1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * TI EDMA DMA engine driver 4 * 5 * Copyright 2012 Texas Instruments 6 */ 7 8 #include <linux/dmaengine.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/bitmap.h> 11 #include <linux/err.h> 12 #include <linux/init.h> 13 #include <linux/interrupt.h> 14 #include <linux/list.h> 15 #include <linux/module.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 #include <linux/spinlock.h> 19 #include <linux/of.h> 20 #include <linux/of_dma.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/of_device.h> 24 #include <linux/pm_runtime.h> 25 26 #include <linux/platform_data/edma.h> 27 28 #include "../dmaengine.h" 29 #include "../virt-dma.h" 30 31 /* Offsets matching "struct edmacc_param" */ 32 #define PARM_OPT 0x00 33 #define PARM_SRC 0x04 34 #define PARM_A_B_CNT 0x08 35 #define PARM_DST 0x0c 36 #define PARM_SRC_DST_BIDX 0x10 37 #define PARM_LINK_BCNTRLD 0x14 38 #define PARM_SRC_DST_CIDX 0x18 39 #define PARM_CCNT 0x1c 40 41 #define PARM_SIZE 0x20 42 43 /* Offsets for EDMA CC global channel registers and their shadows */ 44 #define SH_ER 0x00 /* 64 bits */ 45 #define SH_ECR 0x08 /* 64 bits */ 46 #define SH_ESR 0x10 /* 64 bits */ 47 #define SH_CER 0x18 /* 64 bits */ 48 #define SH_EER 0x20 /* 64 bits */ 49 #define SH_EECR 0x28 /* 64 bits */ 50 #define SH_EESR 0x30 /* 64 bits */ 51 #define SH_SER 0x38 /* 64 bits */ 52 #define SH_SECR 0x40 /* 64 bits */ 53 #define SH_IER 0x50 /* 64 bits */ 54 #define SH_IECR 0x58 /* 64 bits */ 55 #define SH_IESR 0x60 /* 64 bits */ 56 #define SH_IPR 0x68 /* 64 bits */ 57 #define SH_ICR 0x70 /* 64 bits */ 58 #define SH_IEVAL 0x78 59 #define SH_QER 0x80 60 #define SH_QEER 0x84 61 #define SH_QEECR 0x88 62 #define SH_QEESR 0x8c 63 #define SH_QSER 0x90 64 #define SH_QSECR 0x94 65 #define SH_SIZE 0x200 66 67 /* Offsets for EDMA CC global registers */ 68 #define EDMA_REV 0x0000 69 #define EDMA_CCCFG 0x0004 70 #define EDMA_QCHMAP 0x0200 /* 8 registers */ 71 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ 72 #define EDMA_QDMAQNUM 0x0260 73 #define EDMA_QUETCMAP 0x0280 74 #define EDMA_QUEPRI 0x0284 75 #define EDMA_EMR 0x0300 /* 64 bits */ 76 #define EDMA_EMCR 0x0308 /* 64 bits */ 77 #define EDMA_QEMR 0x0310 78 #define EDMA_QEMCR 0x0314 79 #define EDMA_CCERR 0x0318 80 #define EDMA_CCERRCLR 0x031c 81 #define EDMA_EEVAL 0x0320 82 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ 83 #define EDMA_QRAE 0x0380 /* 4 registers */ 84 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ 85 #define EDMA_QSTAT 0x0600 /* 2 registers */ 86 #define EDMA_QWMTHRA 0x0620 87 #define EDMA_QWMTHRB 0x0624 88 #define EDMA_CCSTAT 0x0640 89 90 #define EDMA_M 0x1000 /* global channel registers */ 91 #define EDMA_ECR 0x1008 92 #define EDMA_ECRH 0x100C 93 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ 94 #define EDMA_PARM 0x4000 /* PaRAM entries */ 95 96 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) 97 98 #define EDMA_DCHMAP 0x0100 /* 64 registers */ 99 100 /* CCCFG register */ 101 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ 102 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ 103 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ 104 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ 105 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ 106 #define CHMAP_EXIST BIT(24) 107 108 /* CCSTAT register */ 109 #define EDMA_CCSTAT_ACTV BIT(4) 110 111 /* 112 * Max of 20 segments per channel to conserve PaRAM slots 113 * Also note that MAX_NR_SG should be at least the no.of periods 114 * that are required for ASoC, otherwise DMA prep calls will 115 * fail. Today davinci-pcm is the only user of this driver and 116 * requires at least 17 slots, so we setup the default to 20. 117 */ 118 #define MAX_NR_SG 20 119 #define EDMA_MAX_SLOTS MAX_NR_SG 120 #define EDMA_DESCRIPTORS 16 121 122 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ 123 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ 124 #define EDMA_CONT_PARAMS_ANY 1001 125 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 126 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 127 128 /* 129 * 64bit array registers are split into two 32bit registers: 130 * reg0: channel/event 0-31 131 * reg1: channel/event 32-63 132 * 133 * bit 5 in the channel number tells the array index (0/1) 134 * bit 0-4 (0x1f) is the bit offset within the register 135 */ 136 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) 137 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) 138 139 /* PaRAM slots are laid out like this */ 140 struct edmacc_param { 141 u32 opt; 142 u32 src; 143 u32 a_b_cnt; 144 u32 dst; 145 u32 src_dst_bidx; 146 u32 link_bcntrld; 147 u32 src_dst_cidx; 148 u32 ccnt; 149 } __packed; 150 151 /* fields in edmacc_param.opt */ 152 #define SAM BIT(0) 153 #define DAM BIT(1) 154 #define SYNCDIM BIT(2) 155 #define STATIC BIT(3) 156 #define EDMA_FWID (0x07 << 8) 157 #define TCCMODE BIT(11) 158 #define EDMA_TCC(t) ((t) << 12) 159 #define TCINTEN BIT(20) 160 #define ITCINTEN BIT(21) 161 #define TCCHEN BIT(22) 162 #define ITCCHEN BIT(23) 163 164 struct edma_pset { 165 u32 len; 166 dma_addr_t addr; 167 struct edmacc_param param; 168 }; 169 170 struct edma_desc { 171 struct virt_dma_desc vdesc; 172 struct list_head node; 173 enum dma_transfer_direction direction; 174 int cyclic; 175 bool polled; 176 int absync; 177 int pset_nr; 178 struct edma_chan *echan; 179 int processed; 180 181 /* 182 * The following 4 elements are used for residue accounting. 183 * 184 * - processed_stat: the number of SG elements we have traversed 185 * so far to cover accounting. This is updated directly to processed 186 * during edma_callback and is always <= processed, because processed 187 * refers to the number of pending transfer (programmed to EDMA 188 * controller), where as processed_stat tracks number of transfers 189 * accounted for so far. 190 * 191 * - residue: The amount of bytes we have left to transfer for this desc 192 * 193 * - residue_stat: The residue in bytes of data we have covered 194 * so far for accounting. This is updated directly to residue 195 * during callbacks to keep it current. 196 * 197 * - sg_len: Tracks the length of the current intermediate transfer, 198 * this is required to update the residue during intermediate transfer 199 * completion callback. 200 */ 201 int processed_stat; 202 u32 sg_len; 203 u32 residue; 204 u32 residue_stat; 205 206 struct edma_pset pset[]; 207 }; 208 209 struct edma_cc; 210 211 struct edma_tc { 212 struct device_node *node; 213 u16 id; 214 }; 215 216 struct edma_chan { 217 struct virt_dma_chan vchan; 218 struct list_head node; 219 struct edma_desc *edesc; 220 struct edma_cc *ecc; 221 struct edma_tc *tc; 222 int ch_num; 223 bool alloced; 224 bool hw_triggered; 225 int slot[EDMA_MAX_SLOTS]; 226 int missed; 227 struct dma_slave_config cfg; 228 }; 229 230 struct edma_cc { 231 struct device *dev; 232 struct edma_soc_info *info; 233 void __iomem *base; 234 int id; 235 bool legacy_mode; 236 237 /* eDMA3 resource information */ 238 unsigned num_channels; 239 unsigned num_qchannels; 240 unsigned num_region; 241 unsigned num_slots; 242 unsigned num_tc; 243 bool chmap_exist; 244 enum dma_event_q default_queue; 245 246 unsigned int ccint; 247 unsigned int ccerrint; 248 249 /* 250 * The slot_inuse bit for each PaRAM slot is clear unless the slot is 251 * in use by Linux or if it is allocated to be used by DSP. 252 */ 253 unsigned long *slot_inuse; 254 255 /* 256 * For tracking reserved channels used by DSP. 257 * If the bit is cleared, the channel is allocated to be used by DSP 258 * and Linux must not touch it. 259 */ 260 unsigned long *channels_mask; 261 262 struct dma_device dma_slave; 263 struct dma_device *dma_memcpy; 264 struct edma_chan *slave_chans; 265 struct edma_tc *tc_list; 266 int dummy_slot; 267 }; 268 269 /* dummy param set used to (re)initialize parameter RAM slots */ 270 static const struct edmacc_param dummy_paramset = { 271 .link_bcntrld = 0xffff, 272 .ccnt = 1, 273 }; 274 275 #define EDMA_BINDING_LEGACY 0 276 #define EDMA_BINDING_TPCC 1 277 static const u32 edma_binding_type[] = { 278 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, 279 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, 280 }; 281 282 static const struct of_device_id edma_of_ids[] = { 283 { 284 .compatible = "ti,edma3", 285 .data = &edma_binding_type[EDMA_BINDING_LEGACY], 286 }, 287 { 288 .compatible = "ti,edma3-tpcc", 289 .data = &edma_binding_type[EDMA_BINDING_TPCC], 290 }, 291 {} 292 }; 293 MODULE_DEVICE_TABLE(of, edma_of_ids); 294 295 static const struct of_device_id edma_tptc_of_ids[] = { 296 { .compatible = "ti,edma3-tptc", }, 297 {} 298 }; 299 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); 300 301 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) 302 { 303 return (unsigned int)__raw_readl(ecc->base + offset); 304 } 305 306 static inline void edma_write(struct edma_cc *ecc, int offset, int val) 307 { 308 __raw_writel(val, ecc->base + offset); 309 } 310 311 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, 312 unsigned or) 313 { 314 unsigned val = edma_read(ecc, offset); 315 316 val &= and; 317 val |= or; 318 edma_write(ecc, offset, val); 319 } 320 321 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) 322 { 323 unsigned val = edma_read(ecc, offset); 324 325 val |= or; 326 edma_write(ecc, offset, val); 327 } 328 329 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, 330 int i) 331 { 332 return edma_read(ecc, offset + (i << 2)); 333 } 334 335 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, 336 unsigned val) 337 { 338 edma_write(ecc, offset + (i << 2), val); 339 } 340 341 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, 342 unsigned and, unsigned or) 343 { 344 edma_modify(ecc, offset + (i << 2), and, or); 345 } 346 347 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, 348 unsigned or) 349 { 350 edma_or(ecc, offset + ((i * 2 + j) << 2), or); 351 } 352 353 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, 354 int j, unsigned val) 355 { 356 edma_write(ecc, offset + ((i * 2 + j) << 2), val); 357 } 358 359 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, 360 int offset, int i) 361 { 362 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); 363 } 364 365 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, 366 unsigned val) 367 { 368 edma_write(ecc, EDMA_SHADOW0 + offset, val); 369 } 370 371 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, 372 int i, unsigned val) 373 { 374 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); 375 } 376 377 static inline void edma_param_modify(struct edma_cc *ecc, int offset, 378 int param_no, unsigned and, unsigned or) 379 { 380 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); 381 } 382 383 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, 384 int priority) 385 { 386 int bit = queue_no * 4; 387 388 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); 389 } 390 391 static void edma_set_chmap(struct edma_chan *echan, int slot) 392 { 393 struct edma_cc *ecc = echan->ecc; 394 int channel = EDMA_CHAN_SLOT(echan->ch_num); 395 396 if (ecc->chmap_exist) { 397 slot = EDMA_CHAN_SLOT(slot); 398 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); 399 } 400 } 401 402 static void edma_setup_interrupt(struct edma_chan *echan, bool enable) 403 { 404 struct edma_cc *ecc = echan->ecc; 405 int channel = EDMA_CHAN_SLOT(echan->ch_num); 406 int idx = EDMA_REG_ARRAY_INDEX(channel); 407 int ch_bit = EDMA_CHANNEL_BIT(channel); 408 409 if (enable) { 410 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 411 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); 412 } else { 413 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); 414 } 415 } 416 417 /* 418 * paRAM slot management functions 419 */ 420 static void edma_write_slot(struct edma_cc *ecc, unsigned slot, 421 const struct edmacc_param *param) 422 { 423 slot = EDMA_CHAN_SLOT(slot); 424 if (slot >= ecc->num_slots) 425 return; 426 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); 427 } 428 429 static int edma_read_slot(struct edma_cc *ecc, unsigned slot, 430 struct edmacc_param *param) 431 { 432 slot = EDMA_CHAN_SLOT(slot); 433 if (slot >= ecc->num_slots) 434 return -EINVAL; 435 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); 436 437 return 0; 438 } 439 440 /** 441 * edma_alloc_slot - allocate DMA parameter RAM 442 * @ecc: pointer to edma_cc struct 443 * @slot: specific slot to allocate; negative for "any unused slot" 444 * 445 * This allocates a parameter RAM slot, initializing it to hold a 446 * dummy transfer. Slots allocated using this routine have not been 447 * mapped to a hardware DMA channel, and will normally be used by 448 * linking to them from a slot associated with a DMA channel. 449 * 450 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific 451 * slots may be allocated on behalf of DSP firmware. 452 * 453 * Returns the number of the slot, else negative errno. 454 */ 455 static int edma_alloc_slot(struct edma_cc *ecc, int slot) 456 { 457 if (slot >= 0) { 458 slot = EDMA_CHAN_SLOT(slot); 459 /* Requesting entry paRAM slot for a HW triggered channel. */ 460 if (ecc->chmap_exist && slot < ecc->num_channels) 461 slot = EDMA_SLOT_ANY; 462 } 463 464 if (slot < 0) { 465 if (ecc->chmap_exist) 466 slot = 0; 467 else 468 slot = ecc->num_channels; 469 for (;;) { 470 slot = find_next_zero_bit(ecc->slot_inuse, 471 ecc->num_slots, 472 slot); 473 if (slot == ecc->num_slots) 474 return -ENOMEM; 475 if (!test_and_set_bit(slot, ecc->slot_inuse)) 476 break; 477 } 478 } else if (slot >= ecc->num_slots) { 479 return -EINVAL; 480 } else if (test_and_set_bit(slot, ecc->slot_inuse)) { 481 return -EBUSY; 482 } 483 484 edma_write_slot(ecc, slot, &dummy_paramset); 485 486 return EDMA_CTLR_CHAN(ecc->id, slot); 487 } 488 489 static void edma_free_slot(struct edma_cc *ecc, unsigned slot) 490 { 491 slot = EDMA_CHAN_SLOT(slot); 492 if (slot >= ecc->num_slots) 493 return; 494 495 edma_write_slot(ecc, slot, &dummy_paramset); 496 clear_bit(slot, ecc->slot_inuse); 497 } 498 499 /** 500 * edma_link - link one parameter RAM slot to another 501 * @ecc: pointer to edma_cc struct 502 * @from: parameter RAM slot originating the link 503 * @to: parameter RAM slot which is the link target 504 * 505 * The originating slot should not be part of any active DMA transfer. 506 */ 507 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) 508 { 509 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) 510 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); 511 512 from = EDMA_CHAN_SLOT(from); 513 to = EDMA_CHAN_SLOT(to); 514 if (from >= ecc->num_slots || to >= ecc->num_slots) 515 return; 516 517 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, 518 PARM_OFFSET(to)); 519 } 520 521 /** 522 * edma_get_position - returns the current transfer point 523 * @ecc: pointer to edma_cc struct 524 * @slot: parameter RAM slot being examined 525 * @dst: true selects the dest position, false the source 526 * 527 * Returns the position of the current active slot 528 */ 529 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, 530 bool dst) 531 { 532 u32 offs; 533 534 slot = EDMA_CHAN_SLOT(slot); 535 offs = PARM_OFFSET(slot); 536 offs += dst ? PARM_DST : PARM_SRC; 537 538 return edma_read(ecc, offs); 539 } 540 541 /* 542 * Channels with event associations will be triggered by their hardware 543 * events, and channels without such associations will be triggered by 544 * software. (At this writing there is no interface for using software 545 * triggers except with channels that don't support hardware triggers.) 546 */ 547 static void edma_start(struct edma_chan *echan) 548 { 549 struct edma_cc *ecc = echan->ecc; 550 int channel = EDMA_CHAN_SLOT(echan->ch_num); 551 int idx = EDMA_REG_ARRAY_INDEX(channel); 552 int ch_bit = EDMA_CHANNEL_BIT(channel); 553 554 if (!echan->hw_triggered) { 555 /* EDMA channels without event association */ 556 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 557 edma_shadow0_read_array(ecc, SH_ESR, idx)); 558 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 559 } else { 560 /* EDMA channel with event association */ 561 dev_dbg(ecc->dev, "ER%d %08x\n", idx, 562 edma_shadow0_read_array(ecc, SH_ER, idx)); 563 /* Clear any pending event or error */ 564 edma_write_array(ecc, EDMA_ECR, idx, ch_bit); 565 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 566 /* Clear any SER */ 567 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 568 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); 569 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 570 edma_shadow0_read_array(ecc, SH_EER, idx)); 571 } 572 } 573 574 static void edma_stop(struct edma_chan *echan) 575 { 576 struct edma_cc *ecc = echan->ecc; 577 int channel = EDMA_CHAN_SLOT(echan->ch_num); 578 int idx = EDMA_REG_ARRAY_INDEX(channel); 579 int ch_bit = EDMA_CHANNEL_BIT(channel); 580 581 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); 582 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 583 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 584 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 585 586 /* clear possibly pending completion interrupt */ 587 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 588 589 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 590 edma_shadow0_read_array(ecc, SH_EER, idx)); 591 592 /* REVISIT: consider guarding against inappropriate event 593 * chaining by overwriting with dummy_paramset. 594 */ 595 } 596 597 /* 598 * Temporarily disable EDMA hardware events on the specified channel, 599 * preventing them from triggering new transfers 600 */ 601 static void edma_pause(struct edma_chan *echan) 602 { 603 int channel = EDMA_CHAN_SLOT(echan->ch_num); 604 605 edma_shadow0_write_array(echan->ecc, SH_EECR, 606 EDMA_REG_ARRAY_INDEX(channel), 607 EDMA_CHANNEL_BIT(channel)); 608 } 609 610 /* Re-enable EDMA hardware events on the specified channel. */ 611 static void edma_resume(struct edma_chan *echan) 612 { 613 int channel = EDMA_CHAN_SLOT(echan->ch_num); 614 615 edma_shadow0_write_array(echan->ecc, SH_EESR, 616 EDMA_REG_ARRAY_INDEX(channel), 617 EDMA_CHANNEL_BIT(channel)); 618 } 619 620 static void edma_trigger_channel(struct edma_chan *echan) 621 { 622 struct edma_cc *ecc = echan->ecc; 623 int channel = EDMA_CHAN_SLOT(echan->ch_num); 624 int idx = EDMA_REG_ARRAY_INDEX(channel); 625 int ch_bit = EDMA_CHANNEL_BIT(channel); 626 627 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 628 629 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 630 edma_shadow0_read_array(ecc, SH_ESR, idx)); 631 } 632 633 static void edma_clean_channel(struct edma_chan *echan) 634 { 635 struct edma_cc *ecc = echan->ecc; 636 int channel = EDMA_CHAN_SLOT(echan->ch_num); 637 int idx = EDMA_REG_ARRAY_INDEX(channel); 638 int ch_bit = EDMA_CHANNEL_BIT(channel); 639 640 dev_dbg(ecc->dev, "EMR%d %08x\n", idx, 641 edma_read_array(ecc, EDMA_EMR, idx)); 642 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 643 /* Clear the corresponding EMR bits */ 644 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 645 /* Clear any SER */ 646 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 647 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); 648 } 649 650 /* Move channel to a specific event queue */ 651 static void edma_assign_channel_eventq(struct edma_chan *echan, 652 enum dma_event_q eventq_no) 653 { 654 struct edma_cc *ecc = echan->ecc; 655 int channel = EDMA_CHAN_SLOT(echan->ch_num); 656 int bit = (channel & 0x7) * 4; 657 658 /* default to low priority queue */ 659 if (eventq_no == EVENTQ_DEFAULT) 660 eventq_no = ecc->default_queue; 661 if (eventq_no >= ecc->num_tc) 662 return; 663 664 eventq_no &= 7; 665 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), 666 eventq_no << bit); 667 } 668 669 static int edma_alloc_channel(struct edma_chan *echan, 670 enum dma_event_q eventq_no) 671 { 672 struct edma_cc *ecc = echan->ecc; 673 int channel = EDMA_CHAN_SLOT(echan->ch_num); 674 675 if (!test_bit(echan->ch_num, ecc->channels_mask)) { 676 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n", 677 echan->ch_num); 678 return -EINVAL; 679 } 680 681 /* ensure access through shadow region 0 */ 682 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), 683 EDMA_CHANNEL_BIT(channel)); 684 685 /* ensure no events are pending */ 686 edma_stop(echan); 687 688 edma_setup_interrupt(echan, true); 689 690 edma_assign_channel_eventq(echan, eventq_no); 691 692 return 0; 693 } 694 695 static void edma_free_channel(struct edma_chan *echan) 696 { 697 /* ensure no events are pending */ 698 edma_stop(echan); 699 /* REVISIT should probably take out of shadow region 0 */ 700 edma_setup_interrupt(echan, false); 701 } 702 703 static inline struct edma_chan *to_edma_chan(struct dma_chan *c) 704 { 705 return container_of(c, struct edma_chan, vchan.chan); 706 } 707 708 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) 709 { 710 return container_of(tx, struct edma_desc, vdesc.tx); 711 } 712 713 static void edma_desc_free(struct virt_dma_desc *vdesc) 714 { 715 kfree(container_of(vdesc, struct edma_desc, vdesc)); 716 } 717 718 /* Dispatch a queued descriptor to the controller (caller holds lock) */ 719 static void edma_execute(struct edma_chan *echan) 720 { 721 struct edma_cc *ecc = echan->ecc; 722 struct virt_dma_desc *vdesc; 723 struct edma_desc *edesc; 724 struct device *dev = echan->vchan.chan.device->dev; 725 int i, j, left, nslots; 726 727 if (!echan->edesc) { 728 /* Setup is needed for the first transfer */ 729 vdesc = vchan_next_desc(&echan->vchan); 730 if (!vdesc) 731 return; 732 list_del(&vdesc->node); 733 echan->edesc = to_edma_desc(&vdesc->tx); 734 } 735 736 edesc = echan->edesc; 737 738 /* Find out how many left */ 739 left = edesc->pset_nr - edesc->processed; 740 nslots = min(MAX_NR_SG, left); 741 edesc->sg_len = 0; 742 743 /* Write descriptor PaRAM set(s) */ 744 for (i = 0; i < nslots; i++) { 745 j = i + edesc->processed; 746 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); 747 edesc->sg_len += edesc->pset[j].len; 748 dev_vdbg(dev, 749 "\n pset[%d]:\n" 750 " chnum\t%d\n" 751 " slot\t%d\n" 752 " opt\t%08x\n" 753 " src\t%08x\n" 754 " dst\t%08x\n" 755 " abcnt\t%08x\n" 756 " ccnt\t%08x\n" 757 " bidx\t%08x\n" 758 " cidx\t%08x\n" 759 " lkrld\t%08x\n", 760 j, echan->ch_num, echan->slot[i], 761 edesc->pset[j].param.opt, 762 edesc->pset[j].param.src, 763 edesc->pset[j].param.dst, 764 edesc->pset[j].param.a_b_cnt, 765 edesc->pset[j].param.ccnt, 766 edesc->pset[j].param.src_dst_bidx, 767 edesc->pset[j].param.src_dst_cidx, 768 edesc->pset[j].param.link_bcntrld); 769 /* Link to the previous slot if not the last set */ 770 if (i != (nslots - 1)) 771 edma_link(ecc, echan->slot[i], echan->slot[i + 1]); 772 } 773 774 edesc->processed += nslots; 775 776 /* 777 * If this is either the last set in a set of SG-list transactions 778 * then setup a link to the dummy slot, this results in all future 779 * events being absorbed and that's OK because we're done 780 */ 781 if (edesc->processed == edesc->pset_nr) { 782 if (edesc->cyclic) 783 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); 784 else 785 edma_link(ecc, echan->slot[nslots - 1], 786 echan->ecc->dummy_slot); 787 } 788 789 if (echan->missed) { 790 /* 791 * This happens due to setup times between intermediate 792 * transfers in long SG lists which have to be broken up into 793 * transfers of MAX_NR_SG 794 */ 795 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); 796 edma_clean_channel(echan); 797 edma_stop(echan); 798 edma_start(echan); 799 edma_trigger_channel(echan); 800 echan->missed = 0; 801 } else if (edesc->processed <= MAX_NR_SG) { 802 dev_dbg(dev, "first transfer starting on channel %d\n", 803 echan->ch_num); 804 edma_start(echan); 805 } else { 806 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", 807 echan->ch_num, edesc->processed); 808 edma_resume(echan); 809 } 810 } 811 812 static int edma_terminate_all(struct dma_chan *chan) 813 { 814 struct edma_chan *echan = to_edma_chan(chan); 815 unsigned long flags; 816 LIST_HEAD(head); 817 818 spin_lock_irqsave(&echan->vchan.lock, flags); 819 820 /* 821 * Stop DMA activity: we assume the callback will not be called 822 * after edma_dma() returns (even if it does, it will see 823 * echan->edesc is NULL and exit.) 824 */ 825 if (echan->edesc) { 826 edma_stop(echan); 827 /* Move the cyclic channel back to default queue */ 828 if (!echan->tc && echan->edesc->cyclic) 829 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); 830 831 vchan_terminate_vdesc(&echan->edesc->vdesc); 832 echan->edesc = NULL; 833 } 834 835 vchan_get_all_descriptors(&echan->vchan, &head); 836 spin_unlock_irqrestore(&echan->vchan.lock, flags); 837 vchan_dma_desc_free_list(&echan->vchan, &head); 838 839 return 0; 840 } 841 842 static void edma_synchronize(struct dma_chan *chan) 843 { 844 struct edma_chan *echan = to_edma_chan(chan); 845 846 vchan_synchronize(&echan->vchan); 847 } 848 849 static int edma_slave_config(struct dma_chan *chan, 850 struct dma_slave_config *cfg) 851 { 852 struct edma_chan *echan = to_edma_chan(chan); 853 854 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || 855 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) 856 return -EINVAL; 857 858 if (cfg->src_maxburst > chan->device->max_burst || 859 cfg->dst_maxburst > chan->device->max_burst) 860 return -EINVAL; 861 862 memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); 863 864 return 0; 865 } 866 867 static int edma_dma_pause(struct dma_chan *chan) 868 { 869 struct edma_chan *echan = to_edma_chan(chan); 870 871 if (!echan->edesc) 872 return -EINVAL; 873 874 edma_pause(echan); 875 return 0; 876 } 877 878 static int edma_dma_resume(struct dma_chan *chan) 879 { 880 struct edma_chan *echan = to_edma_chan(chan); 881 882 edma_resume(echan); 883 return 0; 884 } 885 886 /* 887 * A PaRAM set configuration abstraction used by other modes 888 * @chan: Channel who's PaRAM set we're configuring 889 * @pset: PaRAM set to initialize and setup. 890 * @src_addr: Source address of the DMA 891 * @dst_addr: Destination address of the DMA 892 * @burst: In units of dev_width, how much to send 893 * @dev_width: How much is the dev_width 894 * @dma_length: Total length of the DMA transfer 895 * @direction: Direction of the transfer 896 */ 897 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, 898 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, 899 unsigned int acnt, unsigned int dma_length, 900 enum dma_transfer_direction direction) 901 { 902 struct edma_chan *echan = to_edma_chan(chan); 903 struct device *dev = chan->device->dev; 904 struct edmacc_param *param = &epset->param; 905 int bcnt, ccnt, cidx; 906 int src_bidx, dst_bidx, src_cidx, dst_cidx; 907 int absync; 908 909 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ 910 if (!burst) 911 burst = 1; 912 /* 913 * If the maxburst is equal to the fifo width, use 914 * A-synced transfers. This allows for large contiguous 915 * buffer transfers using only one PaRAM set. 916 */ 917 if (burst == 1) { 918 /* 919 * For the A-sync case, bcnt and ccnt are the remainder 920 * and quotient respectively of the division of: 921 * (dma_length / acnt) by (SZ_64K -1). This is so 922 * that in case bcnt over flows, we have ccnt to use. 923 * Note: In A-sync transfer only, bcntrld is used, but it 924 * only applies for sg_dma_len(sg) >= SZ_64K. 925 * In this case, the best way adopted is- bccnt for the 926 * first frame will be the remainder below. Then for 927 * every successive frame, bcnt will be SZ_64K-1. This 928 * is assured as bcntrld = 0xffff in end of function. 929 */ 930 absync = false; 931 ccnt = dma_length / acnt / (SZ_64K - 1); 932 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); 933 /* 934 * If bcnt is non-zero, we have a remainder and hence an 935 * extra frame to transfer, so increment ccnt. 936 */ 937 if (bcnt) 938 ccnt++; 939 else 940 bcnt = SZ_64K - 1; 941 cidx = acnt; 942 } else { 943 /* 944 * If maxburst is greater than the fifo address_width, 945 * use AB-synced transfers where A count is the fifo 946 * address_width and B count is the maxburst. In this 947 * case, we are limited to transfers of C count frames 948 * of (address_width * maxburst) where C count is limited 949 * to SZ_64K-1. This places an upper bound on the length 950 * of an SG segment that can be handled. 951 */ 952 absync = true; 953 bcnt = burst; 954 ccnt = dma_length / (acnt * bcnt); 955 if (ccnt > (SZ_64K - 1)) { 956 dev_err(dev, "Exceeded max SG segment size\n"); 957 return -EINVAL; 958 } 959 cidx = acnt * bcnt; 960 } 961 962 epset->len = dma_length; 963 964 if (direction == DMA_MEM_TO_DEV) { 965 src_bidx = acnt; 966 src_cidx = cidx; 967 dst_bidx = 0; 968 dst_cidx = 0; 969 epset->addr = src_addr; 970 } else if (direction == DMA_DEV_TO_MEM) { 971 src_bidx = 0; 972 src_cidx = 0; 973 dst_bidx = acnt; 974 dst_cidx = cidx; 975 epset->addr = dst_addr; 976 } else if (direction == DMA_MEM_TO_MEM) { 977 src_bidx = acnt; 978 src_cidx = cidx; 979 dst_bidx = acnt; 980 dst_cidx = cidx; 981 epset->addr = src_addr; 982 } else { 983 dev_err(dev, "%s: direction not implemented yet\n", __func__); 984 return -EINVAL; 985 } 986 987 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 988 /* Configure A or AB synchronized transfers */ 989 if (absync) 990 param->opt |= SYNCDIM; 991 992 param->src = src_addr; 993 param->dst = dst_addr; 994 995 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 996 param->src_dst_cidx = (dst_cidx << 16) | src_cidx; 997 998 param->a_b_cnt = bcnt << 16 | acnt; 999 param->ccnt = ccnt; 1000 /* 1001 * Only time when (bcntrld) auto reload is required is for 1002 * A-sync case, and in this case, a requirement of reload value 1003 * of SZ_64K-1 only is assured. 'link' is initially set to NULL 1004 * and then later will be populated by edma_execute. 1005 */ 1006 param->link_bcntrld = 0xffffffff; 1007 return absync; 1008 } 1009 1010 static struct dma_async_tx_descriptor *edma_prep_slave_sg( 1011 struct dma_chan *chan, struct scatterlist *sgl, 1012 unsigned int sg_len, enum dma_transfer_direction direction, 1013 unsigned long tx_flags, void *context) 1014 { 1015 struct edma_chan *echan = to_edma_chan(chan); 1016 struct device *dev = chan->device->dev; 1017 struct edma_desc *edesc; 1018 dma_addr_t src_addr = 0, dst_addr = 0; 1019 enum dma_slave_buswidth dev_width; 1020 u32 burst; 1021 struct scatterlist *sg; 1022 int i, nslots, ret; 1023 1024 if (unlikely(!echan || !sgl || !sg_len)) 1025 return NULL; 1026 1027 if (direction == DMA_DEV_TO_MEM) { 1028 src_addr = echan->cfg.src_addr; 1029 dev_width = echan->cfg.src_addr_width; 1030 burst = echan->cfg.src_maxburst; 1031 } else if (direction == DMA_MEM_TO_DEV) { 1032 dst_addr = echan->cfg.dst_addr; 1033 dev_width = echan->cfg.dst_addr_width; 1034 burst = echan->cfg.dst_maxburst; 1035 } else { 1036 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1037 return NULL; 1038 } 1039 1040 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1041 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1042 return NULL; 1043 } 1044 1045 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); 1046 if (!edesc) 1047 return NULL; 1048 1049 edesc->pset_nr = sg_len; 1050 edesc->residue = 0; 1051 edesc->direction = direction; 1052 edesc->echan = echan; 1053 1054 /* Allocate a PaRAM slot, if needed */ 1055 nslots = min_t(unsigned, MAX_NR_SG, sg_len); 1056 1057 for (i = 0; i < nslots; i++) { 1058 if (echan->slot[i] < 0) { 1059 echan->slot[i] = 1060 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1061 if (echan->slot[i] < 0) { 1062 kfree(edesc); 1063 dev_err(dev, "%s: Failed to allocate slot\n", 1064 __func__); 1065 return NULL; 1066 } 1067 } 1068 } 1069 1070 /* Configure PaRAM sets for each SG */ 1071 for_each_sg(sgl, sg, sg_len, i) { 1072 /* Get address for each SG */ 1073 if (direction == DMA_DEV_TO_MEM) 1074 dst_addr = sg_dma_address(sg); 1075 else 1076 src_addr = sg_dma_address(sg); 1077 1078 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1079 dst_addr, burst, dev_width, 1080 sg_dma_len(sg), direction); 1081 if (ret < 0) { 1082 kfree(edesc); 1083 return NULL; 1084 } 1085 1086 edesc->absync = ret; 1087 edesc->residue += sg_dma_len(sg); 1088 1089 if (i == sg_len - 1) 1090 /* Enable completion interrupt */ 1091 edesc->pset[i].param.opt |= TCINTEN; 1092 else if (!((i+1) % MAX_NR_SG)) 1093 /* 1094 * Enable early completion interrupt for the 1095 * intermediateset. In this case the driver will be 1096 * notified when the paRAM set is submitted to TC. This 1097 * will allow more time to set up the next set of slots. 1098 */ 1099 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); 1100 } 1101 edesc->residue_stat = edesc->residue; 1102 1103 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1104 } 1105 1106 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( 1107 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1108 size_t len, unsigned long tx_flags) 1109 { 1110 int ret, nslots; 1111 struct edma_desc *edesc; 1112 struct device *dev = chan->device->dev; 1113 struct edma_chan *echan = to_edma_chan(chan); 1114 unsigned int width, pset_len, array_size; 1115 1116 if (unlikely(!echan || !len)) 1117 return NULL; 1118 1119 /* Align the array size (acnt block) with the transfer properties */ 1120 switch (__ffs((src | dest | len))) { 1121 case 0: 1122 array_size = SZ_32K - 1; 1123 break; 1124 case 1: 1125 array_size = SZ_32K - 2; 1126 break; 1127 default: 1128 array_size = SZ_32K - 4; 1129 break; 1130 } 1131 1132 if (len < SZ_64K) { 1133 /* 1134 * Transfer size less than 64K can be handled with one paRAM 1135 * slot and with one burst. 1136 * ACNT = length 1137 */ 1138 width = len; 1139 pset_len = len; 1140 nslots = 1; 1141 } else { 1142 /* 1143 * Transfer size bigger than 64K will be handled with maximum of 1144 * two paRAM slots. 1145 * slot1: (full_length / 32767) times 32767 bytes bursts. 1146 * ACNT = 32767, length1: (full_length / 32767) * 32767 1147 * slot2: the remaining amount of data after slot1. 1148 * ACNT = full_length - length1, length2 = ACNT 1149 * 1150 * When the full_length is a multiple of 32767 one slot can be 1151 * used to complete the transfer. 1152 */ 1153 width = array_size; 1154 pset_len = rounddown(len, width); 1155 /* One slot is enough for lengths multiple of (SZ_32K -1) */ 1156 if (unlikely(pset_len == len)) 1157 nslots = 1; 1158 else 1159 nslots = 2; 1160 } 1161 1162 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1163 if (!edesc) 1164 return NULL; 1165 1166 edesc->pset_nr = nslots; 1167 edesc->residue = edesc->residue_stat = len; 1168 edesc->direction = DMA_MEM_TO_MEM; 1169 edesc->echan = echan; 1170 1171 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, 1172 width, pset_len, DMA_MEM_TO_MEM); 1173 if (ret < 0) { 1174 kfree(edesc); 1175 return NULL; 1176 } 1177 1178 edesc->absync = ret; 1179 1180 edesc->pset[0].param.opt |= ITCCHEN; 1181 if (nslots == 1) { 1182 /* Enable transfer complete interrupt if requested */ 1183 if (tx_flags & DMA_PREP_INTERRUPT) 1184 edesc->pset[0].param.opt |= TCINTEN; 1185 } else { 1186 /* Enable transfer complete chaining for the first slot */ 1187 edesc->pset[0].param.opt |= TCCHEN; 1188 1189 if (echan->slot[1] < 0) { 1190 echan->slot[1] = edma_alloc_slot(echan->ecc, 1191 EDMA_SLOT_ANY); 1192 if (echan->slot[1] < 0) { 1193 kfree(edesc); 1194 dev_err(dev, "%s: Failed to allocate slot\n", 1195 __func__); 1196 return NULL; 1197 } 1198 } 1199 dest += pset_len; 1200 src += pset_len; 1201 pset_len = width = len % array_size; 1202 1203 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, 1204 width, pset_len, DMA_MEM_TO_MEM); 1205 if (ret < 0) { 1206 kfree(edesc); 1207 return NULL; 1208 } 1209 1210 edesc->pset[1].param.opt |= ITCCHEN; 1211 /* Enable transfer complete interrupt if requested */ 1212 if (tx_flags & DMA_PREP_INTERRUPT) 1213 edesc->pset[1].param.opt |= TCINTEN; 1214 } 1215 1216 if (!(tx_flags & DMA_PREP_INTERRUPT)) 1217 edesc->polled = true; 1218 1219 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1220 } 1221 1222 static struct dma_async_tx_descriptor * 1223 edma_prep_dma_interleaved(struct dma_chan *chan, 1224 struct dma_interleaved_template *xt, 1225 unsigned long tx_flags) 1226 { 1227 struct device *dev = chan->device->dev; 1228 struct edma_chan *echan = to_edma_chan(chan); 1229 struct edmacc_param *param; 1230 struct edma_desc *edesc; 1231 size_t src_icg, dst_icg; 1232 int src_bidx, dst_bidx; 1233 1234 /* Slave mode is not supported */ 1235 if (is_slave_direction(xt->dir)) 1236 return NULL; 1237 1238 if (xt->frame_size != 1 || xt->numf == 0) 1239 return NULL; 1240 1241 if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K) 1242 return NULL; 1243 1244 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); 1245 if (src_icg) { 1246 src_bidx = src_icg + xt->sgl[0].size; 1247 } else if (xt->src_inc) { 1248 src_bidx = xt->sgl[0].size; 1249 } else { 1250 dev_err(dev, "%s: SRC constant addressing is not supported\n", 1251 __func__); 1252 return NULL; 1253 } 1254 1255 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); 1256 if (dst_icg) { 1257 dst_bidx = dst_icg + xt->sgl[0].size; 1258 } else if (xt->dst_inc) { 1259 dst_bidx = xt->sgl[0].size; 1260 } else { 1261 dev_err(dev, "%s: DST constant addressing is not supported\n", 1262 __func__); 1263 return NULL; 1264 } 1265 1266 if (src_bidx > SZ_64K || dst_bidx > SZ_64K) 1267 return NULL; 1268 1269 edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC); 1270 if (!edesc) 1271 return NULL; 1272 1273 edesc->direction = DMA_MEM_TO_MEM; 1274 edesc->echan = echan; 1275 edesc->pset_nr = 1; 1276 1277 param = &edesc->pset[0].param; 1278 1279 param->src = xt->src_start; 1280 param->dst = xt->dst_start; 1281 param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size; 1282 param->ccnt = 1; 1283 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1284 param->src_dst_cidx = 0; 1285 1286 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1287 param->opt |= ITCCHEN; 1288 /* Enable transfer complete interrupt if requested */ 1289 if (tx_flags & DMA_PREP_INTERRUPT) 1290 param->opt |= TCINTEN; 1291 else 1292 edesc->polled = true; 1293 1294 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1295 } 1296 1297 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( 1298 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1299 size_t period_len, enum dma_transfer_direction direction, 1300 unsigned long tx_flags) 1301 { 1302 struct edma_chan *echan = to_edma_chan(chan); 1303 struct device *dev = chan->device->dev; 1304 struct edma_desc *edesc; 1305 dma_addr_t src_addr, dst_addr; 1306 enum dma_slave_buswidth dev_width; 1307 bool use_intermediate = false; 1308 u32 burst; 1309 int i, ret, nslots; 1310 1311 if (unlikely(!echan || !buf_len || !period_len)) 1312 return NULL; 1313 1314 if (direction == DMA_DEV_TO_MEM) { 1315 src_addr = echan->cfg.src_addr; 1316 dst_addr = buf_addr; 1317 dev_width = echan->cfg.src_addr_width; 1318 burst = echan->cfg.src_maxburst; 1319 } else if (direction == DMA_MEM_TO_DEV) { 1320 src_addr = buf_addr; 1321 dst_addr = echan->cfg.dst_addr; 1322 dev_width = echan->cfg.dst_addr_width; 1323 burst = echan->cfg.dst_maxburst; 1324 } else { 1325 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1326 return NULL; 1327 } 1328 1329 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1330 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1331 return NULL; 1332 } 1333 1334 if (unlikely(buf_len % period_len)) { 1335 dev_err(dev, "Period should be multiple of Buffer length\n"); 1336 return NULL; 1337 } 1338 1339 nslots = (buf_len / period_len) + 1; 1340 1341 /* 1342 * Cyclic DMA users such as audio cannot tolerate delays introduced 1343 * by cases where the number of periods is more than the maximum 1344 * number of SGs the EDMA driver can handle at a time. For DMA types 1345 * such as Slave SGs, such delays are tolerable and synchronized, 1346 * but the synchronization is difficult to achieve with Cyclic and 1347 * cannot be guaranteed, so we error out early. 1348 */ 1349 if (nslots > MAX_NR_SG) { 1350 /* 1351 * If the burst and period sizes are the same, we can put 1352 * the full buffer into a single period and activate 1353 * intermediate interrupts. This will produce interrupts 1354 * after each burst, which is also after each desired period. 1355 */ 1356 if (burst == period_len) { 1357 period_len = buf_len; 1358 nslots = 2; 1359 use_intermediate = true; 1360 } else { 1361 return NULL; 1362 } 1363 } 1364 1365 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1366 if (!edesc) 1367 return NULL; 1368 1369 edesc->cyclic = 1; 1370 edesc->pset_nr = nslots; 1371 edesc->residue = edesc->residue_stat = buf_len; 1372 edesc->direction = direction; 1373 edesc->echan = echan; 1374 1375 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", 1376 __func__, echan->ch_num, nslots, period_len, buf_len); 1377 1378 for (i = 0; i < nslots; i++) { 1379 /* Allocate a PaRAM slot, if needed */ 1380 if (echan->slot[i] < 0) { 1381 echan->slot[i] = 1382 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1383 if (echan->slot[i] < 0) { 1384 kfree(edesc); 1385 dev_err(dev, "%s: Failed to allocate slot\n", 1386 __func__); 1387 return NULL; 1388 } 1389 } 1390 1391 if (i == nslots - 1) { 1392 memcpy(&edesc->pset[i], &edesc->pset[0], 1393 sizeof(edesc->pset[0])); 1394 break; 1395 } 1396 1397 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1398 dst_addr, burst, dev_width, period_len, 1399 direction); 1400 if (ret < 0) { 1401 kfree(edesc); 1402 return NULL; 1403 } 1404 1405 if (direction == DMA_DEV_TO_MEM) 1406 dst_addr += period_len; 1407 else 1408 src_addr += period_len; 1409 1410 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); 1411 dev_vdbg(dev, 1412 "\n pset[%d]:\n" 1413 " chnum\t%d\n" 1414 " slot\t%d\n" 1415 " opt\t%08x\n" 1416 " src\t%08x\n" 1417 " dst\t%08x\n" 1418 " abcnt\t%08x\n" 1419 " ccnt\t%08x\n" 1420 " bidx\t%08x\n" 1421 " cidx\t%08x\n" 1422 " lkrld\t%08x\n", 1423 i, echan->ch_num, echan->slot[i], 1424 edesc->pset[i].param.opt, 1425 edesc->pset[i].param.src, 1426 edesc->pset[i].param.dst, 1427 edesc->pset[i].param.a_b_cnt, 1428 edesc->pset[i].param.ccnt, 1429 edesc->pset[i].param.src_dst_bidx, 1430 edesc->pset[i].param.src_dst_cidx, 1431 edesc->pset[i].param.link_bcntrld); 1432 1433 edesc->absync = ret; 1434 1435 /* 1436 * Enable period interrupt only if it is requested 1437 */ 1438 if (tx_flags & DMA_PREP_INTERRUPT) { 1439 edesc->pset[i].param.opt |= TCINTEN; 1440 1441 /* Also enable intermediate interrupts if necessary */ 1442 if (use_intermediate) 1443 edesc->pset[i].param.opt |= ITCINTEN; 1444 } 1445 } 1446 1447 /* Place the cyclic channel to highest priority queue */ 1448 if (!echan->tc) 1449 edma_assign_channel_eventq(echan, EVENTQ_0); 1450 1451 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1452 } 1453 1454 static void edma_completion_handler(struct edma_chan *echan) 1455 { 1456 struct device *dev = echan->vchan.chan.device->dev; 1457 struct edma_desc *edesc; 1458 1459 spin_lock(&echan->vchan.lock); 1460 edesc = echan->edesc; 1461 if (edesc) { 1462 if (edesc->cyclic) { 1463 vchan_cyclic_callback(&edesc->vdesc); 1464 spin_unlock(&echan->vchan.lock); 1465 return; 1466 } else if (edesc->processed == edesc->pset_nr) { 1467 edesc->residue = 0; 1468 edma_stop(echan); 1469 vchan_cookie_complete(&edesc->vdesc); 1470 echan->edesc = NULL; 1471 1472 dev_dbg(dev, "Transfer completed on channel %d\n", 1473 echan->ch_num); 1474 } else { 1475 dev_dbg(dev, "Sub transfer completed on channel %d\n", 1476 echan->ch_num); 1477 1478 edma_pause(echan); 1479 1480 /* Update statistics for tx_status */ 1481 edesc->residue -= edesc->sg_len; 1482 edesc->residue_stat = edesc->residue; 1483 edesc->processed_stat = edesc->processed; 1484 } 1485 edma_execute(echan); 1486 } 1487 1488 spin_unlock(&echan->vchan.lock); 1489 } 1490 1491 /* eDMA interrupt handler */ 1492 static irqreturn_t dma_irq_handler(int irq, void *data) 1493 { 1494 struct edma_cc *ecc = data; 1495 int ctlr; 1496 u32 sh_ier; 1497 u32 sh_ipr; 1498 u32 bank; 1499 1500 ctlr = ecc->id; 1501 if (ctlr < 0) 1502 return IRQ_NONE; 1503 1504 dev_vdbg(ecc->dev, "dma_irq_handler\n"); 1505 1506 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); 1507 if (!sh_ipr) { 1508 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); 1509 if (!sh_ipr) 1510 return IRQ_NONE; 1511 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); 1512 bank = 1; 1513 } else { 1514 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); 1515 bank = 0; 1516 } 1517 1518 do { 1519 u32 slot; 1520 u32 channel; 1521 1522 slot = __ffs(sh_ipr); 1523 sh_ipr &= ~(BIT(slot)); 1524 1525 if (sh_ier & BIT(slot)) { 1526 channel = (bank << 5) | slot; 1527 /* Clear the corresponding IPR bits */ 1528 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); 1529 edma_completion_handler(&ecc->slave_chans[channel]); 1530 } 1531 } while (sh_ipr); 1532 1533 edma_shadow0_write(ecc, SH_IEVAL, 1); 1534 return IRQ_HANDLED; 1535 } 1536 1537 static void edma_error_handler(struct edma_chan *echan) 1538 { 1539 struct edma_cc *ecc = echan->ecc; 1540 struct device *dev = echan->vchan.chan.device->dev; 1541 struct edmacc_param p; 1542 int err; 1543 1544 if (!echan->edesc) 1545 return; 1546 1547 spin_lock(&echan->vchan.lock); 1548 1549 err = edma_read_slot(ecc, echan->slot[0], &p); 1550 1551 /* 1552 * Issue later based on missed flag which will be sure 1553 * to happen as: 1554 * (1) we finished transmitting an intermediate slot and 1555 * edma_execute is coming up. 1556 * (2) or we finished current transfer and issue will 1557 * call edma_execute. 1558 * 1559 * Important note: issuing can be dangerous here and 1560 * lead to some nasty recursion when we are in a NULL 1561 * slot. So we avoid doing so and set the missed flag. 1562 */ 1563 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { 1564 dev_dbg(dev, "Error on null slot, setting miss\n"); 1565 echan->missed = 1; 1566 } else { 1567 /* 1568 * The slot is already programmed but the event got 1569 * missed, so its safe to issue it here. 1570 */ 1571 dev_dbg(dev, "Missed event, TRIGGERING\n"); 1572 edma_clean_channel(echan); 1573 edma_stop(echan); 1574 edma_start(echan); 1575 edma_trigger_channel(echan); 1576 } 1577 spin_unlock(&echan->vchan.lock); 1578 } 1579 1580 static inline bool edma_error_pending(struct edma_cc *ecc) 1581 { 1582 if (edma_read_array(ecc, EDMA_EMR, 0) || 1583 edma_read_array(ecc, EDMA_EMR, 1) || 1584 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) 1585 return true; 1586 1587 return false; 1588 } 1589 1590 /* eDMA error interrupt handler */ 1591 static irqreturn_t dma_ccerr_handler(int irq, void *data) 1592 { 1593 struct edma_cc *ecc = data; 1594 int i, j; 1595 int ctlr; 1596 unsigned int cnt = 0; 1597 unsigned int val; 1598 1599 ctlr = ecc->id; 1600 if (ctlr < 0) 1601 return IRQ_NONE; 1602 1603 dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); 1604 1605 if (!edma_error_pending(ecc)) { 1606 /* 1607 * The registers indicate no pending error event but the irq 1608 * handler has been called. 1609 * Ask eDMA to re-evaluate the error registers. 1610 */ 1611 dev_err(ecc->dev, "%s: Error interrupt without error event!\n", 1612 __func__); 1613 edma_write(ecc, EDMA_EEVAL, 1); 1614 return IRQ_NONE; 1615 } 1616 1617 while (1) { 1618 /* Event missed register(s) */ 1619 for (j = 0; j < 2; j++) { 1620 unsigned long emr; 1621 1622 val = edma_read_array(ecc, EDMA_EMR, j); 1623 if (!val) 1624 continue; 1625 1626 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); 1627 emr = val; 1628 for_each_set_bit(i, &emr, 32) { 1629 int k = (j << 5) + i; 1630 1631 /* Clear the corresponding EMR bits */ 1632 edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); 1633 /* Clear any SER */ 1634 edma_shadow0_write_array(ecc, SH_SECR, j, 1635 BIT(i)); 1636 edma_error_handler(&ecc->slave_chans[k]); 1637 } 1638 } 1639 1640 val = edma_read(ecc, EDMA_QEMR); 1641 if (val) { 1642 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); 1643 /* Not reported, just clear the interrupt reason. */ 1644 edma_write(ecc, EDMA_QEMCR, val); 1645 edma_shadow0_write(ecc, SH_QSECR, val); 1646 } 1647 1648 val = edma_read(ecc, EDMA_CCERR); 1649 if (val) { 1650 dev_warn(ecc->dev, "CCERR 0x%08x\n", val); 1651 /* Not reported, just clear the interrupt reason. */ 1652 edma_write(ecc, EDMA_CCERRCLR, val); 1653 } 1654 1655 if (!edma_error_pending(ecc)) 1656 break; 1657 cnt++; 1658 if (cnt > 10) 1659 break; 1660 } 1661 edma_write(ecc, EDMA_EEVAL, 1); 1662 return IRQ_HANDLED; 1663 } 1664 1665 /* Alloc channel resources */ 1666 static int edma_alloc_chan_resources(struct dma_chan *chan) 1667 { 1668 struct edma_chan *echan = to_edma_chan(chan); 1669 struct edma_cc *ecc = echan->ecc; 1670 struct device *dev = ecc->dev; 1671 enum dma_event_q eventq_no = EVENTQ_DEFAULT; 1672 int ret; 1673 1674 if (echan->tc) { 1675 eventq_no = echan->tc->id; 1676 } else if (ecc->tc_list) { 1677 /* memcpy channel */ 1678 echan->tc = &ecc->tc_list[ecc->info->default_queue]; 1679 eventq_no = echan->tc->id; 1680 } 1681 1682 ret = edma_alloc_channel(echan, eventq_no); 1683 if (ret) 1684 return ret; 1685 1686 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); 1687 if (echan->slot[0] < 0) { 1688 dev_err(dev, "Entry slot allocation failed for channel %u\n", 1689 EDMA_CHAN_SLOT(echan->ch_num)); 1690 ret = echan->slot[0]; 1691 goto err_slot; 1692 } 1693 1694 /* Set up channel -> slot mapping for the entry slot */ 1695 edma_set_chmap(echan, echan->slot[0]); 1696 echan->alloced = true; 1697 1698 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", 1699 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, 1700 echan->hw_triggered ? "HW" : "SW"); 1701 1702 return 0; 1703 1704 err_slot: 1705 edma_free_channel(echan); 1706 return ret; 1707 } 1708 1709 /* Free channel resources */ 1710 static void edma_free_chan_resources(struct dma_chan *chan) 1711 { 1712 struct edma_chan *echan = to_edma_chan(chan); 1713 struct device *dev = echan->ecc->dev; 1714 int i; 1715 1716 /* Terminate transfers */ 1717 edma_stop(echan); 1718 1719 vchan_free_chan_resources(&echan->vchan); 1720 1721 /* Free EDMA PaRAM slots */ 1722 for (i = 0; i < EDMA_MAX_SLOTS; i++) { 1723 if (echan->slot[i] >= 0) { 1724 edma_free_slot(echan->ecc, echan->slot[i]); 1725 echan->slot[i] = -1; 1726 } 1727 } 1728 1729 /* Set entry slot to the dummy slot */ 1730 edma_set_chmap(echan, echan->ecc->dummy_slot); 1731 1732 /* Free EDMA channel */ 1733 if (echan->alloced) { 1734 edma_free_channel(echan); 1735 echan->alloced = false; 1736 } 1737 1738 echan->tc = NULL; 1739 echan->hw_triggered = false; 1740 1741 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", 1742 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); 1743 } 1744 1745 /* Send pending descriptor to hardware */ 1746 static void edma_issue_pending(struct dma_chan *chan) 1747 { 1748 struct edma_chan *echan = to_edma_chan(chan); 1749 unsigned long flags; 1750 1751 spin_lock_irqsave(&echan->vchan.lock, flags); 1752 if (vchan_issue_pending(&echan->vchan) && !echan->edesc) 1753 edma_execute(echan); 1754 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1755 } 1756 1757 /* 1758 * This limit exists to avoid a possible infinite loop when waiting for proof 1759 * that a particular transfer is completed. This limit can be hit if there 1760 * are large bursts to/from slow devices or the CPU is never able to catch 1761 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART 1762 * RX-FIFO, as many as 55 loops have been seen. 1763 */ 1764 #define EDMA_MAX_TR_WAIT_LOOPS 1000 1765 1766 static u32 edma_residue(struct edma_desc *edesc) 1767 { 1768 bool dst = edesc->direction == DMA_DEV_TO_MEM; 1769 int loop_count = EDMA_MAX_TR_WAIT_LOOPS; 1770 struct edma_chan *echan = edesc->echan; 1771 struct edma_pset *pset = edesc->pset; 1772 dma_addr_t done, pos, pos_old; 1773 int channel = EDMA_CHAN_SLOT(echan->ch_num); 1774 int idx = EDMA_REG_ARRAY_INDEX(channel); 1775 int ch_bit = EDMA_CHANNEL_BIT(channel); 1776 int event_reg; 1777 int i; 1778 1779 /* 1780 * We always read the dst/src position from the first RamPar 1781 * pset. That's the one which is active now. 1782 */ 1783 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1784 1785 /* 1786 * "pos" may represent a transfer request that is still being 1787 * processed by the EDMACC or EDMATC. We will busy wait until 1788 * any one of the situations occurs: 1789 * 1. while and event is pending for the channel 1790 * 2. a position updated 1791 * 3. we hit the loop limit 1792 */ 1793 if (is_slave_direction(edesc->direction)) 1794 event_reg = SH_ER; 1795 else 1796 event_reg = SH_ESR; 1797 1798 pos_old = pos; 1799 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { 1800 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1801 if (pos != pos_old) 1802 break; 1803 1804 if (!--loop_count) { 1805 dev_dbg_ratelimited(echan->vchan.chan.device->dev, 1806 "%s: timeout waiting for PaRAM update\n", 1807 __func__); 1808 break; 1809 } 1810 1811 cpu_relax(); 1812 } 1813 1814 /* 1815 * Cyclic is simple. Just subtract pset[0].addr from pos. 1816 * 1817 * We never update edesc->residue in the cyclic case, so we 1818 * can tell the remaining room to the end of the circular 1819 * buffer. 1820 */ 1821 if (edesc->cyclic) { 1822 done = pos - pset->addr; 1823 edesc->residue_stat = edesc->residue - done; 1824 return edesc->residue_stat; 1825 } 1826 1827 /* 1828 * If the position is 0, then EDMA loaded the closing dummy slot, the 1829 * transfer is completed 1830 */ 1831 if (!pos) 1832 return 0; 1833 /* 1834 * For SG operation we catch up with the last processed 1835 * status. 1836 */ 1837 pset += edesc->processed_stat; 1838 1839 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { 1840 /* 1841 * If we are inside this pset address range, we know 1842 * this is the active one. Get the current delta and 1843 * stop walking the psets. 1844 */ 1845 if (pos >= pset->addr && pos < pset->addr + pset->len) 1846 return edesc->residue_stat - (pos - pset->addr); 1847 1848 /* Otherwise mark it done and update residue_stat. */ 1849 edesc->processed_stat++; 1850 edesc->residue_stat -= pset->len; 1851 } 1852 return edesc->residue_stat; 1853 } 1854 1855 /* Check request completion status */ 1856 static enum dma_status edma_tx_status(struct dma_chan *chan, 1857 dma_cookie_t cookie, 1858 struct dma_tx_state *txstate) 1859 { 1860 struct edma_chan *echan = to_edma_chan(chan); 1861 struct dma_tx_state txstate_tmp; 1862 enum dma_status ret; 1863 unsigned long flags; 1864 1865 ret = dma_cookie_status(chan, cookie, txstate); 1866 1867 if (ret == DMA_COMPLETE) 1868 return ret; 1869 1870 /* Provide a dummy dma_tx_state for completion checking */ 1871 if (!txstate) 1872 txstate = &txstate_tmp; 1873 1874 spin_lock_irqsave(&echan->vchan.lock, flags); 1875 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { 1876 txstate->residue = edma_residue(echan->edesc); 1877 } else { 1878 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, 1879 cookie); 1880 1881 if (vdesc) 1882 txstate->residue = to_edma_desc(&vdesc->tx)->residue; 1883 else 1884 txstate->residue = 0; 1885 } 1886 1887 /* 1888 * Mark the cookie completed if the residue is 0 for non cyclic 1889 * transfers 1890 */ 1891 if (ret != DMA_COMPLETE && !txstate->residue && 1892 echan->edesc && echan->edesc->polled && 1893 echan->edesc->vdesc.tx.cookie == cookie) { 1894 edma_stop(echan); 1895 vchan_cookie_complete(&echan->edesc->vdesc); 1896 echan->edesc = NULL; 1897 edma_execute(echan); 1898 ret = DMA_COMPLETE; 1899 } 1900 1901 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1902 1903 return ret; 1904 } 1905 1906 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) 1907 { 1908 if (!memcpy_channels) 1909 return false; 1910 while (*memcpy_channels != -1) { 1911 if (*memcpy_channels == ch_num) 1912 return true; 1913 memcpy_channels++; 1914 } 1915 return false; 1916 } 1917 1918 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 1919 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 1920 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 1921 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 1922 1923 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) 1924 { 1925 struct dma_device *s_ddev = &ecc->dma_slave; 1926 struct dma_device *m_ddev = NULL; 1927 s32 *memcpy_channels = ecc->info->memcpy_channels; 1928 int i, j; 1929 1930 dma_cap_zero(s_ddev->cap_mask); 1931 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); 1932 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); 1933 if (ecc->legacy_mode && !memcpy_channels) { 1934 dev_warn(ecc->dev, 1935 "Legacy memcpy is enabled, things might not work\n"); 1936 1937 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); 1938 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask); 1939 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1940 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 1941 s_ddev->directions = BIT(DMA_MEM_TO_MEM); 1942 } 1943 1944 s_ddev->device_prep_slave_sg = edma_prep_slave_sg; 1945 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; 1946 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1947 s_ddev->device_free_chan_resources = edma_free_chan_resources; 1948 s_ddev->device_issue_pending = edma_issue_pending; 1949 s_ddev->device_tx_status = edma_tx_status; 1950 s_ddev->device_config = edma_slave_config; 1951 s_ddev->device_pause = edma_dma_pause; 1952 s_ddev->device_resume = edma_dma_resume; 1953 s_ddev->device_terminate_all = edma_terminate_all; 1954 s_ddev->device_synchronize = edma_synchronize; 1955 1956 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1957 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1958 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); 1959 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1960 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ 1961 1962 s_ddev->dev = ecc->dev; 1963 INIT_LIST_HEAD(&s_ddev->channels); 1964 1965 if (memcpy_channels) { 1966 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); 1967 if (!m_ddev) { 1968 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); 1969 memcpy_channels = NULL; 1970 goto ch_setup; 1971 } 1972 ecc->dma_memcpy = m_ddev; 1973 1974 dma_cap_zero(m_ddev->cap_mask); 1975 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); 1976 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask); 1977 1978 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1979 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved; 1980 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1981 m_ddev->device_free_chan_resources = edma_free_chan_resources; 1982 m_ddev->device_issue_pending = edma_issue_pending; 1983 m_ddev->device_tx_status = edma_tx_status; 1984 m_ddev->device_config = edma_slave_config; 1985 m_ddev->device_pause = edma_dma_pause; 1986 m_ddev->device_resume = edma_dma_resume; 1987 m_ddev->device_terminate_all = edma_terminate_all; 1988 m_ddev->device_synchronize = edma_synchronize; 1989 1990 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1991 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1992 m_ddev->directions = BIT(DMA_MEM_TO_MEM); 1993 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1994 1995 m_ddev->dev = ecc->dev; 1996 INIT_LIST_HEAD(&m_ddev->channels); 1997 } else if (!ecc->legacy_mode) { 1998 dev_info(ecc->dev, "memcpy is disabled\n"); 1999 } 2000 2001 ch_setup: 2002 for (i = 0; i < ecc->num_channels; i++) { 2003 struct edma_chan *echan = &ecc->slave_chans[i]; 2004 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); 2005 echan->ecc = ecc; 2006 echan->vchan.desc_free = edma_desc_free; 2007 2008 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) 2009 vchan_init(&echan->vchan, m_ddev); 2010 else 2011 vchan_init(&echan->vchan, s_ddev); 2012 2013 INIT_LIST_HEAD(&echan->node); 2014 for (j = 0; j < EDMA_MAX_SLOTS; j++) 2015 echan->slot[j] = -1; 2016 } 2017 } 2018 2019 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, 2020 struct edma_cc *ecc) 2021 { 2022 int i; 2023 u32 value, cccfg; 2024 s8 (*queue_priority_map)[2]; 2025 2026 /* Decode the eDMA3 configuration from CCCFG register */ 2027 cccfg = edma_read(ecc, EDMA_CCCFG); 2028 2029 value = GET_NUM_REGN(cccfg); 2030 ecc->num_region = BIT(value); 2031 2032 value = GET_NUM_DMACH(cccfg); 2033 ecc->num_channels = BIT(value + 1); 2034 2035 value = GET_NUM_QDMACH(cccfg); 2036 ecc->num_qchannels = value * 2; 2037 2038 value = GET_NUM_PAENTRY(cccfg); 2039 ecc->num_slots = BIT(value + 4); 2040 2041 value = GET_NUM_EVQUE(cccfg); 2042 ecc->num_tc = value + 1; 2043 2044 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; 2045 2046 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); 2047 dev_dbg(dev, "num_region: %u\n", ecc->num_region); 2048 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); 2049 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); 2050 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); 2051 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); 2052 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); 2053 2054 /* Nothing need to be done if queue priority is provided */ 2055 if (pdata->queue_priority_mapping) 2056 return 0; 2057 2058 /* 2059 * Configure TC/queue priority as follows: 2060 * Q0 - priority 0 2061 * Q1 - priority 1 2062 * Q2 - priority 2 2063 * ... 2064 * The meaning of priority numbers: 0 highest priority, 7 lowest 2065 * priority. So Q0 is the highest priority queue and the last queue has 2066 * the lowest priority. 2067 */ 2068 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), 2069 GFP_KERNEL); 2070 if (!queue_priority_map) 2071 return -ENOMEM; 2072 2073 for (i = 0; i < ecc->num_tc; i++) { 2074 queue_priority_map[i][0] = i; 2075 queue_priority_map[i][1] = i; 2076 } 2077 queue_priority_map[i][0] = -1; 2078 queue_priority_map[i][1] = -1; 2079 2080 pdata->queue_priority_mapping = queue_priority_map; 2081 /* Default queue has the lowest priority */ 2082 pdata->default_queue = i - 1; 2083 2084 return 0; 2085 } 2086 2087 #if IS_ENABLED(CONFIG_OF) 2088 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, 2089 size_t sz) 2090 { 2091 const char pname[] = "ti,edma-xbar-event-map"; 2092 struct resource res; 2093 void __iomem *xbar; 2094 s16 (*xbar_chans)[2]; 2095 size_t nelm = sz / sizeof(s16); 2096 u32 shift, offset, mux; 2097 int ret, i; 2098 2099 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); 2100 if (!xbar_chans) 2101 return -ENOMEM; 2102 2103 ret = of_address_to_resource(dev->of_node, 1, &res); 2104 if (ret) 2105 return -ENOMEM; 2106 2107 xbar = devm_ioremap(dev, res.start, resource_size(&res)); 2108 if (!xbar) 2109 return -ENOMEM; 2110 2111 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, 2112 nelm); 2113 if (ret) 2114 return -EIO; 2115 2116 /* Invalidate last entry for the other user of this mess */ 2117 nelm >>= 1; 2118 xbar_chans[nelm][0] = -1; 2119 xbar_chans[nelm][1] = -1; 2120 2121 for (i = 0; i < nelm; i++) { 2122 shift = (xbar_chans[i][1] & 0x03) << 3; 2123 offset = xbar_chans[i][1] & 0xfffffffc; 2124 mux = readl(xbar + offset); 2125 mux &= ~(0xff << shift); 2126 mux |= xbar_chans[i][0] << shift; 2127 writel(mux, (xbar + offset)); 2128 } 2129 2130 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; 2131 return 0; 2132 } 2133 2134 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2135 bool legacy_mode) 2136 { 2137 struct edma_soc_info *info; 2138 struct property *prop; 2139 int sz, ret; 2140 2141 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); 2142 if (!info) 2143 return ERR_PTR(-ENOMEM); 2144 2145 if (legacy_mode) { 2146 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", 2147 &sz); 2148 if (prop) { 2149 ret = edma_xbar_event_map(dev, info, sz); 2150 if (ret) 2151 return ERR_PTR(ret); 2152 } 2153 return info; 2154 } 2155 2156 /* Get the list of channels allocated to be used for memcpy */ 2157 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); 2158 if (prop) { 2159 const char pname[] = "ti,edma-memcpy-channels"; 2160 size_t nelm = sz / sizeof(s32); 2161 s32 *memcpy_ch; 2162 2163 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), 2164 GFP_KERNEL); 2165 if (!memcpy_ch) 2166 return ERR_PTR(-ENOMEM); 2167 2168 ret = of_property_read_u32_array(dev->of_node, pname, 2169 (u32 *)memcpy_ch, nelm); 2170 if (ret) 2171 return ERR_PTR(ret); 2172 2173 memcpy_ch[nelm] = -1; 2174 info->memcpy_channels = memcpy_ch; 2175 } 2176 2177 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", 2178 &sz); 2179 if (prop) { 2180 const char pname[] = "ti,edma-reserved-slot-ranges"; 2181 u32 (*tmp)[2]; 2182 s16 (*rsv_slots)[2]; 2183 size_t nelm = sz / sizeof(*tmp); 2184 struct edma_rsv_info *rsv_info; 2185 int i; 2186 2187 if (!nelm) 2188 return info; 2189 2190 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); 2191 if (!tmp) 2192 return ERR_PTR(-ENOMEM); 2193 2194 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); 2195 if (!rsv_info) { 2196 kfree(tmp); 2197 return ERR_PTR(-ENOMEM); 2198 } 2199 2200 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), 2201 GFP_KERNEL); 2202 if (!rsv_slots) { 2203 kfree(tmp); 2204 return ERR_PTR(-ENOMEM); 2205 } 2206 2207 ret = of_property_read_u32_array(dev->of_node, pname, 2208 (u32 *)tmp, nelm * 2); 2209 if (ret) { 2210 kfree(tmp); 2211 return ERR_PTR(ret); 2212 } 2213 2214 for (i = 0; i < nelm; i++) { 2215 rsv_slots[i][0] = tmp[i][0]; 2216 rsv_slots[i][1] = tmp[i][1]; 2217 } 2218 rsv_slots[nelm][0] = -1; 2219 rsv_slots[nelm][1] = -1; 2220 2221 info->rsv = rsv_info; 2222 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; 2223 2224 kfree(tmp); 2225 } 2226 2227 return info; 2228 } 2229 2230 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2231 struct of_dma *ofdma) 2232 { 2233 struct edma_cc *ecc = ofdma->of_dma_data; 2234 struct dma_chan *chan = NULL; 2235 struct edma_chan *echan; 2236 int i; 2237 2238 if (!ecc || dma_spec->args_count < 1) 2239 return NULL; 2240 2241 for (i = 0; i < ecc->num_channels; i++) { 2242 echan = &ecc->slave_chans[i]; 2243 if (echan->ch_num == dma_spec->args[0]) { 2244 chan = &echan->vchan.chan; 2245 break; 2246 } 2247 } 2248 2249 if (!chan) 2250 return NULL; 2251 2252 if (echan->ecc->legacy_mode && dma_spec->args_count == 1) 2253 goto out; 2254 2255 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && 2256 dma_spec->args[1] < echan->ecc->num_tc) { 2257 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; 2258 goto out; 2259 } 2260 2261 return NULL; 2262 out: 2263 /* The channel is going to be used as HW synchronized */ 2264 echan->hw_triggered = true; 2265 return dma_get_slave_channel(chan); 2266 } 2267 #else 2268 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2269 bool legacy_mode) 2270 { 2271 return ERR_PTR(-EINVAL); 2272 } 2273 2274 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2275 struct of_dma *ofdma) 2276 { 2277 return NULL; 2278 } 2279 #endif 2280 2281 static bool edma_filter_fn(struct dma_chan *chan, void *param); 2282 2283 static int edma_probe(struct platform_device *pdev) 2284 { 2285 struct edma_soc_info *info = pdev->dev.platform_data; 2286 s8 (*queue_priority_mapping)[2]; 2287 const s16 (*reserved)[2]; 2288 int i, irq; 2289 char *irq_name; 2290 struct resource *mem; 2291 struct device_node *node = pdev->dev.of_node; 2292 struct device *dev = &pdev->dev; 2293 struct edma_cc *ecc; 2294 bool legacy_mode = true; 2295 int ret; 2296 2297 if (node) { 2298 const struct of_device_id *match; 2299 2300 match = of_match_node(edma_of_ids, node); 2301 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) 2302 legacy_mode = false; 2303 2304 info = edma_setup_info_from_dt(dev, legacy_mode); 2305 if (IS_ERR(info)) { 2306 dev_err(dev, "failed to get DT data\n"); 2307 return PTR_ERR(info); 2308 } 2309 } 2310 2311 if (!info) 2312 return -ENODEV; 2313 2314 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2315 if (ret) 2316 return ret; 2317 2318 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); 2319 if (!ecc) 2320 return -ENOMEM; 2321 2322 ecc->dev = dev; 2323 ecc->id = pdev->id; 2324 ecc->legacy_mode = legacy_mode; 2325 /* When booting with DT the pdev->id is -1 */ 2326 if (ecc->id < 0) 2327 ecc->id = 0; 2328 2329 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); 2330 if (!mem) { 2331 dev_dbg(dev, "mem resource not found, using index 0\n"); 2332 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2333 if (!mem) { 2334 dev_err(dev, "no mem resource?\n"); 2335 return -ENODEV; 2336 } 2337 } 2338 ecc->base = devm_ioremap_resource(dev, mem); 2339 if (IS_ERR(ecc->base)) 2340 return PTR_ERR(ecc->base); 2341 2342 platform_set_drvdata(pdev, ecc); 2343 2344 pm_runtime_enable(dev); 2345 ret = pm_runtime_get_sync(dev); 2346 if (ret < 0) { 2347 dev_err(dev, "pm_runtime_get_sync() failed\n"); 2348 pm_runtime_disable(dev); 2349 return ret; 2350 } 2351 2352 /* Get eDMA3 configuration from IP */ 2353 ret = edma_setup_from_hw(dev, info, ecc); 2354 if (ret) 2355 goto err_disable_pm; 2356 2357 /* Allocate memory based on the information we got from the IP */ 2358 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, 2359 sizeof(*ecc->slave_chans), GFP_KERNEL); 2360 2361 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), 2362 sizeof(unsigned long), GFP_KERNEL); 2363 2364 ecc->channels_mask = devm_kcalloc(dev, 2365 BITS_TO_LONGS(ecc->num_channels), 2366 sizeof(unsigned long), GFP_KERNEL); 2367 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) { 2368 ret = -ENOMEM; 2369 goto err_disable_pm; 2370 } 2371 2372 /* Mark all channels available initially */ 2373 bitmap_fill(ecc->channels_mask, ecc->num_channels); 2374 2375 ecc->default_queue = info->default_queue; 2376 2377 if (info->rsv) { 2378 /* Set the reserved slots in inuse list */ 2379 reserved = info->rsv->rsv_slots; 2380 if (reserved) { 2381 for (i = 0; reserved[i][0] != -1; i++) 2382 bitmap_set(ecc->slot_inuse, reserved[i][0], 2383 reserved[i][1]); 2384 } 2385 2386 /* Clear channels not usable for Linux */ 2387 reserved = info->rsv->rsv_chans; 2388 if (reserved) { 2389 for (i = 0; reserved[i][0] != -1; i++) 2390 bitmap_clear(ecc->channels_mask, reserved[i][0], 2391 reserved[i][1]); 2392 } 2393 } 2394 2395 for (i = 0; i < ecc->num_slots; i++) { 2396 /* Reset only unused - not reserved - paRAM slots */ 2397 if (!test_bit(i, ecc->slot_inuse)) 2398 edma_write_slot(ecc, i, &dummy_paramset); 2399 } 2400 2401 irq = platform_get_irq_byname(pdev, "edma3_ccint"); 2402 if (irq < 0 && node) 2403 irq = irq_of_parse_and_map(node, 0); 2404 2405 if (irq >= 0) { 2406 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", 2407 dev_name(dev)); 2408 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, 2409 ecc); 2410 if (ret) { 2411 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); 2412 goto err_disable_pm; 2413 } 2414 ecc->ccint = irq; 2415 } 2416 2417 irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); 2418 if (irq < 0 && node) 2419 irq = irq_of_parse_and_map(node, 2); 2420 2421 if (irq >= 0) { 2422 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", 2423 dev_name(dev)); 2424 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, 2425 ecc); 2426 if (ret) { 2427 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); 2428 goto err_disable_pm; 2429 } 2430 ecc->ccerrint = irq; 2431 } 2432 2433 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); 2434 if (ecc->dummy_slot < 0) { 2435 dev_err(dev, "Can't allocate PaRAM dummy slot\n"); 2436 ret = ecc->dummy_slot; 2437 goto err_disable_pm; 2438 } 2439 2440 queue_priority_mapping = info->queue_priority_mapping; 2441 2442 if (!ecc->legacy_mode) { 2443 int lowest_priority = 0; 2444 unsigned int array_max; 2445 struct of_phandle_args tc_args; 2446 2447 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, 2448 sizeof(*ecc->tc_list), GFP_KERNEL); 2449 if (!ecc->tc_list) { 2450 ret = -ENOMEM; 2451 goto err_reg1; 2452 } 2453 2454 for (i = 0;; i++) { 2455 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 2456 1, i, &tc_args); 2457 if (ret || i == ecc->num_tc) 2458 break; 2459 2460 ecc->tc_list[i].node = tc_args.np; 2461 ecc->tc_list[i].id = i; 2462 queue_priority_mapping[i][1] = tc_args.args[0]; 2463 if (queue_priority_mapping[i][1] > lowest_priority) { 2464 lowest_priority = queue_priority_mapping[i][1]; 2465 info->default_queue = i; 2466 } 2467 } 2468 2469 /* See if we have optional dma-channel-mask array */ 2470 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32)); 2471 ret = of_property_read_variable_u32_array(node, 2472 "dma-channel-mask", 2473 (u32 *)ecc->channels_mask, 2474 1, array_max); 2475 if (ret > 0 && ret != array_max) 2476 dev_warn(dev, "dma-channel-mask is not complete.\n"); 2477 else if (ret == -EOVERFLOW || ret == -ENODATA) 2478 dev_warn(dev, 2479 "dma-channel-mask is out of range or empty\n"); 2480 } 2481 2482 /* Event queue priority mapping */ 2483 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2484 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2485 queue_priority_mapping[i][1]); 2486 2487 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); 2488 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); 2489 edma_write_array(ecc, EDMA_QRAE, 0, 0x0); 2490 2491 ecc->info = info; 2492 2493 /* Init the dma device and channels */ 2494 edma_dma_init(ecc, legacy_mode); 2495 2496 for (i = 0; i < ecc->num_channels; i++) { 2497 /* Do not touch reserved channels */ 2498 if (!test_bit(i, ecc->channels_mask)) 2499 continue; 2500 2501 /* Assign all channels to the default queue */ 2502 edma_assign_channel_eventq(&ecc->slave_chans[i], 2503 info->default_queue); 2504 /* Set entry slot to the dummy slot */ 2505 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); 2506 } 2507 2508 ecc->dma_slave.filter.map = info->slave_map; 2509 ecc->dma_slave.filter.mapcnt = info->slavecnt; 2510 ecc->dma_slave.filter.fn = edma_filter_fn; 2511 2512 ret = dma_async_device_register(&ecc->dma_slave); 2513 if (ret) { 2514 dev_err(dev, "slave ddev registration failed (%d)\n", ret); 2515 goto err_reg1; 2516 } 2517 2518 if (ecc->dma_memcpy) { 2519 ret = dma_async_device_register(ecc->dma_memcpy); 2520 if (ret) { 2521 dev_err(dev, "memcpy ddev registration failed (%d)\n", 2522 ret); 2523 dma_async_device_unregister(&ecc->dma_slave); 2524 goto err_reg1; 2525 } 2526 } 2527 2528 if (node) 2529 of_dma_controller_register(node, of_edma_xlate, ecc); 2530 2531 dev_info(dev, "TI EDMA DMA engine driver\n"); 2532 2533 return 0; 2534 2535 err_reg1: 2536 edma_free_slot(ecc, ecc->dummy_slot); 2537 err_disable_pm: 2538 pm_runtime_put_sync(dev); 2539 pm_runtime_disable(dev); 2540 return ret; 2541 } 2542 2543 static void edma_cleanupp_vchan(struct dma_device *dmadev) 2544 { 2545 struct edma_chan *echan, *_echan; 2546 2547 list_for_each_entry_safe(echan, _echan, 2548 &dmadev->channels, vchan.chan.device_node) { 2549 list_del(&echan->vchan.chan.device_node); 2550 tasklet_kill(&echan->vchan.task); 2551 } 2552 } 2553 2554 static int edma_remove(struct platform_device *pdev) 2555 { 2556 struct device *dev = &pdev->dev; 2557 struct edma_cc *ecc = dev_get_drvdata(dev); 2558 2559 devm_free_irq(dev, ecc->ccint, ecc); 2560 devm_free_irq(dev, ecc->ccerrint, ecc); 2561 2562 edma_cleanupp_vchan(&ecc->dma_slave); 2563 2564 if (dev->of_node) 2565 of_dma_controller_free(dev->of_node); 2566 dma_async_device_unregister(&ecc->dma_slave); 2567 if (ecc->dma_memcpy) 2568 dma_async_device_unregister(ecc->dma_memcpy); 2569 edma_free_slot(ecc, ecc->dummy_slot); 2570 pm_runtime_put_sync(dev); 2571 pm_runtime_disable(dev); 2572 2573 return 0; 2574 } 2575 2576 #ifdef CONFIG_PM_SLEEP 2577 static int edma_pm_suspend(struct device *dev) 2578 { 2579 struct edma_cc *ecc = dev_get_drvdata(dev); 2580 struct edma_chan *echan = ecc->slave_chans; 2581 int i; 2582 2583 for (i = 0; i < ecc->num_channels; i++) { 2584 if (echan[i].alloced) 2585 edma_setup_interrupt(&echan[i], false); 2586 } 2587 2588 return 0; 2589 } 2590 2591 static int edma_pm_resume(struct device *dev) 2592 { 2593 struct edma_cc *ecc = dev_get_drvdata(dev); 2594 struct edma_chan *echan = ecc->slave_chans; 2595 int i; 2596 s8 (*queue_priority_mapping)[2]; 2597 2598 /* re initialize dummy slot to dummy param set */ 2599 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); 2600 2601 queue_priority_mapping = ecc->info->queue_priority_mapping; 2602 2603 /* Event queue priority mapping */ 2604 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2605 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2606 queue_priority_mapping[i][1]); 2607 2608 for (i = 0; i < ecc->num_channels; i++) { 2609 if (echan[i].alloced) { 2610 /* ensure access through shadow region 0 */ 2611 edma_or_array2(ecc, EDMA_DRAE, 0, 2612 EDMA_REG_ARRAY_INDEX(i), 2613 EDMA_CHANNEL_BIT(i)); 2614 2615 edma_setup_interrupt(&echan[i], true); 2616 2617 /* Set up channel -> slot mapping for the entry slot */ 2618 edma_set_chmap(&echan[i], echan[i].slot[0]); 2619 } 2620 } 2621 2622 return 0; 2623 } 2624 #endif 2625 2626 static const struct dev_pm_ops edma_pm_ops = { 2627 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) 2628 }; 2629 2630 static struct platform_driver edma_driver = { 2631 .probe = edma_probe, 2632 .remove = edma_remove, 2633 .driver = { 2634 .name = "edma", 2635 .pm = &edma_pm_ops, 2636 .of_match_table = edma_of_ids, 2637 }, 2638 }; 2639 2640 static int edma_tptc_probe(struct platform_device *pdev) 2641 { 2642 pm_runtime_enable(&pdev->dev); 2643 return pm_runtime_get_sync(&pdev->dev); 2644 } 2645 2646 static struct platform_driver edma_tptc_driver = { 2647 .probe = edma_tptc_probe, 2648 .driver = { 2649 .name = "edma3-tptc", 2650 .of_match_table = edma_tptc_of_ids, 2651 }, 2652 }; 2653 2654 static bool edma_filter_fn(struct dma_chan *chan, void *param) 2655 { 2656 bool match = false; 2657 2658 if (chan->device->dev->driver == &edma_driver.driver) { 2659 struct edma_chan *echan = to_edma_chan(chan); 2660 unsigned ch_req = *(unsigned *)param; 2661 if (ch_req == echan->ch_num) { 2662 /* The channel is going to be used as HW synchronized */ 2663 echan->hw_triggered = true; 2664 match = true; 2665 } 2666 } 2667 return match; 2668 } 2669 2670 static int edma_init(void) 2671 { 2672 int ret; 2673 2674 ret = platform_driver_register(&edma_tptc_driver); 2675 if (ret) 2676 return ret; 2677 2678 return platform_driver_register(&edma_driver); 2679 } 2680 subsys_initcall(edma_init); 2681 2682 static void __exit edma_exit(void) 2683 { 2684 platform_driver_unregister(&edma_driver); 2685 platform_driver_unregister(&edma_tptc_driver); 2686 } 2687 module_exit(edma_exit); 2688 2689 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); 2690 MODULE_DESCRIPTION("TI EDMA DMA engine driver"); 2691 MODULE_LICENSE("GPL v2"); 2692