xref: /linux/drivers/dma/ti/edma.c (revision 74cc09fd8d04c56b652cfb332adb61f10bc2c199)
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/bitmap.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <linux/platform_data/edma.h>
35 
36 #include "../dmaengine.h"
37 #include "../virt-dma.h"
38 
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT		0x00
41 #define PARM_SRC		0x04
42 #define PARM_A_B_CNT		0x08
43 #define PARM_DST		0x0c
44 #define PARM_SRC_DST_BIDX	0x10
45 #define PARM_LINK_BCNTRLD	0x14
46 #define PARM_SRC_DST_CIDX	0x18
47 #define PARM_CCNT		0x1c
48 
49 #define PARM_SIZE		0x20
50 
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER			0x00	/* 64 bits */
53 #define SH_ECR			0x08	/* 64 bits */
54 #define SH_ESR			0x10	/* 64 bits */
55 #define SH_CER			0x18	/* 64 bits */
56 #define SH_EER			0x20	/* 64 bits */
57 #define SH_EECR			0x28	/* 64 bits */
58 #define SH_EESR			0x30	/* 64 bits */
59 #define SH_SER			0x38	/* 64 bits */
60 #define SH_SECR			0x40	/* 64 bits */
61 #define SH_IER			0x50	/* 64 bits */
62 #define SH_IECR			0x58	/* 64 bits */
63 #define SH_IESR			0x60	/* 64 bits */
64 #define SH_IPR			0x68	/* 64 bits */
65 #define SH_ICR			0x70	/* 64 bits */
66 #define SH_IEVAL		0x78
67 #define SH_QER			0x80
68 #define SH_QEER			0x84
69 #define SH_QEECR		0x88
70 #define SH_QEESR		0x8c
71 #define SH_QSER			0x90
72 #define SH_QSECR		0x94
73 #define SH_SIZE			0x200
74 
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV		0x0000
77 #define EDMA_CCCFG		0x0004
78 #define EDMA_QCHMAP		0x0200	/* 8 registers */
79 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM		0x0260
81 #define EDMA_QUETCMAP		0x0280
82 #define EDMA_QUEPRI		0x0284
83 #define EDMA_EMR		0x0300	/* 64 bits */
84 #define EDMA_EMCR		0x0308	/* 64 bits */
85 #define EDMA_QEMR		0x0310
86 #define EDMA_QEMCR		0x0314
87 #define EDMA_CCERR		0x0318
88 #define EDMA_CCERRCLR		0x031c
89 #define EDMA_EEVAL		0x0320
90 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
91 #define EDMA_QRAE		0x0380	/* 4 registers */
92 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
93 #define EDMA_QSTAT		0x0600	/* 2 registers */
94 #define EDMA_QWMTHRA		0x0620
95 #define EDMA_QWMTHRB		0x0624
96 #define EDMA_CCSTAT		0x0640
97 
98 #define EDMA_M			0x1000	/* global channel registers */
99 #define EDMA_ECR		0x1008
100 #define EDMA_ECRH		0x100C
101 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
102 #define EDMA_PARM		0x4000	/* PaRAM entries */
103 
104 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
105 
106 #define EDMA_DCHMAP		0x0100  /* 64 registers */
107 
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST		BIT(24)
115 
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV	BIT(4)
118 
119 /*
120  * Max of 20 segments per channel to conserve PaRAM slots
121  * Also note that MAX_NR_SG should be atleast the no.of periods
122  * that are required for ASoC, otherwise DMA prep calls will
123  * fail. Today davinci-pcm is the only user of this driver and
124  * requires atleast 17 slots, so we setup the default to 20.
125  */
126 #define MAX_NR_SG		20
127 #define EDMA_MAX_SLOTS		MAX_NR_SG
128 #define EDMA_DESCRIPTORS	16
129 
130 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY		 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
135 
136 /*
137  * 64bit array registers are split into two 32bit registers:
138  * reg0: channel/event 0-31
139  * reg1: channel/event 32-63
140  *
141  * bit 5 in the channel number tells the array index (0/1)
142  * bit 0-4 (0x1f) is the bit offset within the register
143  */
144 #define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
145 #define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
146 
147 /* PaRAM slots are laid out like this */
148 struct edmacc_param {
149 	u32 opt;
150 	u32 src;
151 	u32 a_b_cnt;
152 	u32 dst;
153 	u32 src_dst_bidx;
154 	u32 link_bcntrld;
155 	u32 src_dst_cidx;
156 	u32 ccnt;
157 } __packed;
158 
159 /* fields in edmacc_param.opt */
160 #define SAM		BIT(0)
161 #define DAM		BIT(1)
162 #define SYNCDIM		BIT(2)
163 #define STATIC		BIT(3)
164 #define EDMA_FWID	(0x07 << 8)
165 #define TCCMODE		BIT(11)
166 #define EDMA_TCC(t)	((t) << 12)
167 #define TCINTEN		BIT(20)
168 #define ITCINTEN	BIT(21)
169 #define TCCHEN		BIT(22)
170 #define ITCCHEN		BIT(23)
171 
172 struct edma_pset {
173 	u32				len;
174 	dma_addr_t			addr;
175 	struct edmacc_param		param;
176 };
177 
178 struct edma_desc {
179 	struct virt_dma_desc		vdesc;
180 	struct list_head		node;
181 	enum dma_transfer_direction	direction;
182 	int				cyclic;
183 	bool				polled;
184 	int				absync;
185 	int				pset_nr;
186 	struct edma_chan		*echan;
187 	int				processed;
188 
189 	/*
190 	 * The following 4 elements are used for residue accounting.
191 	 *
192 	 * - processed_stat: the number of SG elements we have traversed
193 	 * so far to cover accounting. This is updated directly to processed
194 	 * during edma_callback and is always <= processed, because processed
195 	 * refers to the number of pending transfer (programmed to EDMA
196 	 * controller), where as processed_stat tracks number of transfers
197 	 * accounted for so far.
198 	 *
199 	 * - residue: The amount of bytes we have left to transfer for this desc
200 	 *
201 	 * - residue_stat: The residue in bytes of data we have covered
202 	 * so far for accounting. This is updated directly to residue
203 	 * during callbacks to keep it current.
204 	 *
205 	 * - sg_len: Tracks the length of the current intermediate transfer,
206 	 * this is required to update the residue during intermediate transfer
207 	 * completion callback.
208 	 */
209 	int				processed_stat;
210 	u32				sg_len;
211 	u32				residue;
212 	u32				residue_stat;
213 
214 	struct edma_pset		pset[0];
215 };
216 
217 struct edma_cc;
218 
219 struct edma_tc {
220 	struct device_node		*node;
221 	u16				id;
222 };
223 
224 struct edma_chan {
225 	struct virt_dma_chan		vchan;
226 	struct list_head		node;
227 	struct edma_desc		*edesc;
228 	struct edma_cc			*ecc;
229 	struct edma_tc			*tc;
230 	int				ch_num;
231 	bool				alloced;
232 	bool				hw_triggered;
233 	int				slot[EDMA_MAX_SLOTS];
234 	int				missed;
235 	struct dma_slave_config		cfg;
236 };
237 
238 struct edma_cc {
239 	struct device			*dev;
240 	struct edma_soc_info		*info;
241 	void __iomem			*base;
242 	int				id;
243 	bool				legacy_mode;
244 
245 	/* eDMA3 resource information */
246 	unsigned			num_channels;
247 	unsigned			num_qchannels;
248 	unsigned			num_region;
249 	unsigned			num_slots;
250 	unsigned			num_tc;
251 	bool				chmap_exist;
252 	enum dma_event_q		default_queue;
253 
254 	unsigned int			ccint;
255 	unsigned int			ccerrint;
256 
257 	/*
258 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
259 	 * in use by Linux or if it is allocated to be used by DSP.
260 	 */
261 	unsigned long *slot_inuse;
262 
263 	/*
264 	 * For tracking reserved channels used by DSP.
265 	 * If the bit is cleared, the channel is allocated to be used by DSP
266 	 * and Linux must not touch it.
267 	 */
268 	unsigned long *channels_mask;
269 
270 	struct dma_device		dma_slave;
271 	struct dma_device		*dma_memcpy;
272 	struct edma_chan		*slave_chans;
273 	struct edma_tc			*tc_list;
274 	int				dummy_slot;
275 };
276 
277 /* dummy param set used to (re)initialize parameter RAM slots */
278 static const struct edmacc_param dummy_paramset = {
279 	.link_bcntrld = 0xffff,
280 	.ccnt = 1,
281 };
282 
283 #define EDMA_BINDING_LEGACY	0
284 #define EDMA_BINDING_TPCC	1
285 static const u32 edma_binding_type[] = {
286 	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
287 	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
288 };
289 
290 static const struct of_device_id edma_of_ids[] = {
291 	{
292 		.compatible = "ti,edma3",
293 		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
294 	},
295 	{
296 		.compatible = "ti,edma3-tpcc",
297 		.data = &edma_binding_type[EDMA_BINDING_TPCC],
298 	},
299 	{}
300 };
301 MODULE_DEVICE_TABLE(of, edma_of_ids);
302 
303 static const struct of_device_id edma_tptc_of_ids[] = {
304 	{ .compatible = "ti,edma3-tptc", },
305 	{}
306 };
307 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
308 
309 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
310 {
311 	return (unsigned int)__raw_readl(ecc->base + offset);
312 }
313 
314 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
315 {
316 	__raw_writel(val, ecc->base + offset);
317 }
318 
319 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
320 			       unsigned or)
321 {
322 	unsigned val = edma_read(ecc, offset);
323 
324 	val &= and;
325 	val |= or;
326 	edma_write(ecc, offset, val);
327 }
328 
329 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
330 {
331 	unsigned val = edma_read(ecc, offset);
332 
333 	val &= and;
334 	edma_write(ecc, offset, val);
335 }
336 
337 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
338 {
339 	unsigned val = edma_read(ecc, offset);
340 
341 	val |= or;
342 	edma_write(ecc, offset, val);
343 }
344 
345 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
346 					   int i)
347 {
348 	return edma_read(ecc, offset + (i << 2));
349 }
350 
351 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
352 				    unsigned val)
353 {
354 	edma_write(ecc, offset + (i << 2), val);
355 }
356 
357 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
358 				     unsigned and, unsigned or)
359 {
360 	edma_modify(ecc, offset + (i << 2), and, or);
361 }
362 
363 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
364 				 unsigned or)
365 {
366 	edma_or(ecc, offset + (i << 2), or);
367 }
368 
369 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
370 				  unsigned or)
371 {
372 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
373 }
374 
375 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
376 				     int j, unsigned val)
377 {
378 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
379 }
380 
381 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
382 {
383 	return edma_read(ecc, EDMA_SHADOW0 + offset);
384 }
385 
386 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
387 						   int offset, int i)
388 {
389 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
390 }
391 
392 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
393 				      unsigned val)
394 {
395 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
396 }
397 
398 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
399 					    int i, unsigned val)
400 {
401 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
402 }
403 
404 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
405 					   int param_no)
406 {
407 	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
408 }
409 
410 static inline void edma_param_write(struct edma_cc *ecc, int offset,
411 				    int param_no, unsigned val)
412 {
413 	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
414 }
415 
416 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
417 				     int param_no, unsigned and, unsigned or)
418 {
419 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
420 }
421 
422 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
423 				  unsigned and)
424 {
425 	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
426 }
427 
428 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
429 				 unsigned or)
430 {
431 	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
432 }
433 
434 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
435 					  int priority)
436 {
437 	int bit = queue_no * 4;
438 
439 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
440 }
441 
442 static void edma_set_chmap(struct edma_chan *echan, int slot)
443 {
444 	struct edma_cc *ecc = echan->ecc;
445 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
446 
447 	if (ecc->chmap_exist) {
448 		slot = EDMA_CHAN_SLOT(slot);
449 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
450 	}
451 }
452 
453 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
454 {
455 	struct edma_cc *ecc = echan->ecc;
456 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
457 	int idx = EDMA_REG_ARRAY_INDEX(channel);
458 	int ch_bit = EDMA_CHANNEL_BIT(channel);
459 
460 	if (enable) {
461 		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
462 		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
463 	} else {
464 		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
465 	}
466 }
467 
468 /*
469  * paRAM slot management functions
470  */
471 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
472 			    const struct edmacc_param *param)
473 {
474 	slot = EDMA_CHAN_SLOT(slot);
475 	if (slot >= ecc->num_slots)
476 		return;
477 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
478 }
479 
480 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
481 			   struct edmacc_param *param)
482 {
483 	slot = EDMA_CHAN_SLOT(slot);
484 	if (slot >= ecc->num_slots)
485 		return -EINVAL;
486 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
487 
488 	return 0;
489 }
490 
491 /**
492  * edma_alloc_slot - allocate DMA parameter RAM
493  * @ecc: pointer to edma_cc struct
494  * @slot: specific slot to allocate; negative for "any unused slot"
495  *
496  * This allocates a parameter RAM slot, initializing it to hold a
497  * dummy transfer.  Slots allocated using this routine have not been
498  * mapped to a hardware DMA channel, and will normally be used by
499  * linking to them from a slot associated with a DMA channel.
500  *
501  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
502  * slots may be allocated on behalf of DSP firmware.
503  *
504  * Returns the number of the slot, else negative errno.
505  */
506 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
507 {
508 	if (slot >= 0) {
509 		slot = EDMA_CHAN_SLOT(slot);
510 		/* Requesting entry paRAM slot for a HW triggered channel. */
511 		if (ecc->chmap_exist && slot < ecc->num_channels)
512 			slot = EDMA_SLOT_ANY;
513 	}
514 
515 	if (slot < 0) {
516 		if (ecc->chmap_exist)
517 			slot = 0;
518 		else
519 			slot = ecc->num_channels;
520 		for (;;) {
521 			slot = find_next_zero_bit(ecc->slot_inuse,
522 						  ecc->num_slots,
523 						  slot);
524 			if (slot == ecc->num_slots)
525 				return -ENOMEM;
526 			if (!test_and_set_bit(slot, ecc->slot_inuse))
527 				break;
528 		}
529 	} else if (slot >= ecc->num_slots) {
530 		return -EINVAL;
531 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
532 		return -EBUSY;
533 	}
534 
535 	edma_write_slot(ecc, slot, &dummy_paramset);
536 
537 	return EDMA_CTLR_CHAN(ecc->id, slot);
538 }
539 
540 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
541 {
542 	slot = EDMA_CHAN_SLOT(slot);
543 	if (slot >= ecc->num_slots)
544 		return;
545 
546 	edma_write_slot(ecc, slot, &dummy_paramset);
547 	clear_bit(slot, ecc->slot_inuse);
548 }
549 
550 /**
551  * edma_link - link one parameter RAM slot to another
552  * @ecc: pointer to edma_cc struct
553  * @from: parameter RAM slot originating the link
554  * @to: parameter RAM slot which is the link target
555  *
556  * The originating slot should not be part of any active DMA transfer.
557  */
558 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
559 {
560 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
561 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
562 
563 	from = EDMA_CHAN_SLOT(from);
564 	to = EDMA_CHAN_SLOT(to);
565 	if (from >= ecc->num_slots || to >= ecc->num_slots)
566 		return;
567 
568 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
569 			  PARM_OFFSET(to));
570 }
571 
572 /**
573  * edma_get_position - returns the current transfer point
574  * @ecc: pointer to edma_cc struct
575  * @slot: parameter RAM slot being examined
576  * @dst:  true selects the dest position, false the source
577  *
578  * Returns the position of the current active slot
579  */
580 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
581 				    bool dst)
582 {
583 	u32 offs;
584 
585 	slot = EDMA_CHAN_SLOT(slot);
586 	offs = PARM_OFFSET(slot);
587 	offs += dst ? PARM_DST : PARM_SRC;
588 
589 	return edma_read(ecc, offs);
590 }
591 
592 /*
593  * Channels with event associations will be triggered by their hardware
594  * events, and channels without such associations will be triggered by
595  * software.  (At this writing there is no interface for using software
596  * triggers except with channels that don't support hardware triggers.)
597  */
598 static void edma_start(struct edma_chan *echan)
599 {
600 	struct edma_cc *ecc = echan->ecc;
601 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
602 	int idx = EDMA_REG_ARRAY_INDEX(channel);
603 	int ch_bit = EDMA_CHANNEL_BIT(channel);
604 
605 	if (!echan->hw_triggered) {
606 		/* EDMA channels without event association */
607 		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
608 			edma_shadow0_read_array(ecc, SH_ESR, idx));
609 		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
610 	} else {
611 		/* EDMA channel with event association */
612 		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
613 			edma_shadow0_read_array(ecc, SH_ER, idx));
614 		/* Clear any pending event or error */
615 		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
616 		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
617 		/* Clear any SER */
618 		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
619 		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
620 		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
621 			edma_shadow0_read_array(ecc, SH_EER, idx));
622 	}
623 }
624 
625 static void edma_stop(struct edma_chan *echan)
626 {
627 	struct edma_cc *ecc = echan->ecc;
628 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
629 	int idx = EDMA_REG_ARRAY_INDEX(channel);
630 	int ch_bit = EDMA_CHANNEL_BIT(channel);
631 
632 	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
633 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
634 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
635 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
636 
637 	/* clear possibly pending completion interrupt */
638 	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
639 
640 	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
641 		edma_shadow0_read_array(ecc, SH_EER, idx));
642 
643 	/* REVISIT:  consider guarding against inappropriate event
644 	 * chaining by overwriting with dummy_paramset.
645 	 */
646 }
647 
648 /*
649  * Temporarily disable EDMA hardware events on the specified channel,
650  * preventing them from triggering new transfers
651  */
652 static void edma_pause(struct edma_chan *echan)
653 {
654 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
655 
656 	edma_shadow0_write_array(echan->ecc, SH_EECR,
657 				 EDMA_REG_ARRAY_INDEX(channel),
658 				 EDMA_CHANNEL_BIT(channel));
659 }
660 
661 /* Re-enable EDMA hardware events on the specified channel.  */
662 static void edma_resume(struct edma_chan *echan)
663 {
664 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
665 
666 	edma_shadow0_write_array(echan->ecc, SH_EESR,
667 				 EDMA_REG_ARRAY_INDEX(channel),
668 				 EDMA_CHANNEL_BIT(channel));
669 }
670 
671 static void edma_trigger_channel(struct edma_chan *echan)
672 {
673 	struct edma_cc *ecc = echan->ecc;
674 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
675 	int idx = EDMA_REG_ARRAY_INDEX(channel);
676 	int ch_bit = EDMA_CHANNEL_BIT(channel);
677 
678 	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
679 
680 	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
681 		edma_shadow0_read_array(ecc, SH_ESR, idx));
682 }
683 
684 static void edma_clean_channel(struct edma_chan *echan)
685 {
686 	struct edma_cc *ecc = echan->ecc;
687 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
688 	int idx = EDMA_REG_ARRAY_INDEX(channel);
689 	int ch_bit = EDMA_CHANNEL_BIT(channel);
690 
691 	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
692 		edma_read_array(ecc, EDMA_EMR, idx));
693 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
694 	/* Clear the corresponding EMR bits */
695 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
696 	/* Clear any SER */
697 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
698 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
699 }
700 
701 /* Move channel to a specific event queue */
702 static void edma_assign_channel_eventq(struct edma_chan *echan,
703 				       enum dma_event_q eventq_no)
704 {
705 	struct edma_cc *ecc = echan->ecc;
706 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
707 	int bit = (channel & 0x7) * 4;
708 
709 	/* default to low priority queue */
710 	if (eventq_no == EVENTQ_DEFAULT)
711 		eventq_no = ecc->default_queue;
712 	if (eventq_no >= ecc->num_tc)
713 		return;
714 
715 	eventq_no &= 7;
716 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
717 			  eventq_no << bit);
718 }
719 
720 static int edma_alloc_channel(struct edma_chan *echan,
721 			      enum dma_event_q eventq_no)
722 {
723 	struct edma_cc *ecc = echan->ecc;
724 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
725 
726 	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
727 		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
728 			echan->ch_num);
729 		return -EINVAL;
730 	}
731 
732 	/* ensure access through shadow region 0 */
733 	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
734 		       EDMA_CHANNEL_BIT(channel));
735 
736 	/* ensure no events are pending */
737 	edma_stop(echan);
738 
739 	edma_setup_interrupt(echan, true);
740 
741 	edma_assign_channel_eventq(echan, eventq_no);
742 
743 	return 0;
744 }
745 
746 static void edma_free_channel(struct edma_chan *echan)
747 {
748 	/* ensure no events are pending */
749 	edma_stop(echan);
750 	/* REVISIT should probably take out of shadow region 0 */
751 	edma_setup_interrupt(echan, false);
752 }
753 
754 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
755 {
756 	return container_of(d, struct edma_cc, dma_slave);
757 }
758 
759 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
760 {
761 	return container_of(c, struct edma_chan, vchan.chan);
762 }
763 
764 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
765 {
766 	return container_of(tx, struct edma_desc, vdesc.tx);
767 }
768 
769 static void edma_desc_free(struct virt_dma_desc *vdesc)
770 {
771 	kfree(container_of(vdesc, struct edma_desc, vdesc));
772 }
773 
774 /* Dispatch a queued descriptor to the controller (caller holds lock) */
775 static void edma_execute(struct edma_chan *echan)
776 {
777 	struct edma_cc *ecc = echan->ecc;
778 	struct virt_dma_desc *vdesc;
779 	struct edma_desc *edesc;
780 	struct device *dev = echan->vchan.chan.device->dev;
781 	int i, j, left, nslots;
782 
783 	if (!echan->edesc) {
784 		/* Setup is needed for the first transfer */
785 		vdesc = vchan_next_desc(&echan->vchan);
786 		if (!vdesc)
787 			return;
788 		list_del(&vdesc->node);
789 		echan->edesc = to_edma_desc(&vdesc->tx);
790 	}
791 
792 	edesc = echan->edesc;
793 
794 	/* Find out how many left */
795 	left = edesc->pset_nr - edesc->processed;
796 	nslots = min(MAX_NR_SG, left);
797 	edesc->sg_len = 0;
798 
799 	/* Write descriptor PaRAM set(s) */
800 	for (i = 0; i < nslots; i++) {
801 		j = i + edesc->processed;
802 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
803 		edesc->sg_len += edesc->pset[j].len;
804 		dev_vdbg(dev,
805 			 "\n pset[%d]:\n"
806 			 "  chnum\t%d\n"
807 			 "  slot\t%d\n"
808 			 "  opt\t%08x\n"
809 			 "  src\t%08x\n"
810 			 "  dst\t%08x\n"
811 			 "  abcnt\t%08x\n"
812 			 "  ccnt\t%08x\n"
813 			 "  bidx\t%08x\n"
814 			 "  cidx\t%08x\n"
815 			 "  lkrld\t%08x\n",
816 			 j, echan->ch_num, echan->slot[i],
817 			 edesc->pset[j].param.opt,
818 			 edesc->pset[j].param.src,
819 			 edesc->pset[j].param.dst,
820 			 edesc->pset[j].param.a_b_cnt,
821 			 edesc->pset[j].param.ccnt,
822 			 edesc->pset[j].param.src_dst_bidx,
823 			 edesc->pset[j].param.src_dst_cidx,
824 			 edesc->pset[j].param.link_bcntrld);
825 		/* Link to the previous slot if not the last set */
826 		if (i != (nslots - 1))
827 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
828 	}
829 
830 	edesc->processed += nslots;
831 
832 	/*
833 	 * If this is either the last set in a set of SG-list transactions
834 	 * then setup a link to the dummy slot, this results in all future
835 	 * events being absorbed and that's OK because we're done
836 	 */
837 	if (edesc->processed == edesc->pset_nr) {
838 		if (edesc->cyclic)
839 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
840 		else
841 			edma_link(ecc, echan->slot[nslots - 1],
842 				  echan->ecc->dummy_slot);
843 	}
844 
845 	if (echan->missed) {
846 		/*
847 		 * This happens due to setup times between intermediate
848 		 * transfers in long SG lists which have to be broken up into
849 		 * transfers of MAX_NR_SG
850 		 */
851 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
852 		edma_clean_channel(echan);
853 		edma_stop(echan);
854 		edma_start(echan);
855 		edma_trigger_channel(echan);
856 		echan->missed = 0;
857 	} else if (edesc->processed <= MAX_NR_SG) {
858 		dev_dbg(dev, "first transfer starting on channel %d\n",
859 			echan->ch_num);
860 		edma_start(echan);
861 	} else {
862 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
863 			echan->ch_num, edesc->processed);
864 		edma_resume(echan);
865 	}
866 }
867 
868 static int edma_terminate_all(struct dma_chan *chan)
869 {
870 	struct edma_chan *echan = to_edma_chan(chan);
871 	unsigned long flags;
872 	LIST_HEAD(head);
873 
874 	spin_lock_irqsave(&echan->vchan.lock, flags);
875 
876 	/*
877 	 * Stop DMA activity: we assume the callback will not be called
878 	 * after edma_dma() returns (even if it does, it will see
879 	 * echan->edesc is NULL and exit.)
880 	 */
881 	if (echan->edesc) {
882 		edma_stop(echan);
883 		/* Move the cyclic channel back to default queue */
884 		if (!echan->tc && echan->edesc->cyclic)
885 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
886 
887 		vchan_terminate_vdesc(&echan->edesc->vdesc);
888 		echan->edesc = NULL;
889 	}
890 
891 	vchan_get_all_descriptors(&echan->vchan, &head);
892 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
893 	vchan_dma_desc_free_list(&echan->vchan, &head);
894 
895 	return 0;
896 }
897 
898 static void edma_synchronize(struct dma_chan *chan)
899 {
900 	struct edma_chan *echan = to_edma_chan(chan);
901 
902 	vchan_synchronize(&echan->vchan);
903 }
904 
905 static int edma_slave_config(struct dma_chan *chan,
906 	struct dma_slave_config *cfg)
907 {
908 	struct edma_chan *echan = to_edma_chan(chan);
909 
910 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
911 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
912 		return -EINVAL;
913 
914 	if (cfg->src_maxburst > chan->device->max_burst ||
915 	    cfg->dst_maxburst > chan->device->max_burst)
916 		return -EINVAL;
917 
918 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
919 
920 	return 0;
921 }
922 
923 static int edma_dma_pause(struct dma_chan *chan)
924 {
925 	struct edma_chan *echan = to_edma_chan(chan);
926 
927 	if (!echan->edesc)
928 		return -EINVAL;
929 
930 	edma_pause(echan);
931 	return 0;
932 }
933 
934 static int edma_dma_resume(struct dma_chan *chan)
935 {
936 	struct edma_chan *echan = to_edma_chan(chan);
937 
938 	edma_resume(echan);
939 	return 0;
940 }
941 
942 /*
943  * A PaRAM set configuration abstraction used by other modes
944  * @chan: Channel who's PaRAM set we're configuring
945  * @pset: PaRAM set to initialize and setup.
946  * @src_addr: Source address of the DMA
947  * @dst_addr: Destination address of the DMA
948  * @burst: In units of dev_width, how much to send
949  * @dev_width: How much is the dev_width
950  * @dma_length: Total length of the DMA transfer
951  * @direction: Direction of the transfer
952  */
953 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
954 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
955 			    unsigned int acnt, unsigned int dma_length,
956 			    enum dma_transfer_direction direction)
957 {
958 	struct edma_chan *echan = to_edma_chan(chan);
959 	struct device *dev = chan->device->dev;
960 	struct edmacc_param *param = &epset->param;
961 	int bcnt, ccnt, cidx;
962 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
963 	int absync;
964 
965 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
966 	if (!burst)
967 		burst = 1;
968 	/*
969 	 * If the maxburst is equal to the fifo width, use
970 	 * A-synced transfers. This allows for large contiguous
971 	 * buffer transfers using only one PaRAM set.
972 	 */
973 	if (burst == 1) {
974 		/*
975 		 * For the A-sync case, bcnt and ccnt are the remainder
976 		 * and quotient respectively of the division of:
977 		 * (dma_length / acnt) by (SZ_64K -1). This is so
978 		 * that in case bcnt over flows, we have ccnt to use.
979 		 * Note: In A-sync tranfer only, bcntrld is used, but it
980 		 * only applies for sg_dma_len(sg) >= SZ_64K.
981 		 * In this case, the best way adopted is- bccnt for the
982 		 * first frame will be the remainder below. Then for
983 		 * every successive frame, bcnt will be SZ_64K-1. This
984 		 * is assured as bcntrld = 0xffff in end of function.
985 		 */
986 		absync = false;
987 		ccnt = dma_length / acnt / (SZ_64K - 1);
988 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
989 		/*
990 		 * If bcnt is non-zero, we have a remainder and hence an
991 		 * extra frame to transfer, so increment ccnt.
992 		 */
993 		if (bcnt)
994 			ccnt++;
995 		else
996 			bcnt = SZ_64K - 1;
997 		cidx = acnt;
998 	} else {
999 		/*
1000 		 * If maxburst is greater than the fifo address_width,
1001 		 * use AB-synced transfers where A count is the fifo
1002 		 * address_width and B count is the maxburst. In this
1003 		 * case, we are limited to transfers of C count frames
1004 		 * of (address_width * maxburst) where C count is limited
1005 		 * to SZ_64K-1. This places an upper bound on the length
1006 		 * of an SG segment that can be handled.
1007 		 */
1008 		absync = true;
1009 		bcnt = burst;
1010 		ccnt = dma_length / (acnt * bcnt);
1011 		if (ccnt > (SZ_64K - 1)) {
1012 			dev_err(dev, "Exceeded max SG segment size\n");
1013 			return -EINVAL;
1014 		}
1015 		cidx = acnt * bcnt;
1016 	}
1017 
1018 	epset->len = dma_length;
1019 
1020 	if (direction == DMA_MEM_TO_DEV) {
1021 		src_bidx = acnt;
1022 		src_cidx = cidx;
1023 		dst_bidx = 0;
1024 		dst_cidx = 0;
1025 		epset->addr = src_addr;
1026 	} else if (direction == DMA_DEV_TO_MEM)  {
1027 		src_bidx = 0;
1028 		src_cidx = 0;
1029 		dst_bidx = acnt;
1030 		dst_cidx = cidx;
1031 		epset->addr = dst_addr;
1032 	} else if (direction == DMA_MEM_TO_MEM)  {
1033 		src_bidx = acnt;
1034 		src_cidx = cidx;
1035 		dst_bidx = acnt;
1036 		dst_cidx = cidx;
1037 		epset->addr = src_addr;
1038 	} else {
1039 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
1040 		return -EINVAL;
1041 	}
1042 
1043 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1044 	/* Configure A or AB synchronized transfers */
1045 	if (absync)
1046 		param->opt |= SYNCDIM;
1047 
1048 	param->src = src_addr;
1049 	param->dst = dst_addr;
1050 
1051 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1052 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1053 
1054 	param->a_b_cnt = bcnt << 16 | acnt;
1055 	param->ccnt = ccnt;
1056 	/*
1057 	 * Only time when (bcntrld) auto reload is required is for
1058 	 * A-sync case, and in this case, a requirement of reload value
1059 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1060 	 * and then later will be populated by edma_execute.
1061 	 */
1062 	param->link_bcntrld = 0xffffffff;
1063 	return absync;
1064 }
1065 
1066 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1067 	struct dma_chan *chan, struct scatterlist *sgl,
1068 	unsigned int sg_len, enum dma_transfer_direction direction,
1069 	unsigned long tx_flags, void *context)
1070 {
1071 	struct edma_chan *echan = to_edma_chan(chan);
1072 	struct device *dev = chan->device->dev;
1073 	struct edma_desc *edesc;
1074 	dma_addr_t src_addr = 0, dst_addr = 0;
1075 	enum dma_slave_buswidth dev_width;
1076 	u32 burst;
1077 	struct scatterlist *sg;
1078 	int i, nslots, ret;
1079 
1080 	if (unlikely(!echan || !sgl || !sg_len))
1081 		return NULL;
1082 
1083 	if (direction == DMA_DEV_TO_MEM) {
1084 		src_addr = echan->cfg.src_addr;
1085 		dev_width = echan->cfg.src_addr_width;
1086 		burst = echan->cfg.src_maxburst;
1087 	} else if (direction == DMA_MEM_TO_DEV) {
1088 		dst_addr = echan->cfg.dst_addr;
1089 		dev_width = echan->cfg.dst_addr_width;
1090 		burst = echan->cfg.dst_maxburst;
1091 	} else {
1092 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1093 		return NULL;
1094 	}
1095 
1096 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1097 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1098 		return NULL;
1099 	}
1100 
1101 	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1102 	if (!edesc)
1103 		return NULL;
1104 
1105 	edesc->pset_nr = sg_len;
1106 	edesc->residue = 0;
1107 	edesc->direction = direction;
1108 	edesc->echan = echan;
1109 
1110 	/* Allocate a PaRAM slot, if needed */
1111 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1112 
1113 	for (i = 0; i < nslots; i++) {
1114 		if (echan->slot[i] < 0) {
1115 			echan->slot[i] =
1116 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1117 			if (echan->slot[i] < 0) {
1118 				kfree(edesc);
1119 				dev_err(dev, "%s: Failed to allocate slot\n",
1120 					__func__);
1121 				return NULL;
1122 			}
1123 		}
1124 	}
1125 
1126 	/* Configure PaRAM sets for each SG */
1127 	for_each_sg(sgl, sg, sg_len, i) {
1128 		/* Get address for each SG */
1129 		if (direction == DMA_DEV_TO_MEM)
1130 			dst_addr = sg_dma_address(sg);
1131 		else
1132 			src_addr = sg_dma_address(sg);
1133 
1134 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1135 				       dst_addr, burst, dev_width,
1136 				       sg_dma_len(sg), direction);
1137 		if (ret < 0) {
1138 			kfree(edesc);
1139 			return NULL;
1140 		}
1141 
1142 		edesc->absync = ret;
1143 		edesc->residue += sg_dma_len(sg);
1144 
1145 		if (i == sg_len - 1)
1146 			/* Enable completion interrupt */
1147 			edesc->pset[i].param.opt |= TCINTEN;
1148 		else if (!((i+1) % MAX_NR_SG))
1149 			/*
1150 			 * Enable early completion interrupt for the
1151 			 * intermediateset. In this case the driver will be
1152 			 * notified when the paRAM set is submitted to TC. This
1153 			 * will allow more time to set up the next set of slots.
1154 			 */
1155 			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1156 	}
1157 	edesc->residue_stat = edesc->residue;
1158 
1159 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1160 }
1161 
1162 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1163 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1164 	size_t len, unsigned long tx_flags)
1165 {
1166 	int ret, nslots;
1167 	struct edma_desc *edesc;
1168 	struct device *dev = chan->device->dev;
1169 	struct edma_chan *echan = to_edma_chan(chan);
1170 	unsigned int width, pset_len, array_size;
1171 
1172 	if (unlikely(!echan || !len))
1173 		return NULL;
1174 
1175 	/* Align the array size (acnt block) with the transfer properties */
1176 	switch (__ffs((src | dest | len))) {
1177 	case 0:
1178 		array_size = SZ_32K - 1;
1179 		break;
1180 	case 1:
1181 		array_size = SZ_32K - 2;
1182 		break;
1183 	default:
1184 		array_size = SZ_32K - 4;
1185 		break;
1186 	}
1187 
1188 	if (len < SZ_64K) {
1189 		/*
1190 		 * Transfer size less than 64K can be handled with one paRAM
1191 		 * slot and with one burst.
1192 		 * ACNT = length
1193 		 */
1194 		width = len;
1195 		pset_len = len;
1196 		nslots = 1;
1197 	} else {
1198 		/*
1199 		 * Transfer size bigger than 64K will be handled with maximum of
1200 		 * two paRAM slots.
1201 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1202 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1203 		 * slot2: the remaining amount of data after slot1.
1204 		 *	  ACNT = full_length - length1, length2 = ACNT
1205 		 *
1206 		 * When the full_length is multibple of 32767 one slot can be
1207 		 * used to complete the transfer.
1208 		 */
1209 		width = array_size;
1210 		pset_len = rounddown(len, width);
1211 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1212 		if (unlikely(pset_len == len))
1213 			nslots = 1;
1214 		else
1215 			nslots = 2;
1216 	}
1217 
1218 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1219 	if (!edesc)
1220 		return NULL;
1221 
1222 	edesc->pset_nr = nslots;
1223 	edesc->residue = edesc->residue_stat = len;
1224 	edesc->direction = DMA_MEM_TO_MEM;
1225 	edesc->echan = echan;
1226 
1227 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1228 			       width, pset_len, DMA_MEM_TO_MEM);
1229 	if (ret < 0) {
1230 		kfree(edesc);
1231 		return NULL;
1232 	}
1233 
1234 	edesc->absync = ret;
1235 
1236 	edesc->pset[0].param.opt |= ITCCHEN;
1237 	if (nslots == 1) {
1238 		/* Enable transfer complete interrupt if requested */
1239 		if (tx_flags & DMA_PREP_INTERRUPT)
1240 			edesc->pset[0].param.opt |= TCINTEN;
1241 	} else {
1242 		/* Enable transfer complete chaining for the first slot */
1243 		edesc->pset[0].param.opt |= TCCHEN;
1244 
1245 		if (echan->slot[1] < 0) {
1246 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1247 							 EDMA_SLOT_ANY);
1248 			if (echan->slot[1] < 0) {
1249 				kfree(edesc);
1250 				dev_err(dev, "%s: Failed to allocate slot\n",
1251 					__func__);
1252 				return NULL;
1253 			}
1254 		}
1255 		dest += pset_len;
1256 		src += pset_len;
1257 		pset_len = width = len % array_size;
1258 
1259 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1260 				       width, pset_len, DMA_MEM_TO_MEM);
1261 		if (ret < 0) {
1262 			kfree(edesc);
1263 			return NULL;
1264 		}
1265 
1266 		edesc->pset[1].param.opt |= ITCCHEN;
1267 		/* Enable transfer complete interrupt if requested */
1268 		if (tx_flags & DMA_PREP_INTERRUPT)
1269 			edesc->pset[1].param.opt |= TCINTEN;
1270 	}
1271 
1272 	if (!(tx_flags & DMA_PREP_INTERRUPT))
1273 		edesc->polled = true;
1274 
1275 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1276 }
1277 
1278 static struct dma_async_tx_descriptor *
1279 edma_prep_dma_interleaved(struct dma_chan *chan,
1280 			  struct dma_interleaved_template *xt,
1281 			  unsigned long tx_flags)
1282 {
1283 	struct device *dev = chan->device->dev;
1284 	struct edma_chan *echan = to_edma_chan(chan);
1285 	struct edmacc_param *param;
1286 	struct edma_desc *edesc;
1287 	size_t src_icg, dst_icg;
1288 	int src_bidx, dst_bidx;
1289 
1290 	/* Slave mode is not supported */
1291 	if (is_slave_direction(xt->dir))
1292 		return NULL;
1293 
1294 	if (xt->frame_size != 1 || xt->numf == 0)
1295 		return NULL;
1296 
1297 	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1298 		return NULL;
1299 
1300 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1301 	if (src_icg) {
1302 		src_bidx = src_icg + xt->sgl[0].size;
1303 	} else if (xt->src_inc) {
1304 		src_bidx = xt->sgl[0].size;
1305 	} else {
1306 		dev_err(dev, "%s: SRC constant addressing is not supported\n",
1307 			__func__);
1308 		return NULL;
1309 	}
1310 
1311 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1312 	if (dst_icg) {
1313 		dst_bidx = dst_icg + xt->sgl[0].size;
1314 	} else if (xt->dst_inc) {
1315 		dst_bidx = xt->sgl[0].size;
1316 	} else {
1317 		dev_err(dev, "%s: DST constant addressing is not supported\n",
1318 			__func__);
1319 		return NULL;
1320 	}
1321 
1322 	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1323 		return NULL;
1324 
1325 	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1326 	if (!edesc)
1327 		return NULL;
1328 
1329 	edesc->direction = DMA_MEM_TO_MEM;
1330 	edesc->echan = echan;
1331 	edesc->pset_nr = 1;
1332 
1333 	param = &edesc->pset[0].param;
1334 
1335 	param->src = xt->src_start;
1336 	param->dst = xt->dst_start;
1337 	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1338 	param->ccnt = 1;
1339 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1340 	param->src_dst_cidx = 0;
1341 
1342 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1343 	param->opt |= ITCCHEN;
1344 	/* Enable transfer complete interrupt if requested */
1345 	if (tx_flags & DMA_PREP_INTERRUPT)
1346 		param->opt |= TCINTEN;
1347 	else
1348 		edesc->polled = true;
1349 
1350 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1351 }
1352 
1353 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1354 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1355 	size_t period_len, enum dma_transfer_direction direction,
1356 	unsigned long tx_flags)
1357 {
1358 	struct edma_chan *echan = to_edma_chan(chan);
1359 	struct device *dev = chan->device->dev;
1360 	struct edma_desc *edesc;
1361 	dma_addr_t src_addr, dst_addr;
1362 	enum dma_slave_buswidth dev_width;
1363 	bool use_intermediate = false;
1364 	u32 burst;
1365 	int i, ret, nslots;
1366 
1367 	if (unlikely(!echan || !buf_len || !period_len))
1368 		return NULL;
1369 
1370 	if (direction == DMA_DEV_TO_MEM) {
1371 		src_addr = echan->cfg.src_addr;
1372 		dst_addr = buf_addr;
1373 		dev_width = echan->cfg.src_addr_width;
1374 		burst = echan->cfg.src_maxburst;
1375 	} else if (direction == DMA_MEM_TO_DEV) {
1376 		src_addr = buf_addr;
1377 		dst_addr = echan->cfg.dst_addr;
1378 		dev_width = echan->cfg.dst_addr_width;
1379 		burst = echan->cfg.dst_maxburst;
1380 	} else {
1381 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1382 		return NULL;
1383 	}
1384 
1385 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1386 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1387 		return NULL;
1388 	}
1389 
1390 	if (unlikely(buf_len % period_len)) {
1391 		dev_err(dev, "Period should be multiple of Buffer length\n");
1392 		return NULL;
1393 	}
1394 
1395 	nslots = (buf_len / period_len) + 1;
1396 
1397 	/*
1398 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1399 	 * by cases where the number of periods is more than the maximum
1400 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1401 	 * such as Slave SGs, such delays are tolerable and synchronized,
1402 	 * but the synchronization is difficult to achieve with Cyclic and
1403 	 * cannot be guaranteed, so we error out early.
1404 	 */
1405 	if (nslots > MAX_NR_SG) {
1406 		/*
1407 		 * If the burst and period sizes are the same, we can put
1408 		 * the full buffer into a single period and activate
1409 		 * intermediate interrupts. This will produce interrupts
1410 		 * after each burst, which is also after each desired period.
1411 		 */
1412 		if (burst == period_len) {
1413 			period_len = buf_len;
1414 			nslots = 2;
1415 			use_intermediate = true;
1416 		} else {
1417 			return NULL;
1418 		}
1419 	}
1420 
1421 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1422 	if (!edesc)
1423 		return NULL;
1424 
1425 	edesc->cyclic = 1;
1426 	edesc->pset_nr = nslots;
1427 	edesc->residue = edesc->residue_stat = buf_len;
1428 	edesc->direction = direction;
1429 	edesc->echan = echan;
1430 
1431 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1432 		__func__, echan->ch_num, nslots, period_len, buf_len);
1433 
1434 	for (i = 0; i < nslots; i++) {
1435 		/* Allocate a PaRAM slot, if needed */
1436 		if (echan->slot[i] < 0) {
1437 			echan->slot[i] =
1438 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1439 			if (echan->slot[i] < 0) {
1440 				kfree(edesc);
1441 				dev_err(dev, "%s: Failed to allocate slot\n",
1442 					__func__);
1443 				return NULL;
1444 			}
1445 		}
1446 
1447 		if (i == nslots - 1) {
1448 			memcpy(&edesc->pset[i], &edesc->pset[0],
1449 			       sizeof(edesc->pset[0]));
1450 			break;
1451 		}
1452 
1453 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1454 				       dst_addr, burst, dev_width, period_len,
1455 				       direction);
1456 		if (ret < 0) {
1457 			kfree(edesc);
1458 			return NULL;
1459 		}
1460 
1461 		if (direction == DMA_DEV_TO_MEM)
1462 			dst_addr += period_len;
1463 		else
1464 			src_addr += period_len;
1465 
1466 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1467 		dev_vdbg(dev,
1468 			"\n pset[%d]:\n"
1469 			"  chnum\t%d\n"
1470 			"  slot\t%d\n"
1471 			"  opt\t%08x\n"
1472 			"  src\t%08x\n"
1473 			"  dst\t%08x\n"
1474 			"  abcnt\t%08x\n"
1475 			"  ccnt\t%08x\n"
1476 			"  bidx\t%08x\n"
1477 			"  cidx\t%08x\n"
1478 			"  lkrld\t%08x\n",
1479 			i, echan->ch_num, echan->slot[i],
1480 			edesc->pset[i].param.opt,
1481 			edesc->pset[i].param.src,
1482 			edesc->pset[i].param.dst,
1483 			edesc->pset[i].param.a_b_cnt,
1484 			edesc->pset[i].param.ccnt,
1485 			edesc->pset[i].param.src_dst_bidx,
1486 			edesc->pset[i].param.src_dst_cidx,
1487 			edesc->pset[i].param.link_bcntrld);
1488 
1489 		edesc->absync = ret;
1490 
1491 		/*
1492 		 * Enable period interrupt only if it is requested
1493 		 */
1494 		if (tx_flags & DMA_PREP_INTERRUPT) {
1495 			edesc->pset[i].param.opt |= TCINTEN;
1496 
1497 			/* Also enable intermediate interrupts if necessary */
1498 			if (use_intermediate)
1499 				edesc->pset[i].param.opt |= ITCINTEN;
1500 		}
1501 	}
1502 
1503 	/* Place the cyclic channel to highest priority queue */
1504 	if (!echan->tc)
1505 		edma_assign_channel_eventq(echan, EVENTQ_0);
1506 
1507 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1508 }
1509 
1510 static void edma_completion_handler(struct edma_chan *echan)
1511 {
1512 	struct device *dev = echan->vchan.chan.device->dev;
1513 	struct edma_desc *edesc;
1514 
1515 	spin_lock(&echan->vchan.lock);
1516 	edesc = echan->edesc;
1517 	if (edesc) {
1518 		if (edesc->cyclic) {
1519 			vchan_cyclic_callback(&edesc->vdesc);
1520 			spin_unlock(&echan->vchan.lock);
1521 			return;
1522 		} else if (edesc->processed == edesc->pset_nr) {
1523 			edesc->residue = 0;
1524 			edma_stop(echan);
1525 			vchan_cookie_complete(&edesc->vdesc);
1526 			echan->edesc = NULL;
1527 
1528 			dev_dbg(dev, "Transfer completed on channel %d\n",
1529 				echan->ch_num);
1530 		} else {
1531 			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1532 				echan->ch_num);
1533 
1534 			edma_pause(echan);
1535 
1536 			/* Update statistics for tx_status */
1537 			edesc->residue -= edesc->sg_len;
1538 			edesc->residue_stat = edesc->residue;
1539 			edesc->processed_stat = edesc->processed;
1540 		}
1541 		edma_execute(echan);
1542 	}
1543 
1544 	spin_unlock(&echan->vchan.lock);
1545 }
1546 
1547 /* eDMA interrupt handler */
1548 static irqreturn_t dma_irq_handler(int irq, void *data)
1549 {
1550 	struct edma_cc *ecc = data;
1551 	int ctlr;
1552 	u32 sh_ier;
1553 	u32 sh_ipr;
1554 	u32 bank;
1555 
1556 	ctlr = ecc->id;
1557 	if (ctlr < 0)
1558 		return IRQ_NONE;
1559 
1560 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1561 
1562 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1563 	if (!sh_ipr) {
1564 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1565 		if (!sh_ipr)
1566 			return IRQ_NONE;
1567 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1568 		bank = 1;
1569 	} else {
1570 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1571 		bank = 0;
1572 	}
1573 
1574 	do {
1575 		u32 slot;
1576 		u32 channel;
1577 
1578 		slot = __ffs(sh_ipr);
1579 		sh_ipr &= ~(BIT(slot));
1580 
1581 		if (sh_ier & BIT(slot)) {
1582 			channel = (bank << 5) | slot;
1583 			/* Clear the corresponding IPR bits */
1584 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1585 			edma_completion_handler(&ecc->slave_chans[channel]);
1586 		}
1587 	} while (sh_ipr);
1588 
1589 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1590 	return IRQ_HANDLED;
1591 }
1592 
1593 static void edma_error_handler(struct edma_chan *echan)
1594 {
1595 	struct edma_cc *ecc = echan->ecc;
1596 	struct device *dev = echan->vchan.chan.device->dev;
1597 	struct edmacc_param p;
1598 	int err;
1599 
1600 	if (!echan->edesc)
1601 		return;
1602 
1603 	spin_lock(&echan->vchan.lock);
1604 
1605 	err = edma_read_slot(ecc, echan->slot[0], &p);
1606 
1607 	/*
1608 	 * Issue later based on missed flag which will be sure
1609 	 * to happen as:
1610 	 * (1) we finished transmitting an intermediate slot and
1611 	 *     edma_execute is coming up.
1612 	 * (2) or we finished current transfer and issue will
1613 	 *     call edma_execute.
1614 	 *
1615 	 * Important note: issuing can be dangerous here and
1616 	 * lead to some nasty recursion when we are in a NULL
1617 	 * slot. So we avoid doing so and set the missed flag.
1618 	 */
1619 	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1620 		dev_dbg(dev, "Error on null slot, setting miss\n");
1621 		echan->missed = 1;
1622 	} else {
1623 		/*
1624 		 * The slot is already programmed but the event got
1625 		 * missed, so its safe to issue it here.
1626 		 */
1627 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1628 		edma_clean_channel(echan);
1629 		edma_stop(echan);
1630 		edma_start(echan);
1631 		edma_trigger_channel(echan);
1632 	}
1633 	spin_unlock(&echan->vchan.lock);
1634 }
1635 
1636 static inline bool edma_error_pending(struct edma_cc *ecc)
1637 {
1638 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1639 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1640 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1641 		return true;
1642 
1643 	return false;
1644 }
1645 
1646 /* eDMA error interrupt handler */
1647 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1648 {
1649 	struct edma_cc *ecc = data;
1650 	int i, j;
1651 	int ctlr;
1652 	unsigned int cnt = 0;
1653 	unsigned int val;
1654 
1655 	ctlr = ecc->id;
1656 	if (ctlr < 0)
1657 		return IRQ_NONE;
1658 
1659 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1660 
1661 	if (!edma_error_pending(ecc)) {
1662 		/*
1663 		 * The registers indicate no pending error event but the irq
1664 		 * handler has been called.
1665 		 * Ask eDMA to re-evaluate the error registers.
1666 		 */
1667 		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1668 			__func__);
1669 		edma_write(ecc, EDMA_EEVAL, 1);
1670 		return IRQ_NONE;
1671 	}
1672 
1673 	while (1) {
1674 		/* Event missed register(s) */
1675 		for (j = 0; j < 2; j++) {
1676 			unsigned long emr;
1677 
1678 			val = edma_read_array(ecc, EDMA_EMR, j);
1679 			if (!val)
1680 				continue;
1681 
1682 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1683 			emr = val;
1684 			for (i = find_next_bit(&emr, 32, 0); i < 32;
1685 			     i = find_next_bit(&emr, 32, i + 1)) {
1686 				int k = (j << 5) + i;
1687 
1688 				/* Clear the corresponding EMR bits */
1689 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1690 				/* Clear any SER */
1691 				edma_shadow0_write_array(ecc, SH_SECR, j,
1692 							 BIT(i));
1693 				edma_error_handler(&ecc->slave_chans[k]);
1694 			}
1695 		}
1696 
1697 		val = edma_read(ecc, EDMA_QEMR);
1698 		if (val) {
1699 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1700 			/* Not reported, just clear the interrupt reason. */
1701 			edma_write(ecc, EDMA_QEMCR, val);
1702 			edma_shadow0_write(ecc, SH_QSECR, val);
1703 		}
1704 
1705 		val = edma_read(ecc, EDMA_CCERR);
1706 		if (val) {
1707 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1708 			/* Not reported, just clear the interrupt reason. */
1709 			edma_write(ecc, EDMA_CCERRCLR, val);
1710 		}
1711 
1712 		if (!edma_error_pending(ecc))
1713 			break;
1714 		cnt++;
1715 		if (cnt > 10)
1716 			break;
1717 	}
1718 	edma_write(ecc, EDMA_EEVAL, 1);
1719 	return IRQ_HANDLED;
1720 }
1721 
1722 /* Alloc channel resources */
1723 static int edma_alloc_chan_resources(struct dma_chan *chan)
1724 {
1725 	struct edma_chan *echan = to_edma_chan(chan);
1726 	struct edma_cc *ecc = echan->ecc;
1727 	struct device *dev = ecc->dev;
1728 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1729 	int ret;
1730 
1731 	if (echan->tc) {
1732 		eventq_no = echan->tc->id;
1733 	} else if (ecc->tc_list) {
1734 		/* memcpy channel */
1735 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1736 		eventq_no = echan->tc->id;
1737 	}
1738 
1739 	ret = edma_alloc_channel(echan, eventq_no);
1740 	if (ret)
1741 		return ret;
1742 
1743 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1744 	if (echan->slot[0] < 0) {
1745 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1746 			EDMA_CHAN_SLOT(echan->ch_num));
1747 		ret = echan->slot[0];
1748 		goto err_slot;
1749 	}
1750 
1751 	/* Set up channel -> slot mapping for the entry slot */
1752 	edma_set_chmap(echan, echan->slot[0]);
1753 	echan->alloced = true;
1754 
1755 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1756 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1757 		echan->hw_triggered ? "HW" : "SW");
1758 
1759 	return 0;
1760 
1761 err_slot:
1762 	edma_free_channel(echan);
1763 	return ret;
1764 }
1765 
1766 /* Free channel resources */
1767 static void edma_free_chan_resources(struct dma_chan *chan)
1768 {
1769 	struct edma_chan *echan = to_edma_chan(chan);
1770 	struct device *dev = echan->ecc->dev;
1771 	int i;
1772 
1773 	/* Terminate transfers */
1774 	edma_stop(echan);
1775 
1776 	vchan_free_chan_resources(&echan->vchan);
1777 
1778 	/* Free EDMA PaRAM slots */
1779 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1780 		if (echan->slot[i] >= 0) {
1781 			edma_free_slot(echan->ecc, echan->slot[i]);
1782 			echan->slot[i] = -1;
1783 		}
1784 	}
1785 
1786 	/* Set entry slot to the dummy slot */
1787 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1788 
1789 	/* Free EDMA channel */
1790 	if (echan->alloced) {
1791 		edma_free_channel(echan);
1792 		echan->alloced = false;
1793 	}
1794 
1795 	echan->tc = NULL;
1796 	echan->hw_triggered = false;
1797 
1798 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1799 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1800 }
1801 
1802 /* Send pending descriptor to hardware */
1803 static void edma_issue_pending(struct dma_chan *chan)
1804 {
1805 	struct edma_chan *echan = to_edma_chan(chan);
1806 	unsigned long flags;
1807 
1808 	spin_lock_irqsave(&echan->vchan.lock, flags);
1809 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1810 		edma_execute(echan);
1811 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1812 }
1813 
1814 /*
1815  * This limit exists to avoid a possible infinite loop when waiting for proof
1816  * that a particular transfer is completed. This limit can be hit if there
1817  * are large bursts to/from slow devices or the CPU is never able to catch
1818  * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1819  * RX-FIFO, as many as 55 loops have been seen.
1820  */
1821 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1822 
1823 static u32 edma_residue(struct edma_desc *edesc)
1824 {
1825 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1826 	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1827 	struct edma_chan *echan = edesc->echan;
1828 	struct edma_pset *pset = edesc->pset;
1829 	dma_addr_t done, pos, pos_old;
1830 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1831 	int idx = EDMA_REG_ARRAY_INDEX(channel);
1832 	int ch_bit = EDMA_CHANNEL_BIT(channel);
1833 	int event_reg;
1834 	int i;
1835 
1836 	/*
1837 	 * We always read the dst/src position from the first RamPar
1838 	 * pset. That's the one which is active now.
1839 	 */
1840 	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1841 
1842 	/*
1843 	 * "pos" may represent a transfer request that is still being
1844 	 * processed by the EDMACC or EDMATC. We will busy wait until
1845 	 * any one of the situations occurs:
1846 	 *   1. while and event is pending for the channel
1847 	 *   2. a position updated
1848 	 *   3. we hit the loop limit
1849 	 */
1850 	if (is_slave_direction(edesc->direction))
1851 		event_reg = SH_ER;
1852 	else
1853 		event_reg = SH_ESR;
1854 
1855 	pos_old = pos;
1856 	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1857 		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1858 		if (pos != pos_old)
1859 			break;
1860 
1861 		if (!--loop_count) {
1862 			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1863 				"%s: timeout waiting for PaRAM update\n",
1864 				__func__);
1865 			break;
1866 		}
1867 
1868 		cpu_relax();
1869 	}
1870 
1871 	/*
1872 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1873 	 *
1874 	 * We never update edesc->residue in the cyclic case, so we
1875 	 * can tell the remaining room to the end of the circular
1876 	 * buffer.
1877 	 */
1878 	if (edesc->cyclic) {
1879 		done = pos - pset->addr;
1880 		edesc->residue_stat = edesc->residue - done;
1881 		return edesc->residue_stat;
1882 	}
1883 
1884 	/*
1885 	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1886 	 * transfer is completed
1887 	 */
1888 	if (!pos)
1889 		return 0;
1890 	/*
1891 	 * For SG operation we catch up with the last processed
1892 	 * status.
1893 	 */
1894 	pset += edesc->processed_stat;
1895 
1896 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1897 		/*
1898 		 * If we are inside this pset address range, we know
1899 		 * this is the active one. Get the current delta and
1900 		 * stop walking the psets.
1901 		 */
1902 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1903 			return edesc->residue_stat - (pos - pset->addr);
1904 
1905 		/* Otherwise mark it done and update residue_stat. */
1906 		edesc->processed_stat++;
1907 		edesc->residue_stat -= pset->len;
1908 	}
1909 	return edesc->residue_stat;
1910 }
1911 
1912 /* Check request completion status */
1913 static enum dma_status edma_tx_status(struct dma_chan *chan,
1914 				      dma_cookie_t cookie,
1915 				      struct dma_tx_state *txstate)
1916 {
1917 	struct edma_chan *echan = to_edma_chan(chan);
1918 	struct dma_tx_state txstate_tmp;
1919 	enum dma_status ret;
1920 	unsigned long flags;
1921 
1922 	ret = dma_cookie_status(chan, cookie, txstate);
1923 
1924 	if (ret == DMA_COMPLETE)
1925 		return ret;
1926 
1927 	/* Provide a dummy dma_tx_state for completion checking */
1928 	if (!txstate)
1929 		txstate = &txstate_tmp;
1930 
1931 	spin_lock_irqsave(&echan->vchan.lock, flags);
1932 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1933 		txstate->residue = edma_residue(echan->edesc);
1934 	} else {
1935 		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1936 							      cookie);
1937 
1938 		if (vdesc)
1939 			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1940 		else
1941 			txstate->residue = 0;
1942 	}
1943 
1944 	/*
1945 	 * Mark the cookie completed if the residue is 0 for non cyclic
1946 	 * transfers
1947 	 */
1948 	if (ret != DMA_COMPLETE && !txstate->residue &&
1949 	    echan->edesc && echan->edesc->polled &&
1950 	    echan->edesc->vdesc.tx.cookie == cookie) {
1951 		edma_stop(echan);
1952 		vchan_cookie_complete(&echan->edesc->vdesc);
1953 		echan->edesc = NULL;
1954 		edma_execute(echan);
1955 		ret = DMA_COMPLETE;
1956 	}
1957 
1958 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1959 
1960 	return ret;
1961 }
1962 
1963 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1964 {
1965 	if (!memcpy_channels)
1966 		return false;
1967 	while (*memcpy_channels != -1) {
1968 		if (*memcpy_channels == ch_num)
1969 			return true;
1970 		memcpy_channels++;
1971 	}
1972 	return false;
1973 }
1974 
1975 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1976 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1977 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1978 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1979 
1980 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1981 {
1982 	struct dma_device *s_ddev = &ecc->dma_slave;
1983 	struct dma_device *m_ddev = NULL;
1984 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1985 	int i, j;
1986 
1987 	dma_cap_zero(s_ddev->cap_mask);
1988 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1989 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1990 	if (ecc->legacy_mode && !memcpy_channels) {
1991 		dev_warn(ecc->dev,
1992 			 "Legacy memcpy is enabled, things might not work\n");
1993 
1994 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1995 		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1996 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1997 		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1998 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1999 	}
2000 
2001 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
2002 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
2003 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
2004 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
2005 	s_ddev->device_issue_pending = edma_issue_pending;
2006 	s_ddev->device_tx_status = edma_tx_status;
2007 	s_ddev->device_config = edma_slave_config;
2008 	s_ddev->device_pause = edma_dma_pause;
2009 	s_ddev->device_resume = edma_dma_resume;
2010 	s_ddev->device_terminate_all = edma_terminate_all;
2011 	s_ddev->device_synchronize = edma_synchronize;
2012 
2013 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
2014 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2015 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
2016 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2017 	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
2018 
2019 	s_ddev->dev = ecc->dev;
2020 	INIT_LIST_HEAD(&s_ddev->channels);
2021 
2022 	if (memcpy_channels) {
2023 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
2024 		if (!m_ddev) {
2025 			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
2026 			memcpy_channels = NULL;
2027 			goto ch_setup;
2028 		}
2029 		ecc->dma_memcpy = m_ddev;
2030 
2031 		dma_cap_zero(m_ddev->cap_mask);
2032 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
2033 		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
2034 
2035 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
2036 		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
2037 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
2038 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
2039 		m_ddev->device_issue_pending = edma_issue_pending;
2040 		m_ddev->device_tx_status = edma_tx_status;
2041 		m_ddev->device_config = edma_slave_config;
2042 		m_ddev->device_pause = edma_dma_pause;
2043 		m_ddev->device_resume = edma_dma_resume;
2044 		m_ddev->device_terminate_all = edma_terminate_all;
2045 		m_ddev->device_synchronize = edma_synchronize;
2046 
2047 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
2048 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2049 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
2050 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2051 
2052 		m_ddev->dev = ecc->dev;
2053 		INIT_LIST_HEAD(&m_ddev->channels);
2054 	} else if (!ecc->legacy_mode) {
2055 		dev_info(ecc->dev, "memcpy is disabled\n");
2056 	}
2057 
2058 ch_setup:
2059 	for (i = 0; i < ecc->num_channels; i++) {
2060 		struct edma_chan *echan = &ecc->slave_chans[i];
2061 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2062 		echan->ecc = ecc;
2063 		echan->vchan.desc_free = edma_desc_free;
2064 
2065 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2066 			vchan_init(&echan->vchan, m_ddev);
2067 		else
2068 			vchan_init(&echan->vchan, s_ddev);
2069 
2070 		INIT_LIST_HEAD(&echan->node);
2071 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
2072 			echan->slot[j] = -1;
2073 	}
2074 }
2075 
2076 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2077 			      struct edma_cc *ecc)
2078 {
2079 	int i;
2080 	u32 value, cccfg;
2081 	s8 (*queue_priority_map)[2];
2082 
2083 	/* Decode the eDMA3 configuration from CCCFG register */
2084 	cccfg = edma_read(ecc, EDMA_CCCFG);
2085 
2086 	value = GET_NUM_REGN(cccfg);
2087 	ecc->num_region = BIT(value);
2088 
2089 	value = GET_NUM_DMACH(cccfg);
2090 	ecc->num_channels = BIT(value + 1);
2091 
2092 	value = GET_NUM_QDMACH(cccfg);
2093 	ecc->num_qchannels = value * 2;
2094 
2095 	value = GET_NUM_PAENTRY(cccfg);
2096 	ecc->num_slots = BIT(value + 4);
2097 
2098 	value = GET_NUM_EVQUE(cccfg);
2099 	ecc->num_tc = value + 1;
2100 
2101 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2102 
2103 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2104 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2105 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2106 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2107 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2108 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2109 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2110 
2111 	/* Nothing need to be done if queue priority is provided */
2112 	if (pdata->queue_priority_mapping)
2113 		return 0;
2114 
2115 	/*
2116 	 * Configure TC/queue priority as follows:
2117 	 * Q0 - priority 0
2118 	 * Q1 - priority 1
2119 	 * Q2 - priority 2
2120 	 * ...
2121 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2122 	 * priority. So Q0 is the highest priority queue and the last queue has
2123 	 * the lowest priority.
2124 	 */
2125 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2126 					  GFP_KERNEL);
2127 	if (!queue_priority_map)
2128 		return -ENOMEM;
2129 
2130 	for (i = 0; i < ecc->num_tc; i++) {
2131 		queue_priority_map[i][0] = i;
2132 		queue_priority_map[i][1] = i;
2133 	}
2134 	queue_priority_map[i][0] = -1;
2135 	queue_priority_map[i][1] = -1;
2136 
2137 	pdata->queue_priority_mapping = queue_priority_map;
2138 	/* Default queue has the lowest priority */
2139 	pdata->default_queue = i - 1;
2140 
2141 	return 0;
2142 }
2143 
2144 #if IS_ENABLED(CONFIG_OF)
2145 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2146 			       size_t sz)
2147 {
2148 	const char pname[] = "ti,edma-xbar-event-map";
2149 	struct resource res;
2150 	void __iomem *xbar;
2151 	s16 (*xbar_chans)[2];
2152 	size_t nelm = sz / sizeof(s16);
2153 	u32 shift, offset, mux;
2154 	int ret, i;
2155 
2156 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2157 	if (!xbar_chans)
2158 		return -ENOMEM;
2159 
2160 	ret = of_address_to_resource(dev->of_node, 1, &res);
2161 	if (ret)
2162 		return -ENOMEM;
2163 
2164 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2165 	if (!xbar)
2166 		return -ENOMEM;
2167 
2168 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2169 					 nelm);
2170 	if (ret)
2171 		return -EIO;
2172 
2173 	/* Invalidate last entry for the other user of this mess */
2174 	nelm >>= 1;
2175 	xbar_chans[nelm][0] = -1;
2176 	xbar_chans[nelm][1] = -1;
2177 
2178 	for (i = 0; i < nelm; i++) {
2179 		shift = (xbar_chans[i][1] & 0x03) << 3;
2180 		offset = xbar_chans[i][1] & 0xfffffffc;
2181 		mux = readl(xbar + offset);
2182 		mux &= ~(0xff << shift);
2183 		mux |= xbar_chans[i][0] << shift;
2184 		writel(mux, (xbar + offset));
2185 	}
2186 
2187 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2188 	return 0;
2189 }
2190 
2191 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2192 						     bool legacy_mode)
2193 {
2194 	struct edma_soc_info *info;
2195 	struct property *prop;
2196 	int sz, ret;
2197 
2198 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2199 	if (!info)
2200 		return ERR_PTR(-ENOMEM);
2201 
2202 	if (legacy_mode) {
2203 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2204 					&sz);
2205 		if (prop) {
2206 			ret = edma_xbar_event_map(dev, info, sz);
2207 			if (ret)
2208 				return ERR_PTR(ret);
2209 		}
2210 		return info;
2211 	}
2212 
2213 	/* Get the list of channels allocated to be used for memcpy */
2214 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2215 	if (prop) {
2216 		const char pname[] = "ti,edma-memcpy-channels";
2217 		size_t nelm = sz / sizeof(s32);
2218 		s32 *memcpy_ch;
2219 
2220 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2221 					 GFP_KERNEL);
2222 		if (!memcpy_ch)
2223 			return ERR_PTR(-ENOMEM);
2224 
2225 		ret = of_property_read_u32_array(dev->of_node, pname,
2226 						 (u32 *)memcpy_ch, nelm);
2227 		if (ret)
2228 			return ERR_PTR(ret);
2229 
2230 		memcpy_ch[nelm] = -1;
2231 		info->memcpy_channels = memcpy_ch;
2232 	}
2233 
2234 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2235 				&sz);
2236 	if (prop) {
2237 		const char pname[] = "ti,edma-reserved-slot-ranges";
2238 		u32 (*tmp)[2];
2239 		s16 (*rsv_slots)[2];
2240 		size_t nelm = sz / sizeof(*tmp);
2241 		struct edma_rsv_info *rsv_info;
2242 		int i;
2243 
2244 		if (!nelm)
2245 			return info;
2246 
2247 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2248 		if (!tmp)
2249 			return ERR_PTR(-ENOMEM);
2250 
2251 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2252 		if (!rsv_info) {
2253 			kfree(tmp);
2254 			return ERR_PTR(-ENOMEM);
2255 		}
2256 
2257 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2258 					 GFP_KERNEL);
2259 		if (!rsv_slots) {
2260 			kfree(tmp);
2261 			return ERR_PTR(-ENOMEM);
2262 		}
2263 
2264 		ret = of_property_read_u32_array(dev->of_node, pname,
2265 						 (u32 *)tmp, nelm * 2);
2266 		if (ret) {
2267 			kfree(tmp);
2268 			return ERR_PTR(ret);
2269 		}
2270 
2271 		for (i = 0; i < nelm; i++) {
2272 			rsv_slots[i][0] = tmp[i][0];
2273 			rsv_slots[i][1] = tmp[i][1];
2274 		}
2275 		rsv_slots[nelm][0] = -1;
2276 		rsv_slots[nelm][1] = -1;
2277 
2278 		info->rsv = rsv_info;
2279 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2280 
2281 		kfree(tmp);
2282 	}
2283 
2284 	return info;
2285 }
2286 
2287 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2288 				      struct of_dma *ofdma)
2289 {
2290 	struct edma_cc *ecc = ofdma->of_dma_data;
2291 	struct dma_chan *chan = NULL;
2292 	struct edma_chan *echan;
2293 	int i;
2294 
2295 	if (!ecc || dma_spec->args_count < 1)
2296 		return NULL;
2297 
2298 	for (i = 0; i < ecc->num_channels; i++) {
2299 		echan = &ecc->slave_chans[i];
2300 		if (echan->ch_num == dma_spec->args[0]) {
2301 			chan = &echan->vchan.chan;
2302 			break;
2303 		}
2304 	}
2305 
2306 	if (!chan)
2307 		return NULL;
2308 
2309 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2310 		goto out;
2311 
2312 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2313 	    dma_spec->args[1] < echan->ecc->num_tc) {
2314 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2315 		goto out;
2316 	}
2317 
2318 	return NULL;
2319 out:
2320 	/* The channel is going to be used as HW synchronized */
2321 	echan->hw_triggered = true;
2322 	return dma_get_slave_channel(chan);
2323 }
2324 #else
2325 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2326 						     bool legacy_mode)
2327 {
2328 	return ERR_PTR(-EINVAL);
2329 }
2330 
2331 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2332 				      struct of_dma *ofdma)
2333 {
2334 	return NULL;
2335 }
2336 #endif
2337 
2338 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2339 
2340 static int edma_probe(struct platform_device *pdev)
2341 {
2342 	struct edma_soc_info	*info = pdev->dev.platform_data;
2343 	s8			(*queue_priority_mapping)[2];
2344 	const s16		(*reserved)[2];
2345 	int			i, irq;
2346 	char			*irq_name;
2347 	struct resource		*mem;
2348 	struct device_node	*node = pdev->dev.of_node;
2349 	struct device		*dev = &pdev->dev;
2350 	struct edma_cc		*ecc;
2351 	bool			legacy_mode = true;
2352 	int ret;
2353 
2354 	if (node) {
2355 		const struct of_device_id *match;
2356 
2357 		match = of_match_node(edma_of_ids, node);
2358 		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2359 			legacy_mode = false;
2360 
2361 		info = edma_setup_info_from_dt(dev, legacy_mode);
2362 		if (IS_ERR(info)) {
2363 			dev_err(dev, "failed to get DT data\n");
2364 			return PTR_ERR(info);
2365 		}
2366 	}
2367 
2368 	if (!info)
2369 		return -ENODEV;
2370 
2371 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2372 	if (ret)
2373 		return ret;
2374 
2375 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2376 	if (!ecc)
2377 		return -ENOMEM;
2378 
2379 	ecc->dev = dev;
2380 	ecc->id = pdev->id;
2381 	ecc->legacy_mode = legacy_mode;
2382 	/* When booting with DT the pdev->id is -1 */
2383 	if (ecc->id < 0)
2384 		ecc->id = 0;
2385 
2386 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2387 	if (!mem) {
2388 		dev_dbg(dev, "mem resource not found, using index 0\n");
2389 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2390 		if (!mem) {
2391 			dev_err(dev, "no mem resource?\n");
2392 			return -ENODEV;
2393 		}
2394 	}
2395 	ecc->base = devm_ioremap_resource(dev, mem);
2396 	if (IS_ERR(ecc->base))
2397 		return PTR_ERR(ecc->base);
2398 
2399 	platform_set_drvdata(pdev, ecc);
2400 
2401 	pm_runtime_enable(dev);
2402 	ret = pm_runtime_get_sync(dev);
2403 	if (ret < 0) {
2404 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2405 		pm_runtime_disable(dev);
2406 		return ret;
2407 	}
2408 
2409 	/* Get eDMA3 configuration from IP */
2410 	ret = edma_setup_from_hw(dev, info, ecc);
2411 	if (ret)
2412 		goto err_disable_pm;
2413 
2414 	/* Allocate memory based on the information we got from the IP */
2415 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2416 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2417 
2418 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2419 				       sizeof(unsigned long), GFP_KERNEL);
2420 
2421 	ecc->channels_mask = devm_kcalloc(dev,
2422 					   BITS_TO_LONGS(ecc->num_channels),
2423 					   sizeof(unsigned long), GFP_KERNEL);
2424 	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2425 		ret = -ENOMEM;
2426 		goto err_disable_pm;
2427 	}
2428 
2429 	/* Mark all channels available initially */
2430 	bitmap_fill(ecc->channels_mask, ecc->num_channels);
2431 
2432 	ecc->default_queue = info->default_queue;
2433 
2434 	if (info->rsv) {
2435 		/* Set the reserved slots in inuse list */
2436 		reserved = info->rsv->rsv_slots;
2437 		if (reserved) {
2438 			for (i = 0; reserved[i][0] != -1; i++)
2439 				bitmap_set(ecc->slot_inuse, reserved[i][0],
2440 					   reserved[i][1]);
2441 		}
2442 
2443 		/* Clear channels not usable for Linux */
2444 		reserved = info->rsv->rsv_chans;
2445 		if (reserved) {
2446 			for (i = 0; reserved[i][0] != -1; i++)
2447 				bitmap_clear(ecc->channels_mask, reserved[i][0],
2448 					     reserved[i][1]);
2449 		}
2450 	}
2451 
2452 	for (i = 0; i < ecc->num_slots; i++) {
2453 		/* Reset only unused - not reserved - paRAM slots */
2454 		if (!test_bit(i, ecc->slot_inuse))
2455 			edma_write_slot(ecc, i, &dummy_paramset);
2456 	}
2457 
2458 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2459 	if (irq < 0 && node)
2460 		irq = irq_of_parse_and_map(node, 0);
2461 
2462 	if (irq >= 0) {
2463 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2464 					  dev_name(dev));
2465 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2466 				       ecc);
2467 		if (ret) {
2468 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2469 			goto err_disable_pm;
2470 		}
2471 		ecc->ccint = irq;
2472 	}
2473 
2474 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2475 	if (irq < 0 && node)
2476 		irq = irq_of_parse_and_map(node, 2);
2477 
2478 	if (irq >= 0) {
2479 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2480 					  dev_name(dev));
2481 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2482 				       ecc);
2483 		if (ret) {
2484 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2485 			goto err_disable_pm;
2486 		}
2487 		ecc->ccerrint = irq;
2488 	}
2489 
2490 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2491 	if (ecc->dummy_slot < 0) {
2492 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2493 		ret = ecc->dummy_slot;
2494 		goto err_disable_pm;
2495 	}
2496 
2497 	queue_priority_mapping = info->queue_priority_mapping;
2498 
2499 	if (!ecc->legacy_mode) {
2500 		int lowest_priority = 0;
2501 		unsigned int array_max;
2502 		struct of_phandle_args tc_args;
2503 
2504 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2505 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2506 		if (!ecc->tc_list) {
2507 			ret = -ENOMEM;
2508 			goto err_reg1;
2509 		}
2510 
2511 		for (i = 0;; i++) {
2512 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2513 							       1, i, &tc_args);
2514 			if (ret || i == ecc->num_tc)
2515 				break;
2516 
2517 			ecc->tc_list[i].node = tc_args.np;
2518 			ecc->tc_list[i].id = i;
2519 			queue_priority_mapping[i][1] = tc_args.args[0];
2520 			if (queue_priority_mapping[i][1] > lowest_priority) {
2521 				lowest_priority = queue_priority_mapping[i][1];
2522 				info->default_queue = i;
2523 			}
2524 		}
2525 
2526 		/* See if we have optional dma-channel-mask array */
2527 		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2528 		ret = of_property_read_variable_u32_array(node,
2529 						"dma-channel-mask",
2530 						(u32 *)ecc->channels_mask,
2531 						1, array_max);
2532 		if (ret > 0 && ret != array_max)
2533 			dev_warn(dev, "dma-channel-mask is not complete.\n");
2534 		else if (ret == -EOVERFLOW || ret == -ENODATA)
2535 			dev_warn(dev,
2536 				 "dma-channel-mask is out of range or empty\n");
2537 	}
2538 
2539 	/* Event queue priority mapping */
2540 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2541 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2542 					      queue_priority_mapping[i][1]);
2543 
2544 	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2545 	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2546 	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2547 
2548 	ecc->info = info;
2549 
2550 	/* Init the dma device and channels */
2551 	edma_dma_init(ecc, legacy_mode);
2552 
2553 	for (i = 0; i < ecc->num_channels; i++) {
2554 		/* Do not touch reserved channels */
2555 		if (!test_bit(i, ecc->channels_mask))
2556 			continue;
2557 
2558 		/* Assign all channels to the default queue */
2559 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2560 					   info->default_queue);
2561 		/* Set entry slot to the dummy slot */
2562 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2563 	}
2564 
2565 	ecc->dma_slave.filter.map = info->slave_map;
2566 	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2567 	ecc->dma_slave.filter.fn = edma_filter_fn;
2568 
2569 	ret = dma_async_device_register(&ecc->dma_slave);
2570 	if (ret) {
2571 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2572 		goto err_reg1;
2573 	}
2574 
2575 	if (ecc->dma_memcpy) {
2576 		ret = dma_async_device_register(ecc->dma_memcpy);
2577 		if (ret) {
2578 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2579 				ret);
2580 			dma_async_device_unregister(&ecc->dma_slave);
2581 			goto err_reg1;
2582 		}
2583 	}
2584 
2585 	if (node)
2586 		of_dma_controller_register(node, of_edma_xlate, ecc);
2587 
2588 	dev_info(dev, "TI EDMA DMA engine driver\n");
2589 
2590 	return 0;
2591 
2592 err_reg1:
2593 	edma_free_slot(ecc, ecc->dummy_slot);
2594 err_disable_pm:
2595 	pm_runtime_put_sync(dev);
2596 	pm_runtime_disable(dev);
2597 	return ret;
2598 }
2599 
2600 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2601 {
2602 	struct edma_chan *echan, *_echan;
2603 
2604 	list_for_each_entry_safe(echan, _echan,
2605 			&dmadev->channels, vchan.chan.device_node) {
2606 		list_del(&echan->vchan.chan.device_node);
2607 		tasklet_kill(&echan->vchan.task);
2608 	}
2609 }
2610 
2611 static int edma_remove(struct platform_device *pdev)
2612 {
2613 	struct device *dev = &pdev->dev;
2614 	struct edma_cc *ecc = dev_get_drvdata(dev);
2615 
2616 	devm_free_irq(dev, ecc->ccint, ecc);
2617 	devm_free_irq(dev, ecc->ccerrint, ecc);
2618 
2619 	edma_cleanupp_vchan(&ecc->dma_slave);
2620 
2621 	if (dev->of_node)
2622 		of_dma_controller_free(dev->of_node);
2623 	dma_async_device_unregister(&ecc->dma_slave);
2624 	if (ecc->dma_memcpy)
2625 		dma_async_device_unregister(ecc->dma_memcpy);
2626 	edma_free_slot(ecc, ecc->dummy_slot);
2627 	pm_runtime_put_sync(dev);
2628 	pm_runtime_disable(dev);
2629 
2630 	return 0;
2631 }
2632 
2633 #ifdef CONFIG_PM_SLEEP
2634 static int edma_pm_suspend(struct device *dev)
2635 {
2636 	struct edma_cc *ecc = dev_get_drvdata(dev);
2637 	struct edma_chan *echan = ecc->slave_chans;
2638 	int i;
2639 
2640 	for (i = 0; i < ecc->num_channels; i++) {
2641 		if (echan[i].alloced)
2642 			edma_setup_interrupt(&echan[i], false);
2643 	}
2644 
2645 	return 0;
2646 }
2647 
2648 static int edma_pm_resume(struct device *dev)
2649 {
2650 	struct edma_cc *ecc = dev_get_drvdata(dev);
2651 	struct edma_chan *echan = ecc->slave_chans;
2652 	int i;
2653 	s8 (*queue_priority_mapping)[2];
2654 
2655 	/* re initialize dummy slot to dummy param set */
2656 	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2657 
2658 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2659 
2660 	/* Event queue priority mapping */
2661 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2662 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2663 					      queue_priority_mapping[i][1]);
2664 
2665 	for (i = 0; i < ecc->num_channels; i++) {
2666 		if (echan[i].alloced) {
2667 			/* ensure access through shadow region 0 */
2668 			edma_or_array2(ecc, EDMA_DRAE, 0,
2669 				       EDMA_REG_ARRAY_INDEX(i),
2670 				       EDMA_CHANNEL_BIT(i));
2671 
2672 			edma_setup_interrupt(&echan[i], true);
2673 
2674 			/* Set up channel -> slot mapping for the entry slot */
2675 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2676 		}
2677 	}
2678 
2679 	return 0;
2680 }
2681 #endif
2682 
2683 static const struct dev_pm_ops edma_pm_ops = {
2684 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2685 };
2686 
2687 static struct platform_driver edma_driver = {
2688 	.probe		= edma_probe,
2689 	.remove		= edma_remove,
2690 	.driver = {
2691 		.name	= "edma",
2692 		.pm	= &edma_pm_ops,
2693 		.of_match_table = edma_of_ids,
2694 	},
2695 };
2696 
2697 static int edma_tptc_probe(struct platform_device *pdev)
2698 {
2699 	pm_runtime_enable(&pdev->dev);
2700 	return pm_runtime_get_sync(&pdev->dev);
2701 }
2702 
2703 static struct platform_driver edma_tptc_driver = {
2704 	.probe		= edma_tptc_probe,
2705 	.driver = {
2706 		.name	= "edma3-tptc",
2707 		.of_match_table = edma_tptc_of_ids,
2708 	},
2709 };
2710 
2711 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2712 {
2713 	bool match = false;
2714 
2715 	if (chan->device->dev->driver == &edma_driver.driver) {
2716 		struct edma_chan *echan = to_edma_chan(chan);
2717 		unsigned ch_req = *(unsigned *)param;
2718 		if (ch_req == echan->ch_num) {
2719 			/* The channel is going to be used as HW synchronized */
2720 			echan->hw_triggered = true;
2721 			match = true;
2722 		}
2723 	}
2724 	return match;
2725 }
2726 
2727 static int edma_init(void)
2728 {
2729 	int ret;
2730 
2731 	ret = platform_driver_register(&edma_tptc_driver);
2732 	if (ret)
2733 		return ret;
2734 
2735 	return platform_driver_register(&edma_driver);
2736 }
2737 subsys_initcall(edma_init);
2738 
2739 static void __exit edma_exit(void)
2740 {
2741 	platform_driver_unregister(&edma_driver);
2742 	platform_driver_unregister(&edma_tptc_driver);
2743 }
2744 module_exit(edma_exit);
2745 
2746 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2747 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2748 MODULE_LICENSE("GPL v2");
2749