1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI EDMA DMA engine driver 4 * 5 * Copyright 2012 Texas Instruments 6 */ 7 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/bitmap.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/interrupt.h> 14 #include <linux/list.h> 15 #include <linux/module.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/of.h> 20 #include <linux/of_dma.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/pm_runtime.h> 24 25 #include <linux/platform_data/edma.h> 26 27 #include "../dmaengine.h" 28 #include "../virt-dma.h" 29 30 /* Offsets matching "struct edmacc_param" */ 31 #define PARM_OPT 0x00 32 #define PARM_SRC 0x04 33 #define PARM_A_B_CNT 0x08 34 #define PARM_DST 0x0c 35 #define PARM_SRC_DST_BIDX 0x10 36 #define PARM_LINK_BCNTRLD 0x14 37 #define PARM_SRC_DST_CIDX 0x18 38 #define PARM_CCNT 0x1c 39 40 #define PARM_SIZE 0x20 41 42 /* Offsets for EDMA CC global channel registers and their shadows */ 43 #define SH_ER 0x00 /* 64 bits */ 44 #define SH_ECR 0x08 /* 64 bits */ 45 #define SH_ESR 0x10 /* 64 bits */ 46 #define SH_CER 0x18 /* 64 bits */ 47 #define SH_EER 0x20 /* 64 bits */ 48 #define SH_EECR 0x28 /* 64 bits */ 49 #define SH_EESR 0x30 /* 64 bits */ 50 #define SH_SER 0x38 /* 64 bits */ 51 #define SH_SECR 0x40 /* 64 bits */ 52 #define SH_IER 0x50 /* 64 bits */ 53 #define SH_IECR 0x58 /* 64 bits */ 54 #define SH_IESR 0x60 /* 64 bits */ 55 #define SH_IPR 0x68 /* 64 bits */ 56 #define SH_ICR 0x70 /* 64 bits */ 57 #define SH_IEVAL 0x78 58 #define SH_QER 0x80 59 #define SH_QEER 0x84 60 #define SH_QEECR 0x88 61 #define SH_QEESR 0x8c 62 #define SH_QSER 0x90 63 #define SH_QSECR 0x94 64 #define SH_SIZE 0x200 65 66 /* Offsets for EDMA CC global registers */ 67 #define EDMA_REV 0x0000 68 #define EDMA_CCCFG 0x0004 69 #define EDMA_QCHMAP 0x0200 /* 8 registers */ 70 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ 71 #define EDMA_QDMAQNUM 0x0260 72 #define EDMA_QUETCMAP 0x0280 73 #define EDMA_QUEPRI 0x0284 74 #define EDMA_EMR 0x0300 /* 64 bits */ 75 #define EDMA_EMCR 0x0308 /* 64 bits */ 76 #define EDMA_QEMR 0x0310 77 #define EDMA_QEMCR 0x0314 78 #define EDMA_CCERR 0x0318 79 #define EDMA_CCERRCLR 0x031c 80 #define EDMA_EEVAL 0x0320 81 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ 82 #define EDMA_QRAE 0x0380 /* 4 registers */ 83 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ 84 #define EDMA_QSTAT 0x0600 /* 2 registers */ 85 #define EDMA_QWMTHRA 0x0620 86 #define EDMA_QWMTHRB 0x0624 87 #define EDMA_CCSTAT 0x0640 88 89 #define EDMA_M 0x1000 /* global channel registers */ 90 #define EDMA_ECR 0x1008 91 #define EDMA_ECRH 0x100C 92 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ 93 #define EDMA_PARM 0x4000 /* PaRAM entries */ 94 95 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) 96 97 #define EDMA_DCHMAP 0x0100 /* 64 registers */ 98 99 /* CCCFG register */ 100 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ 101 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ 102 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ 103 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ 104 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ 105 #define CHMAP_EXIST BIT(24) 106 107 /* CCSTAT register */ 108 #define EDMA_CCSTAT_ACTV BIT(4) 109 110 /* 111 * Max of 20 segments per channel to conserve PaRAM slots 112 * Also note that MAX_NR_SG should be at least the no.of periods 113 * that are required for ASoC, otherwise DMA prep calls will 114 * fail. Today davinci-pcm is the only user of this driver and 115 * requires at least 17 slots, so we setup the default to 20. 116 */ 117 #define MAX_NR_SG 20 118 #define EDMA_MAX_SLOTS MAX_NR_SG 119 #define EDMA_DESCRIPTORS 16 120 121 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ 122 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ 123 #define EDMA_CONT_PARAMS_ANY 1001 124 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 125 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 126 127 /* 128 * 64bit array registers are split into two 32bit registers: 129 * reg0: channel/event 0-31 130 * reg1: channel/event 32-63 131 * 132 * bit 5 in the channel number tells the array index (0/1) 133 * bit 0-4 (0x1f) is the bit offset within the register 134 */ 135 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) 136 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) 137 138 /* PaRAM slots are laid out like this */ 139 struct edmacc_param { 140 u32 opt; 141 u32 src; 142 u32 a_b_cnt; 143 u32 dst; 144 u32 src_dst_bidx; 145 u32 link_bcntrld; 146 u32 src_dst_cidx; 147 u32 ccnt; 148 } __packed; 149 150 /* fields in edmacc_param.opt */ 151 #define SAM BIT(0) 152 #define DAM BIT(1) 153 #define SYNCDIM BIT(2) 154 #define STATIC BIT(3) 155 #define EDMA_FWID (0x07 << 8) 156 #define TCCMODE BIT(11) 157 #define EDMA_TCC(t) ((t) << 12) 158 #define TCINTEN BIT(20) 159 #define ITCINTEN BIT(21) 160 #define TCCHEN BIT(22) 161 #define ITCCHEN BIT(23) 162 163 struct edma_pset { 164 u32 len; 165 dma_addr_t addr; 166 struct edmacc_param param; 167 }; 168 169 struct edma_desc { 170 struct virt_dma_desc vdesc; 171 struct list_head node; 172 enum dma_transfer_direction direction; 173 int cyclic; 174 bool polled; 175 int absync; 176 int pset_nr; 177 struct edma_chan *echan; 178 int processed; 179 180 /* 181 * The following 4 elements are used for residue accounting. 182 * 183 * - processed_stat: the number of SG elements we have traversed 184 * so far to cover accounting. This is updated directly to processed 185 * during edma_callback and is always <= processed, because processed 186 * refers to the number of pending transfer (programmed to EDMA 187 * controller), where as processed_stat tracks number of transfers 188 * accounted for so far. 189 * 190 * - residue: The amount of bytes we have left to transfer for this desc 191 * 192 * - residue_stat: The residue in bytes of data we have covered 193 * so far for accounting. This is updated directly to residue 194 * during callbacks to keep it current. 195 * 196 * - sg_len: Tracks the length of the current intermediate transfer, 197 * this is required to update the residue during intermediate transfer 198 * completion callback. 199 */ 200 int processed_stat; 201 u32 sg_len; 202 u32 residue; 203 u32 residue_stat; 204 205 struct edma_pset pset[] __counted_by(pset_nr); 206 }; 207 208 struct edma_cc; 209 210 struct edma_tc { 211 u16 id; 212 }; 213 214 struct edma_chan { 215 struct virt_dma_chan vchan; 216 struct list_head node; 217 struct edma_desc *edesc; 218 struct edma_cc *ecc; 219 struct edma_tc *tc; 220 int ch_num; 221 bool alloced; 222 bool hw_triggered; 223 int slot[EDMA_MAX_SLOTS]; 224 int missed; 225 struct dma_slave_config cfg; 226 }; 227 228 struct edma_cc { 229 struct device *dev; 230 struct edma_soc_info *info; 231 void __iomem *base; 232 int id; 233 bool legacy_mode; 234 235 /* eDMA3 resource information */ 236 unsigned num_channels; 237 unsigned num_qchannels; 238 unsigned num_region; 239 unsigned num_slots; 240 unsigned num_tc; 241 bool chmap_exist; 242 enum dma_event_q default_queue; 243 244 unsigned int ccint; 245 unsigned int ccerrint; 246 247 /* 248 * The slot_inuse bit for each PaRAM slot is clear unless the slot is 249 * in use by Linux or if it is allocated to be used by DSP. 250 */ 251 unsigned long *slot_inuse; 252 253 /* 254 * For tracking reserved channels used by DSP. 255 * If the bit is cleared, the channel is allocated to be used by DSP 256 * and Linux must not touch it. 257 */ 258 unsigned long *channels_mask; 259 260 struct dma_device dma_slave; 261 struct dma_device *dma_memcpy; 262 struct edma_chan *slave_chans; 263 struct edma_tc *tc_list; 264 int dummy_slot; 265 }; 266 267 /* dummy param set used to (re)initialize parameter RAM slots */ 268 static const struct edmacc_param dummy_paramset = { 269 .link_bcntrld = 0xffff, 270 .ccnt = 1, 271 }; 272 273 #define EDMA_BINDING_LEGACY 0 274 #define EDMA_BINDING_TPCC 1 275 static const u32 edma_binding_type[] = { 276 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, 277 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, 278 }; 279 280 static const struct of_device_id edma_of_ids[] = { 281 { 282 .compatible = "ti,edma3", 283 .data = &edma_binding_type[EDMA_BINDING_LEGACY], 284 }, 285 { 286 .compatible = "ti,edma3-tpcc", 287 .data = &edma_binding_type[EDMA_BINDING_TPCC], 288 }, 289 {} 290 }; 291 MODULE_DEVICE_TABLE(of, edma_of_ids); 292 293 static const struct of_device_id edma_tptc_of_ids[] = { 294 { .compatible = "ti,edma3-tptc", }, 295 {} 296 }; 297 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); 298 299 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) 300 { 301 return (unsigned int)__raw_readl(ecc->base + offset); 302 } 303 304 static inline void edma_write(struct edma_cc *ecc, int offset, int val) 305 { 306 __raw_writel(val, ecc->base + offset); 307 } 308 309 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, 310 unsigned or) 311 { 312 unsigned val = edma_read(ecc, offset); 313 314 val &= and; 315 val |= or; 316 edma_write(ecc, offset, val); 317 } 318 319 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) 320 { 321 unsigned val = edma_read(ecc, offset); 322 323 val |= or; 324 edma_write(ecc, offset, val); 325 } 326 327 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, 328 int i) 329 { 330 return edma_read(ecc, offset + (i << 2)); 331 } 332 333 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, 334 unsigned val) 335 { 336 edma_write(ecc, offset + (i << 2), val); 337 } 338 339 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, 340 unsigned and, unsigned or) 341 { 342 edma_modify(ecc, offset + (i << 2), and, or); 343 } 344 345 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, 346 unsigned or) 347 { 348 edma_or(ecc, offset + ((i * 2 + j) << 2), or); 349 } 350 351 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, 352 int j, unsigned val) 353 { 354 edma_write(ecc, offset + ((i * 2 + j) << 2), val); 355 } 356 357 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, 358 int offset, int i) 359 { 360 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); 361 } 362 363 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, 364 unsigned val) 365 { 366 edma_write(ecc, EDMA_SHADOW0 + offset, val); 367 } 368 369 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, 370 int i, unsigned val) 371 { 372 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); 373 } 374 375 static inline void edma_param_modify(struct edma_cc *ecc, int offset, 376 int param_no, unsigned and, unsigned or) 377 { 378 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); 379 } 380 381 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, 382 int priority) 383 { 384 int bit = queue_no * 4; 385 386 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); 387 } 388 389 static void edma_set_chmap(struct edma_chan *echan, int slot) 390 { 391 struct edma_cc *ecc = echan->ecc; 392 int channel = EDMA_CHAN_SLOT(echan->ch_num); 393 394 if (ecc->chmap_exist) { 395 slot = EDMA_CHAN_SLOT(slot); 396 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); 397 } 398 } 399 400 static void edma_setup_interrupt(struct edma_chan *echan, bool enable) 401 { 402 struct edma_cc *ecc = echan->ecc; 403 int channel = EDMA_CHAN_SLOT(echan->ch_num); 404 int idx = EDMA_REG_ARRAY_INDEX(channel); 405 int ch_bit = EDMA_CHANNEL_BIT(channel); 406 407 if (enable) { 408 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 409 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); 410 } else { 411 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); 412 } 413 } 414 415 /* 416 * paRAM slot management functions 417 */ 418 static void edma_write_slot(struct edma_cc *ecc, unsigned slot, 419 const struct edmacc_param *param) 420 { 421 slot = EDMA_CHAN_SLOT(slot); 422 if (slot >= ecc->num_slots) 423 return; 424 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); 425 } 426 427 static int edma_read_slot(struct edma_cc *ecc, unsigned slot, 428 struct edmacc_param *param) 429 { 430 slot = EDMA_CHAN_SLOT(slot); 431 if (slot >= ecc->num_slots) 432 return -EINVAL; 433 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); 434 435 return 0; 436 } 437 438 /** 439 * edma_alloc_slot - allocate DMA parameter RAM 440 * @ecc: pointer to edma_cc struct 441 * @slot: specific slot to allocate; negative for "any unused slot" 442 * 443 * This allocates a parameter RAM slot, initializing it to hold a 444 * dummy transfer. Slots allocated using this routine have not been 445 * mapped to a hardware DMA channel, and will normally be used by 446 * linking to them from a slot associated with a DMA channel. 447 * 448 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific 449 * slots may be allocated on behalf of DSP firmware. 450 * 451 * Returns the number of the slot, else negative errno. 452 */ 453 static int edma_alloc_slot(struct edma_cc *ecc, int slot) 454 { 455 if (slot >= 0) { 456 slot = EDMA_CHAN_SLOT(slot); 457 /* Requesting entry paRAM slot for a HW triggered channel. */ 458 if (ecc->chmap_exist && slot < ecc->num_channels) 459 slot = EDMA_SLOT_ANY; 460 } 461 462 if (slot < 0) { 463 if (ecc->chmap_exist) 464 slot = 0; 465 else 466 slot = ecc->num_channels; 467 for (;;) { 468 slot = find_next_zero_bit(ecc->slot_inuse, 469 ecc->num_slots, 470 slot); 471 if (slot == ecc->num_slots) 472 return -ENOMEM; 473 if (!test_and_set_bit(slot, ecc->slot_inuse)) 474 break; 475 } 476 } else if (slot >= ecc->num_slots) { 477 return -EINVAL; 478 } else if (test_and_set_bit(slot, ecc->slot_inuse)) { 479 return -EBUSY; 480 } 481 482 edma_write_slot(ecc, slot, &dummy_paramset); 483 484 return EDMA_CTLR_CHAN(ecc->id, slot); 485 } 486 487 static void edma_free_slot(struct edma_cc *ecc, unsigned slot) 488 { 489 slot = EDMA_CHAN_SLOT(slot); 490 if (slot >= ecc->num_slots) 491 return; 492 493 edma_write_slot(ecc, slot, &dummy_paramset); 494 clear_bit(slot, ecc->slot_inuse); 495 } 496 497 /** 498 * edma_link - link one parameter RAM slot to another 499 * @ecc: pointer to edma_cc struct 500 * @from: parameter RAM slot originating the link 501 * @to: parameter RAM slot which is the link target 502 * 503 * The originating slot should not be part of any active DMA transfer. 504 */ 505 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) 506 { 507 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) 508 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); 509 510 from = EDMA_CHAN_SLOT(from); 511 to = EDMA_CHAN_SLOT(to); 512 if (from >= ecc->num_slots || to >= ecc->num_slots) 513 return; 514 515 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, 516 PARM_OFFSET(to)); 517 } 518 519 /** 520 * edma_get_position - returns the current transfer point 521 * @ecc: pointer to edma_cc struct 522 * @slot: parameter RAM slot being examined 523 * @dst: true selects the dest position, false the source 524 * 525 * Returns the position of the current active slot 526 */ 527 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, 528 bool dst) 529 { 530 u32 offs; 531 532 slot = EDMA_CHAN_SLOT(slot); 533 offs = PARM_OFFSET(slot); 534 offs += dst ? PARM_DST : PARM_SRC; 535 536 return edma_read(ecc, offs); 537 } 538 539 /* 540 * Channels with event associations will be triggered by their hardware 541 * events, and channels without such associations will be triggered by 542 * software. (At this writing there is no interface for using software 543 * triggers except with channels that don't support hardware triggers.) 544 */ 545 static void edma_start(struct edma_chan *echan) 546 { 547 struct edma_cc *ecc = echan->ecc; 548 int channel = EDMA_CHAN_SLOT(echan->ch_num); 549 int idx = EDMA_REG_ARRAY_INDEX(channel); 550 int ch_bit = EDMA_CHANNEL_BIT(channel); 551 552 if (!echan->hw_triggered) { 553 /* EDMA channels without event association */ 554 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 555 edma_shadow0_read_array(ecc, SH_ESR, idx)); 556 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 557 } else { 558 /* EDMA channel with event association */ 559 dev_dbg(ecc->dev, "ER%d %08x\n", idx, 560 edma_shadow0_read_array(ecc, SH_ER, idx)); 561 /* Clear any pending event or error */ 562 edma_write_array(ecc, EDMA_ECR, idx, ch_bit); 563 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 564 /* Clear any SER */ 565 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 566 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); 567 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 568 edma_shadow0_read_array(ecc, SH_EER, idx)); 569 } 570 } 571 572 static void edma_stop(struct edma_chan *echan) 573 { 574 struct edma_cc *ecc = echan->ecc; 575 int channel = EDMA_CHAN_SLOT(echan->ch_num); 576 int idx = EDMA_REG_ARRAY_INDEX(channel); 577 int ch_bit = EDMA_CHANNEL_BIT(channel); 578 579 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); 580 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 581 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 582 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 583 584 /* clear possibly pending completion interrupt */ 585 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 586 587 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 588 edma_shadow0_read_array(ecc, SH_EER, idx)); 589 590 /* REVISIT: consider guarding against inappropriate event 591 * chaining by overwriting with dummy_paramset. 592 */ 593 } 594 595 /* 596 * Temporarily disable EDMA hardware events on the specified channel, 597 * preventing them from triggering new transfers 598 */ 599 static void edma_pause(struct edma_chan *echan) 600 { 601 int channel = EDMA_CHAN_SLOT(echan->ch_num); 602 603 edma_shadow0_write_array(echan->ecc, SH_EECR, 604 EDMA_REG_ARRAY_INDEX(channel), 605 EDMA_CHANNEL_BIT(channel)); 606 } 607 608 /* Re-enable EDMA hardware events on the specified channel. */ 609 static void edma_resume(struct edma_chan *echan) 610 { 611 int channel = EDMA_CHAN_SLOT(echan->ch_num); 612 613 edma_shadow0_write_array(echan->ecc, SH_EESR, 614 EDMA_REG_ARRAY_INDEX(channel), 615 EDMA_CHANNEL_BIT(channel)); 616 } 617 618 static void edma_trigger_channel(struct edma_chan *echan) 619 { 620 struct edma_cc *ecc = echan->ecc; 621 int channel = EDMA_CHAN_SLOT(echan->ch_num); 622 int idx = EDMA_REG_ARRAY_INDEX(channel); 623 int ch_bit = EDMA_CHANNEL_BIT(channel); 624 625 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 626 627 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 628 edma_shadow0_read_array(ecc, SH_ESR, idx)); 629 } 630 631 static void edma_clean_channel(struct edma_chan *echan) 632 { 633 struct edma_cc *ecc = echan->ecc; 634 int channel = EDMA_CHAN_SLOT(echan->ch_num); 635 int idx = EDMA_REG_ARRAY_INDEX(channel); 636 int ch_bit = EDMA_CHANNEL_BIT(channel); 637 638 dev_dbg(ecc->dev, "EMR%d %08x\n", idx, 639 edma_read_array(ecc, EDMA_EMR, idx)); 640 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 641 /* Clear the corresponding EMR bits */ 642 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 643 /* Clear any SER */ 644 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 645 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); 646 } 647 648 /* Move channel to a specific event queue */ 649 static void edma_assign_channel_eventq(struct edma_chan *echan, 650 enum dma_event_q eventq_no) 651 { 652 struct edma_cc *ecc = echan->ecc; 653 int channel = EDMA_CHAN_SLOT(echan->ch_num); 654 int bit = (channel & 0x7) * 4; 655 656 /* default to low priority queue */ 657 if (eventq_no == EVENTQ_DEFAULT) 658 eventq_no = ecc->default_queue; 659 if (eventq_no >= ecc->num_tc) 660 return; 661 662 eventq_no &= 7; 663 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), 664 eventq_no << bit); 665 } 666 667 static int edma_alloc_channel(struct edma_chan *echan, 668 enum dma_event_q eventq_no) 669 { 670 struct edma_cc *ecc = echan->ecc; 671 int channel = EDMA_CHAN_SLOT(echan->ch_num); 672 673 if (!test_bit(echan->ch_num, ecc->channels_mask)) { 674 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n", 675 echan->ch_num); 676 return -EINVAL; 677 } 678 679 /* ensure access through shadow region 0 */ 680 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), 681 EDMA_CHANNEL_BIT(channel)); 682 683 /* ensure no events are pending */ 684 edma_stop(echan); 685 686 edma_setup_interrupt(echan, true); 687 688 edma_assign_channel_eventq(echan, eventq_no); 689 690 return 0; 691 } 692 693 static void edma_free_channel(struct edma_chan *echan) 694 { 695 /* ensure no events are pending */ 696 edma_stop(echan); 697 /* REVISIT should probably take out of shadow region 0 */ 698 edma_setup_interrupt(echan, false); 699 } 700 701 static inline struct edma_chan *to_edma_chan(struct dma_chan *c) 702 { 703 return container_of(c, struct edma_chan, vchan.chan); 704 } 705 706 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) 707 { 708 return container_of(tx, struct edma_desc, vdesc.tx); 709 } 710 711 static void edma_desc_free(struct virt_dma_desc *vdesc) 712 { 713 kfree(container_of(vdesc, struct edma_desc, vdesc)); 714 } 715 716 /* Dispatch a queued descriptor to the controller (caller holds lock) */ 717 static void edma_execute(struct edma_chan *echan) 718 { 719 struct edma_cc *ecc = echan->ecc; 720 struct virt_dma_desc *vdesc; 721 struct edma_desc *edesc; 722 struct device *dev = echan->vchan.chan.device->dev; 723 int i, j, left, nslots; 724 725 if (!echan->edesc) { 726 /* Setup is needed for the first transfer */ 727 vdesc = vchan_next_desc(&echan->vchan); 728 if (!vdesc) 729 return; 730 list_del(&vdesc->node); 731 echan->edesc = to_edma_desc(&vdesc->tx); 732 } 733 734 edesc = echan->edesc; 735 736 /* Find out how many left */ 737 left = edesc->pset_nr - edesc->processed; 738 nslots = min(MAX_NR_SG, left); 739 edesc->sg_len = 0; 740 741 /* Write descriptor PaRAM set(s) */ 742 for (i = 0; i < nslots; i++) { 743 j = i + edesc->processed; 744 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); 745 edesc->sg_len += edesc->pset[j].len; 746 dev_vdbg(dev, 747 "\n pset[%d]:\n" 748 " chnum\t%d\n" 749 " slot\t%d\n" 750 " opt\t%08x\n" 751 " src\t%08x\n" 752 " dst\t%08x\n" 753 " abcnt\t%08x\n" 754 " ccnt\t%08x\n" 755 " bidx\t%08x\n" 756 " cidx\t%08x\n" 757 " lkrld\t%08x\n", 758 j, echan->ch_num, echan->slot[i], 759 edesc->pset[j].param.opt, 760 edesc->pset[j].param.src, 761 edesc->pset[j].param.dst, 762 edesc->pset[j].param.a_b_cnt, 763 edesc->pset[j].param.ccnt, 764 edesc->pset[j].param.src_dst_bidx, 765 edesc->pset[j].param.src_dst_cidx, 766 edesc->pset[j].param.link_bcntrld); 767 /* Link to the previous slot if not the last set */ 768 if (i != (nslots - 1)) 769 edma_link(ecc, echan->slot[i], echan->slot[i + 1]); 770 } 771 772 edesc->processed += nslots; 773 774 /* 775 * If this is either the last set in a set of SG-list transactions 776 * then setup a link to the dummy slot, this results in all future 777 * events being absorbed and that's OK because we're done 778 */ 779 if (edesc->processed == edesc->pset_nr) { 780 if (edesc->cyclic) 781 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); 782 else 783 edma_link(ecc, echan->slot[nslots - 1], 784 echan->ecc->dummy_slot); 785 } 786 787 if (echan->missed) { 788 /* 789 * This happens due to setup times between intermediate 790 * transfers in long SG lists which have to be broken up into 791 * transfers of MAX_NR_SG 792 */ 793 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); 794 edma_clean_channel(echan); 795 edma_stop(echan); 796 edma_start(echan); 797 edma_trigger_channel(echan); 798 echan->missed = 0; 799 } else if (edesc->processed <= MAX_NR_SG) { 800 dev_dbg(dev, "first transfer starting on channel %d\n", 801 echan->ch_num); 802 edma_start(echan); 803 } else { 804 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", 805 echan->ch_num, edesc->processed); 806 edma_resume(echan); 807 } 808 } 809 810 static int edma_terminate_all(struct dma_chan *chan) 811 { 812 struct edma_chan *echan = to_edma_chan(chan); 813 unsigned long flags; 814 LIST_HEAD(head); 815 816 spin_lock_irqsave(&echan->vchan.lock, flags); 817 818 /* 819 * Stop DMA activity: we assume the callback will not be called 820 * after edma_dma() returns (even if it does, it will see 821 * echan->edesc is NULL and exit.) 822 */ 823 if (echan->edesc) { 824 edma_stop(echan); 825 /* Move the cyclic channel back to default queue */ 826 if (!echan->tc && echan->edesc->cyclic) 827 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); 828 829 vchan_terminate_vdesc(&echan->edesc->vdesc); 830 echan->edesc = NULL; 831 } 832 833 vchan_get_all_descriptors(&echan->vchan, &head); 834 spin_unlock_irqrestore(&echan->vchan.lock, flags); 835 vchan_dma_desc_free_list(&echan->vchan, &head); 836 837 return 0; 838 } 839 840 static void edma_synchronize(struct dma_chan *chan) 841 { 842 struct edma_chan *echan = to_edma_chan(chan); 843 844 vchan_synchronize(&echan->vchan); 845 } 846 847 static int edma_slave_config(struct dma_chan *chan, 848 struct dma_slave_config *cfg) 849 { 850 struct edma_chan *echan = to_edma_chan(chan); 851 852 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || 853 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) 854 return -EINVAL; 855 856 if (cfg->src_maxburst > chan->device->max_burst || 857 cfg->dst_maxburst > chan->device->max_burst) 858 return -EINVAL; 859 860 memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); 861 862 return 0; 863 } 864 865 static int edma_dma_pause(struct dma_chan *chan) 866 { 867 struct edma_chan *echan = to_edma_chan(chan); 868 869 if (!echan->edesc) 870 return -EINVAL; 871 872 edma_pause(echan); 873 return 0; 874 } 875 876 static int edma_dma_resume(struct dma_chan *chan) 877 { 878 struct edma_chan *echan = to_edma_chan(chan); 879 880 edma_resume(echan); 881 return 0; 882 } 883 884 /* 885 * A PaRAM set configuration abstraction used by other modes 886 * @chan: Channel who's PaRAM set we're configuring 887 * @pset: PaRAM set to initialize and setup. 888 * @src_addr: Source address of the DMA 889 * @dst_addr: Destination address of the DMA 890 * @burst: In units of dev_width, how much to send 891 * @dev_width: How much is the dev_width 892 * @dma_length: Total length of the DMA transfer 893 * @direction: Direction of the transfer 894 */ 895 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, 896 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, 897 unsigned int acnt, unsigned int dma_length, 898 enum dma_transfer_direction direction) 899 { 900 struct edma_chan *echan = to_edma_chan(chan); 901 struct device *dev = chan->device->dev; 902 struct edmacc_param *param = &epset->param; 903 int bcnt, ccnt, cidx; 904 int src_bidx, dst_bidx, src_cidx, dst_cidx; 905 int absync; 906 907 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ 908 if (!burst) 909 burst = 1; 910 /* 911 * If the maxburst is equal to the fifo width, use 912 * A-synced transfers. This allows for large contiguous 913 * buffer transfers using only one PaRAM set. 914 */ 915 if (burst == 1) { 916 /* 917 * For the A-sync case, bcnt and ccnt are the remainder 918 * and quotient respectively of the division of: 919 * (dma_length / acnt) by (SZ_64K -1). This is so 920 * that in case bcnt over flows, we have ccnt to use. 921 * Note: In A-sync transfer only, bcntrld is used, but it 922 * only applies for sg_dma_len(sg) >= SZ_64K. 923 * In this case, the best way adopted is- bccnt for the 924 * first frame will be the remainder below. Then for 925 * every successive frame, bcnt will be SZ_64K-1. This 926 * is assured as bcntrld = 0xffff in end of function. 927 */ 928 absync = false; 929 ccnt = dma_length / acnt / (SZ_64K - 1); 930 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); 931 /* 932 * If bcnt is non-zero, we have a remainder and hence an 933 * extra frame to transfer, so increment ccnt. 934 */ 935 if (bcnt) 936 ccnt++; 937 else 938 bcnt = SZ_64K - 1; 939 cidx = acnt; 940 } else { 941 /* 942 * If maxburst is greater than the fifo address_width, 943 * use AB-synced transfers where A count is the fifo 944 * address_width and B count is the maxburst. In this 945 * case, we are limited to transfers of C count frames 946 * of (address_width * maxburst) where C count is limited 947 * to SZ_64K-1. This places an upper bound on the length 948 * of an SG segment that can be handled. 949 */ 950 absync = true; 951 bcnt = burst; 952 ccnt = dma_length / (acnt * bcnt); 953 if (ccnt > (SZ_64K - 1)) { 954 dev_err(dev, "Exceeded max SG segment size\n"); 955 return -EINVAL; 956 } 957 cidx = acnt * bcnt; 958 } 959 960 epset->len = dma_length; 961 962 if (direction == DMA_MEM_TO_DEV) { 963 src_bidx = acnt; 964 src_cidx = cidx; 965 dst_bidx = 0; 966 dst_cidx = 0; 967 epset->addr = src_addr; 968 } else if (direction == DMA_DEV_TO_MEM) { 969 src_bidx = 0; 970 src_cidx = 0; 971 dst_bidx = acnt; 972 dst_cidx = cidx; 973 epset->addr = dst_addr; 974 } else if (direction == DMA_MEM_TO_MEM) { 975 src_bidx = acnt; 976 src_cidx = cidx; 977 dst_bidx = acnt; 978 dst_cidx = cidx; 979 epset->addr = src_addr; 980 } else { 981 dev_err(dev, "%s: direction not implemented yet\n", __func__); 982 return -EINVAL; 983 } 984 985 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 986 /* Configure A or AB synchronized transfers */ 987 if (absync) 988 param->opt |= SYNCDIM; 989 990 param->src = src_addr; 991 param->dst = dst_addr; 992 993 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 994 param->src_dst_cidx = (dst_cidx << 16) | src_cidx; 995 996 param->a_b_cnt = bcnt << 16 | acnt; 997 param->ccnt = ccnt; 998 /* 999 * Only time when (bcntrld) auto reload is required is for 1000 * A-sync case, and in this case, a requirement of reload value 1001 * of SZ_64K-1 only is assured. 'link' is initially set to NULL 1002 * and then later will be populated by edma_execute. 1003 */ 1004 param->link_bcntrld = 0xffffffff; 1005 return absync; 1006 } 1007 1008 static struct dma_async_tx_descriptor *edma_prep_slave_sg( 1009 struct dma_chan *chan, struct scatterlist *sgl, 1010 unsigned int sg_len, enum dma_transfer_direction direction, 1011 unsigned long tx_flags, void *context) 1012 { 1013 struct edma_chan *echan = to_edma_chan(chan); 1014 struct device *dev = chan->device->dev; 1015 struct edma_desc *edesc; 1016 dma_addr_t src_addr = 0, dst_addr = 0; 1017 enum dma_slave_buswidth dev_width; 1018 u32 burst; 1019 struct scatterlist *sg; 1020 int i, nslots, ret; 1021 1022 if (unlikely(!echan || !sgl || !sg_len)) 1023 return NULL; 1024 1025 if (direction == DMA_DEV_TO_MEM) { 1026 src_addr = echan->cfg.src_addr; 1027 dev_width = echan->cfg.src_addr_width; 1028 burst = echan->cfg.src_maxburst; 1029 } else if (direction == DMA_MEM_TO_DEV) { 1030 dst_addr = echan->cfg.dst_addr; 1031 dev_width = echan->cfg.dst_addr_width; 1032 burst = echan->cfg.dst_maxburst; 1033 } else { 1034 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1035 return NULL; 1036 } 1037 1038 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1039 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1040 return NULL; 1041 } 1042 1043 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); 1044 if (!edesc) 1045 return NULL; 1046 1047 edesc->pset_nr = sg_len; 1048 edesc->residue = 0; 1049 edesc->direction = direction; 1050 edesc->echan = echan; 1051 1052 /* Allocate a PaRAM slot, if needed */ 1053 nslots = min_t(unsigned, MAX_NR_SG, sg_len); 1054 1055 for (i = 0; i < nslots; i++) { 1056 if (echan->slot[i] < 0) { 1057 echan->slot[i] = 1058 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1059 if (echan->slot[i] < 0) { 1060 kfree(edesc); 1061 dev_err(dev, "%s: Failed to allocate slot\n", 1062 __func__); 1063 return NULL; 1064 } 1065 } 1066 } 1067 1068 /* Configure PaRAM sets for each SG */ 1069 for_each_sg(sgl, sg, sg_len, i) { 1070 /* Get address for each SG */ 1071 if (direction == DMA_DEV_TO_MEM) 1072 dst_addr = sg_dma_address(sg); 1073 else 1074 src_addr = sg_dma_address(sg); 1075 1076 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1077 dst_addr, burst, dev_width, 1078 sg_dma_len(sg), direction); 1079 if (ret < 0) { 1080 kfree(edesc); 1081 return NULL; 1082 } 1083 1084 edesc->absync = ret; 1085 edesc->residue += sg_dma_len(sg); 1086 1087 if (i == sg_len - 1) 1088 /* Enable completion interrupt */ 1089 edesc->pset[i].param.opt |= TCINTEN; 1090 else if (!((i+1) % MAX_NR_SG)) 1091 /* 1092 * Enable early completion interrupt for the 1093 * intermediateset. In this case the driver will be 1094 * notified when the paRAM set is submitted to TC. This 1095 * will allow more time to set up the next set of slots. 1096 */ 1097 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); 1098 } 1099 edesc->residue_stat = edesc->residue; 1100 1101 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1102 } 1103 1104 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( 1105 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1106 size_t len, unsigned long tx_flags) 1107 { 1108 int ret, nslots; 1109 struct edma_desc *edesc; 1110 struct device *dev = chan->device->dev; 1111 struct edma_chan *echan = to_edma_chan(chan); 1112 unsigned int width, pset_len, array_size; 1113 1114 if (unlikely(!echan || !len)) 1115 return NULL; 1116 1117 /* Align the array size (acnt block) with the transfer properties */ 1118 switch (__ffs((src | dest | len))) { 1119 case 0: 1120 array_size = SZ_32K - 1; 1121 break; 1122 case 1: 1123 array_size = SZ_32K - 2; 1124 break; 1125 default: 1126 array_size = SZ_32K - 4; 1127 break; 1128 } 1129 1130 if (len < SZ_64K) { 1131 /* 1132 * Transfer size less than 64K can be handled with one paRAM 1133 * slot and with one burst. 1134 * ACNT = length 1135 */ 1136 width = len; 1137 pset_len = len; 1138 nslots = 1; 1139 } else { 1140 /* 1141 * Transfer size bigger than 64K will be handled with maximum of 1142 * two paRAM slots. 1143 * slot1: (full_length / 32767) times 32767 bytes bursts. 1144 * ACNT = 32767, length1: (full_length / 32767) * 32767 1145 * slot2: the remaining amount of data after slot1. 1146 * ACNT = full_length - length1, length2 = ACNT 1147 * 1148 * When the full_length is a multiple of 32767 one slot can be 1149 * used to complete the transfer. 1150 */ 1151 width = array_size; 1152 pset_len = rounddown(len, width); 1153 /* One slot is enough for lengths multiple of (SZ_32K -1) */ 1154 if (unlikely(pset_len == len)) 1155 nslots = 1; 1156 else 1157 nslots = 2; 1158 } 1159 1160 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1161 if (!edesc) 1162 return NULL; 1163 1164 edesc->pset_nr = nslots; 1165 edesc->residue = edesc->residue_stat = len; 1166 edesc->direction = DMA_MEM_TO_MEM; 1167 edesc->echan = echan; 1168 1169 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, 1170 width, pset_len, DMA_MEM_TO_MEM); 1171 if (ret < 0) { 1172 kfree(edesc); 1173 return NULL; 1174 } 1175 1176 edesc->absync = ret; 1177 1178 edesc->pset[0].param.opt |= ITCCHEN; 1179 if (nslots == 1) { 1180 /* Enable transfer complete interrupt if requested */ 1181 if (tx_flags & DMA_PREP_INTERRUPT) 1182 edesc->pset[0].param.opt |= TCINTEN; 1183 } else { 1184 /* Enable transfer complete chaining for the first slot */ 1185 edesc->pset[0].param.opt |= TCCHEN; 1186 1187 if (echan->slot[1] < 0) { 1188 echan->slot[1] = edma_alloc_slot(echan->ecc, 1189 EDMA_SLOT_ANY); 1190 if (echan->slot[1] < 0) { 1191 kfree(edesc); 1192 dev_err(dev, "%s: Failed to allocate slot\n", 1193 __func__); 1194 return NULL; 1195 } 1196 } 1197 dest += pset_len; 1198 src += pset_len; 1199 pset_len = width = len % array_size; 1200 1201 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, 1202 width, pset_len, DMA_MEM_TO_MEM); 1203 if (ret < 0) { 1204 kfree(edesc); 1205 return NULL; 1206 } 1207 1208 edesc->pset[1].param.opt |= ITCCHEN; 1209 /* Enable transfer complete interrupt if requested */ 1210 if (tx_flags & DMA_PREP_INTERRUPT) 1211 edesc->pset[1].param.opt |= TCINTEN; 1212 } 1213 1214 if (!(tx_flags & DMA_PREP_INTERRUPT)) 1215 edesc->polled = true; 1216 1217 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1218 } 1219 1220 static struct dma_async_tx_descriptor * 1221 edma_prep_dma_interleaved(struct dma_chan *chan, 1222 struct dma_interleaved_template *xt, 1223 unsigned long tx_flags) 1224 { 1225 struct device *dev = chan->device->dev; 1226 struct edma_chan *echan = to_edma_chan(chan); 1227 struct edmacc_param *param; 1228 struct edma_desc *edesc; 1229 size_t src_icg, dst_icg; 1230 int src_bidx, dst_bidx; 1231 1232 /* Slave mode is not supported */ 1233 if (is_slave_direction(xt->dir)) 1234 return NULL; 1235 1236 if (xt->frame_size != 1 || xt->numf == 0) 1237 return NULL; 1238 1239 if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K) 1240 return NULL; 1241 1242 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); 1243 if (src_icg) { 1244 src_bidx = src_icg + xt->sgl[0].size; 1245 } else if (xt->src_inc) { 1246 src_bidx = xt->sgl[0].size; 1247 } else { 1248 dev_err(dev, "%s: SRC constant addressing is not supported\n", 1249 __func__); 1250 return NULL; 1251 } 1252 1253 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); 1254 if (dst_icg) { 1255 dst_bidx = dst_icg + xt->sgl[0].size; 1256 } else if (xt->dst_inc) { 1257 dst_bidx = xt->sgl[0].size; 1258 } else { 1259 dev_err(dev, "%s: DST constant addressing is not supported\n", 1260 __func__); 1261 return NULL; 1262 } 1263 1264 if (src_bidx > SZ_64K || dst_bidx > SZ_64K) 1265 return NULL; 1266 1267 edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC); 1268 if (!edesc) 1269 return NULL; 1270 1271 edesc->direction = DMA_MEM_TO_MEM; 1272 edesc->echan = echan; 1273 edesc->pset_nr = 1; 1274 1275 param = &edesc->pset[0].param; 1276 1277 param->src = xt->src_start; 1278 param->dst = xt->dst_start; 1279 param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size; 1280 param->ccnt = 1; 1281 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1282 param->src_dst_cidx = 0; 1283 1284 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1285 param->opt |= ITCCHEN; 1286 /* Enable transfer complete interrupt if requested */ 1287 if (tx_flags & DMA_PREP_INTERRUPT) 1288 param->opt |= TCINTEN; 1289 else 1290 edesc->polled = true; 1291 1292 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1293 } 1294 1295 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( 1296 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1297 size_t period_len, enum dma_transfer_direction direction, 1298 unsigned long tx_flags) 1299 { 1300 struct edma_chan *echan = to_edma_chan(chan); 1301 struct device *dev = chan->device->dev; 1302 struct edma_desc *edesc; 1303 dma_addr_t src_addr, dst_addr; 1304 enum dma_slave_buswidth dev_width; 1305 bool use_intermediate = false; 1306 u32 burst; 1307 int i, ret, nslots; 1308 1309 if (unlikely(!echan || !buf_len || !period_len)) 1310 return NULL; 1311 1312 if (direction == DMA_DEV_TO_MEM) { 1313 src_addr = echan->cfg.src_addr; 1314 dst_addr = buf_addr; 1315 dev_width = echan->cfg.src_addr_width; 1316 burst = echan->cfg.src_maxburst; 1317 } else if (direction == DMA_MEM_TO_DEV) { 1318 src_addr = buf_addr; 1319 dst_addr = echan->cfg.dst_addr; 1320 dev_width = echan->cfg.dst_addr_width; 1321 burst = echan->cfg.dst_maxburst; 1322 } else { 1323 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1324 return NULL; 1325 } 1326 1327 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1328 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1329 return NULL; 1330 } 1331 1332 if (unlikely(buf_len % period_len)) { 1333 dev_err(dev, "Period should be multiple of Buffer length\n"); 1334 return NULL; 1335 } 1336 1337 nslots = (buf_len / period_len) + 1; 1338 1339 /* 1340 * Cyclic DMA users such as audio cannot tolerate delays introduced 1341 * by cases where the number of periods is more than the maximum 1342 * number of SGs the EDMA driver can handle at a time. For DMA types 1343 * such as Slave SGs, such delays are tolerable and synchronized, 1344 * but the synchronization is difficult to achieve with Cyclic and 1345 * cannot be guaranteed, so we error out early. 1346 */ 1347 if (nslots > MAX_NR_SG) { 1348 /* 1349 * If the burst and period sizes are the same, we can put 1350 * the full buffer into a single period and activate 1351 * intermediate interrupts. This will produce interrupts 1352 * after each burst, which is also after each desired period. 1353 */ 1354 if (burst == period_len) { 1355 period_len = buf_len; 1356 nslots = 2; 1357 use_intermediate = true; 1358 } else { 1359 return NULL; 1360 } 1361 } 1362 1363 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1364 if (!edesc) 1365 return NULL; 1366 1367 edesc->cyclic = 1; 1368 edesc->pset_nr = nslots; 1369 edesc->residue = edesc->residue_stat = buf_len; 1370 edesc->direction = direction; 1371 edesc->echan = echan; 1372 1373 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", 1374 __func__, echan->ch_num, nslots, period_len, buf_len); 1375 1376 for (i = 0; i < nslots; i++) { 1377 /* Allocate a PaRAM slot, if needed */ 1378 if (echan->slot[i] < 0) { 1379 echan->slot[i] = 1380 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1381 if (echan->slot[i] < 0) { 1382 kfree(edesc); 1383 dev_err(dev, "%s: Failed to allocate slot\n", 1384 __func__); 1385 return NULL; 1386 } 1387 } 1388 1389 if (i == nslots - 1) { 1390 memcpy(&edesc->pset[i], &edesc->pset[0], 1391 sizeof(edesc->pset[0])); 1392 break; 1393 } 1394 1395 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1396 dst_addr, burst, dev_width, period_len, 1397 direction); 1398 if (ret < 0) { 1399 kfree(edesc); 1400 return NULL; 1401 } 1402 1403 if (direction == DMA_DEV_TO_MEM) 1404 dst_addr += period_len; 1405 else 1406 src_addr += period_len; 1407 1408 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); 1409 dev_vdbg(dev, 1410 "\n pset[%d]:\n" 1411 " chnum\t%d\n" 1412 " slot\t%d\n" 1413 " opt\t%08x\n" 1414 " src\t%08x\n" 1415 " dst\t%08x\n" 1416 " abcnt\t%08x\n" 1417 " ccnt\t%08x\n" 1418 " bidx\t%08x\n" 1419 " cidx\t%08x\n" 1420 " lkrld\t%08x\n", 1421 i, echan->ch_num, echan->slot[i], 1422 edesc->pset[i].param.opt, 1423 edesc->pset[i].param.src, 1424 edesc->pset[i].param.dst, 1425 edesc->pset[i].param.a_b_cnt, 1426 edesc->pset[i].param.ccnt, 1427 edesc->pset[i].param.src_dst_bidx, 1428 edesc->pset[i].param.src_dst_cidx, 1429 edesc->pset[i].param.link_bcntrld); 1430 1431 edesc->absync = ret; 1432 1433 /* 1434 * Enable period interrupt only if it is requested 1435 */ 1436 if (tx_flags & DMA_PREP_INTERRUPT) { 1437 edesc->pset[i].param.opt |= TCINTEN; 1438 1439 /* Also enable intermediate interrupts if necessary */ 1440 if (use_intermediate) 1441 edesc->pset[i].param.opt |= ITCINTEN; 1442 } 1443 } 1444 1445 /* Place the cyclic channel to highest priority queue */ 1446 if (!echan->tc) 1447 edma_assign_channel_eventq(echan, EVENTQ_0); 1448 1449 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1450 } 1451 1452 static void edma_completion_handler(struct edma_chan *echan) 1453 { 1454 struct device *dev = echan->vchan.chan.device->dev; 1455 struct edma_desc *edesc; 1456 1457 spin_lock(&echan->vchan.lock); 1458 edesc = echan->edesc; 1459 if (edesc) { 1460 if (edesc->cyclic) { 1461 vchan_cyclic_callback(&edesc->vdesc); 1462 spin_unlock(&echan->vchan.lock); 1463 return; 1464 } else if (edesc->processed == edesc->pset_nr) { 1465 edesc->residue = 0; 1466 edma_stop(echan); 1467 vchan_cookie_complete(&edesc->vdesc); 1468 echan->edesc = NULL; 1469 1470 dev_dbg(dev, "Transfer completed on channel %d\n", 1471 echan->ch_num); 1472 } else { 1473 dev_dbg(dev, "Sub transfer completed on channel %d\n", 1474 echan->ch_num); 1475 1476 edma_pause(echan); 1477 1478 /* Update statistics for tx_status */ 1479 edesc->residue -= edesc->sg_len; 1480 edesc->residue_stat = edesc->residue; 1481 edesc->processed_stat = edesc->processed; 1482 } 1483 edma_execute(echan); 1484 } 1485 1486 spin_unlock(&echan->vchan.lock); 1487 } 1488 1489 /* eDMA interrupt handler */ 1490 static irqreturn_t dma_irq_handler(int irq, void *data) 1491 { 1492 struct edma_cc *ecc = data; 1493 int ctlr; 1494 u32 sh_ier; 1495 u32 sh_ipr; 1496 u32 bank; 1497 1498 ctlr = ecc->id; 1499 if (ctlr < 0) 1500 return IRQ_NONE; 1501 1502 dev_vdbg(ecc->dev, "dma_irq_handler\n"); 1503 1504 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); 1505 if (!sh_ipr) { 1506 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); 1507 if (!sh_ipr) 1508 return IRQ_NONE; 1509 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); 1510 bank = 1; 1511 } else { 1512 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); 1513 bank = 0; 1514 } 1515 1516 do { 1517 u32 slot; 1518 u32 channel; 1519 1520 slot = __ffs(sh_ipr); 1521 sh_ipr &= ~(BIT(slot)); 1522 1523 if (sh_ier & BIT(slot)) { 1524 channel = (bank << 5) | slot; 1525 /* Clear the corresponding IPR bits */ 1526 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); 1527 edma_completion_handler(&ecc->slave_chans[channel]); 1528 } 1529 } while (sh_ipr); 1530 1531 edma_shadow0_write(ecc, SH_IEVAL, 1); 1532 return IRQ_HANDLED; 1533 } 1534 1535 static void edma_error_handler(struct edma_chan *echan) 1536 { 1537 struct edma_cc *ecc = echan->ecc; 1538 struct device *dev = echan->vchan.chan.device->dev; 1539 struct edmacc_param p; 1540 int err; 1541 1542 if (!echan->edesc) 1543 return; 1544 1545 spin_lock(&echan->vchan.lock); 1546 1547 err = edma_read_slot(ecc, echan->slot[0], &p); 1548 1549 /* 1550 * Issue later based on missed flag which will be sure 1551 * to happen as: 1552 * (1) we finished transmitting an intermediate slot and 1553 * edma_execute is coming up. 1554 * (2) or we finished current transfer and issue will 1555 * call edma_execute. 1556 * 1557 * Important note: issuing can be dangerous here and 1558 * lead to some nasty recursion when we are in a NULL 1559 * slot. So we avoid doing so and set the missed flag. 1560 */ 1561 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { 1562 dev_dbg(dev, "Error on null slot, setting miss\n"); 1563 echan->missed = 1; 1564 } else { 1565 /* 1566 * The slot is already programmed but the event got 1567 * missed, so its safe to issue it here. 1568 */ 1569 dev_dbg(dev, "Missed event, TRIGGERING\n"); 1570 edma_clean_channel(echan); 1571 edma_stop(echan); 1572 edma_start(echan); 1573 edma_trigger_channel(echan); 1574 } 1575 spin_unlock(&echan->vchan.lock); 1576 } 1577 1578 static inline bool edma_error_pending(struct edma_cc *ecc) 1579 { 1580 if (edma_read_array(ecc, EDMA_EMR, 0) || 1581 edma_read_array(ecc, EDMA_EMR, 1) || 1582 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) 1583 return true; 1584 1585 return false; 1586 } 1587 1588 /* eDMA error interrupt handler */ 1589 static irqreturn_t dma_ccerr_handler(int irq, void *data) 1590 { 1591 struct edma_cc *ecc = data; 1592 int i, j; 1593 int ctlr; 1594 unsigned int cnt = 0; 1595 unsigned int val; 1596 1597 ctlr = ecc->id; 1598 if (ctlr < 0) 1599 return IRQ_NONE; 1600 1601 dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); 1602 1603 if (!edma_error_pending(ecc)) { 1604 /* 1605 * The registers indicate no pending error event but the irq 1606 * handler has been called. 1607 * Ask eDMA to re-evaluate the error registers. 1608 */ 1609 dev_err(ecc->dev, "%s: Error interrupt without error event!\n", 1610 __func__); 1611 edma_write(ecc, EDMA_EEVAL, 1); 1612 return IRQ_NONE; 1613 } 1614 1615 while (1) { 1616 /* Event missed register(s) */ 1617 for (j = 0; j < 2; j++) { 1618 unsigned long emr; 1619 1620 val = edma_read_array(ecc, EDMA_EMR, j); 1621 if (!val) 1622 continue; 1623 1624 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); 1625 emr = val; 1626 for_each_set_bit(i, &emr, 32) { 1627 int k = (j << 5) + i; 1628 1629 /* Clear the corresponding EMR bits */ 1630 edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); 1631 /* Clear any SER */ 1632 edma_shadow0_write_array(ecc, SH_SECR, j, 1633 BIT(i)); 1634 edma_error_handler(&ecc->slave_chans[k]); 1635 } 1636 } 1637 1638 val = edma_read(ecc, EDMA_QEMR); 1639 if (val) { 1640 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); 1641 /* Not reported, just clear the interrupt reason. */ 1642 edma_write(ecc, EDMA_QEMCR, val); 1643 edma_shadow0_write(ecc, SH_QSECR, val); 1644 } 1645 1646 val = edma_read(ecc, EDMA_CCERR); 1647 if (val) { 1648 dev_warn(ecc->dev, "CCERR 0x%08x\n", val); 1649 /* Not reported, just clear the interrupt reason. */ 1650 edma_write(ecc, EDMA_CCERRCLR, val); 1651 } 1652 1653 if (!edma_error_pending(ecc)) 1654 break; 1655 cnt++; 1656 if (cnt > 10) 1657 break; 1658 } 1659 edma_write(ecc, EDMA_EEVAL, 1); 1660 return IRQ_HANDLED; 1661 } 1662 1663 /* Alloc channel resources */ 1664 static int edma_alloc_chan_resources(struct dma_chan *chan) 1665 { 1666 struct edma_chan *echan = to_edma_chan(chan); 1667 struct edma_cc *ecc = echan->ecc; 1668 struct device *dev = ecc->dev; 1669 enum dma_event_q eventq_no = EVENTQ_DEFAULT; 1670 int ret; 1671 1672 if (echan->tc) { 1673 eventq_no = echan->tc->id; 1674 } else if (ecc->tc_list) { 1675 /* memcpy channel */ 1676 echan->tc = &ecc->tc_list[ecc->info->default_queue]; 1677 eventq_no = echan->tc->id; 1678 } 1679 1680 ret = edma_alloc_channel(echan, eventq_no); 1681 if (ret) 1682 return ret; 1683 1684 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); 1685 if (echan->slot[0] < 0) { 1686 dev_err(dev, "Entry slot allocation failed for channel %u\n", 1687 EDMA_CHAN_SLOT(echan->ch_num)); 1688 ret = echan->slot[0]; 1689 goto err_slot; 1690 } 1691 1692 /* Set up channel -> slot mapping for the entry slot */ 1693 edma_set_chmap(echan, echan->slot[0]); 1694 echan->alloced = true; 1695 1696 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", 1697 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, 1698 echan->hw_triggered ? "HW" : "SW"); 1699 1700 return 0; 1701 1702 err_slot: 1703 edma_free_channel(echan); 1704 return ret; 1705 } 1706 1707 /* Free channel resources */ 1708 static void edma_free_chan_resources(struct dma_chan *chan) 1709 { 1710 struct edma_chan *echan = to_edma_chan(chan); 1711 struct device *dev = echan->ecc->dev; 1712 int i; 1713 1714 /* Terminate transfers */ 1715 edma_stop(echan); 1716 1717 vchan_free_chan_resources(&echan->vchan); 1718 1719 /* Free EDMA PaRAM slots */ 1720 for (i = 0; i < EDMA_MAX_SLOTS; i++) { 1721 if (echan->slot[i] >= 0) { 1722 edma_free_slot(echan->ecc, echan->slot[i]); 1723 echan->slot[i] = -1; 1724 } 1725 } 1726 1727 /* Set entry slot to the dummy slot */ 1728 edma_set_chmap(echan, echan->ecc->dummy_slot); 1729 1730 /* Free EDMA channel */ 1731 if (echan->alloced) { 1732 edma_free_channel(echan); 1733 echan->alloced = false; 1734 } 1735 1736 echan->tc = NULL; 1737 echan->hw_triggered = false; 1738 1739 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", 1740 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); 1741 } 1742 1743 /* Send pending descriptor to hardware */ 1744 static void edma_issue_pending(struct dma_chan *chan) 1745 { 1746 struct edma_chan *echan = to_edma_chan(chan); 1747 unsigned long flags; 1748 1749 spin_lock_irqsave(&echan->vchan.lock, flags); 1750 if (vchan_issue_pending(&echan->vchan) && !echan->edesc) 1751 edma_execute(echan); 1752 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1753 } 1754 1755 /* 1756 * This limit exists to avoid a possible infinite loop when waiting for proof 1757 * that a particular transfer is completed. This limit can be hit if there 1758 * are large bursts to/from slow devices or the CPU is never able to catch 1759 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART 1760 * RX-FIFO, as many as 55 loops have been seen. 1761 */ 1762 #define EDMA_MAX_TR_WAIT_LOOPS 1000 1763 1764 static u32 edma_residue(struct edma_desc *edesc) 1765 { 1766 bool dst = edesc->direction == DMA_DEV_TO_MEM; 1767 int loop_count = EDMA_MAX_TR_WAIT_LOOPS; 1768 struct edma_chan *echan = edesc->echan; 1769 struct edma_pset *pset = edesc->pset; 1770 dma_addr_t done, pos, pos_old; 1771 int channel = EDMA_CHAN_SLOT(echan->ch_num); 1772 int idx = EDMA_REG_ARRAY_INDEX(channel); 1773 int ch_bit = EDMA_CHANNEL_BIT(channel); 1774 int event_reg; 1775 int i; 1776 1777 /* 1778 * We always read the dst/src position from the first RamPar 1779 * pset. That's the one which is active now. 1780 */ 1781 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1782 1783 /* 1784 * "pos" may represent a transfer request that is still being 1785 * processed by the EDMACC or EDMATC. We will busy wait until 1786 * any one of the situations occurs: 1787 * 1. while and event is pending for the channel 1788 * 2. a position updated 1789 * 3. we hit the loop limit 1790 */ 1791 if (is_slave_direction(edesc->direction)) 1792 event_reg = SH_ER; 1793 else 1794 event_reg = SH_ESR; 1795 1796 pos_old = pos; 1797 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { 1798 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1799 if (pos != pos_old) 1800 break; 1801 1802 if (!--loop_count) { 1803 dev_dbg_ratelimited(echan->vchan.chan.device->dev, 1804 "%s: timeout waiting for PaRAM update\n", 1805 __func__); 1806 break; 1807 } 1808 1809 cpu_relax(); 1810 } 1811 1812 /* 1813 * Cyclic is simple. Just subtract pset[0].addr from pos. 1814 * 1815 * We never update edesc->residue in the cyclic case, so we 1816 * can tell the remaining room to the end of the circular 1817 * buffer. 1818 */ 1819 if (edesc->cyclic) { 1820 done = pos - pset->addr; 1821 edesc->residue_stat = edesc->residue - done; 1822 return edesc->residue_stat; 1823 } 1824 1825 /* 1826 * If the position is 0, then EDMA loaded the closing dummy slot, the 1827 * transfer is completed 1828 */ 1829 if (!pos) 1830 return 0; 1831 /* 1832 * For SG operation we catch up with the last processed 1833 * status. 1834 */ 1835 pset += edesc->processed_stat; 1836 1837 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { 1838 /* 1839 * If we are inside this pset address range, we know 1840 * this is the active one. Get the current delta and 1841 * stop walking the psets. 1842 */ 1843 if (pos >= pset->addr && pos < pset->addr + pset->len) 1844 return edesc->residue_stat - (pos - pset->addr); 1845 1846 /* Otherwise mark it done and update residue_stat. */ 1847 edesc->processed_stat++; 1848 edesc->residue_stat -= pset->len; 1849 } 1850 return edesc->residue_stat; 1851 } 1852 1853 /* Check request completion status */ 1854 static enum dma_status edma_tx_status(struct dma_chan *chan, 1855 dma_cookie_t cookie, 1856 struct dma_tx_state *txstate) 1857 { 1858 struct edma_chan *echan = to_edma_chan(chan); 1859 struct dma_tx_state txstate_tmp; 1860 enum dma_status ret; 1861 unsigned long flags; 1862 1863 ret = dma_cookie_status(chan, cookie, txstate); 1864 1865 if (ret == DMA_COMPLETE) 1866 return ret; 1867 1868 /* Provide a dummy dma_tx_state for completion checking */ 1869 if (!txstate) 1870 txstate = &txstate_tmp; 1871 1872 spin_lock_irqsave(&echan->vchan.lock, flags); 1873 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { 1874 txstate->residue = edma_residue(echan->edesc); 1875 } else { 1876 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, 1877 cookie); 1878 1879 if (vdesc) 1880 txstate->residue = to_edma_desc(&vdesc->tx)->residue; 1881 else 1882 txstate->residue = 0; 1883 } 1884 1885 /* 1886 * Mark the cookie completed if the residue is 0 for non cyclic 1887 * transfers 1888 */ 1889 if (ret != DMA_COMPLETE && !txstate->residue && 1890 echan->edesc && echan->edesc->polled && 1891 echan->edesc->vdesc.tx.cookie == cookie) { 1892 edma_stop(echan); 1893 vchan_cookie_complete(&echan->edesc->vdesc); 1894 echan->edesc = NULL; 1895 edma_execute(echan); 1896 ret = DMA_COMPLETE; 1897 } 1898 1899 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1900 1901 return ret; 1902 } 1903 1904 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) 1905 { 1906 if (!memcpy_channels) 1907 return false; 1908 while (*memcpy_channels != -1) { 1909 if (*memcpy_channels == ch_num) 1910 return true; 1911 memcpy_channels++; 1912 } 1913 return false; 1914 } 1915 1916 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 1917 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 1918 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 1919 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 1920 1921 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) 1922 { 1923 struct dma_device *s_ddev = &ecc->dma_slave; 1924 struct dma_device *m_ddev = NULL; 1925 s32 *memcpy_channels = ecc->info->memcpy_channels; 1926 int i, j; 1927 1928 dma_cap_zero(s_ddev->cap_mask); 1929 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); 1930 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); 1931 if (ecc->legacy_mode && !memcpy_channels) { 1932 dev_warn(ecc->dev, 1933 "Legacy memcpy is enabled, things might not work\n"); 1934 1935 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); 1936 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask); 1937 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1938 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 1939 s_ddev->directions = BIT(DMA_MEM_TO_MEM); 1940 } 1941 1942 s_ddev->device_prep_slave_sg = edma_prep_slave_sg; 1943 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; 1944 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1945 s_ddev->device_free_chan_resources = edma_free_chan_resources; 1946 s_ddev->device_issue_pending = edma_issue_pending; 1947 s_ddev->device_tx_status = edma_tx_status; 1948 s_ddev->device_config = edma_slave_config; 1949 s_ddev->device_pause = edma_dma_pause; 1950 s_ddev->device_resume = edma_dma_resume; 1951 s_ddev->device_terminate_all = edma_terminate_all; 1952 s_ddev->device_synchronize = edma_synchronize; 1953 1954 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1955 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1956 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); 1957 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1958 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ 1959 1960 s_ddev->dev = ecc->dev; 1961 INIT_LIST_HEAD(&s_ddev->channels); 1962 1963 if (memcpy_channels) { 1964 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); 1965 if (!m_ddev) { 1966 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); 1967 memcpy_channels = NULL; 1968 goto ch_setup; 1969 } 1970 ecc->dma_memcpy = m_ddev; 1971 1972 dma_cap_zero(m_ddev->cap_mask); 1973 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); 1974 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask); 1975 1976 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1977 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 1978 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1979 m_ddev->device_free_chan_resources = edma_free_chan_resources; 1980 m_ddev->device_issue_pending = edma_issue_pending; 1981 m_ddev->device_tx_status = edma_tx_status; 1982 m_ddev->device_config = edma_slave_config; 1983 m_ddev->device_pause = edma_dma_pause; 1984 m_ddev->device_resume = edma_dma_resume; 1985 m_ddev->device_terminate_all = edma_terminate_all; 1986 m_ddev->device_synchronize = edma_synchronize; 1987 1988 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1989 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1990 m_ddev->directions = BIT(DMA_MEM_TO_MEM); 1991 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1992 1993 m_ddev->dev = ecc->dev; 1994 INIT_LIST_HEAD(&m_ddev->channels); 1995 } else if (!ecc->legacy_mode) { 1996 dev_info(ecc->dev, "memcpy is disabled\n"); 1997 } 1998 1999 ch_setup: 2000 for (i = 0; i < ecc->num_channels; i++) { 2001 struct edma_chan *echan = &ecc->slave_chans[i]; 2002 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); 2003 echan->ecc = ecc; 2004 echan->vchan.desc_free = edma_desc_free; 2005 2006 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) 2007 vchan_init(&echan->vchan, m_ddev); 2008 else 2009 vchan_init(&echan->vchan, s_ddev); 2010 2011 INIT_LIST_HEAD(&echan->node); 2012 for (j = 0; j < EDMA_MAX_SLOTS; j++) 2013 echan->slot[j] = -1; 2014 } 2015 } 2016 2017 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, 2018 struct edma_cc *ecc) 2019 { 2020 int i; 2021 u32 value, cccfg; 2022 s8 (*queue_priority_map)[2]; 2023 2024 /* Decode the eDMA3 configuration from CCCFG register */ 2025 cccfg = edma_read(ecc, EDMA_CCCFG); 2026 2027 value = GET_NUM_REGN(cccfg); 2028 ecc->num_region = BIT(value); 2029 2030 value = GET_NUM_DMACH(cccfg); 2031 ecc->num_channels = BIT(value + 1); 2032 2033 value = GET_NUM_QDMACH(cccfg); 2034 ecc->num_qchannels = value * 2; 2035 2036 value = GET_NUM_PAENTRY(cccfg); 2037 ecc->num_slots = BIT(value + 4); 2038 2039 value = GET_NUM_EVQUE(cccfg); 2040 ecc->num_tc = value + 1; 2041 2042 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; 2043 2044 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); 2045 dev_dbg(dev, "num_region: %u\n", ecc->num_region); 2046 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); 2047 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); 2048 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); 2049 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); 2050 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); 2051 2052 /* Nothing need to be done if queue priority is provided */ 2053 if (pdata->queue_priority_mapping) 2054 return 0; 2055 2056 /* 2057 * Configure TC/queue priority as follows: 2058 * Q0 - priority 0 2059 * Q1 - priority 1 2060 * Q2 - priority 2 2061 * ... 2062 * The meaning of priority numbers: 0 highest priority, 7 lowest 2063 * priority. So Q0 is the highest priority queue and the last queue has 2064 * the lowest priority. 2065 */ 2066 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), 2067 GFP_KERNEL); 2068 if (!queue_priority_map) 2069 return -ENOMEM; 2070 2071 for (i = 0; i < ecc->num_tc; i++) { 2072 queue_priority_map[i][0] = i; 2073 queue_priority_map[i][1] = i; 2074 } 2075 queue_priority_map[i][0] = -1; 2076 queue_priority_map[i][1] = -1; 2077 2078 pdata->queue_priority_mapping = queue_priority_map; 2079 /* Default queue has the lowest priority */ 2080 pdata->default_queue = i - 1; 2081 2082 return 0; 2083 } 2084 2085 #if IS_ENABLED(CONFIG_OF) 2086 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, 2087 size_t sz) 2088 { 2089 const char pname[] = "ti,edma-xbar-event-map"; 2090 struct resource res; 2091 void __iomem *xbar; 2092 s16 (*xbar_chans)[2]; 2093 size_t nelm = sz / sizeof(s16); 2094 u32 shift, offset, mux; 2095 int ret, i; 2096 2097 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); 2098 if (!xbar_chans) 2099 return -ENOMEM; 2100 2101 ret = of_address_to_resource(dev->of_node, 1, &res); 2102 if (ret) 2103 return -ENOMEM; 2104 2105 xbar = devm_ioremap(dev, res.start, resource_size(&res)); 2106 if (!xbar) 2107 return -ENOMEM; 2108 2109 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, 2110 nelm); 2111 if (ret) 2112 return -EIO; 2113 2114 /* Invalidate last entry for the other user of this mess */ 2115 nelm >>= 1; 2116 xbar_chans[nelm][0] = -1; 2117 xbar_chans[nelm][1] = -1; 2118 2119 for (i = 0; i < nelm; i++) { 2120 shift = (xbar_chans[i][1] & 0x03) << 3; 2121 offset = xbar_chans[i][1] & 0xfffffffc; 2122 mux = readl(xbar + offset); 2123 mux &= ~(0xff << shift); 2124 mux |= xbar_chans[i][0] << shift; 2125 writel(mux, (xbar + offset)); 2126 } 2127 2128 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; 2129 return 0; 2130 } 2131 2132 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2133 bool legacy_mode) 2134 { 2135 struct edma_soc_info *info; 2136 struct property *prop; 2137 int sz, ret; 2138 2139 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); 2140 if (!info) 2141 return ERR_PTR(-ENOMEM); 2142 2143 if (legacy_mode) { 2144 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", 2145 &sz); 2146 if (prop) { 2147 ret = edma_xbar_event_map(dev, info, sz); 2148 if (ret) 2149 return ERR_PTR(ret); 2150 } 2151 return info; 2152 } 2153 2154 /* Get the list of channels allocated to be used for memcpy */ 2155 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); 2156 if (prop) { 2157 const char pname[] = "ti,edma-memcpy-channels"; 2158 size_t nelm = sz / sizeof(s32); 2159 s32 *memcpy_ch; 2160 2161 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), 2162 GFP_KERNEL); 2163 if (!memcpy_ch) 2164 return ERR_PTR(-ENOMEM); 2165 2166 ret = of_property_read_u32_array(dev->of_node, pname, 2167 (u32 *)memcpy_ch, nelm); 2168 if (ret) 2169 return ERR_PTR(ret); 2170 2171 memcpy_ch[nelm] = -1; 2172 info->memcpy_channels = memcpy_ch; 2173 } 2174 2175 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", 2176 &sz); 2177 if (prop) { 2178 const char pname[] = "ti,edma-reserved-slot-ranges"; 2179 u32 (*tmp)[2]; 2180 s16 (*rsv_slots)[2]; 2181 size_t nelm = sz / sizeof(*tmp); 2182 struct edma_rsv_info *rsv_info; 2183 int i; 2184 2185 if (!nelm) 2186 return info; 2187 2188 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); 2189 if (!tmp) 2190 return ERR_PTR(-ENOMEM); 2191 2192 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); 2193 if (!rsv_info) { 2194 kfree(tmp); 2195 return ERR_PTR(-ENOMEM); 2196 } 2197 2198 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), 2199 GFP_KERNEL); 2200 if (!rsv_slots) { 2201 kfree(tmp); 2202 return ERR_PTR(-ENOMEM); 2203 } 2204 2205 ret = of_property_read_u32_array(dev->of_node, pname, 2206 (u32 *)tmp, nelm * 2); 2207 if (ret) { 2208 kfree(tmp); 2209 return ERR_PTR(ret); 2210 } 2211 2212 for (i = 0; i < nelm; i++) { 2213 rsv_slots[i][0] = tmp[i][0]; 2214 rsv_slots[i][1] = tmp[i][1]; 2215 } 2216 rsv_slots[nelm][0] = -1; 2217 rsv_slots[nelm][1] = -1; 2218 2219 info->rsv = rsv_info; 2220 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; 2221 2222 kfree(tmp); 2223 } 2224 2225 return info; 2226 } 2227 2228 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2229 struct of_dma *ofdma) 2230 { 2231 struct edma_cc *ecc = ofdma->of_dma_data; 2232 struct dma_chan *chan = NULL; 2233 struct edma_chan *echan; 2234 int i; 2235 2236 if (!ecc || dma_spec->args_count < 1) 2237 return NULL; 2238 2239 for (i = 0; i < ecc->num_channels; i++) { 2240 echan = &ecc->slave_chans[i]; 2241 if (echan->ch_num == dma_spec->args[0]) { 2242 chan = &echan->vchan.chan; 2243 break; 2244 } 2245 } 2246 2247 if (!chan) 2248 return NULL; 2249 2250 if (echan->ecc->legacy_mode && dma_spec->args_count == 1) 2251 goto out; 2252 2253 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && 2254 dma_spec->args[1] < echan->ecc->num_tc) { 2255 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; 2256 goto out; 2257 } 2258 2259 return NULL; 2260 out: 2261 /* The channel is going to be used as HW synchronized */ 2262 echan->hw_triggered = true; 2263 return dma_get_slave_channel(chan); 2264 } 2265 #else 2266 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2267 bool legacy_mode) 2268 { 2269 return ERR_PTR(-EINVAL); 2270 } 2271 2272 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2273 struct of_dma *ofdma) 2274 { 2275 return NULL; 2276 } 2277 #endif 2278 2279 static bool edma_filter_fn(struct dma_chan *chan, void *param); 2280 2281 static int edma_probe(struct platform_device *pdev) 2282 { 2283 struct edma_soc_info *info = pdev->dev.platform_data; 2284 s8 (*queue_priority_mapping)[2]; 2285 const s16 (*reserved)[2]; 2286 int i, irq; 2287 char *irq_name; 2288 struct resource *mem; 2289 struct device_node *node = pdev->dev.of_node; 2290 struct device *dev = &pdev->dev; 2291 struct edma_cc *ecc; 2292 bool legacy_mode = true; 2293 int ret; 2294 2295 if (node) { 2296 const struct of_device_id *match; 2297 2298 match = of_match_node(edma_of_ids, node); 2299 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) 2300 legacy_mode = false; 2301 2302 info = edma_setup_info_from_dt(dev, legacy_mode); 2303 if (IS_ERR(info)) { 2304 dev_err(dev, "failed to get DT data\n"); 2305 return PTR_ERR(info); 2306 } 2307 } 2308 2309 if (!info) 2310 return -ENODEV; 2311 2312 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2313 if (ret) 2314 return ret; 2315 2316 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); 2317 if (!ecc) 2318 return -ENOMEM; 2319 2320 ecc->dev = dev; 2321 ecc->id = pdev->id; 2322 ecc->legacy_mode = legacy_mode; 2323 /* When booting with DT the pdev->id is -1 */ 2324 if (ecc->id < 0) 2325 ecc->id = 0; 2326 2327 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); 2328 if (!mem) { 2329 dev_dbg(dev, "mem resource not found, using index 0\n"); 2330 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2331 if (!mem) { 2332 dev_err(dev, "no mem resource?\n"); 2333 return -ENODEV; 2334 } 2335 } 2336 ecc->base = devm_ioremap_resource(dev, mem); 2337 if (IS_ERR(ecc->base)) 2338 return PTR_ERR(ecc->base); 2339 2340 platform_set_drvdata(pdev, ecc); 2341 2342 pm_runtime_enable(dev); 2343 ret = pm_runtime_get_sync(dev); 2344 if (ret < 0) { 2345 dev_err(dev, "pm_runtime_get_sync() failed\n"); 2346 pm_runtime_disable(dev); 2347 return ret; 2348 } 2349 2350 /* Get eDMA3 configuration from IP */ 2351 ret = edma_setup_from_hw(dev, info, ecc); 2352 if (ret) 2353 goto err_disable_pm; 2354 2355 /* Allocate memory based on the information we got from the IP */ 2356 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, 2357 sizeof(*ecc->slave_chans), GFP_KERNEL); 2358 2359 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), 2360 sizeof(unsigned long), GFP_KERNEL); 2361 2362 ecc->channels_mask = devm_kcalloc(dev, 2363 BITS_TO_LONGS(ecc->num_channels), 2364 sizeof(unsigned long), GFP_KERNEL); 2365 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) { 2366 ret = -ENOMEM; 2367 goto err_disable_pm; 2368 } 2369 2370 /* Mark all channels available initially */ 2371 bitmap_fill(ecc->channels_mask, ecc->num_channels); 2372 2373 ecc->default_queue = info->default_queue; 2374 2375 if (info->rsv) { 2376 /* Set the reserved slots in inuse list */ 2377 reserved = info->rsv->rsv_slots; 2378 if (reserved) { 2379 for (i = 0; reserved[i][0] != -1; i++) 2380 bitmap_set(ecc->slot_inuse, reserved[i][0], 2381 reserved[i][1]); 2382 } 2383 2384 /* Clear channels not usable for Linux */ 2385 reserved = info->rsv->rsv_chans; 2386 if (reserved) { 2387 for (i = 0; reserved[i][0] != -1; i++) 2388 bitmap_clear(ecc->channels_mask, reserved[i][0], 2389 reserved[i][1]); 2390 } 2391 } 2392 2393 for (i = 0; i < ecc->num_slots; i++) { 2394 /* Reset only unused - not reserved - paRAM slots */ 2395 if (!test_bit(i, ecc->slot_inuse)) 2396 edma_write_slot(ecc, i, &dummy_paramset); 2397 } 2398 2399 irq = platform_get_irq_byname(pdev, "edma3_ccint"); 2400 if (irq < 0 && node) 2401 irq = irq_of_parse_and_map(node, 0); 2402 2403 if (irq > 0) { 2404 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", 2405 dev_name(dev)); 2406 if (!irq_name) { 2407 ret = -ENOMEM; 2408 goto err_disable_pm; 2409 } 2410 2411 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, 2412 ecc); 2413 if (ret) { 2414 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); 2415 goto err_disable_pm; 2416 } 2417 ecc->ccint = irq; 2418 } 2419 2420 irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); 2421 if (irq < 0 && node) 2422 irq = irq_of_parse_and_map(node, 2); 2423 2424 if (irq > 0) { 2425 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", 2426 dev_name(dev)); 2427 if (!irq_name) { 2428 ret = -ENOMEM; 2429 goto err_disable_pm; 2430 } 2431 2432 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, 2433 ecc); 2434 if (ret) { 2435 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); 2436 goto err_disable_pm; 2437 } 2438 ecc->ccerrint = irq; 2439 } 2440 2441 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); 2442 if (ecc->dummy_slot < 0) { 2443 dev_err(dev, "Can't allocate PaRAM dummy slot\n"); 2444 ret = ecc->dummy_slot; 2445 goto err_disable_pm; 2446 } 2447 2448 queue_priority_mapping = info->queue_priority_mapping; 2449 2450 if (!ecc->legacy_mode) { 2451 int lowest_priority = 0; 2452 unsigned int array_max; 2453 struct of_phandle_args tc_args; 2454 2455 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, 2456 sizeof(*ecc->tc_list), GFP_KERNEL); 2457 if (!ecc->tc_list) { 2458 ret = -ENOMEM; 2459 goto err_reg1; 2460 } 2461 2462 for (i = 0; i < ecc->num_tc; i++) { 2463 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 2464 1, i, &tc_args); 2465 if (ret) 2466 break; 2467 2468 ecc->tc_list[i].id = i; 2469 queue_priority_mapping[i][1] = tc_args.args[0]; 2470 if (queue_priority_mapping[i][1] > lowest_priority) { 2471 lowest_priority = queue_priority_mapping[i][1]; 2472 info->default_queue = i; 2473 } 2474 of_node_put(tc_args.np); 2475 } 2476 2477 /* See if we have optional dma-channel-mask array */ 2478 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32)); 2479 ret = of_property_read_variable_u32_array(node, 2480 "dma-channel-mask", 2481 (u32 *)ecc->channels_mask, 2482 1, array_max); 2483 if (ret > 0 && ret != array_max) 2484 dev_warn(dev, "dma-channel-mask is not complete.\n"); 2485 else if (ret == -EOVERFLOW || ret == -ENODATA) 2486 dev_warn(dev, 2487 "dma-channel-mask is out of range or empty\n"); 2488 } 2489 2490 /* Event queue priority mapping */ 2491 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2492 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2493 queue_priority_mapping[i][1]); 2494 2495 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); 2496 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); 2497 edma_write_array(ecc, EDMA_QRAE, 0, 0x0); 2498 2499 ecc->info = info; 2500 2501 /* Init the dma device and channels */ 2502 edma_dma_init(ecc, legacy_mode); 2503 2504 for (i = 0; i < ecc->num_channels; i++) { 2505 /* Do not touch reserved channels */ 2506 if (!test_bit(i, ecc->channels_mask)) 2507 continue; 2508 2509 /* Assign all channels to the default queue */ 2510 edma_assign_channel_eventq(&ecc->slave_chans[i], 2511 info->default_queue); 2512 /* Set entry slot to the dummy slot */ 2513 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); 2514 } 2515 2516 ecc->dma_slave.filter.map = info->slave_map; 2517 ecc->dma_slave.filter.mapcnt = info->slavecnt; 2518 ecc->dma_slave.filter.fn = edma_filter_fn; 2519 2520 ret = dma_async_device_register(&ecc->dma_slave); 2521 if (ret) { 2522 dev_err(dev, "slave ddev registration failed (%d)\n", ret); 2523 goto err_reg1; 2524 } 2525 2526 if (ecc->dma_memcpy) { 2527 ret = dma_async_device_register(ecc->dma_memcpy); 2528 if (ret) { 2529 dev_err(dev, "memcpy ddev registration failed (%d)\n", 2530 ret); 2531 dma_async_device_unregister(&ecc->dma_slave); 2532 goto err_reg1; 2533 } 2534 } 2535 2536 if (node) 2537 of_dma_controller_register(node, of_edma_xlate, ecc); 2538 2539 dev_info(dev, "TI EDMA DMA engine driver\n"); 2540 2541 return 0; 2542 2543 err_reg1: 2544 edma_free_slot(ecc, ecc->dummy_slot); 2545 err_disable_pm: 2546 pm_runtime_put_sync(dev); 2547 pm_runtime_disable(dev); 2548 return ret; 2549 } 2550 2551 static void edma_cleanupp_vchan(struct dma_device *dmadev) 2552 { 2553 struct edma_chan *echan, *_echan; 2554 2555 list_for_each_entry_safe(echan, _echan, 2556 &dmadev->channels, vchan.chan.device_node) { 2557 list_del(&echan->vchan.chan.device_node); 2558 tasklet_kill(&echan->vchan.task); 2559 } 2560 } 2561 2562 static void edma_remove(struct platform_device *pdev) 2563 { 2564 struct device *dev = &pdev->dev; 2565 struct edma_cc *ecc = dev_get_drvdata(dev); 2566 2567 devm_free_irq(dev, ecc->ccint, ecc); 2568 devm_free_irq(dev, ecc->ccerrint, ecc); 2569 2570 edma_cleanupp_vchan(&ecc->dma_slave); 2571 2572 if (dev->of_node) 2573 of_dma_controller_free(dev->of_node); 2574 dma_async_device_unregister(&ecc->dma_slave); 2575 if (ecc->dma_memcpy) 2576 dma_async_device_unregister(ecc->dma_memcpy); 2577 edma_free_slot(ecc, ecc->dummy_slot); 2578 pm_runtime_put_sync(dev); 2579 pm_runtime_disable(dev); 2580 } 2581 2582 #ifdef CONFIG_PM_SLEEP 2583 static int edma_pm_suspend(struct device *dev) 2584 { 2585 struct edma_cc *ecc = dev_get_drvdata(dev); 2586 struct edma_chan *echan = ecc->slave_chans; 2587 int i; 2588 2589 for (i = 0; i < ecc->num_channels; i++) { 2590 if (echan[i].alloced) 2591 edma_setup_interrupt(&echan[i], false); 2592 } 2593 2594 return 0; 2595 } 2596 2597 static int edma_pm_resume(struct device *dev) 2598 { 2599 struct edma_cc *ecc = dev_get_drvdata(dev); 2600 struct edma_chan *echan = ecc->slave_chans; 2601 int i; 2602 s8 (*queue_priority_mapping)[2]; 2603 2604 /* re initialize dummy slot to dummy param set */ 2605 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); 2606 2607 queue_priority_mapping = ecc->info->queue_priority_mapping; 2608 2609 /* Event queue priority mapping */ 2610 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2611 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2612 queue_priority_mapping[i][1]); 2613 2614 for (i = 0; i < ecc->num_channels; i++) { 2615 if (echan[i].alloced) { 2616 /* ensure access through shadow region 0 */ 2617 edma_or_array2(ecc, EDMA_DRAE, 0, 2618 EDMA_REG_ARRAY_INDEX(i), 2619 EDMA_CHANNEL_BIT(i)); 2620 2621 edma_setup_interrupt(&echan[i], true); 2622 2623 /* Set up channel -> slot mapping for the entry slot */ 2624 edma_set_chmap(&echan[i], echan[i].slot[0]); 2625 } 2626 } 2627 2628 return 0; 2629 } 2630 #endif 2631 2632 static const struct dev_pm_ops edma_pm_ops = { 2633 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) 2634 }; 2635 2636 static struct platform_driver edma_driver = { 2637 .probe = edma_probe, 2638 .remove = edma_remove, 2639 .driver = { 2640 .name = "edma", 2641 .pm = &edma_pm_ops, 2642 .of_match_table = edma_of_ids, 2643 }, 2644 }; 2645 2646 static int edma_tptc_probe(struct platform_device *pdev) 2647 { 2648 pm_runtime_enable(&pdev->dev); 2649 return pm_runtime_get_sync(&pdev->dev); 2650 } 2651 2652 static struct platform_driver edma_tptc_driver = { 2653 .probe = edma_tptc_probe, 2654 .driver = { 2655 .name = "edma3-tptc", 2656 .of_match_table = edma_tptc_of_ids, 2657 }, 2658 }; 2659 2660 static bool edma_filter_fn(struct dma_chan *chan, void *param) 2661 { 2662 bool match = false; 2663 2664 if (chan->device->dev->driver == &edma_driver.driver) { 2665 struct edma_chan *echan = to_edma_chan(chan); 2666 unsigned ch_req = *(unsigned *)param; 2667 if (ch_req == echan->ch_num) { 2668 /* The channel is going to be used as HW synchronized */ 2669 echan->hw_triggered = true; 2670 match = true; 2671 } 2672 } 2673 return match; 2674 } 2675 2676 static int edma_init(void) 2677 { 2678 int ret; 2679 2680 ret = platform_driver_register(&edma_tptc_driver); 2681 if (ret) 2682 return ret; 2683 2684 return platform_driver_register(&edma_driver); 2685 } 2686 subsys_initcall(edma_init); 2687 2688 static void __exit edma_exit(void) 2689 { 2690 platform_driver_unregister(&edma_driver); 2691 platform_driver_unregister(&edma_tptc_driver); 2692 } 2693 module_exit(edma_exit); 2694 2695 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); 2696 MODULE_DESCRIPTION("TI EDMA DMA engine driver"); 2697 MODULE_LICENSE("GPL v2"); 2698