc)
1337 {
1338 	struct udma_dev *ud = uc->ud;
1339 
1340 	if (uc->tchan) {
1341 		dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id,
1342 			uc->tchan->id);
1343 		clear_bit(uc->tchan->id, ud->tchan_map);
1344 		uc->tchan = NULL;
1345 	}
1346 }
1347 
1348 static void udma_put_rflow(struct udma_chan *uc)
1349 {
1350 	struct udma_dev *ud = uc->ud;
1351 
1352 	if (uc->rflow) {
1353 		dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id,
1354 			uc->rflow->id);
1355 		__udma_put_rflow(ud, uc->rflow);
1356 		uc->rflow = NULL;
1357 	}
1358 }
1359 
1360 static void udma_free_tx_resources(struct udma_chan *uc)
1361 {
1362 	if (!uc->tchan)
1363 		return;
1364 
1365 	k3_ringacc_ring_free(uc->tchan->t_ring);
1366 	k3_ringacc_ring_free(uc->tchan->tc_ring);
1367 	uc->tchan->t_ring = NULL;
1368 	uc->tchan->tc_ring = NULL;
1369 
1370 	udma_put_tchan(uc);
1371 }
1372 
1373 static int udma_alloc_tx_resources(struct udma_chan *uc)
1374 {
1375 	struct k3_ring_cfg ring_cfg;
1376 	struct udma_dev *ud = uc->ud;
1377 	int ret;
1378 
1379 	ret = udma_get_tchan(uc);
1380 	if (ret)
1381 		return ret;
1382 
1383 	uc->tchan->t_ring = k3_ringacc_request_ring(ud->ringacc,
1384 						    uc->tchan->id, 0);
1385 	if (!uc->tchan->t_ring) {
1386 		ret = -EBUSY;
1387 		goto err_tx_ring;
1388 	}
1389 
1390 	uc->tchan->tc_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0);
1391 	if (!uc->tchan->tc_ring) {
1392 		ret = -EBUSY;
1393 		goto err_txc_ring;
1394 	}
1395 
1396 	memset(&ring_cfg, 0, sizeof(ring_cfg));
1397 	ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1398 	ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
1399 	ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
1400 
1401 	ret = k3_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg);
1402 	ret |= k3_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg);
1403 
1404 	if (ret)
1405 		goto err_ringcfg;
1406 
1407 	return 0;
1408 
1409 err_ringcfg:
1410 	k3_ringacc_ring_free(uc->tchan->tc_ring);
1411 	uc->tchan->tc_ring = NULL;
1412 err_txc_ring:
1413 	k3_ringacc_ring_free(uc->tchan->t_ring);
1414 	uc->tchan->t_ring = NULL;
1415 err_tx_ring:
1416 	udma_put_tchan(uc);
1417 
1418 	return ret;
1419 }
1420 
1421 static void udma_free_rx_resources(struct udma_chan *uc)
1422 {
1423 	if (!uc->rchan)
1424 		return;
1425 
1426 	if (uc->rflow) {
1427 		struct udma_rflow *rflow = uc->rflow;
1428 
1429 		k3_ringacc_ring_free(rflow->fd_ring);
1430 		k3_ringacc_ring_free(rflow->r_ring);
1431 		rflow->fd_ring = NULL;
1432 		rflow->r_ring = NULL;
1433 
1434 		udma_put_rflow(uc);
1435 	}
1436 
1437 	udma_put_rchan(uc);
1438 }
1439 
1440 static int udma_alloc_rx_resources(struct udma_chan *uc)
1441 {
1442 	struct udma_dev *ud = uc->ud;
1443 	struct k3_ring_cfg ring_cfg;
1444 	struct udma_rflow *rflow;
1445 	int fd_ring_id;
1446 	int ret;
1447 
1448 	ret = udma_get_rchan(uc);
1449 	if (ret)
1450 		return ret;
1451 
1452 	/* For MEM_TO_MEM we don't need rflow or rings */
1453 	if (uc->config.dir == DMA_MEM_TO_MEM)
1454 		return 0;
1455 
1456 	ret = udma_get_rflow(uc, uc->rchan->id);
1457 	if (ret) {
1458 		ret = -EBUSY;
1459 		goto err_rflow;
1460 	}
1461 
1462 	rflow = uc->rflow;
1463 	fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id;
1464 	rflow->fd_ring = k3_ringacc_request_ring(ud->ringacc, fd_ring_id, 0);
1465 	if (!rflow->fd_ring) {
1466 		ret = -EBUSY;
1467 		goto err_rx_ring;
1468 	}
1469 
1470 	rflow->r_ring = k3_ringacc_request_ring(ud->ringacc, -1, 0);
1471 	if (!rflow->r_ring) {
1472 		ret = -EBUSY;
1473 		goto err_rxc_ring;
1474 	}
1475 
1476 	memset(&ring_cfg, 0, sizeof(ring_cfg));
1477 
1478 	if (uc->config.pkt_mode)
1479 		ring_cfg.size = SG_MAX_SEGMENTS;
1480 	else
1481 		ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1482 
1483 	ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
1484 	ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
1485 
1486 	ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg);
1487 	ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
1488 	ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg);
1489 
1490 	if (ret)
1491 		goto err_ringcfg;
1492 
1493 	return 0;
1494 
1495 err_ringcfg:
1496 	k3_ringacc_ring_free(rflow->r_ring);
1497 	rflow->r_ring = NULL;
1498 err_rxc_ring:
1499 	k3_ringacc_ring_free(rflow->fd_ring);
1500 	rflow->fd_ring = NULL;
1501 err_rx_ring:
1502 	udma_put_rflow(uc);
1503 err_rflow:
1504 	udma_put_rchan(uc);
1505 
1506 	return ret;
1507 }
1508 
1509 #define TISCI_TCHAN_VALID_PARAMS (				\
1510 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID |	\
1511 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID |	\
1512 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID |	\
1513 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |		\
1514 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID |	\
1515 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |		\
1516 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID |		\
1517 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
1518 
1519 #define TISCI_RCHAN_VALID_PARAMS (				\
1520 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID |	\
1521 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID |		\
1522 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID |		\
1523 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID |		\
1524 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID |	\
1525 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID |	\
1526 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID |	\
1527 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID |	\
1528 	TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
1529 
1530 static int udma_tisci_m2m_channel_config(struct udma_chan *uc)
1531 {
1532 	struct udma_dev *ud = uc->ud;
1533 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1534 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1535 	struct udma_tchan *tchan = uc->tchan;
1536 	struct udma_rchan *rchan = uc->rchan;
1537 	int ret = 0;
1538 
1539 	/* Non synchronized - mem to mem type of transfer */
1540 	int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
1541 	struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
1542 	struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
1543 
1544 	req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
1545 	req_tx.nav_id = tisci_rm->tisci_dev_id;
1546 	req_tx.index = tchan->id;
1547 	req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
1548 	req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
1549 	req_tx.txcq_qnum = tc_ring;
1550 	req_tx.tx_atype = ud->atype;
1551 
1552 	ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
1553 	if (ret) {
1554 		dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
1555 		return ret;
1556 	}
1557 
1558 	req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
1559 	req_rx.nav_id = tisci_rm->tisci_dev_id;
1560 	req_rx.index = rchan->id;
1561 	req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
1562 	req_rx.rxcq_qnum = tc_ring;
1563 	req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
1564 	req_rx.rx_atype = ud->atype;
1565 
1566 	ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
1567 	if (ret)
1568 		dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret);
1569 
1570 	return ret;
1571 }
1572 
1573 static int udma_tisci_tx_channel_config(struct udma_chan *uc)
1574 {
1575 	struct udma_dev *ud = uc->ud;
1576 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1577 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1578 	struct udma_tchan *tchan = uc->tchan;
1579 	int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
1580 	struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
1581 	u32 mode, fetch_size;
1582 	int ret = 0;
1583 
1584 	if (uc->config.pkt_mode) {
1585 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
1586 		fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
1587 						   uc->config.psd_size, 0);
1588 	} else {
1589 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
1590 		fetch_size = sizeof(struct cppi5_desc_hdr_t);
1591 	}
1592 
1593 	req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
1594 	req_tx.nav_id = tisci_rm->tisci_dev_id;
1595 	req_tx.index = tchan->id;
1596 	req_tx.tx_chan_type = mode;
1597 	req_tx.tx_supr_tdpkt = uc->config.notdpkt;
1598 	req_tx.tx_fetch_size = fetch_size >> 2;
1599 	req_tx.txcq_qnum = tc_ring;
1600 	req_tx.tx_atype = uc->config.atype;
1601 
1602 	ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
1603 	if (ret)
1604 		dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
1605 
1606 	return ret;
1607 }
1608 
1609 static int udma_tisci_rx_channel_config(struct udma_chan *uc)
1610 {
1611 	struct udma_dev *ud = uc->ud;
1612 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
1613 	const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
1614 	struct udma_rchan *rchan = uc->rchan;
1615 	int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring);
1616 	int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring);
1617 	struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
1618 	struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 };
1619 	u32 mode, fetch_size;
1620 	int ret = 0;
1621 
1622 	if (uc->config.pkt_mode) {
1623 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
1624 		fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
1625 						   uc->config.psd_size, 0);
1626 	} else {
1627 		mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
1628 		fetch_size = sizeof(struct cppi5_desc_hdr_t);
1629 	}
1630 
1631 	req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
1632 	req_rx.nav_id = tisci_rm->tisci_dev_id;
1633 	req_rx.index = rchan->id;
1634 	req_rx.rx_fetch_size =  fetch_size >> 2;
1635 	req_rx.rxcq_qnum = rx_ring;
1636 	req_rx.rx_chan_type = mode;
1637 	req_rx.rx_atype = uc->config.atype;
1638 
1639 	ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
1640 	if (ret) {
1641 		dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret);
1642 		return ret;
1643 	}
1644 
1645 	flow_req.valid_params =
1646 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID |
1647 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID |
1648 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID |
1649 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID |
1650 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID |
1651 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID |
1652 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID |
1653 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID |
1654 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID |
1655 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID |
1656 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID |
1657 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID |
1658 		TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID;
1659 
1660 	flow_req.nav_id = tisci_rm->tisci_dev_id;
1661 	flow_req.flow_index = rchan->id;
1662 
1663 	if (uc->config.needs_epib)
1664 		flow_req.rx_einfo_present = 1;
1665 	else
1666 		flow_req.rx_einfo_present = 0;
1667 	if (uc->config.psd_size)
1668 		flow_req.rx_psinfo_present = 1;
1669 	else
1670 		flow_req.rx_psinfo_present = 0;
1671 	flow_req.rx_error_handling = 1;
1672 	flow_req.rx_dest_qnum = rx_ring;
1673 	flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE;
1674 	flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG;
1675 	flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI;
1676 	flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO;
1677 	flow_req.rx_fdq0_sz0_qnum = fd_ring;
1678 	flow_req.rx_fdq1_qnum = fd_ring;
1679 	flow_req.rx_fdq2_qnum = fd_ring;
1680 	flow_req.rx_fdq3_qnum = fd_ring;
1681 
1682 	ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req);
1683 
1684 	if (ret)
1685 		dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret);
1686 
1687 	return 0;
1688 }
1689 
1690 static int udma_alloc_chan_resources(struct dma_chan *chan)
1691 {
1692 	struct udma_chan *uc = to_udma_chan(chan);
1693 	struct udma_dev *ud = to_udma_dev(chan->device);
1694 	const struct udma_match_data *match_data = ud->match_data;
1695 	struct k3_ring *irq_ring;
1696 	u32 irq_udma_idx;
1697 	int ret;
1698 
1699 	if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) {
1700 		uc->use_dma_pool = true;
1701 		/* in case of MEM_TO_MEM we have maximum of two TRs */
1702 		if (uc->config.dir == DMA_MEM_TO_MEM) {
1703 			uc->config.hdesc_size = cppi5_trdesc_calc_size(
1704 					sizeof(struct cppi5_tr_type15_t), 2);
1705 			uc->config.pkt_mode = false;
1706 		}
1707 	}
1708 
1709 	if (uc->use_dma_pool) {
1710 		uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev,
1711 						 uc->config.hdesc_size,
1712 						 ud->desc_align,
1713 						 0);
1714 		if (!uc->hdesc_pool) {
1715 			dev_err(ud->ddev.dev,
1716 				"Descriptor pool allocation failed\n");
1717 			uc->use_dma_pool = false;
1718 			ret = -ENOMEM;
1719 			goto err_cleanup;
1720 		}
1721 	}
1722 
1723 	/*
1724 	 * Make sure that the completion is in a known state:
1725 	 * No teardown, the channel is idle
1726 	 */
1727 	reinit_completion(&uc->teardown_completed);
1728 	complete_all(&uc->teardown_completed);
1729 	uc->state = UDMA_CHAN_IS_IDLE;
1730 
1731 	switch (uc->config.dir) {
1732 	case DMA_MEM_TO_MEM:
1733 		/* Non synchronized - mem to mem type of transfer */
1734 		dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__,
1735 			uc->id);
1736 
1737 		ret = udma_get_chan_pair(uc);
1738 		if (ret)
1739 			goto err_cleanup;
1740 
1741 		ret = udma_alloc_tx_resources(uc);
1742 		if (ret) {
1743 			udma_put_rchan(uc);
1744 			goto err_cleanup;
1745 		}
1746 
1747 		ret = udma_alloc_rx_resources(uc);
1748 		if (ret) {
1749 			udma_free_tx_resources(uc);
1750 			goto err_cleanup;
1751 		}
1752 
1753 		uc->config.src_thread = ud->psil_base + uc->tchan->id;
1754 		uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
1755 					K3_PSIL_DST_THREAD_ID_OFFSET;
1756 
1757 		irq_ring = uc->tchan->tc_ring;
1758 		irq_udma_idx = uc->tchan->id;
1759 
1760 		ret = udma_tisci_m2m_channel_config(uc);
1761 		break;
1762 	case DMA_MEM_TO_DEV:
1763 		/* Slave transfer synchronized - mem to dev (TX) trasnfer */
1764 		dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__,
1765 			uc->id);
1766 
1767 		ret = udma_alloc_tx_resources(uc);
1768 		if (ret)
1769 			goto err_cleanup;
1770 
1771 		uc->config.src_thread = ud->psil_base + uc->tchan->id;
1772 		uc->config.dst_thread = uc->config.remote_thread_id;
1773 		uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
1774 
1775 		irq_ring = uc->tchan->tc_ring;
1776 		irq_udma_idx = uc->tchan->id;
1777 
1778 		ret = udma_tisci_tx_channel_config(uc);
1779 		break;
1780 	case DMA_DEV_TO_MEM:
1781 		/* Slave transfer synchronized - dev to mem (RX) trasnfer */
1782 		dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__,
1783 			uc->id);
1784 
1785 		ret = udma_alloc_rx_resources(uc);
1786 		if (ret)
1787 			goto err_cleanup;
1788 
1789 		uc->config.src_thread = uc->config.remote_thread_id;
1790 		uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
1791 					K3_PSIL_DST_THREAD_ID_OFFSET;
1792 
1793 		irq_ring = uc->rflow->r_ring;
1794 		irq_udma_idx = match_data->rchan_oes_offset + uc->rchan->id;
1795 
1796 		ret = udma_tisci_rx_channel_config(uc);
1797 		break;
1798 	default:
1799 		/* Can not happen */
1800 		dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n",
1801 			__func__, uc->id, uc->config.dir);
1802 		ret = -EINVAL;
1803 		goto err_cleanup;
1804 
1805 	}
1806 
1807 	/* check if the channel configuration was successful */
1808 	if (ret)
1809 		goto err_res_free;
1810 
1811 	if (udma_is_chan_running(uc)) {
1812 		dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
1813 		udma_reset_chan(uc, false);
1814 		if (udma_is_chan_running(uc)) {
1815 			dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
1816 			ret = -EBUSY;
1817 			goto err_res_free;
1818 		}
1819 	}
1820 
1821 	/* PSI-L pairing */
1822 	ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread);
1823 	if (ret) {
1824 		dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n",
1825 			uc->config.src_thread, uc->config.dst_thread);
1826 		goto err_res_free;
1827 	}
1828 
1829 	uc->psil_paired = true;
1830 
1831 	uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring);
1832 	if (uc->irq_num_ring <= 0) {
1833 		dev_err(ud->dev, "Failed to get ring irq (index: %u)\n",
1834 			k3_ringacc_get_ring_id(irq_ring));
1835 		ret = -EINVAL;
1836 		goto err_psi_free;
1837 	}
1838 
1839 	ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler,
1840 			  IRQF_TRIGGER_HIGH, uc->name, uc);
1841 	if (ret) {
1842 		dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id);
1843 		goto err_irq_free;
1844 	}
1845 
1846 	/* Event from UDMA (TR events) only needed for slave TR mode channels */
1847 	if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) {
1848 		uc->irq_num_udma = ti_sci_inta_msi_get_virq(ud->dev,
1849 							    irq_udma_idx);
1850 		if (uc->irq_num_udma <= 0) {
1851 			dev_err(ud->dev, "Failed to get udma irq (index: %u)\n",
1852 				irq_udma_idx);
1853 			free_irq(uc->irq_num_ring, uc);
1854 			ret = -EINVAL;
1855 			goto err_irq_free;
1856 		}
1857 
1858 		ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0,
1859 				  uc->name, uc);
1860 		if (ret) {
1861 			dev_err(ud->dev, "chan%d: UDMA irq request failed\n",
1862 				uc->id);
1863 			free_irq(uc->irq_num_ring, uc);
1864 			goto err_irq_free;
1865 		}
1866 	} else {
1867 		uc->irq_num_udma = 0;
1868 	}
1869 
1870 	udma_reset_rings(uc);
1871 
1872 	return 0;
1873 
1874 err_irq_free:
1875 	uc->irq_num_ring = 0;
1876 	uc->irq_num_udma = 0;
1877 err_psi_free:
1878 	navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread);
1879 	uc->psil_paired = false;
1880 err_res_free:
1881 	udma_free_tx_resources(uc);
1882 	udma_free_rx_resources(uc);
1883 err_cleanup:
1884 	udma_reset_uchan(uc);
1885 
1886 	if (uc->use_dma_pool) {
1887 		dma_pool_destroy(uc->hdesc_pool);
1888 		uc->use_dma_pool = false;
1889 	}
1890 
1891 	return ret;
1892 }
1893 
1894 static int udma_slave_config(struct dma_chan *chan,
1895 			     struct dma_slave_config *cfg)
1896 {
1897 	struct udma_chan *uc = to_udma_chan(chan);
1898 
1899 	memcpy(&uc->cfg, cfg, sizeof(uc->cfg));
1900 
1901 	return 0;
1902 }
1903 
1904 static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc,
1905 					    size_t tr_size, int tr_count,
1906 					    enum dma_transfer_direction dir)
1907 {
1908 	struct udma_hwdesc *hwdesc;
1909 	struct cppi5_desc_hdr_t *tr_desc;
1910 	struct udma_desc *d;
1911 	u32 reload_count = 0;
1912 	u32 ring_id;
1913 
1914 	switch (tr_size) {
1915 	case 16:
1916 	case 32:
1917 	case 64:
1918 	case 128:
1919 		break;
1920 	default:
1921 		dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size);
1922 		return NULL;
1923 	}
1924 
1925 	/* We have only one descriptor containing multiple TRs */
1926 	d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT);
1927 	if (!d)
1928 		return NULL;
1929 
1930 	d->sglen = tr_count;
1931 
1932 	d->hwdesc_count = 1;
1933 	hwdesc = &d->hwdesc[0];
1934 
1935 	/* Allocate memory for DMA ring descriptor */
1936 	if (uc->use_dma_pool) {
1937 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
1938 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
1939 						GFP_NOWAIT,
1940 						&hwdesc->cppi5_desc_paddr);
1941 	} else {
1942 		hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size,
1943 								 tr_count);
1944 		hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
1945 						uc->ud->desc_align);
1946 		hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev,
1947 						hwdesc->cppi5_desc_size,
1948 						&hwdesc->cppi5_desc_paddr,
1949 						GFP_NOWAIT);
1950 	}
1951 
1952 	if (!hwdesc->cppi5_desc_vaddr) {
1953 		kfree(d);
1954 		return NULL;
1955 	}
1956 
1957 	/* Start of the TR req records */
1958 	hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
1959 	/* Start address of the TR response array */
1960 	hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count;
1961 
1962 	tr_desc = hwdesc->cppi5_desc_vaddr;
1963 
1964 	if (uc->cyclic)
1965 		reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE;
1966 
1967 	if (dir == DMA_DEV_TO_MEM)
1968 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
1969 	else
1970 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
1971 
1972 	cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count);
1973 	cppi5_desc_set_pktids(tr_desc, uc->id,
1974 			      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
1975 	cppi5_desc_set_retpolicy(tr_desc, 0, ring_id);
1976 
1977 	return d;
1978 }
1979 
1980 /**
1981  * udma_get_tr_counters - calculate TR counters for a given length
1982  * @len: Length of the trasnfer
1983  * @align_to: Preferred alignment
1984  * @tr0_cnt0: First TR icnt0
1985  * @tr0_cnt1: First TR icnt1
1986  * @tr1_cnt0: Second (if used) TR icnt0
1987  *
1988  * For len < SZ_64K only one TR is enough, tr1_cnt0 is not updated
1989  * For len >= SZ_64K two TRs are used in a simple way:
1990  * First TR: SZ_64K-alignment blocks (tr0_cnt0, tr0_cnt1)
1991  * Second TR: the remaining length (tr1_cnt0)
1992  *
1993  * Returns the number of TRs the length needs (1 or 2)
1994  * -EINVAL if the length can not be supported
1995  */
1996 static int udma_get_tr_counters(size_t len, unsigned long align_to,
1997 				u16 *tr0_cnt0, u16 *tr0_cnt1, u16 *tr1_cnt0)
1998 {
1999 	if (len < SZ_64K) {
2000 		*tr0_cnt0 = len;
2001 		*tr0_cnt1 = 1;
2002 
2003 		return 1;
2004 	}
2005 
2006 	if (align_to > 3)
2007 		align_to = 3;
2008 
2009 realign:
2010 	*tr0_cnt0 = SZ_64K - BIT(align_to);
2011 	if (len / *tr0_cnt0 >= SZ_64K) {
2012 		if (align_to) {
2013 			align_to--;
2014 			goto realign;
2015 		}
2016 		return -EINVAL;
2017 	}
2018 
2019 	*tr0_cnt1 = len / *tr0_cnt0;
2020 	*tr1_cnt0 = len % *tr0_cnt0;
2021 
2022 	return 2;
2023 }
2024 
2025 static struct udma_desc *
2026 udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl,
2027 		      unsigned int sglen, enum dma_transfer_direction dir,
2028 		      unsigned long tx_flags, void *context)
2029 {
2030 	struct scatterlist *sgent;
2031 	struct udma_desc *d;
2032 	struct cppi5_tr_type1_t *tr_req = NULL;
2033 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2034 	unsigned int i;
2035 	size_t tr_size;
2036 	int num_tr = 0;
2037 	int tr_idx = 0;
2038 
2039 	if (!is_slave_direction(dir)) {
2040 		dev_err(uc->ud->dev, "Only slave cyclic is supported\n");
2041 		return NULL;
2042 	}
2043 
2044 	/* estimate the number of TRs we will need */
2045 	for_each_sg(sgl, sgent, sglen, i) {
2046 		if (sg_dma_len(sgent) < SZ_64K)
2047 			num_tr++;
2048 		else
2049 			num_tr += 2;
2050 	}
2051 
2052 	/* Now allocate and setup the descriptor. */
2053 	tr_size = sizeof(struct cppi5_tr_type1_t);
2054 	d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir);
2055 	if (!d)
2056 		return NULL;
2057 
2058 	d->sglen = sglen;
2059 
2060 	tr_req = d->hwdesc[0].tr_req_base;
2061 	for_each_sg(sgl, sgent, sglen, i) {
2062 		dma_addr_t sg_addr = sg_dma_address(sgent);
2063 
2064 		num_tr = udma_get_tr_counters(sg_dma_len(sgent), __ffs(sg_addr),
2065 					      &tr0_cnt0, &tr0_cnt1, &tr1_cnt0);
2066 		if (num_tr < 0) {
2067 			dev_err(uc->ud->dev, "size %u is not supported\n",
2068 				sg_dma_len(sgent));
2069 			udma_free_hwdesc(uc, d);
2070 			kfree(d);
2071 			return NULL;
2072 		}
2073 
2074 		cppi5_tr_init(&tr_req[i].flags, CPPI5_TR_TYPE1, false, false,
2075 			      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2076 		cppi5_tr_csf_set(&tr_req[i].flags, CPPI5_TR_CSF_SUPR_EVT);
2077 
2078 		tr_req[tr_idx].addr = sg_addr;
2079 		tr_req[tr_idx].icnt0 = tr0_cnt0;
2080 		tr_req[tr_idx].icnt1 = tr0_cnt1;
2081 		tr_req[tr_idx].dim1 = tr0_cnt0;
2082 		tr_idx++;
2083 
2084 		if (num_tr == 2) {
2085 			cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
2086 				      false, false,
2087 				      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2088 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2089 					 CPPI5_TR_CSF_SUPR_EVT);
2090 
2091 			tr_req[tr_idx].addr = sg_addr + tr0_cnt1 * tr0_cnt0;
2092 			tr_req[tr_idx].icnt0 = tr1_cnt0;
2093 			tr_req[tr_idx].icnt1 = 1;
2094 			tr_req[tr_idx].dim1 = tr1_cnt0;
2095 			tr_idx++;
2096 		}
2097 
2098 		d->residue += sg_dma_len(sgent);
2099 	}
2100 
2101 	cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags,
2102 			 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
2103 
2104 	return d;
2105 }
2106 
2107 static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d,
2108 				   enum dma_slave_buswidth dev_width,
2109 				   u16 elcnt)
2110 {
2111 	if (uc->config.ep_type != PSIL_EP_PDMA_XY)
2112 		return 0;
2113 
2114 	/* Bus width translates to the element size (ES) */
2115 	switch (dev_width) {
2116 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
2117 		d->static_tr.elsize = 0;
2118 		break;
2119 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
2120 		d->static_tr.elsize = 1;
2121 		break;
2122 	case DMA_SLAVE_BUSWIDTH_3_BYTES:
2123 		d->static_tr.elsize = 2;
2124 		break;
2125 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
2126 		d->static_tr.elsize = 3;
2127 		break;
2128 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
2129 		d->static_tr.elsize = 4;
2130 		break;
2131 	default: /* not reached */
2132 		return -EINVAL;
2133 	}
2134 
2135 	d->static_tr.elcnt = elcnt;
2136 
2137 	/*
2138 	 * PDMA must to close the packet when the channel is in packet mode.
2139 	 * For TR mode when the channel is not cyclic we also need PDMA to close
2140 	 * the packet otherwise the transfer will stall because PDMA holds on
2141 	 * the data it has received from the peripheral.
2142 	 */
2143 	if (uc->config.pkt_mode || !uc->cyclic) {
2144 		unsigned int div = dev_width * elcnt;
2145 
2146 		if (uc->cyclic)
2147 			d->static_tr.bstcnt = d->residue / d->sglen / div;
2148 		else
2149 			d->static_tr.bstcnt = d->residue / div;
2150 
2151 		if (uc->config.dir == DMA_DEV_TO_MEM &&
2152 		    d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask)
2153 			return -EINVAL;
2154 	} else {
2155 		d->static_tr.bstcnt = 0;
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static struct udma_desc *
2162 udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl,
2163 		       unsigned int sglen, enum dma_transfer_direction dir,
2164 		       unsigned long tx_flags, void *context)
2165 {
2166 	struct scatterlist *sgent;
2167 	struct cppi5_host_desc_t *h_desc = NULL;
2168 	struct udma_desc *d;
2169 	u32 ring_id;
2170 	unsigned int i;
2171 
2172 	d = kzalloc(struct_size(d, hwdesc, sglen), GFP_NOWAIT);
2173 	if (!d)
2174 		return NULL;
2175 
2176 	d->sglen = sglen;
2177 	d->hwdesc_count = sglen;
2178 
2179 	if (dir == DMA_DEV_TO_MEM)
2180 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2181 	else
2182 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2183 
2184 	for_each_sg(sgl, sgent, sglen, i) {
2185 		struct udma_hwdesc *hwdesc = &d->hwdesc[i];
2186 		dma_addr_t sg_addr = sg_dma_address(sgent);
2187 		struct cppi5_host_desc_t *desc;
2188 		size_t sg_len = sg_dma_len(sgent);
2189 
2190 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
2191 						GFP_NOWAIT,
2192 						&hwdesc->cppi5_desc_paddr);
2193 		if (!hwdesc->cppi5_desc_vaddr) {
2194 			dev_err(uc->ud->dev,
2195 				"descriptor%d allocation failed\n", i);
2196 
2197 			udma_free_hwdesc(uc, d);
2198 			kfree(d);
2199 			return NULL;
2200 		}
2201 
2202 		d->residue += sg_len;
2203 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
2204 		desc = hwdesc->cppi5_desc_vaddr;
2205 
2206 		if (i == 0) {
2207 			cppi5_hdesc_init(desc, 0, 0);
2208 			/* Flow and Packed ID */
2209 			cppi5_desc_set_pktids(&desc->hdr, uc->id,
2210 					      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2211 			cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id);
2212 		} else {
2213 			cppi5_hdesc_reset_hbdesc(desc);
2214 			cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff);
2215 		}
2216 
2217 		/* attach the sg buffer to the descriptor */
2218 		cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len);
2219 
2220 		/* Attach link as host buffer descriptor */
2221 		if (h_desc)
2222 			cppi5_hdesc_link_hbdesc(h_desc,
2223 						hwdesc->cppi5_desc_paddr);
2224 
2225 		if (dir == DMA_MEM_TO_DEV)
2226 			h_desc = desc;
2227 	}
2228 
2229 	if (d->residue >= SZ_4M) {
2230 		dev_err(uc->ud->dev,
2231 			"%s: Transfer size %u is over the supported 4M range\n",
2232 			__func__, d->residue);
2233 		udma_free_hwdesc(uc, d);
2234 		kfree(d);
2235 		return NULL;
2236 	}
2237 
2238 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2239 	cppi5_hdesc_set_pktlen(h_desc, d->residue);
2240 
2241 	return d;
2242 }
2243 
2244 static int udma_attach_metadata(struct dma_async_tx_descriptor *desc,
2245 				void *data, size_t len)
2246 {
2247 	struct udma_desc *d = to_udma_desc(desc);
2248 	struct udma_chan *uc = to_udma_chan(desc->chan);
2249 	struct cppi5_host_desc_t *h_desc;
2250 	u32 psd_size = len;
2251 	u32 flags = 0;
2252 
2253 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2254 		return -ENOTSUPP;
2255 
2256 	if (!data || len > uc->config.metadata_size)
2257 		return -EINVAL;
2258 
2259 	if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE)
2260 		return -EINVAL;
2261 
2262 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2263 	if (d->dir == DMA_MEM_TO_DEV)
2264 		memcpy(h_desc->epib, data, len);
2265 
2266 	if (uc->config.needs_epib)
2267 		psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
2268 
2269 	d->metadata = data;
2270 	d->metadata_size = len;
2271 	if (uc->config.needs_epib)
2272 		flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
2273 
2274 	cppi5_hdesc_update_flags(h_desc, flags);
2275 	cppi5_hdesc_update_psdata_size(h_desc, psd_size);
2276 
2277 	return 0;
2278 }
2279 
2280 static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
2281 				   size_t *payload_len, size_t *max_len)
2282 {
2283 	struct udma_desc *d = to_udma_desc(desc);
2284 	struct udma_chan *uc = to_udma_chan(desc->chan);
2285 	struct cppi5_host_desc_t *h_desc;
2286 
2287 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2288 		return ERR_PTR(-ENOTSUPP);
2289 
2290 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2291 
2292 	*max_len = uc->config.metadata_size;
2293 
2294 	*payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ?
2295 		       CPPI5_INFO0_HDESC_EPIB_SIZE : 0;
2296 	*payload_len += cppi5_hdesc_get_psdata_size(h_desc);
2297 
2298 	return h_desc->epib;
2299 }
2300 
2301 static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc,
2302 				 size_t payload_len)
2303 {
2304 	struct udma_desc *d = to_udma_desc(desc);
2305 	struct udma_chan *uc = to_udma_chan(desc->chan);
2306 	struct cppi5_host_desc_t *h_desc;
2307 	u32 psd_size = payload_len;
2308 	u32 flags = 0;
2309 
2310 	if (!uc->config.pkt_mode || !uc->config.metadata_size)
2311 		return -ENOTSUPP;
2312 
2313 	if (payload_len > uc->config.metadata_size)
2314 		return -EINVAL;
2315 
2316 	if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE)
2317 		return -EINVAL;
2318 
2319 	h_desc = d->hwdesc[0].cppi5_desc_vaddr;
2320 
2321 	if (uc->config.needs_epib) {
2322 		psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
2323 		flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
2324 	}
2325 
2326 	cppi5_hdesc_update_flags(h_desc, flags);
2327 	cppi5_hdesc_update_psdata_size(h_desc, psd_size);
2328 
2329 	return 0;
2330 }
2331 
2332 static struct dma_descriptor_metadata_ops metadata_ops = {
2333 	.attach = udma_attach_metadata,
2334 	.get_ptr = udma_get_metadata_ptr,
2335 	.set_len = udma_set_metadata_len,
2336 };
2337 
2338 static struct dma_async_tx_descriptor *
2339 udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2340 		   unsigned int sglen, enum dma_transfer_direction dir,
2341 		   unsigned long tx_flags, void *context)
2342 {
2343 	struct udma_chan *uc = to_udma_chan(chan);
2344 	enum dma_slave_buswidth dev_width;
2345 	struct udma_desc *d;
2346 	u32 burst;
2347 
2348 	if (dir != uc->config.dir) {
2349 		dev_err(chan->device->dev,
2350 			"%s: chan%d is for %s, not supporting %s\n",
2351 			__func__, uc->id,
2352 			dmaengine_get_direction_text(uc->config.dir),
2353 			dmaengine_get_direction_text(dir));
2354 		return NULL;
2355 	}
2356 
2357 	if (dir == DMA_DEV_TO_MEM) {
2358 		dev_width = uc->cfg.src_addr_width;
2359 		burst = uc->cfg.src_maxburst;
2360 	} else if (dir == DMA_MEM_TO_DEV) {
2361 		dev_width = uc->cfg.dst_addr_width;
2362 		burst = uc->cfg.dst_maxburst;
2363 	} else {
2364 		dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
2365 		return NULL;
2366 	}
2367 
2368 	if (!burst)
2369 		burst = 1;
2370 
2371 	if (uc->config.pkt_mode)
2372 		d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags,
2373 					   context);
2374 	else
2375 		d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags,
2376 					  context);
2377 
2378 	if (!d)
2379 		return NULL;
2380 
2381 	d->dir = dir;
2382 	d->desc_idx = 0;
2383 	d->tr_idx = 0;
2384 
2385 	/* static TR for remote PDMA */
2386 	if (udma_configure_statictr(uc, d, dev_width, burst)) {
2387 		dev_err(uc->ud->dev,
2388 			"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
2389 			__func__, d->static_tr.bstcnt);
2390 
2391 		udma_free_hwdesc(uc, d);
2392 		kfree(d);
2393 		return NULL;
2394 	}
2395 
2396 	if (uc->config.metadata_size)
2397 		d->vd.tx.metadata_ops = &metadata_ops;
2398 
2399 	return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
2400 }
2401 
2402 static struct udma_desc *
2403 udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr,
2404 			size_t buf_len, size_t period_len,
2405 			enum dma_transfer_direction dir, unsigned long flags)
2406 {
2407 	struct udma_desc *d;
2408 	size_t tr_size, period_addr;
2409 	struct cppi5_tr_type1_t *tr_req;
2410 	unsigned int periods = buf_len / period_len;
2411 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2412 	unsigned int i;
2413 	int num_tr;
2414 
2415 	if (!is_slave_direction(dir)) {
2416 		dev_err(uc->ud->dev, "Only slave cyclic is supported\n");
2417 		return NULL;
2418 	}
2419 
2420 	num_tr = udma_get_tr_counters(period_len, __ffs(buf_addr), &tr0_cnt0,
2421 				      &tr0_cnt1, &tr1_cnt0);
2422 	if (num_tr < 0) {
2423 		dev_err(uc->ud->dev, "size %zu is not supported\n",
2424 			period_len);
2425 		return NULL;
2426 	}
2427 
2428 	/* Now allocate and setup the descriptor. */
2429 	tr_size = sizeof(struct cppi5_tr_type1_t);
2430 	d = udma_alloc_tr_desc(uc, tr_size, periods * num_tr, dir);
2431 	if (!d)
2432 		return NULL;
2433 
2434 	tr_req = d->hwdesc[0].tr_req_base;
2435 	period_addr = buf_addr;
2436 	for (i = 0; i < periods; i++) {
2437 		int tr_idx = i * num_tr;
2438 
2439 		cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false,
2440 			      false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2441 
2442 		tr_req[tr_idx].addr = period_addr;
2443 		tr_req[tr_idx].icnt0 = tr0_cnt0;
2444 		tr_req[tr_idx].icnt1 = tr0_cnt1;
2445 		tr_req[tr_idx].dim1 = tr0_cnt0;
2446 
2447 		if (num_tr == 2) {
2448 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2449 					 CPPI5_TR_CSF_SUPR_EVT);
2450 			tr_idx++;
2451 
2452 			cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
2453 				      false, false,
2454 				      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2455 
2456 			tr_req[tr_idx].addr = period_addr + tr0_cnt1 * tr0_cnt0;
2457 			tr_req[tr_idx].icnt0 = tr1_cnt0;
2458 			tr_req[tr_idx].icnt1 = 1;
2459 			tr_req[tr_idx].dim1 = tr1_cnt0;
2460 		}
2461 
2462 		if (!(flags & DMA_PREP_INTERRUPT))
2463 			cppi5_tr_csf_set(&tr_req[tr_idx].flags,
2464 					 CPPI5_TR_CSF_SUPR_EVT);
2465 
2466 		period_addr += period_len;
2467 	}
2468 
2469 	return d;
2470 }
2471 
2472 static struct udma_desc *
2473 udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr,
2474 			 size_t buf_len, size_t period_len,
2475 			 enum dma_transfer_direction dir, unsigned long flags)
2476 {
2477 	struct udma_desc *d;
2478 	u32 ring_id;
2479 	int i;
2480 	int periods = buf_len / period_len;
2481 
2482 	if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1))
2483 		return NULL;
2484 
2485 	if (period_len >= SZ_4M)
2486 		return NULL;
2487 
2488 	d = kzalloc(struct_size(d, hwdesc, periods), GFP_NOWAIT);
2489 	if (!d)
2490 		return NULL;
2491 
2492 	d->hwdesc_count = periods;
2493 
2494 	/* TODO: re-check this... */
2495 	if (dir == DMA_DEV_TO_MEM)
2496 		ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
2497 	else
2498 		ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
2499 
2500 	for (i = 0; i < periods; i++) {
2501 		struct udma_hwdesc *hwdesc = &d->hwdesc[i];
2502 		dma_addr_t period_addr = buf_addr + (period_len * i);
2503 		struct cppi5_host_desc_t *h_desc;
2504 
2505 		hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
2506 						GFP_NOWAIT,
2507 						&hwdesc->cppi5_desc_paddr);
2508 		if (!hwdesc->cppi5_desc_vaddr) {
2509 			dev_err(uc->ud->dev,
2510 				"descriptor%d allocation failed\n", i);
2511 
2512 			udma_free_hwdesc(uc, d);
2513 			kfree(d);
2514 			return NULL;
2515 		}
2516 
2517 		hwdesc->cppi5_desc_size = uc->config.hdesc_size;
2518 		h_desc = hwdesc->cppi5_desc_vaddr;
2519 
2520 		cppi5_hdesc_init(h_desc, 0, 0);
2521 		cppi5_hdesc_set_pktlen(h_desc, period_len);
2522 
2523 		/* Flow and Packed ID */
2524 		cppi5_desc_set_pktids(&h_desc->hdr, uc->id,
2525 				      CPPI5_INFO1_DESC_FLOWID_DEFAULT);
2526 		cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id);
2527 
2528 		/* attach each period to a new descriptor */
2529 		cppi5_hdesc_attach_buf(h_desc,
2530 				       period_addr, period_len,
2531 				       period_addr, period_len);
2532 	}
2533 
2534 	return d;
2535 }
2536 
2537 static struct dma_async_tx_descriptor *
2538 udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2539 		     size_t period_len, enum dma_transfer_direction dir,
2540 		     unsigned long flags)
2541 {
2542 	struct udma_chan *uc = to_udma_chan(chan);
2543 	enum dma_slave_buswidth dev_width;
2544 	struct udma_desc *d;
2545 	u32 burst;
2546 
2547 	if (dir != uc->config.dir) {
2548 		dev_err(chan->device->dev,
2549 			"%s: chan%d is for %s, not supporting %s\n",
2550 			__func__, uc->id,
2551 			dmaengine_get_direction_text(uc->config.dir),
2552 			dmaengine_get_direction_text(dir));
2553 		return NULL;
2554 	}
2555 
2556 	uc->cyclic = true;
2557 
2558 	if (dir == DMA_DEV_TO_MEM) {
2559 		dev_width = uc->cfg.src_addr_width;
2560 		burst = uc->cfg.src_maxburst;
2561 	} else if (dir == DMA_MEM_TO_DEV) {
2562 		dev_width = uc->cfg.dst_addr_width;
2563 		burst = uc->cfg.dst_maxburst;
2564 	} else {
2565 		dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
2566 		return NULL;
2567 	}
2568 
2569 	if (!burst)
2570 		burst = 1;
2571 
2572 	if (uc->config.pkt_mode)
2573 		d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len,
2574 					     dir, flags);
2575 	else
2576 		d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len,
2577 					    dir, flags);
2578 
2579 	if (!d)
2580 		return NULL;
2581 
2582 	d->sglen = buf_len / period_len;
2583 
2584 	d->dir = dir;
2585 	d->residue = buf_len;
2586 
2587 	/* static TR for remote PDMA */
2588 	if (udma_configure_statictr(uc, d, dev_width, burst)) {
2589 		dev_err(uc->ud->dev,
2590 			"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
2591 			__func__, d->static_tr.bstcnt);
2592 
2593 		udma_free_hwdesc(uc, d);
2594 		kfree(d);
2595 		return NULL;
2596 	}
2597 
2598 	if (uc->config.metadata_size)
2599 		d->vd.tx.metadata_ops = &metadata_ops;
2600 
2601 	return vchan_tx_prep(&uc->vc, &d->vd, flags);
2602 }
2603 
2604 static struct dma_async_tx_descriptor *
2605 udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
2606 		     size_t len, unsigned long tx_flags)
2607 {
2608 	struct udma_chan *uc = to_udma_chan(chan);
2609 	struct udma_desc *d;
2610 	struct cppi5_tr_type15_t *tr_req;
2611 	int num_tr;
2612 	size_t tr_size = sizeof(struct cppi5_tr_type15_t);
2613 	u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
2614 
2615 	if (uc->config.dir != DMA_MEM_TO_MEM) {
2616 		dev_err(chan->device->dev,
2617 			"%s: chan%d is for %s, not supporting %s\n",
2618 			__func__, uc->id,
2619 			dmaengine_get_direction_text(uc->config.dir),
2620 			dmaengine_get_direction_text(DMA_MEM_TO_MEM));
2621 		return NULL;
2622 	}
2623 
2624 	num_tr = udma_get_tr_counters(len, __ffs(src | dest), &tr0_cnt0,
2625 				      &tr0_cnt1, &tr1_cnt0);
2626 	if (num_tr < 0) {
2627 		dev_err(uc->ud->dev, "size %zu is not supported\n",
2628 			len);
2629 		return NULL;
2630 	}
2631 
2632 	d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM);
2633 	if (!d)
2634 		return NULL;
2635 
2636 	d->dir = DMA_MEM_TO_MEM;
2637 	d->desc_idx = 0;
2638 	d->tr_idx = 0;
2639 	d->residue = len;
2640 
2641 	tr_req = d->hwdesc[0].tr_req_base;
2642 
2643 	cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true,
2644 		      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2645 	cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT);
2646 
2647 	tr_req[0].addr = src;
2648 	tr_req[0].icnt0 = tr0_cnt0;
2649 	tr_req[0].icnt1 = tr0_cnt1;
2650 	tr_req[0].icnt2 = 1;
2651 	tr_req[0].icnt3 = 1;
2652 	tr_req[0].dim1 = tr0_cnt0;
2653 
2654 	tr_req[0].daddr = dest;
2655 	tr_req[0].dicnt0 = tr0_cnt0;
2656 	tr_req[0].dicnt1 = tr0_cnt1;
2657 	tr_req[0].dicnt2 = 1;
2658 	tr_req[0].dicnt3 = 1;
2659 	tr_req[0].ddim1 = tr0_cnt0;
2660 
2661 	if (num_tr == 2) {
2662 		cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true,
2663 			      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
2664 		cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT);
2665 
2666 		tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0;
2667 		tr_req[1].icnt0 = tr1_cnt0;
2668 		tr_req[1].icnt1 = 1;
2669 		tr_req[1].icnt2 = 1;
2670 		tr_req[1].icnt3 = 1;
2671 
2672 		tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0;
2673 		tr_req[1].dicnt0 = tr1_cnt0;
2674 		tr_req[1].dicnt1 = 1;
2675 		tr_req[1].dicnt2 = 1;
2676 		tr_req[1].dicnt3 = 1;
2677 	}
2678 
2679 	cppi5_tr_csf_set(&tr_req[num_tr - 1].flags,
2680 			 CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
2681 
2682 	if (uc->config.metadata_size)
2683 		d->vd.tx.metadata_ops = &metadata_ops;
2684 
2685 	return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
2686 }
2687 
2688 static void udma_issue_pending(struct dma_chan *chan)
2689 {
2690 	struct udma_chan *uc = to_udma_chan(chan);
2691 	unsigned long flags;
2692 
2693 	spin_lock_irqsave(&uc->vc.lock, flags);
2694 
2695 	/* If we have something pending and no active descriptor, then */
2696 	if (vchan_issue_pending(&uc->vc) && !uc->desc) {
2697 		/*
2698 		 * start a descriptor if the channel is NOT [marked as
2699 		 * terminating _and_ it is still running (teardown has not
2700 		 * completed yet)].
2701 		 */
2702 		if (!(uc->state == UDMA_CHAN_IS_TERMINATING &&
2703 		      udma_is_chan_running(uc)))
2704 			udma_start(uc);
2705 	}
2706 
2707 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2708 }
2709 
2710 static enum dma_status udma_tx_status(struct dma_chan *chan,
2711 				      dma_cookie_t cookie,
2712 				      struct dma_tx_state *txstate)
2713 {
2714 	struct udma_chan *uc = to_udma_chan(chan);
2715 	enum dma_status ret;
2716 	unsigned long flags;
2717 
2718 	spin_lock_irqsave(&uc->vc.lock, flags);
2719 
2720 	ret = dma_cookie_status(chan, cookie, txstate);
2721 
2722 	if (!udma_is_chan_running(uc))
2723 		ret = DMA_COMPLETE;
2724 
2725 	if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc))
2726 		ret = DMA_PAUSED;
2727 
2728 	if (ret == DMA_COMPLETE || !txstate)
2729 		goto out;
2730 
2731 	if (uc->desc && uc->desc->vd.tx.cookie == cookie) {
2732 		u32 peer_bcnt = 0;
2733 		u32 bcnt = 0;
2734 		u32 residue = uc->desc->residue;
2735 		u32 delay = 0;
2736 
2737 		if (uc->desc->dir == DMA_MEM_TO_DEV) {
2738 			bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
2739 
2740 			if (uc->config.ep_type != PSIL_EP_NATIVE) {
2741 				peer_bcnt = udma_tchanrt_read(uc,
2742 						UDMA_CHAN_RT_PEER_BCNT_REG);
2743 
2744 				if (bcnt > peer_bcnt)
2745 					delay = bcnt - peer_bcnt;
2746 			}
2747 		} else if (uc->desc->dir == DMA_DEV_TO_MEM) {
2748 			bcnt = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
2749 
2750 			if (uc->config.ep_type != PSIL_EP_NATIVE) {
2751 				peer_bcnt = udma_rchanrt_read(uc,
2752 						UDMA_CHAN_RT_PEER_BCNT_REG);
2753 
2754 				if (peer_bcnt > bcnt)
2755 					delay = peer_bcnt - bcnt;
2756 			}
2757 		} else {
2758 			bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
2759 		}
2760 
2761 		bcnt -= uc->bcnt;
2762 		if (bcnt && !(bcnt % uc->desc->residue))
2763 			residue = 0;
2764 		else
2765 			residue -= bcnt % uc->desc->residue;
2766 
2767 		if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) {
2768 			ret = DMA_COMPLETE;
2769 			delay = 0;
2770 		}
2771 
2772 		dma_set_residue(txstate, residue);
2773 		dma_set_in_flight_bytes(txstate, delay);
2774 
2775 	} else {
2776 		ret = DMA_COMPLETE;
2777 	}
2778 
2779 out:
2780 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2781 	return ret;
2782 }
2783 
2784 static int udma_pause(struct dma_chan *chan)
2785 {
2786 	struct udma_chan *uc = to_udma_chan(chan);
2787 
2788 	/* pause the channel */
2789 	switch (uc->config.dir) {
2790 	case DMA_DEV_TO_MEM:
2791 		udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
2792 					 UDMA_PEER_RT_EN_PAUSE,
2793 					 UDMA_PEER_RT_EN_PAUSE);
2794 		break;
2795 	case DMA_MEM_TO_DEV:
2796 		udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
2797 					 UDMA_PEER_RT_EN_PAUSE,
2798 					 UDMA_PEER_RT_EN_PAUSE);
2799 		break;
2800 	case DMA_MEM_TO_MEM:
2801 		udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG,
2802 					 UDMA_CHAN_RT_CTL_PAUSE,
2803 					 UDMA_CHAN_RT_CTL_PAUSE);
2804 		break;
2805 	default:
2806 		return -EINVAL;
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 static int udma_resume(struct dma_chan *chan)
2813 {
2814 	struct udma_chan *uc = to_udma_chan(chan);
2815 
2816 	/* resume the channel */
2817 	switch (uc->config.dir) {
2818 	case DMA_DEV_TO_MEM:
2819 		udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
2820 					 UDMA_PEER_RT_EN_PAUSE, 0);
2821 
2822 		break;
2823 	case DMA_MEM_TO_DEV:
2824 		udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
2825 					 UDMA_PEER_RT_EN_PAUSE, 0);
2826 		break;
2827 	case DMA_MEM_TO_MEM:
2828 		udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG,
2829 					 UDMA_CHAN_RT_CTL_PAUSE, 0);
2830 		break;
2831 	default:
2832 		return -EINVAL;
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 static int udma_terminate_all(struct dma_chan *chan)
2839 {
2840 	struct udma_chan *uc = to_udma_chan(chan);
2841 	unsigned long flags;
2842 	LIST_HEAD(head);
2843 
2844 	spin_lock_irqsave(&uc->vc.lock, flags);
2845 
2846 	if (udma_is_chan_running(uc))
2847 		udma_stop(uc);
2848 
2849 	if (uc->desc) {
2850 		uc->terminated_desc = uc->desc;
2851 		uc->desc = NULL;
2852 		uc->terminated_desc->terminated = true;
2853 		cancel_delayed_work(&uc->tx_drain.work);
2854 	}
2855 
2856 	uc->paused = false;
2857 
2858 	vchan_get_all_descriptors(&uc->vc, &head);
2859 	spin_unlock_irqrestore(&uc->vc.lock, flags);
2860 	vchan_dma_desc_free_list(&uc->vc, &head);
2861 
2862 	return 0;
2863 }
2864 
2865 static void udma_synchronize(struct dma_chan *chan)
2866 {
2867 	struct udma_chan *uc = to_udma_chan(chan);
2868 	unsigned long timeout = msecs_to_jiffies(1000);
2869 
2870 	vchan_synchronize(&uc->vc);
2871 
2872 	if (uc->state == UDMA_CHAN_IS_TERMINATING) {
2873 		timeout = wait_for_completion_timeout(&uc->teardown_completed,
2874 						      timeout);
2875 		if (!timeout) {
2876 			dev_warn(uc->ud->dev, "chan%d teardown timeout!\n",
2877 				 uc->id);
2878 			udma_dump_chan_stdata(uc);
2879 			udma_reset_chan(uc, true);
2880 		}
2881 	}
2882 
2883 	udma_reset_chan(uc, false);
2884 	if (udma_is_chan_running(uc))
2885 		dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id);
2886 
2887 	cancel_delayed_work_sync(&uc->tx_drain.work);
2888 	udma_reset_rings(uc);
2889 }
2890 
2891 static void udma_desc_pre_callback(struct virt_dma_chan *vc,
2892 				   struct virt_dma_desc *vd,
2893 				   struct dmaengine_result *result)
2894 {
2895 	struct udma_chan *uc = to_udma_chan(&vc->chan);
2896 	struct udma_desc *d;
2897 
2898 	if (!vd)
2899 		return;
2900 
2901 	d = to_udma_desc(&vd->tx);
2902 
2903 	if (d->metadata_size)
2904 		udma_fetch_epib(uc, d);
2905 
2906 	/* Provide residue information for the client */
2907 	if (result) {
2908 		void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx);
2909 
2910 		if (cppi5_desc_get_type(desc_vaddr) ==
2911 		    CPPI5_INFO0_DESC_TYPE_VAL_HOST) {
2912 			result->residue = d->residue -
2913 					  cppi5_hdesc_get_pktlen(desc_vaddr);
2914 			if (result->residue)
2915 				result->result = DMA_TRANS_ABORTED;
2916 			else
2917 				result->result = DMA_TRANS_NOERROR;
2918 		} else {
2919 			result->residue = 0;
2920 			result->result = DMA_TRANS_NOERROR;
2921 		}
2922 	}
2923 }
2924 
2925 /*
2926  * This tasklet handles the completion of a DMA descriptor by
2927  * calling its callback and freeing it.
2928  */
2929 static void udma_vchan_complete(unsigned long arg)
2930 {
2931 	struct virt_dma_chan *vc = (struct virt_dma_chan *)arg;
2932 	struct virt_dma_desc *vd, *_vd;
2933 	struct dmaengine_desc_callback cb;
2934 	LIST_HEAD(head);
2935 
2936 	spin_lock_irq(&vc->lock);
2937 	list_splice_tail_init(&vc->desc_completed, &head);
2938 	vd = vc->cyclic;
2939 	if (vd) {
2940 		vc->cyclic = NULL;
2941 		dmaengine_desc_get_callback(&vd->tx, &cb);
2942 	} else {
2943 		memset(&cb, 0, sizeof(cb));
2944 	}
2945 	spin_unlock_irq(&vc->lock);
2946 
2947 	udma_desc_pre_callback(vc, vd, NULL);
2948 	dmaengine_desc_callback_invoke(&cb, NULL);
2949 
2950 	list_for_each_entry_safe(vd, _vd, &head, node) {
2951 		struct dmaengine_result result;
2952 
2953 		dmaengine_desc_get_callback(&vd->tx, &cb);
2954 
2955 		list_del(&vd->node);
2956 
2957 		udma_desc_pre_callback(vc, vd, &result);
2958 		dmaengine_desc_callback_invoke(&cb, &result);
2959 
2960 		vchan_vdesc_fini(vd);
2961 	}
2962 }
2963 
2964 static void udma_free_chan_resources(struct dma_chan *chan)
2965 {
2966 	struct udma_chan *uc = to_udma_chan(chan);
2967 	struct udma_dev *ud = to_udma_dev(chan->device);
2968 
2969 	udma_terminate_all(chan);
2970 	if (uc->terminated_desc) {
2971 		udma_reset_chan(uc, false);
2972 		udma_reset_rings(uc);
2973 	}
2974 
2975 	cancel_delayed_work_sync(&uc->tx_drain.work);
2976 
2977 	if (uc->irq_num_ring > 0) {
2978 		free_irq(uc->irq_num_ring, uc);
2979 
2980 		uc->irq_num_ring = 0;
2981 	}
2982 	if (uc->irq_num_udma > 0) {
2983 		free_irq(uc->irq_num_udma, uc);
2984 
2985 		uc->irq_num_udma = 0;
2986 	}
2987 
2988 	/* Release PSI-L pairing */
2989 	if (uc->psil_paired) {
2990 		navss_psil_unpair(ud, uc->config.src_thread,
2991 				  uc->config.dst_thread);
2992 		uc->psil_paired = false;
2993 	}
2994 
2995 	vchan_free_chan_resources(&uc->vc);
2996 	tasklet_kill(&uc->vc.task);
2997 
2998 	udma_free_tx_resources(uc);
2999 	udma_free_rx_resources(uc);
3000 	udma_reset_uchan(uc);
3001 
3002 	if (uc->use_dma_pool) {
3003 		dma_pool_destroy(uc->hdesc_pool);
3004 		uc->use_dma_pool = false;
3005 	}
3006 }
3007 
3008 static struct platform_driver udma_driver;
3009 
3010 struct udma_filter_param {
3011 	int remote_thread_id;
3012 	u32 atype;
3013 };
3014 
3015 static bool udma_dma_filter_fn(struct dma_chan *chan, void *param)
3016 {
3017 	struct udma_chan_config *ucc;
3018 	struct psil_endpoint_config *ep_config;
3019 	struct udma_filter_param *filter_param;
3020 	struct udma_chan *uc;
3021 	struct udma_dev *ud;
3022 
3023 	if (chan->device->dev->driver != &udma_driver.driver)
3024 		return false;
3025 
3026 	uc = to_udma_chan(chan);
3027 	ucc = &uc->config;
3028 	ud = uc->ud;
3029 	filter_param = param;
3030 
3031 	if (filter_param->atype > 2) {
3032 		dev_err(ud->dev, "Invalid channel atype: %u\n",
3033 			filter_param->atype);
3034 		return false;
3035 	}
3036 
3037 	ucc->remote_thread_id = filter_param->remote_thread_id;
3038 	ucc->atype = filter_param->atype;
3039 
3040 	if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET)
3041 		ucc->dir = DMA_MEM_TO_DEV;
3042 	else
3043 		ucc->dir = DMA_DEV_TO_MEM;
3044 
3045 	ep_config = psil_get_ep_config(ucc->remote_thread_id);
3046 	if (IS_ERR(ep_config)) {
3047 		dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n",
3048 			ucc->remote_thread_id);
3049 		ucc->dir = DMA_MEM_TO_MEM;
3050 		ucc->remote_thread_id = -1;
3051 		ucc->atype = 0;
3052 		return false;
3053 	}
3054 
3055 	ucc->pkt_mode = ep_config->pkt_mode;
3056 	ucc->channel_tpl = ep_config->channel_tpl;
3057 	ucc->notdpkt = ep_config->notdpkt;
3058 	ucc->ep_type = ep_config->ep_type;
3059 
3060 	if (ucc->ep_type != PSIL_EP_NATIVE) {
3061 		const struct udma_match_data *match_data = ud->match_data;
3062 
3063 		if (match_data->flags & UDMA_FLAG_PDMA_ACC32)
3064 			ucc->enable_acc32 = ep_config->pdma_acc32;
3065 		if (match_data->flags & UDMA_FLAG_PDMA_BURST)
3066 			ucc->enable_burst = ep_config->pdma_burst;
3067 	}
3068 
3069 	ucc->needs_epib = ep_config->needs_epib;
3070 	ucc->psd_size = ep_config->psd_size;
3071 	ucc->metadata_size =
3072 			(ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) +
3073 			ucc->psd_size;
3074 
3075 	if (ucc->pkt_mode)
3076 		ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
3077 				 ucc->metadata_size, ud->desc_align);
3078 
3079 	dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id,
3080 		ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir));
3081 
3082 	return true;
3083 }
3084 
3085 static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec,
3086 				      struct of_dma *ofdma)
3087 {
3088 	struct udma_dev *ud = ofdma->of_dma_data;
3089 	dma_cap_mask_t mask = ud->ddev.cap_mask;
3090 	struct udma_filter_param filter_param;
3091 	struct dma_chan *chan;
3092 
3093 	if (dma_spec->args_count != 1 && dma_spec->args_count != 2)
3094 		return NULL;
3095 
3096 	filter_param.remote_thread_id = dma_spec->args[0];
3097 	if (dma_spec->args_count == 2)
3098 		filter_param.atype = dma_spec->args[1];
3099 	else
3100 		filter_param.atype = 0;
3101 
3102 	chan = __dma_request_channel(&mask, udma_dma_filter_fn, &filter_param,
3103 				     ofdma->of_node);
3104 	if (!chan) {
3105 		dev_err(ud->dev, "get channel fail in %s.\n", __func__);
3106 		return ERR_PTR(-EINVAL);
3107 	}
3108 
3109 	return chan;
3110 }
3111 
3112 static struct udma_match_data am654_main_data = {
3113 	.psil_base = 0x1000,
3114 	.enable_memcpy_support = true,
3115 	.statictr_z_mask = GENMASK(11, 0),
3116 	.rchan_oes_offset = 0x2000,
3117 };
3118 
3119 static struct udma_match_data am654_mcu_data = {
3120 	.psil_base = 0x6000,
3121 	.enable_memcpy_support = false,
3122 	.statictr_z_mask = GENMASK(11, 0),
3123 	.rchan_oes_offset = 0x2000,
3124 };
3125 
3126 static struct udma_match_data j721e_main_data = {
3127 	.psil_base = 0x1000,
3128 	.enable_memcpy_support = true,
3129 	.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST,
3130 	.statictr_z_mask = GENMASK(23, 0),
3131 	.rchan_oes_offset = 0x400,
3132 };
3133 
3134 static struct udma_match_data j721e_mcu_data = {
3135 	.psil_base = 0x6000,
3136 	.enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */
3137 	.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST,
3138 	.statictr_z_mask = GENMASK(23, 0),
3139 	.rchan_oes_offset = 0x400,
3140 };
3141 
3142 static const struct of_device_id udma_of_match[] = {
3143 	{
3144 		.compatible = "ti,am654-navss-main-udmap",
3145 		.data = &am654_main_data,
3146 	},
3147 	{
3148 		.compatible = "ti,am654-navss-mcu-udmap",
3149 		.data = &am654_mcu_data,
3150 	}, {
3151 		.compatible = "ti,j721e-navss-main-udmap",
3152 		.data = &j721e_main_data,
3153 	}, {
3154 		.compatible = "ti,j721e-navss-mcu-udmap",
3155 		.data = &j721e_mcu_data,
3156 	},
3157 	{ /* Sentinel */ },
3158 };
3159 
3160 static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud)
3161 {
3162 	struct resource *res;
3163 	int i;
3164 
3165 	for (i = 0; i < MMR_LAST; i++) {
3166 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3167 						   mmr_names[i]);
3168 		ud->mmrs[i] = devm_ioremap_resource(&pdev->dev, res);
3169 		if (IS_ERR(ud->mmrs[i]))
3170 			return PTR_ERR(ud->mmrs[i]);
3171 	}
3172 
3173 	return 0;
3174 }
3175 
3176 static int udma_setup_resources(struct udma_dev *ud)
3177 {
3178 	struct device *dev = ud->dev;
3179 	int ch_count, ret, i, j;
3180 	u32 cap2, cap3;
3181 	struct ti_sci_resource_desc *rm_desc;
3182 	struct ti_sci_resource *rm_res, irq_res;
3183 	struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
3184 	static const char * const range_names[] = { "ti,sci-rm-range-tchan",
3185 						    "ti,sci-rm-range-rchan",
3186 						    "ti,sci-rm-range-rflow" };
3187 
3188 	cap2 = udma_read(ud->mmrs[MMR_GCFG], UDMA_CAP_REG(2));
3189 	cap3 = udma_read(ud->mmrs[MMR_GCFG], UDMA_CAP_REG(3));
3190 
3191 	ud->rflow_cnt = UDMA_CAP3_RFLOW_CNT(cap3);
3192 	ud->tchan_cnt = UDMA_CAP2_TCHAN_CNT(cap2);
3193 	ud->echan_cnt = UDMA_CAP2_ECHAN_CNT(cap2);
3194 	ud->rchan_cnt = UDMA_CAP2_RCHAN_CNT(cap2);
3195 	ch_count  = ud->tchan_cnt + ud->rchan_cnt;
3196 
3197 	/* Set up the throughput level start indexes */
3198 	if (of_device_is_compatible(dev->of_node,
3199 				    "ti,am654-navss-main-udmap")) {
3200 		ud->tpl_levels = 2;
3201 		ud->tpl_start_idx[0] = 8;
3202 	} else if (of_device_is_compatible(dev->of_node,
3203 					   "ti,am654-navss-mcu-udmap")) {
3204 		ud->tpl_levels = 2;
3205 		ud->tpl_start_idx[0] = 2;
3206 	} else if (UDMA_CAP3_UCHAN_CNT(cap3)) {
3207 		ud->tpl_levels = 3;
3208 		ud->tpl_start_idx[1] = UDMA_CAP3_UCHAN_CNT(cap3);
3209 		ud->tpl_start_idx[0] = ud->tpl_start_idx[1] +
3210 				       UDMA_CAP3_HCHAN_CNT(cap3);
3211 	} else if (UDMA_CAP3_HCHAN_CNT(cap3)) {
3212 		ud->tpl_levels = 2;
3213 		ud->tpl_start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3);
3214 	} else {
3215 		ud->tpl_levels = 1;
3216 	}
3217 
3218 	ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt),
3219 					   sizeof(unsigned long), GFP_KERNEL);
3220 	ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans),
3221 				  GFP_KERNEL);
3222 	ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt),
3223 					   sizeof(unsigned long), GFP_KERNEL);
3224 	ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans),
3225 				  GFP_KERNEL);
3226 	ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt),
3227 					      sizeof(unsigned long),
3228 					      GFP_KERNEL);
3229 	ud->rflow_gp_map_allocated = devm_kcalloc(dev,
3230 						  BITS_TO_LONGS(ud->rflow_cnt),
3231 						  sizeof(unsigned long),
3232 						  GFP_KERNEL);
3233 	ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt),
3234 					sizeof(unsigned long),
3235 					GFP_KERNEL);
3236 	ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows),
3237 				  GFP_KERNEL);
3238 
3239 	if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map ||
3240 	    !ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans ||
3241 	    !ud->rflows || !ud->rflow_in_use)
3242 		return -ENOMEM;
3243 
3244 	/*
3245 	 * RX flows with the same Ids as RX channels are reserved to be used
3246 	 * as default flows if remote HW can't generate flow_ids. Those
3247 	 * RX flows can be requested only explicitly by id.
3248 	 */
3249 	bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt);
3250 
3251 	/* by default no GP rflows are assigned to Linux */
3252 	bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt);
3253 
3254 	/* Get resource ranges from tisci */
3255 	for (i = 0; i < RM_RANGE_LAST; i++)
3256 		tisci_rm->rm_ranges[i] =
3257 			devm_ti_sci_get_of_resource(tisci_rm->tisci, dev,
3258 						    tisci_rm->tisci_dev_id,
3259 						    (char *)range_names[i]);
3260 
3261 	/* tchan ranges */
3262 	rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
3263 	if (IS_ERR(rm_res)) {
3264 		bitmap_zero(ud->tchan_map, ud->tchan_cnt);
3265 	} else {
3266 		bitmap_fill(ud->tchan_map, ud->tchan_cnt);
3267 		for (i = 0; i < rm_res->sets; i++) {
3268 			rm_desc = &rm_res->desc[i];
3269 			bitmap_clear(ud->tchan_map, rm_desc->start,
3270 				     rm_desc->num);
3271 			dev_dbg(dev, "ti-sci-res: tchan: %d:%d\n",
3272 				rm_desc->start, rm_desc->num);
3273 		}
3274 	}
3275 	irq_res.sets = rm_res->sets;
3276 
3277 	/* rchan and matching default flow ranges */
3278 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
3279 	if (IS_ERR(rm_res)) {
3280 		bitmap_zero(ud->rchan_map, ud->rchan_cnt);
3281 	} else {
3282 		bitmap_fill(ud->rchan_map, ud->rchan_cnt);
3283 		for (i = 0; i < rm_res->sets; i++) {
3284 			rm_desc = &rm_res->desc[i];
3285 			bitmap_clear(ud->rchan_map, rm_desc->start,
3286 				     rm_desc->num);
3287 			dev_dbg(dev, "ti-sci-res: rchan: %d:%d\n",
3288 				rm_desc->start, rm_desc->num);
3289 		}
3290 	}
3291 
3292 	irq_res.sets += rm_res->sets;
3293 	irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL);
3294 	rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
3295 	for (i = 0; i < rm_res->sets; i++) {
3296 		irq_res.desc[i].start = rm_res->desc[i].start;
3297 		irq_res.desc[i].num = rm_res->desc[i].num;
3298 	}
3299 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
3300 	for (j = 0; j < rm_res->sets; j++, i++) {
3301 		irq_res.desc[i].start = rm_res->desc[j].start +
3302 					ud->match_data->rchan_oes_offset;
3303 		irq_res.desc[i].num = rm_res->desc[j].num;
3304 	}
3305 	ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res);
3306 	kfree(irq_res.desc);
3307 	if (ret) {
3308 		dev_err(ud->dev, "Failed to allocate MSI interrupts\n");
3309 		return ret;
3310 	}
3311 
3312 	/* GP rflow ranges */
3313 	rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW];
3314 	if (IS_ERR(rm_res)) {
3315 		/* all gp flows are assigned exclusively to Linux */
3316 		bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt,
3317 			     ud->rflow_cnt - ud->rchan_cnt);
3318 	} else {
3319 		for (i = 0; i < rm_res->sets; i++) {
3320 			rm_desc = &rm_res->desc[i];
3321 			bitmap_clear(ud->rflow_gp_map, rm_desc->start,
3322 				     rm_desc->num);
3323 			dev_dbg(dev, "ti-sci-res: rflow: %d:%d\n",
3324 				rm_desc->start, rm_desc->num);
3325 		}
3326 	}
3327 
3328 	ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt);
3329 	ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt);
3330 	if (!ch_count)
3331 		return -ENODEV;
3332 
3333 	ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels),
3334 				    GFP_KERNEL);
3335 	if (!ud->channels)
3336 		return -ENOMEM;
3337 
3338 	dev_info(dev, "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n",
3339 		 ch_count,
3340 		 ud->tchan_cnt - bitmap_weight(ud->tchan_map, ud->tchan_cnt),
3341 		 ud->rchan_cnt - bitmap_weight(ud->rchan_map, ud->rchan_cnt),
3342 		 ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map,
3343 					       ud->rflow_cnt));
3344 
3345 	return ch_count;
3346 }
3347 
3348 static int udma_setup_rx_flush(struct udma_dev *ud)
3349 {
3350 	struct udma_rx_flush *rx_flush = &ud->rx_flush;
3351 	struct cppi5_desc_hdr_t *tr_desc;
3352 	struct cppi5_tr_type1_t *tr_req;
3353 	struct cppi5_host_desc_t *desc;
3354 	struct device *dev = ud->dev;
3355 	struct udma_hwdesc *hwdesc;
3356 	size_t tr_size;
3357 
3358 	/* Allocate 1K buffer for discarded data on RX channel teardown */
3359 	rx_flush->buffer_size = SZ_1K;
3360 	rx_flush->buffer_vaddr = devm_kzalloc(dev, rx_flush->buffer_size,
3361 					      GFP_KERNEL);
3362 	if (!rx_flush->buffer_vaddr)
3363 		return -ENOMEM;
3364 
3365 	rx_flush->buffer_paddr = dma_map_single(dev, rx_flush->buffer_vaddr,
3366 						rx_flush->buffer_size,
3367 						DMA_TO_DEVICE);
3368 	if (dma_mapping_error(dev, rx_flush->buffer_paddr))
3369 		return -ENOMEM;
3370 
3371 	/* Set up descriptor to be used for TR mode */
3372 	hwdesc = &rx_flush->hwdescs[0];
3373 	tr_size = sizeof(struct cppi5_tr_type1_t);
3374 	hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1);
3375 	hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
3376 					ud->desc_align);
3377 
3378 	hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
3379 						GFP_KERNEL);
3380 	if (!hwdesc->cppi5_desc_vaddr)
3381 		return -ENOMEM;
3382 
3383 	hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
3384 						  hwdesc->cppi5_desc_size,
3385 						  DMA_TO_DEVICE);
3386 	if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
3387 		return -ENOMEM;
3388 
3389 	/* Start of the TR req records */
3390 	hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
3391 	/* Start address of the TR response array */
3392 	hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size;
3393 
3394 	tr_desc = hwdesc->cppi5_desc_vaddr;
3395 	cppi5_trdesc_init(tr_desc, 1, tr_size, 0, 0);
3396 	cppi5_desc_set_pktids(tr_desc, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
3397 	cppi5_desc_set_retpolicy(tr_desc, 0, 0);
3398 
3399 	tr_req = hwdesc->tr_req_base;
3400 	cppi5_tr_init(&tr_req->flags, CPPI5_TR_TYPE1, false, false,
3401 		      CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
3402 	cppi5_tr_csf_set(&tr_req->flags, CPPI5_TR_CSF_SUPR_EVT);
3403 
3404 	tr_req->addr = rx_flush->buffer_paddr;
3405 	tr_req->icnt0 = rx_flush->buffer_size;
3406 	tr_req->icnt1 = 1;
3407 
3408 	dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
3409 				   hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
3410 
3411 	/* Set up descriptor to be used for packet mode */
3412 	hwdesc = &rx_flush->hwdescs[1];
3413 	hwdesc->cppi5_desc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
3414 					CPPI5_INFO0_HDESC_EPIB_SIZE +
3415 					CPPI5_INFO0_HDESC_PSDATA_MAX_SIZE,
3416 					ud->desc_align);
3417 
3418 	hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
3419 						GFP_KERNEL);
3420 	if (!hwdesc->cppi5_desc_vaddr)
3421 		return -ENOMEM;
3422 
3423 	hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
3424 						  hwdesc->cppi5_desc_size,
3425 						  DMA_TO_DEVICE);
3426 	if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
3427 		return -ENOMEM;
3428 
3429 	desc = hwdesc->cppi5_desc_vaddr;
3430 	cppi5_hdesc_init(desc, 0, 0);
3431 	cppi5_desc_set_pktids(&desc->hdr, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
3432 	cppi5_desc_set_retpolicy(&desc->hdr, 0, 0);
3433 
3434 	cppi5_hdesc_attach_buf(desc,
3435 			       rx_flush->buffer_paddr, rx_flush->buffer_size,
3436 			       rx_flush->buffer_paddr, rx_flush->buffer_size);
3437 
3438 	dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
3439 				   hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
3440 	return 0;
3441 }
3442 
3443 #ifdef CONFIG_DEBUG_FS
3444 static void udma_dbg_summary_show_chan(struct seq_file *s,
3445 				       struct dma_chan *chan)
3446 {
3447 	struct udma_chan *uc = to_udma_chan(chan);
3448 	struct udma_chan_config *ucc = &uc->config;
3449 
3450 	seq_printf(s, " %-13s| %s", dma_chan_name(chan),
3451 		   chan->dbg_client_name ?: "in-use");
3452 	seq_printf(s, " (%s, ", dmaengine_get_direction_text(uc->config.dir));
3453 
3454 	switch (uc->config.dir) {
3455 	case DMA_MEM_TO_MEM:
3456 		seq_printf(s, "chan%d pair [0x%04x -> 0x%04x], ", uc->tchan->id,
3457 			   ucc->src_thread, ucc->dst_thread);
3458 		break;
3459 	case DMA_DEV_TO_MEM:
3460 		seq_printf(s, "rchan%d [0x%04x -> 0x%04x], ", uc->rchan->id,
3461 			   ucc->src_thread, ucc->dst_thread);
3462 		break;
3463 	case DMA_MEM_TO_DEV:
3464 		seq_printf(s, "tchan%d [0x%04x -> 0x%04x], ", uc->tchan->id,
3465 			   ucc->src_thread, ucc->dst_thread);
3466 		break;
3467 	default:
3468 		seq_printf(s, ")\n");
3469 		return;
3470 	}
3471 
3472 	if (ucc->ep_type == PSIL_EP_NATIVE) {
3473 		seq_printf(s, "PSI-L Native");
3474 		if (ucc->metadata_size) {
3475 			seq_printf(s, "[%s", ucc->needs_epib ? " EPIB" : "");
3476 			if (ucc->psd_size)
3477 				seq_printf(s, " PSDsize:%u", ucc->psd_size);
3478 			seq_printf(s, " ]");
3479 		}
3480 	} else {
3481 		seq_printf(s, "PDMA");
3482 		if (ucc->enable_acc32 || ucc->enable_burst)
3483 			seq_printf(s, "[%s%s ]",
3484 				   ucc->enable_acc32 ? " ACC32" : "",
3485 				   ucc->enable_burst ? " BURST" : "");
3486 	}
3487 
3488 	seq_printf(s, ", %s)\n", ucc->pkt_mode ? "Packet mode" : "TR mode");
3489 }
3490 
3491 static void udma_dbg_summary_show(struct seq_file *s,
3492 				  struct dma_device *dma_dev)
3493 {
3494 	struct dma_chan *chan;
3495 
3496 	list_for_each_entry(chan, &dma_dev->channels, device_node) {
3497 		if (chan->client_count)
3498 			udma_dbg_summary_show_chan(s, chan);
3499 	}
3500 }
3501 #endif /* CONFIG_DEBUG_FS */
3502 
3503 #define TI_UDMAC_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
3504 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
3505 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
3506 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
3507 				 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
3508 
3509 static int udma_probe(struct platform_device *pdev)
3510 {
3511 	struct device_node *navss_node = pdev->dev.parent->of_node;
3512 	struct device *dev = &pdev->dev;
3513 	struct udma_dev *ud;
3514 	const struct of_device_id *match;
3515 	int i, ret;
3516 	int ch_count;
3517 
3518 	ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48));
3519 	if (ret)
3520 		dev_err(dev, "failed to set dma mask stuff\n");
3521 
3522 	ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL);
3523 	if (!ud)
3524 		return -ENOMEM;
3525 
3526 	ret = udma_get_mmrs(pdev, ud);
3527 	if (ret)
3528 		return ret;
3529 
3530 	ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci");
3531 	if (IS_ERR(ud->tisci_rm.tisci))
3532 		return PTR_ERR(ud->tisci_rm.tisci);
3533 
3534 	ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id",
3535 				   &ud->tisci_rm.tisci_dev_id);
3536 	if (ret) {
3537 		dev_err(dev, "ti,sci-dev-id read failure %d\n", ret);
3538 		return ret;
3539 	}
3540 	pdev->id = ud->tisci_rm.tisci_dev_id;
3541 
3542 	ret = of_property_read_u32(navss_node, "ti,sci-dev-id",
3543 				   &ud->tisci_rm.tisci_navss_dev_id);
3544 	if (ret) {
3545 		dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret);
3546 		return ret;
3547 	}
3548 
3549 	ret = of_property_read_u32(dev->of_node, "ti,udma-atype", &ud->atype);
3550 	if (!ret && ud->atype > 2) {
3551 		dev_err(dev, "Invalid atype: %u\n", ud->atype);
3552 		return -EINVAL;
3553 	}
3554 
3555 	ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops;
3556 	ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops;
3557 
3558 	ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc");
3559 	if (IS_ERR(ud->ringacc))
3560 		return PTR_ERR(ud->ringacc);
3561 
3562 	dev->msi_domain = of_msi_get_domain(dev, dev->of_node,
3563 					    DOMAIN_BUS_TI_SCI_INTA_MSI);
3564 	if (!dev->msi_domain) {
3565 		dev_err(dev, "Failed to get MSI domain\n");
3566 		return -EPROBE_DEFER;
3567 	}
3568 
3569 	match = of_match_node(udma_of_match, dev->of_node);
3570 	if (!match) {
3571 		dev_err(dev, "No compatible match found\n");
3572 		return -ENODEV;
3573 	}
3574 	ud->match_data = match->data;
3575 
3576 	dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask);
3577 	dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask);
3578 
3579 	ud->ddev.device_alloc_chan_resources = udma_alloc_chan_resources;
3580 	ud->ddev.device_config = udma_slave_config;
3581 	ud->ddev.device_prep_slave_sg = udma_prep_slave_sg;
3582 	ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic;
3583 	ud->ddev.device_issue_pending = udma_issue_pending;
3584 	ud->ddev.device_tx_status = udma_tx_status;
3585 	ud->ddev.device_pause = udma_pause;
3586 	ud->ddev.device_resume = udma_resume;
3587 	ud->ddev.device_terminate_all = udma_terminate_all;
3588 	ud->ddev.device_synchronize = udma_synchronize;
3589 #ifdef CONFIG_DEBUG_FS
3590 	ud->ddev.dbg_summary_show = udma_dbg_summary_show;
3591 #endif
3592 
3593 	ud->ddev.device_free_chan_resources = udma_free_chan_resources;
3594 	ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS;
3595 	ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS;
3596 	ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3597 	ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3598 	ud->ddev.copy_align = DMAENGINE_ALIGN_8_BYTES;
3599 	ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT |
3600 				       DESC_METADATA_ENGINE;
3601 	if (ud->match_data->enable_memcpy_support) {
3602 		dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask);
3603 		ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy;
3604 		ud->ddev.directions |= BIT(DMA_MEM_TO_MEM);
3605 	}
3606 
3607 	ud->ddev.dev = dev;
3608 	ud->dev = dev;
3609 	ud->psil_base = ud->match_data->psil_base;
3610 
3611 	INIT_LIST_HEAD(&ud->ddev.channels);
3612 	INIT_LIST_HEAD(&ud->desc_to_purge);
3613 
3614 	ch_count = udma_setup_resources(ud);
3615 	if (ch_count <= 0)
3616 		return ch_count;
3617 
3618 	spin_lock_init(&ud->lock);
3619 	INIT_WORK(&ud->purge_work, udma_purge_desc_work);
3620 
3621 	ud->desc_align = 64;
3622 	if (ud->desc_align < dma_get_cache_alignment())
3623 		ud->desc_align = dma_get_cache_alignment();
3624 
3625 	ret = udma_setup_rx_flush(ud);
3626 	if (ret)
3627 		return ret;
3628 
3629 	for (i = 0; i < ud->tchan_cnt; i++) {
3630 		struct udma_tchan *tchan = &ud->tchans[i];
3631 
3632 		tchan->id = i;
3633 		tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000;
3634 	}
3635 
3636 	for (i = 0; i < ud->rchan_cnt; i++) {
3637 		struct udma_rchan *rchan = &ud->rchans[i];
3638 
3639 		rchan->id = i;
3640 		rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000;
3641 	}
3642 
3643 	for (i = 0; i < ud->rflow_cnt; i++) {
3644 		struct udma_rflow *rflow = &ud->rflows[i];
3645 
3646 		rflow->id = i;
3647 	}
3648 
3649 	for (i = 0; i < ch_count; i++) {
3650 		struct udma_chan *uc = &ud->channels[i];
3651 
3652 		uc->ud = ud;
3653 		uc->vc.desc_free = udma_desc_free;
3654 		uc->id = i;
3655 		uc->tchan = NULL;
3656 		uc->rchan = NULL;
3657 		uc->config.remote_thread_id = -1;
3658 		uc->config.dir = DMA_MEM_TO_MEM;
3659 		uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d",
3660 					  dev_name(dev), i);
3661 
3662 		vchan_init(&uc->vc, &ud->ddev);
3663 		/* Use custom vchan completion handling */
3664 		tasklet_init(&uc->vc.task, udma_vchan_complete,
3665 			     (unsigned long)&uc->vc);
3666 		init_completion(&uc->teardown_completed);
3667 		INIT_DELAYED_WORK(&uc->tx_drain.work, udma_check_tx_completion);
3668 	}
3669 
3670 	ret = dma_async_device_register(&ud->ddev);
3671 	if (ret) {
3672 		dev_err(dev, "failed to register slave DMA engine: %d\n", ret);
3673 		return ret;
3674 	}
3675 
3676 	platform_set_drvdata(pdev, ud);
3677 
3678 	ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud);
3679 	if (ret) {
3680 		dev_err(dev, "failed to register of_dma controller\n");
3681 		dma_async_device_unregister(&ud->ddev);
3682 	}
3683 
3684 	return ret;
3685 }
3686 
3687 static struct platform_driver udma_driver = {
3688 	.driver = {
3689 		.name	= "ti-udma",
3690 		.of_match_table = udma_of_match,
3691 		.suppress_bind_attrs = true,
3692 	},
3693 	.probe		= udma_probe,
3694 };
3695 builtin_platform_driver(udma_driver);
3696 
3697 /* Private interfaces to UDMA */
3698 #include "k3-udma-private.c"
3699