1 /* 2 * TI EDMA DMA engine driver 3 * 4 * Copyright 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/dmaengine.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/edma.h> 19 #include <linux/err.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/list.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_address.h> 31 #include <linux/of_device.h> 32 #include <linux/pm_runtime.h> 33 34 #include <linux/platform_data/edma.h> 35 36 #include "../dmaengine.h" 37 #include "../virt-dma.h" 38 39 /* Offsets matching "struct edmacc_param" */ 40 #define PARM_OPT 0x00 41 #define PARM_SRC 0x04 42 #define PARM_A_B_CNT 0x08 43 #define PARM_DST 0x0c 44 #define PARM_SRC_DST_BIDX 0x10 45 #define PARM_LINK_BCNTRLD 0x14 46 #define PARM_SRC_DST_CIDX 0x18 47 #define PARM_CCNT 0x1c 48 49 #define PARM_SIZE 0x20 50 51 /* Offsets for EDMA CC global channel registers and their shadows */ 52 #define SH_ER 0x00 /* 64 bits */ 53 #define SH_ECR 0x08 /* 64 bits */ 54 #define SH_ESR 0x10 /* 64 bits */ 55 #define SH_CER 0x18 /* 64 bits */ 56 #define SH_EER 0x20 /* 64 bits */ 57 #define SH_EECR 0x28 /* 64 bits */ 58 #define SH_EESR 0x30 /* 64 bits */ 59 #define SH_SER 0x38 /* 64 bits */ 60 #define SH_SECR 0x40 /* 64 bits */ 61 #define SH_IER 0x50 /* 64 bits */ 62 #define SH_IECR 0x58 /* 64 bits */ 63 #define SH_IESR 0x60 /* 64 bits */ 64 #define SH_IPR 0x68 /* 64 bits */ 65 #define SH_ICR 0x70 /* 64 bits */ 66 #define SH_IEVAL 0x78 67 #define SH_QER 0x80 68 #define SH_QEER 0x84 69 #define SH_QEECR 0x88 70 #define SH_QEESR 0x8c 71 #define SH_QSER 0x90 72 #define SH_QSECR 0x94 73 #define SH_SIZE 0x200 74 75 /* Offsets for EDMA CC global registers */ 76 #define EDMA_REV 0x0000 77 #define EDMA_CCCFG 0x0004 78 #define EDMA_QCHMAP 0x0200 /* 8 registers */ 79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ 80 #define EDMA_QDMAQNUM 0x0260 81 #define EDMA_QUETCMAP 0x0280 82 #define EDMA_QUEPRI 0x0284 83 #define EDMA_EMR 0x0300 /* 64 bits */ 84 #define EDMA_EMCR 0x0308 /* 64 bits */ 85 #define EDMA_QEMR 0x0310 86 #define EDMA_QEMCR 0x0314 87 #define EDMA_CCERR 0x0318 88 #define EDMA_CCERRCLR 0x031c 89 #define EDMA_EEVAL 0x0320 90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ 91 #define EDMA_QRAE 0x0380 /* 4 registers */ 92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ 93 #define EDMA_QSTAT 0x0600 /* 2 registers */ 94 #define EDMA_QWMTHRA 0x0620 95 #define EDMA_QWMTHRB 0x0624 96 #define EDMA_CCSTAT 0x0640 97 98 #define EDMA_M 0x1000 /* global channel registers */ 99 #define EDMA_ECR 0x1008 100 #define EDMA_ECRH 0x100C 101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ 102 #define EDMA_PARM 0x4000 /* PaRAM entries */ 103 104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) 105 106 #define EDMA_DCHMAP 0x0100 /* 64 registers */ 107 108 /* CCCFG register */ 109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ 110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ 111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ 112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ 113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ 114 #define CHMAP_EXIST BIT(24) 115 116 /* CCSTAT register */ 117 #define EDMA_CCSTAT_ACTV BIT(4) 118 119 /* 120 * Max of 20 segments per channel to conserve PaRAM slots 121 * Also note that MAX_NR_SG should be atleast the no.of periods 122 * that are required for ASoC, otherwise DMA prep calls will 123 * fail. Today davinci-pcm is the only user of this driver and 124 * requires atleast 17 slots, so we setup the default to 20. 125 */ 126 #define MAX_NR_SG 20 127 #define EDMA_MAX_SLOTS MAX_NR_SG 128 #define EDMA_DESCRIPTORS 16 129 130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ 131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ 132 #define EDMA_CONT_PARAMS_ANY 1001 133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 135 136 /* PaRAM slots are laid out like this */ 137 struct edmacc_param { 138 u32 opt; 139 u32 src; 140 u32 a_b_cnt; 141 u32 dst; 142 u32 src_dst_bidx; 143 u32 link_bcntrld; 144 u32 src_dst_cidx; 145 u32 ccnt; 146 } __packed; 147 148 /* fields in edmacc_param.opt */ 149 #define SAM BIT(0) 150 #define DAM BIT(1) 151 #define SYNCDIM BIT(2) 152 #define STATIC BIT(3) 153 #define EDMA_FWID (0x07 << 8) 154 #define TCCMODE BIT(11) 155 #define EDMA_TCC(t) ((t) << 12) 156 #define TCINTEN BIT(20) 157 #define ITCINTEN BIT(21) 158 #define TCCHEN BIT(22) 159 #define ITCCHEN BIT(23) 160 161 struct edma_pset { 162 u32 len; 163 dma_addr_t addr; 164 struct edmacc_param param; 165 }; 166 167 struct edma_desc { 168 struct virt_dma_desc vdesc; 169 struct list_head node; 170 enum dma_transfer_direction direction; 171 int cyclic; 172 int absync; 173 int pset_nr; 174 struct edma_chan *echan; 175 int processed; 176 177 /* 178 * The following 4 elements are used for residue accounting. 179 * 180 * - processed_stat: the number of SG elements we have traversed 181 * so far to cover accounting. This is updated directly to processed 182 * during edma_callback and is always <= processed, because processed 183 * refers to the number of pending transfer (programmed to EDMA 184 * controller), where as processed_stat tracks number of transfers 185 * accounted for so far. 186 * 187 * - residue: The amount of bytes we have left to transfer for this desc 188 * 189 * - residue_stat: The residue in bytes of data we have covered 190 * so far for accounting. This is updated directly to residue 191 * during callbacks to keep it current. 192 * 193 * - sg_len: Tracks the length of the current intermediate transfer, 194 * this is required to update the residue during intermediate transfer 195 * completion callback. 196 */ 197 int processed_stat; 198 u32 sg_len; 199 u32 residue; 200 u32 residue_stat; 201 202 struct edma_pset pset[0]; 203 }; 204 205 struct edma_cc; 206 207 struct edma_tc { 208 struct device_node *node; 209 u16 id; 210 }; 211 212 struct edma_chan { 213 struct virt_dma_chan vchan; 214 struct list_head node; 215 struct edma_desc *edesc; 216 struct edma_cc *ecc; 217 struct edma_tc *tc; 218 int ch_num; 219 bool alloced; 220 bool hw_triggered; 221 int slot[EDMA_MAX_SLOTS]; 222 int missed; 223 struct dma_slave_config cfg; 224 }; 225 226 struct edma_cc { 227 struct device *dev; 228 struct edma_soc_info *info; 229 void __iomem *base; 230 int id; 231 bool legacy_mode; 232 233 /* eDMA3 resource information */ 234 unsigned num_channels; 235 unsigned num_qchannels; 236 unsigned num_region; 237 unsigned num_slots; 238 unsigned num_tc; 239 bool chmap_exist; 240 enum dma_event_q default_queue; 241 242 unsigned int ccint; 243 unsigned int ccerrint; 244 245 /* 246 * The slot_inuse bit for each PaRAM slot is clear unless the slot is 247 * in use by Linux or if it is allocated to be used by DSP. 248 */ 249 unsigned long *slot_inuse; 250 251 struct dma_device dma_slave; 252 struct dma_device *dma_memcpy; 253 struct edma_chan *slave_chans; 254 struct edma_tc *tc_list; 255 int dummy_slot; 256 }; 257 258 /* dummy param set used to (re)initialize parameter RAM slots */ 259 static const struct edmacc_param dummy_paramset = { 260 .link_bcntrld = 0xffff, 261 .ccnt = 1, 262 }; 263 264 #define EDMA_BINDING_LEGACY 0 265 #define EDMA_BINDING_TPCC 1 266 static const u32 edma_binding_type[] = { 267 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, 268 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, 269 }; 270 271 static const struct of_device_id edma_of_ids[] = { 272 { 273 .compatible = "ti,edma3", 274 .data = &edma_binding_type[EDMA_BINDING_LEGACY], 275 }, 276 { 277 .compatible = "ti,edma3-tpcc", 278 .data = &edma_binding_type[EDMA_BINDING_TPCC], 279 }, 280 {} 281 }; 282 MODULE_DEVICE_TABLE(of, edma_of_ids); 283 284 static const struct of_device_id edma_tptc_of_ids[] = { 285 { .compatible = "ti,edma3-tptc", }, 286 {} 287 }; 288 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); 289 290 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) 291 { 292 return (unsigned int)__raw_readl(ecc->base + offset); 293 } 294 295 static inline void edma_write(struct edma_cc *ecc, int offset, int val) 296 { 297 __raw_writel(val, ecc->base + offset); 298 } 299 300 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, 301 unsigned or) 302 { 303 unsigned val = edma_read(ecc, offset); 304 305 val &= and; 306 val |= or; 307 edma_write(ecc, offset, val); 308 } 309 310 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) 311 { 312 unsigned val = edma_read(ecc, offset); 313 314 val &= and; 315 edma_write(ecc, offset, val); 316 } 317 318 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) 319 { 320 unsigned val = edma_read(ecc, offset); 321 322 val |= or; 323 edma_write(ecc, offset, val); 324 } 325 326 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, 327 int i) 328 { 329 return edma_read(ecc, offset + (i << 2)); 330 } 331 332 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, 333 unsigned val) 334 { 335 edma_write(ecc, offset + (i << 2), val); 336 } 337 338 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, 339 unsigned and, unsigned or) 340 { 341 edma_modify(ecc, offset + (i << 2), and, or); 342 } 343 344 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, 345 unsigned or) 346 { 347 edma_or(ecc, offset + (i << 2), or); 348 } 349 350 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, 351 unsigned or) 352 { 353 edma_or(ecc, offset + ((i * 2 + j) << 2), or); 354 } 355 356 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, 357 int j, unsigned val) 358 { 359 edma_write(ecc, offset + ((i * 2 + j) << 2), val); 360 } 361 362 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) 363 { 364 return edma_read(ecc, EDMA_SHADOW0 + offset); 365 } 366 367 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, 368 int offset, int i) 369 { 370 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); 371 } 372 373 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, 374 unsigned val) 375 { 376 edma_write(ecc, EDMA_SHADOW0 + offset, val); 377 } 378 379 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, 380 int i, unsigned val) 381 { 382 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); 383 } 384 385 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, 386 int param_no) 387 { 388 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); 389 } 390 391 static inline void edma_param_write(struct edma_cc *ecc, int offset, 392 int param_no, unsigned val) 393 { 394 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); 395 } 396 397 static inline void edma_param_modify(struct edma_cc *ecc, int offset, 398 int param_no, unsigned and, unsigned or) 399 { 400 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); 401 } 402 403 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, 404 unsigned and) 405 { 406 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); 407 } 408 409 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, 410 unsigned or) 411 { 412 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); 413 } 414 415 static inline void edma_set_bits(int offset, int len, unsigned long *p) 416 { 417 for (; len > 0; len--) 418 set_bit(offset + (len - 1), p); 419 } 420 421 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, 422 int priority) 423 { 424 int bit = queue_no * 4; 425 426 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); 427 } 428 429 static void edma_set_chmap(struct edma_chan *echan, int slot) 430 { 431 struct edma_cc *ecc = echan->ecc; 432 int channel = EDMA_CHAN_SLOT(echan->ch_num); 433 434 if (ecc->chmap_exist) { 435 slot = EDMA_CHAN_SLOT(slot); 436 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); 437 } 438 } 439 440 static void edma_setup_interrupt(struct edma_chan *echan, bool enable) 441 { 442 struct edma_cc *ecc = echan->ecc; 443 int channel = EDMA_CHAN_SLOT(echan->ch_num); 444 445 if (enable) { 446 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5, 447 BIT(channel & 0x1f)); 448 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5, 449 BIT(channel & 0x1f)); 450 } else { 451 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5, 452 BIT(channel & 0x1f)); 453 } 454 } 455 456 /* 457 * paRAM slot management functions 458 */ 459 static void edma_write_slot(struct edma_cc *ecc, unsigned slot, 460 const struct edmacc_param *param) 461 { 462 slot = EDMA_CHAN_SLOT(slot); 463 if (slot >= ecc->num_slots) 464 return; 465 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); 466 } 467 468 static int edma_read_slot(struct edma_cc *ecc, unsigned slot, 469 struct edmacc_param *param) 470 { 471 slot = EDMA_CHAN_SLOT(slot); 472 if (slot >= ecc->num_slots) 473 return -EINVAL; 474 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); 475 476 return 0; 477 } 478 479 /** 480 * edma_alloc_slot - allocate DMA parameter RAM 481 * @ecc: pointer to edma_cc struct 482 * @slot: specific slot to allocate; negative for "any unused slot" 483 * 484 * This allocates a parameter RAM slot, initializing it to hold a 485 * dummy transfer. Slots allocated using this routine have not been 486 * mapped to a hardware DMA channel, and will normally be used by 487 * linking to them from a slot associated with a DMA channel. 488 * 489 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific 490 * slots may be allocated on behalf of DSP firmware. 491 * 492 * Returns the number of the slot, else negative errno. 493 */ 494 static int edma_alloc_slot(struct edma_cc *ecc, int slot) 495 { 496 if (slot >= 0) { 497 slot = EDMA_CHAN_SLOT(slot); 498 /* Requesting entry paRAM slot for a HW triggered channel. */ 499 if (ecc->chmap_exist && slot < ecc->num_channels) 500 slot = EDMA_SLOT_ANY; 501 } 502 503 if (slot < 0) { 504 if (ecc->chmap_exist) 505 slot = 0; 506 else 507 slot = ecc->num_channels; 508 for (;;) { 509 slot = find_next_zero_bit(ecc->slot_inuse, 510 ecc->num_slots, 511 slot); 512 if (slot == ecc->num_slots) 513 return -ENOMEM; 514 if (!test_and_set_bit(slot, ecc->slot_inuse)) 515 break; 516 } 517 } else if (slot >= ecc->num_slots) { 518 return -EINVAL; 519 } else if (test_and_set_bit(slot, ecc->slot_inuse)) { 520 return -EBUSY; 521 } 522 523 edma_write_slot(ecc, slot, &dummy_paramset); 524 525 return EDMA_CTLR_CHAN(ecc->id, slot); 526 } 527 528 static void edma_free_slot(struct edma_cc *ecc, unsigned slot) 529 { 530 slot = EDMA_CHAN_SLOT(slot); 531 if (slot >= ecc->num_slots) 532 return; 533 534 edma_write_slot(ecc, slot, &dummy_paramset); 535 clear_bit(slot, ecc->slot_inuse); 536 } 537 538 /** 539 * edma_link - link one parameter RAM slot to another 540 * @ecc: pointer to edma_cc struct 541 * @from: parameter RAM slot originating the link 542 * @to: parameter RAM slot which is the link target 543 * 544 * The originating slot should not be part of any active DMA transfer. 545 */ 546 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) 547 { 548 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) 549 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); 550 551 from = EDMA_CHAN_SLOT(from); 552 to = EDMA_CHAN_SLOT(to); 553 if (from >= ecc->num_slots || to >= ecc->num_slots) 554 return; 555 556 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, 557 PARM_OFFSET(to)); 558 } 559 560 /** 561 * edma_get_position - returns the current transfer point 562 * @ecc: pointer to edma_cc struct 563 * @slot: parameter RAM slot being examined 564 * @dst: true selects the dest position, false the source 565 * 566 * Returns the position of the current active slot 567 */ 568 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, 569 bool dst) 570 { 571 u32 offs; 572 573 slot = EDMA_CHAN_SLOT(slot); 574 offs = PARM_OFFSET(slot); 575 offs += dst ? PARM_DST : PARM_SRC; 576 577 return edma_read(ecc, offs); 578 } 579 580 /* 581 * Channels with event associations will be triggered by their hardware 582 * events, and channels without such associations will be triggered by 583 * software. (At this writing there is no interface for using software 584 * triggers except with channels that don't support hardware triggers.) 585 */ 586 static void edma_start(struct edma_chan *echan) 587 { 588 struct edma_cc *ecc = echan->ecc; 589 int channel = EDMA_CHAN_SLOT(echan->ch_num); 590 int j = (channel >> 5); 591 unsigned int mask = BIT(channel & 0x1f); 592 593 if (!echan->hw_triggered) { 594 /* EDMA channels without event association */ 595 dev_dbg(ecc->dev, "ESR%d %08x\n", j, 596 edma_shadow0_read_array(ecc, SH_ESR, j)); 597 edma_shadow0_write_array(ecc, SH_ESR, j, mask); 598 } else { 599 /* EDMA channel with event association */ 600 dev_dbg(ecc->dev, "ER%d %08x\n", j, 601 edma_shadow0_read_array(ecc, SH_ER, j)); 602 /* Clear any pending event or error */ 603 edma_write_array(ecc, EDMA_ECR, j, mask); 604 edma_write_array(ecc, EDMA_EMCR, j, mask); 605 /* Clear any SER */ 606 edma_shadow0_write_array(ecc, SH_SECR, j, mask); 607 edma_shadow0_write_array(ecc, SH_EESR, j, mask); 608 dev_dbg(ecc->dev, "EER%d %08x\n", j, 609 edma_shadow0_read_array(ecc, SH_EER, j)); 610 } 611 } 612 613 static void edma_stop(struct edma_chan *echan) 614 { 615 struct edma_cc *ecc = echan->ecc; 616 int channel = EDMA_CHAN_SLOT(echan->ch_num); 617 int j = (channel >> 5); 618 unsigned int mask = BIT(channel & 0x1f); 619 620 edma_shadow0_write_array(ecc, SH_EECR, j, mask); 621 edma_shadow0_write_array(ecc, SH_ECR, j, mask); 622 edma_shadow0_write_array(ecc, SH_SECR, j, mask); 623 edma_write_array(ecc, EDMA_EMCR, j, mask); 624 625 /* clear possibly pending completion interrupt */ 626 edma_shadow0_write_array(ecc, SH_ICR, j, mask); 627 628 dev_dbg(ecc->dev, "EER%d %08x\n", j, 629 edma_shadow0_read_array(ecc, SH_EER, j)); 630 631 /* REVISIT: consider guarding against inappropriate event 632 * chaining by overwriting with dummy_paramset. 633 */ 634 } 635 636 /* 637 * Temporarily disable EDMA hardware events on the specified channel, 638 * preventing them from triggering new transfers 639 */ 640 static void edma_pause(struct edma_chan *echan) 641 { 642 int channel = EDMA_CHAN_SLOT(echan->ch_num); 643 unsigned int mask = BIT(channel & 0x1f); 644 645 edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask); 646 } 647 648 /* Re-enable EDMA hardware events on the specified channel. */ 649 static void edma_resume(struct edma_chan *echan) 650 { 651 int channel = EDMA_CHAN_SLOT(echan->ch_num); 652 unsigned int mask = BIT(channel & 0x1f); 653 654 edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask); 655 } 656 657 static void edma_trigger_channel(struct edma_chan *echan) 658 { 659 struct edma_cc *ecc = echan->ecc; 660 int channel = EDMA_CHAN_SLOT(echan->ch_num); 661 unsigned int mask = BIT(channel & 0x1f); 662 663 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask); 664 665 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5), 666 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5))); 667 } 668 669 static void edma_clean_channel(struct edma_chan *echan) 670 { 671 struct edma_cc *ecc = echan->ecc; 672 int channel = EDMA_CHAN_SLOT(echan->ch_num); 673 int j = (channel >> 5); 674 unsigned int mask = BIT(channel & 0x1f); 675 676 dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j)); 677 edma_shadow0_write_array(ecc, SH_ECR, j, mask); 678 /* Clear the corresponding EMR bits */ 679 edma_write_array(ecc, EDMA_EMCR, j, mask); 680 /* Clear any SER */ 681 edma_shadow0_write_array(ecc, SH_SECR, j, mask); 682 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); 683 } 684 685 /* Move channel to a specific event queue */ 686 static void edma_assign_channel_eventq(struct edma_chan *echan, 687 enum dma_event_q eventq_no) 688 { 689 struct edma_cc *ecc = echan->ecc; 690 int channel = EDMA_CHAN_SLOT(echan->ch_num); 691 int bit = (channel & 0x7) * 4; 692 693 /* default to low priority queue */ 694 if (eventq_no == EVENTQ_DEFAULT) 695 eventq_no = ecc->default_queue; 696 if (eventq_no >= ecc->num_tc) 697 return; 698 699 eventq_no &= 7; 700 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), 701 eventq_no << bit); 702 } 703 704 static int edma_alloc_channel(struct edma_chan *echan, 705 enum dma_event_q eventq_no) 706 { 707 struct edma_cc *ecc = echan->ecc; 708 int channel = EDMA_CHAN_SLOT(echan->ch_num); 709 710 /* ensure access through shadow region 0 */ 711 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); 712 713 /* ensure no events are pending */ 714 edma_stop(echan); 715 716 edma_setup_interrupt(echan, true); 717 718 edma_assign_channel_eventq(echan, eventq_no); 719 720 return 0; 721 } 722 723 static void edma_free_channel(struct edma_chan *echan) 724 { 725 /* ensure no events are pending */ 726 edma_stop(echan); 727 /* REVISIT should probably take out of shadow region 0 */ 728 edma_setup_interrupt(echan, false); 729 } 730 731 static inline struct edma_cc *to_edma_cc(struct dma_device *d) 732 { 733 return container_of(d, struct edma_cc, dma_slave); 734 } 735 736 static inline struct edma_chan *to_edma_chan(struct dma_chan *c) 737 { 738 return container_of(c, struct edma_chan, vchan.chan); 739 } 740 741 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) 742 { 743 return container_of(tx, struct edma_desc, vdesc.tx); 744 } 745 746 static void edma_desc_free(struct virt_dma_desc *vdesc) 747 { 748 kfree(container_of(vdesc, struct edma_desc, vdesc)); 749 } 750 751 /* Dispatch a queued descriptor to the controller (caller holds lock) */ 752 static void edma_execute(struct edma_chan *echan) 753 { 754 struct edma_cc *ecc = echan->ecc; 755 struct virt_dma_desc *vdesc; 756 struct edma_desc *edesc; 757 struct device *dev = echan->vchan.chan.device->dev; 758 int i, j, left, nslots; 759 760 if (!echan->edesc) { 761 /* Setup is needed for the first transfer */ 762 vdesc = vchan_next_desc(&echan->vchan); 763 if (!vdesc) 764 return; 765 list_del(&vdesc->node); 766 echan->edesc = to_edma_desc(&vdesc->tx); 767 } 768 769 edesc = echan->edesc; 770 771 /* Find out how many left */ 772 left = edesc->pset_nr - edesc->processed; 773 nslots = min(MAX_NR_SG, left); 774 edesc->sg_len = 0; 775 776 /* Write descriptor PaRAM set(s) */ 777 for (i = 0; i < nslots; i++) { 778 j = i + edesc->processed; 779 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); 780 edesc->sg_len += edesc->pset[j].len; 781 dev_vdbg(dev, 782 "\n pset[%d]:\n" 783 " chnum\t%d\n" 784 " slot\t%d\n" 785 " opt\t%08x\n" 786 " src\t%08x\n" 787 " dst\t%08x\n" 788 " abcnt\t%08x\n" 789 " ccnt\t%08x\n" 790 " bidx\t%08x\n" 791 " cidx\t%08x\n" 792 " lkrld\t%08x\n", 793 j, echan->ch_num, echan->slot[i], 794 edesc->pset[j].param.opt, 795 edesc->pset[j].param.src, 796 edesc->pset[j].param.dst, 797 edesc->pset[j].param.a_b_cnt, 798 edesc->pset[j].param.ccnt, 799 edesc->pset[j].param.src_dst_bidx, 800 edesc->pset[j].param.src_dst_cidx, 801 edesc->pset[j].param.link_bcntrld); 802 /* Link to the previous slot if not the last set */ 803 if (i != (nslots - 1)) 804 edma_link(ecc, echan->slot[i], echan->slot[i + 1]); 805 } 806 807 edesc->processed += nslots; 808 809 /* 810 * If this is either the last set in a set of SG-list transactions 811 * then setup a link to the dummy slot, this results in all future 812 * events being absorbed and that's OK because we're done 813 */ 814 if (edesc->processed == edesc->pset_nr) { 815 if (edesc->cyclic) 816 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); 817 else 818 edma_link(ecc, echan->slot[nslots - 1], 819 echan->ecc->dummy_slot); 820 } 821 822 if (echan->missed) { 823 /* 824 * This happens due to setup times between intermediate 825 * transfers in long SG lists which have to be broken up into 826 * transfers of MAX_NR_SG 827 */ 828 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); 829 edma_clean_channel(echan); 830 edma_stop(echan); 831 edma_start(echan); 832 edma_trigger_channel(echan); 833 echan->missed = 0; 834 } else if (edesc->processed <= MAX_NR_SG) { 835 dev_dbg(dev, "first transfer starting on channel %d\n", 836 echan->ch_num); 837 edma_start(echan); 838 } else { 839 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", 840 echan->ch_num, edesc->processed); 841 edma_resume(echan); 842 } 843 } 844 845 static int edma_terminate_all(struct dma_chan *chan) 846 { 847 struct edma_chan *echan = to_edma_chan(chan); 848 unsigned long flags; 849 LIST_HEAD(head); 850 851 spin_lock_irqsave(&echan->vchan.lock, flags); 852 853 /* 854 * Stop DMA activity: we assume the callback will not be called 855 * after edma_dma() returns (even if it does, it will see 856 * echan->edesc is NULL and exit.) 857 */ 858 if (echan->edesc) { 859 edma_stop(echan); 860 /* Move the cyclic channel back to default queue */ 861 if (!echan->tc && echan->edesc->cyclic) 862 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); 863 864 vchan_terminate_vdesc(&echan->edesc->vdesc); 865 echan->edesc = NULL; 866 } 867 868 vchan_get_all_descriptors(&echan->vchan, &head); 869 spin_unlock_irqrestore(&echan->vchan.lock, flags); 870 vchan_dma_desc_free_list(&echan->vchan, &head); 871 872 return 0; 873 } 874 875 static void edma_synchronize(struct dma_chan *chan) 876 { 877 struct edma_chan *echan = to_edma_chan(chan); 878 879 vchan_synchronize(&echan->vchan); 880 } 881 882 static int edma_slave_config(struct dma_chan *chan, 883 struct dma_slave_config *cfg) 884 { 885 struct edma_chan *echan = to_edma_chan(chan); 886 887 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || 888 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) 889 return -EINVAL; 890 891 if (cfg->src_maxburst > chan->device->max_burst || 892 cfg->dst_maxburst > chan->device->max_burst) 893 return -EINVAL; 894 895 memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); 896 897 return 0; 898 } 899 900 static int edma_dma_pause(struct dma_chan *chan) 901 { 902 struct edma_chan *echan = to_edma_chan(chan); 903 904 if (!echan->edesc) 905 return -EINVAL; 906 907 edma_pause(echan); 908 return 0; 909 } 910 911 static int edma_dma_resume(struct dma_chan *chan) 912 { 913 struct edma_chan *echan = to_edma_chan(chan); 914 915 edma_resume(echan); 916 return 0; 917 } 918 919 /* 920 * A PaRAM set configuration abstraction used by other modes 921 * @chan: Channel who's PaRAM set we're configuring 922 * @pset: PaRAM set to initialize and setup. 923 * @src_addr: Source address of the DMA 924 * @dst_addr: Destination address of the DMA 925 * @burst: In units of dev_width, how much to send 926 * @dev_width: How much is the dev_width 927 * @dma_length: Total length of the DMA transfer 928 * @direction: Direction of the transfer 929 */ 930 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, 931 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, 932 unsigned int acnt, unsigned int dma_length, 933 enum dma_transfer_direction direction) 934 { 935 struct edma_chan *echan = to_edma_chan(chan); 936 struct device *dev = chan->device->dev; 937 struct edmacc_param *param = &epset->param; 938 int bcnt, ccnt, cidx; 939 int src_bidx, dst_bidx, src_cidx, dst_cidx; 940 int absync; 941 942 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ 943 if (!burst) 944 burst = 1; 945 /* 946 * If the maxburst is equal to the fifo width, use 947 * A-synced transfers. This allows for large contiguous 948 * buffer transfers using only one PaRAM set. 949 */ 950 if (burst == 1) { 951 /* 952 * For the A-sync case, bcnt and ccnt are the remainder 953 * and quotient respectively of the division of: 954 * (dma_length / acnt) by (SZ_64K -1). This is so 955 * that in case bcnt over flows, we have ccnt to use. 956 * Note: In A-sync tranfer only, bcntrld is used, but it 957 * only applies for sg_dma_len(sg) >= SZ_64K. 958 * In this case, the best way adopted is- bccnt for the 959 * first frame will be the remainder below. Then for 960 * every successive frame, bcnt will be SZ_64K-1. This 961 * is assured as bcntrld = 0xffff in end of function. 962 */ 963 absync = false; 964 ccnt = dma_length / acnt / (SZ_64K - 1); 965 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); 966 /* 967 * If bcnt is non-zero, we have a remainder and hence an 968 * extra frame to transfer, so increment ccnt. 969 */ 970 if (bcnt) 971 ccnt++; 972 else 973 bcnt = SZ_64K - 1; 974 cidx = acnt; 975 } else { 976 /* 977 * If maxburst is greater than the fifo address_width, 978 * use AB-synced transfers where A count is the fifo 979 * address_width and B count is the maxburst. In this 980 * case, we are limited to transfers of C count frames 981 * of (address_width * maxburst) where C count is limited 982 * to SZ_64K-1. This places an upper bound on the length 983 * of an SG segment that can be handled. 984 */ 985 absync = true; 986 bcnt = burst; 987 ccnt = dma_length / (acnt * bcnt); 988 if (ccnt > (SZ_64K - 1)) { 989 dev_err(dev, "Exceeded max SG segment size\n"); 990 return -EINVAL; 991 } 992 cidx = acnt * bcnt; 993 } 994 995 epset->len = dma_length; 996 997 if (direction == DMA_MEM_TO_DEV) { 998 src_bidx = acnt; 999 src_cidx = cidx; 1000 dst_bidx = 0; 1001 dst_cidx = 0; 1002 epset->addr = src_addr; 1003 } else if (direction == DMA_DEV_TO_MEM) { 1004 src_bidx = 0; 1005 src_cidx = 0; 1006 dst_bidx = acnt; 1007 dst_cidx = cidx; 1008 epset->addr = dst_addr; 1009 } else if (direction == DMA_MEM_TO_MEM) { 1010 src_bidx = acnt; 1011 src_cidx = cidx; 1012 dst_bidx = acnt; 1013 dst_cidx = cidx; 1014 } else { 1015 dev_err(dev, "%s: direction not implemented yet\n", __func__); 1016 return -EINVAL; 1017 } 1018 1019 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1020 /* Configure A or AB synchronized transfers */ 1021 if (absync) 1022 param->opt |= SYNCDIM; 1023 1024 param->src = src_addr; 1025 param->dst = dst_addr; 1026 1027 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1028 param->src_dst_cidx = (dst_cidx << 16) | src_cidx; 1029 1030 param->a_b_cnt = bcnt << 16 | acnt; 1031 param->ccnt = ccnt; 1032 /* 1033 * Only time when (bcntrld) auto reload is required is for 1034 * A-sync case, and in this case, a requirement of reload value 1035 * of SZ_64K-1 only is assured. 'link' is initially set to NULL 1036 * and then later will be populated by edma_execute. 1037 */ 1038 param->link_bcntrld = 0xffffffff; 1039 return absync; 1040 } 1041 1042 static struct dma_async_tx_descriptor *edma_prep_slave_sg( 1043 struct dma_chan *chan, struct scatterlist *sgl, 1044 unsigned int sg_len, enum dma_transfer_direction direction, 1045 unsigned long tx_flags, void *context) 1046 { 1047 struct edma_chan *echan = to_edma_chan(chan); 1048 struct device *dev = chan->device->dev; 1049 struct edma_desc *edesc; 1050 dma_addr_t src_addr = 0, dst_addr = 0; 1051 enum dma_slave_buswidth dev_width; 1052 u32 burst; 1053 struct scatterlist *sg; 1054 int i, nslots, ret; 1055 1056 if (unlikely(!echan || !sgl || !sg_len)) 1057 return NULL; 1058 1059 if (direction == DMA_DEV_TO_MEM) { 1060 src_addr = echan->cfg.src_addr; 1061 dev_width = echan->cfg.src_addr_width; 1062 burst = echan->cfg.src_maxburst; 1063 } else if (direction == DMA_MEM_TO_DEV) { 1064 dst_addr = echan->cfg.dst_addr; 1065 dev_width = echan->cfg.dst_addr_width; 1066 burst = echan->cfg.dst_maxburst; 1067 } else { 1068 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1069 return NULL; 1070 } 1071 1072 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1073 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1074 return NULL; 1075 } 1076 1077 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); 1078 if (!edesc) 1079 return NULL; 1080 1081 edesc->pset_nr = sg_len; 1082 edesc->residue = 0; 1083 edesc->direction = direction; 1084 edesc->echan = echan; 1085 1086 /* Allocate a PaRAM slot, if needed */ 1087 nslots = min_t(unsigned, MAX_NR_SG, sg_len); 1088 1089 for (i = 0; i < nslots; i++) { 1090 if (echan->slot[i] < 0) { 1091 echan->slot[i] = 1092 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1093 if (echan->slot[i] < 0) { 1094 kfree(edesc); 1095 dev_err(dev, "%s: Failed to allocate slot\n", 1096 __func__); 1097 return NULL; 1098 } 1099 } 1100 } 1101 1102 /* Configure PaRAM sets for each SG */ 1103 for_each_sg(sgl, sg, sg_len, i) { 1104 /* Get address for each SG */ 1105 if (direction == DMA_DEV_TO_MEM) 1106 dst_addr = sg_dma_address(sg); 1107 else 1108 src_addr = sg_dma_address(sg); 1109 1110 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1111 dst_addr, burst, dev_width, 1112 sg_dma_len(sg), direction); 1113 if (ret < 0) { 1114 kfree(edesc); 1115 return NULL; 1116 } 1117 1118 edesc->absync = ret; 1119 edesc->residue += sg_dma_len(sg); 1120 1121 if (i == sg_len - 1) 1122 /* Enable completion interrupt */ 1123 edesc->pset[i].param.opt |= TCINTEN; 1124 else if (!((i+1) % MAX_NR_SG)) 1125 /* 1126 * Enable early completion interrupt for the 1127 * intermediateset. In this case the driver will be 1128 * notified when the paRAM set is submitted to TC. This 1129 * will allow more time to set up the next set of slots. 1130 */ 1131 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); 1132 } 1133 edesc->residue_stat = edesc->residue; 1134 1135 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1136 } 1137 1138 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( 1139 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1140 size_t len, unsigned long tx_flags) 1141 { 1142 int ret, nslots; 1143 struct edma_desc *edesc; 1144 struct device *dev = chan->device->dev; 1145 struct edma_chan *echan = to_edma_chan(chan); 1146 unsigned int width, pset_len, array_size; 1147 1148 if (unlikely(!echan || !len)) 1149 return NULL; 1150 1151 /* Align the array size (acnt block) with the transfer properties */ 1152 switch (__ffs((src | dest | len))) { 1153 case 0: 1154 array_size = SZ_32K - 1; 1155 break; 1156 case 1: 1157 array_size = SZ_32K - 2; 1158 break; 1159 default: 1160 array_size = SZ_32K - 4; 1161 break; 1162 } 1163 1164 if (len < SZ_64K) { 1165 /* 1166 * Transfer size less than 64K can be handled with one paRAM 1167 * slot and with one burst. 1168 * ACNT = length 1169 */ 1170 width = len; 1171 pset_len = len; 1172 nslots = 1; 1173 } else { 1174 /* 1175 * Transfer size bigger than 64K will be handled with maximum of 1176 * two paRAM slots. 1177 * slot1: (full_length / 32767) times 32767 bytes bursts. 1178 * ACNT = 32767, length1: (full_length / 32767) * 32767 1179 * slot2: the remaining amount of data after slot1. 1180 * ACNT = full_length - length1, length2 = ACNT 1181 * 1182 * When the full_length is multibple of 32767 one slot can be 1183 * used to complete the transfer. 1184 */ 1185 width = array_size; 1186 pset_len = rounddown(len, width); 1187 /* One slot is enough for lengths multiple of (SZ_32K -1) */ 1188 if (unlikely(pset_len == len)) 1189 nslots = 1; 1190 else 1191 nslots = 2; 1192 } 1193 1194 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1195 if (!edesc) 1196 return NULL; 1197 1198 edesc->pset_nr = nslots; 1199 edesc->residue = edesc->residue_stat = len; 1200 edesc->direction = DMA_MEM_TO_MEM; 1201 edesc->echan = echan; 1202 1203 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, 1204 width, pset_len, DMA_MEM_TO_MEM); 1205 if (ret < 0) { 1206 kfree(edesc); 1207 return NULL; 1208 } 1209 1210 edesc->absync = ret; 1211 1212 edesc->pset[0].param.opt |= ITCCHEN; 1213 if (nslots == 1) { 1214 /* Enable transfer complete interrupt */ 1215 edesc->pset[0].param.opt |= TCINTEN; 1216 } else { 1217 /* Enable transfer complete chaining for the first slot */ 1218 edesc->pset[0].param.opt |= TCCHEN; 1219 1220 if (echan->slot[1] < 0) { 1221 echan->slot[1] = edma_alloc_slot(echan->ecc, 1222 EDMA_SLOT_ANY); 1223 if (echan->slot[1] < 0) { 1224 kfree(edesc); 1225 dev_err(dev, "%s: Failed to allocate slot\n", 1226 __func__); 1227 return NULL; 1228 } 1229 } 1230 dest += pset_len; 1231 src += pset_len; 1232 pset_len = width = len % array_size; 1233 1234 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, 1235 width, pset_len, DMA_MEM_TO_MEM); 1236 if (ret < 0) { 1237 kfree(edesc); 1238 return NULL; 1239 } 1240 1241 edesc->pset[1].param.opt |= ITCCHEN; 1242 edesc->pset[1].param.opt |= TCINTEN; 1243 } 1244 1245 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1246 } 1247 1248 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( 1249 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1250 size_t period_len, enum dma_transfer_direction direction, 1251 unsigned long tx_flags) 1252 { 1253 struct edma_chan *echan = to_edma_chan(chan); 1254 struct device *dev = chan->device->dev; 1255 struct edma_desc *edesc; 1256 dma_addr_t src_addr, dst_addr; 1257 enum dma_slave_buswidth dev_width; 1258 bool use_intermediate = false; 1259 u32 burst; 1260 int i, ret, nslots; 1261 1262 if (unlikely(!echan || !buf_len || !period_len)) 1263 return NULL; 1264 1265 if (direction == DMA_DEV_TO_MEM) { 1266 src_addr = echan->cfg.src_addr; 1267 dst_addr = buf_addr; 1268 dev_width = echan->cfg.src_addr_width; 1269 burst = echan->cfg.src_maxburst; 1270 } else if (direction == DMA_MEM_TO_DEV) { 1271 src_addr = buf_addr; 1272 dst_addr = echan->cfg.dst_addr; 1273 dev_width = echan->cfg.dst_addr_width; 1274 burst = echan->cfg.dst_maxburst; 1275 } else { 1276 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1277 return NULL; 1278 } 1279 1280 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1281 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1282 return NULL; 1283 } 1284 1285 if (unlikely(buf_len % period_len)) { 1286 dev_err(dev, "Period should be multiple of Buffer length\n"); 1287 return NULL; 1288 } 1289 1290 nslots = (buf_len / period_len) + 1; 1291 1292 /* 1293 * Cyclic DMA users such as audio cannot tolerate delays introduced 1294 * by cases where the number of periods is more than the maximum 1295 * number of SGs the EDMA driver can handle at a time. For DMA types 1296 * such as Slave SGs, such delays are tolerable and synchronized, 1297 * but the synchronization is difficult to achieve with Cyclic and 1298 * cannot be guaranteed, so we error out early. 1299 */ 1300 if (nslots > MAX_NR_SG) { 1301 /* 1302 * If the burst and period sizes are the same, we can put 1303 * the full buffer into a single period and activate 1304 * intermediate interrupts. This will produce interrupts 1305 * after each burst, which is also after each desired period. 1306 */ 1307 if (burst == period_len) { 1308 period_len = buf_len; 1309 nslots = 2; 1310 use_intermediate = true; 1311 } else { 1312 return NULL; 1313 } 1314 } 1315 1316 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1317 if (!edesc) 1318 return NULL; 1319 1320 edesc->cyclic = 1; 1321 edesc->pset_nr = nslots; 1322 edesc->residue = edesc->residue_stat = buf_len; 1323 edesc->direction = direction; 1324 edesc->echan = echan; 1325 1326 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", 1327 __func__, echan->ch_num, nslots, period_len, buf_len); 1328 1329 for (i = 0; i < nslots; i++) { 1330 /* Allocate a PaRAM slot, if needed */ 1331 if (echan->slot[i] < 0) { 1332 echan->slot[i] = 1333 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1334 if (echan->slot[i] < 0) { 1335 kfree(edesc); 1336 dev_err(dev, "%s: Failed to allocate slot\n", 1337 __func__); 1338 return NULL; 1339 } 1340 } 1341 1342 if (i == nslots - 1) { 1343 memcpy(&edesc->pset[i], &edesc->pset[0], 1344 sizeof(edesc->pset[0])); 1345 break; 1346 } 1347 1348 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1349 dst_addr, burst, dev_width, period_len, 1350 direction); 1351 if (ret < 0) { 1352 kfree(edesc); 1353 return NULL; 1354 } 1355 1356 if (direction == DMA_DEV_TO_MEM) 1357 dst_addr += period_len; 1358 else 1359 src_addr += period_len; 1360 1361 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); 1362 dev_vdbg(dev, 1363 "\n pset[%d]:\n" 1364 " chnum\t%d\n" 1365 " slot\t%d\n" 1366 " opt\t%08x\n" 1367 " src\t%08x\n" 1368 " dst\t%08x\n" 1369 " abcnt\t%08x\n" 1370 " ccnt\t%08x\n" 1371 " bidx\t%08x\n" 1372 " cidx\t%08x\n" 1373 " lkrld\t%08x\n", 1374 i, echan->ch_num, echan->slot[i], 1375 edesc->pset[i].param.opt, 1376 edesc->pset[i].param.src, 1377 edesc->pset[i].param.dst, 1378 edesc->pset[i].param.a_b_cnt, 1379 edesc->pset[i].param.ccnt, 1380 edesc->pset[i].param.src_dst_bidx, 1381 edesc->pset[i].param.src_dst_cidx, 1382 edesc->pset[i].param.link_bcntrld); 1383 1384 edesc->absync = ret; 1385 1386 /* 1387 * Enable period interrupt only if it is requested 1388 */ 1389 if (tx_flags & DMA_PREP_INTERRUPT) { 1390 edesc->pset[i].param.opt |= TCINTEN; 1391 1392 /* Also enable intermediate interrupts if necessary */ 1393 if (use_intermediate) 1394 edesc->pset[i].param.opt |= ITCINTEN; 1395 } 1396 } 1397 1398 /* Place the cyclic channel to highest priority queue */ 1399 if (!echan->tc) 1400 edma_assign_channel_eventq(echan, EVENTQ_0); 1401 1402 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1403 } 1404 1405 static void edma_completion_handler(struct edma_chan *echan) 1406 { 1407 struct device *dev = echan->vchan.chan.device->dev; 1408 struct edma_desc *edesc; 1409 1410 spin_lock(&echan->vchan.lock); 1411 edesc = echan->edesc; 1412 if (edesc) { 1413 if (edesc->cyclic) { 1414 vchan_cyclic_callback(&edesc->vdesc); 1415 spin_unlock(&echan->vchan.lock); 1416 return; 1417 } else if (edesc->processed == edesc->pset_nr) { 1418 edesc->residue = 0; 1419 edma_stop(echan); 1420 vchan_cookie_complete(&edesc->vdesc); 1421 echan->edesc = NULL; 1422 1423 dev_dbg(dev, "Transfer completed on channel %d\n", 1424 echan->ch_num); 1425 } else { 1426 dev_dbg(dev, "Sub transfer completed on channel %d\n", 1427 echan->ch_num); 1428 1429 edma_pause(echan); 1430 1431 /* Update statistics for tx_status */ 1432 edesc->residue -= edesc->sg_len; 1433 edesc->residue_stat = edesc->residue; 1434 edesc->processed_stat = edesc->processed; 1435 } 1436 edma_execute(echan); 1437 } 1438 1439 spin_unlock(&echan->vchan.lock); 1440 } 1441 1442 /* eDMA interrupt handler */ 1443 static irqreturn_t dma_irq_handler(int irq, void *data) 1444 { 1445 struct edma_cc *ecc = data; 1446 int ctlr; 1447 u32 sh_ier; 1448 u32 sh_ipr; 1449 u32 bank; 1450 1451 ctlr = ecc->id; 1452 if (ctlr < 0) 1453 return IRQ_NONE; 1454 1455 dev_vdbg(ecc->dev, "dma_irq_handler\n"); 1456 1457 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); 1458 if (!sh_ipr) { 1459 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); 1460 if (!sh_ipr) 1461 return IRQ_NONE; 1462 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); 1463 bank = 1; 1464 } else { 1465 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); 1466 bank = 0; 1467 } 1468 1469 do { 1470 u32 slot; 1471 u32 channel; 1472 1473 slot = __ffs(sh_ipr); 1474 sh_ipr &= ~(BIT(slot)); 1475 1476 if (sh_ier & BIT(slot)) { 1477 channel = (bank << 5) | slot; 1478 /* Clear the corresponding IPR bits */ 1479 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); 1480 edma_completion_handler(&ecc->slave_chans[channel]); 1481 } 1482 } while (sh_ipr); 1483 1484 edma_shadow0_write(ecc, SH_IEVAL, 1); 1485 return IRQ_HANDLED; 1486 } 1487 1488 static void edma_error_handler(struct edma_chan *echan) 1489 { 1490 struct edma_cc *ecc = echan->ecc; 1491 struct device *dev = echan->vchan.chan.device->dev; 1492 struct edmacc_param p; 1493 int err; 1494 1495 if (!echan->edesc) 1496 return; 1497 1498 spin_lock(&echan->vchan.lock); 1499 1500 err = edma_read_slot(ecc, echan->slot[0], &p); 1501 1502 /* 1503 * Issue later based on missed flag which will be sure 1504 * to happen as: 1505 * (1) we finished transmitting an intermediate slot and 1506 * edma_execute is coming up. 1507 * (2) or we finished current transfer and issue will 1508 * call edma_execute. 1509 * 1510 * Important note: issuing can be dangerous here and 1511 * lead to some nasty recursion when we are in a NULL 1512 * slot. So we avoid doing so and set the missed flag. 1513 */ 1514 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { 1515 dev_dbg(dev, "Error on null slot, setting miss\n"); 1516 echan->missed = 1; 1517 } else { 1518 /* 1519 * The slot is already programmed but the event got 1520 * missed, so its safe to issue it here. 1521 */ 1522 dev_dbg(dev, "Missed event, TRIGGERING\n"); 1523 edma_clean_channel(echan); 1524 edma_stop(echan); 1525 edma_start(echan); 1526 edma_trigger_channel(echan); 1527 } 1528 spin_unlock(&echan->vchan.lock); 1529 } 1530 1531 static inline bool edma_error_pending(struct edma_cc *ecc) 1532 { 1533 if (edma_read_array(ecc, EDMA_EMR, 0) || 1534 edma_read_array(ecc, EDMA_EMR, 1) || 1535 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) 1536 return true; 1537 1538 return false; 1539 } 1540 1541 /* eDMA error interrupt handler */ 1542 static irqreturn_t dma_ccerr_handler(int irq, void *data) 1543 { 1544 struct edma_cc *ecc = data; 1545 int i, j; 1546 int ctlr; 1547 unsigned int cnt = 0; 1548 unsigned int val; 1549 1550 ctlr = ecc->id; 1551 if (ctlr < 0) 1552 return IRQ_NONE; 1553 1554 dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); 1555 1556 if (!edma_error_pending(ecc)) { 1557 /* 1558 * The registers indicate no pending error event but the irq 1559 * handler has been called. 1560 * Ask eDMA to re-evaluate the error registers. 1561 */ 1562 dev_err(ecc->dev, "%s: Error interrupt without error event!\n", 1563 __func__); 1564 edma_write(ecc, EDMA_EEVAL, 1); 1565 return IRQ_NONE; 1566 } 1567 1568 while (1) { 1569 /* Event missed register(s) */ 1570 for (j = 0; j < 2; j++) { 1571 unsigned long emr; 1572 1573 val = edma_read_array(ecc, EDMA_EMR, j); 1574 if (!val) 1575 continue; 1576 1577 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); 1578 emr = val; 1579 for (i = find_next_bit(&emr, 32, 0); i < 32; 1580 i = find_next_bit(&emr, 32, i + 1)) { 1581 int k = (j << 5) + i; 1582 1583 /* Clear the corresponding EMR bits */ 1584 edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); 1585 /* Clear any SER */ 1586 edma_shadow0_write_array(ecc, SH_SECR, j, 1587 BIT(i)); 1588 edma_error_handler(&ecc->slave_chans[k]); 1589 } 1590 } 1591 1592 val = edma_read(ecc, EDMA_QEMR); 1593 if (val) { 1594 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); 1595 /* Not reported, just clear the interrupt reason. */ 1596 edma_write(ecc, EDMA_QEMCR, val); 1597 edma_shadow0_write(ecc, SH_QSECR, val); 1598 } 1599 1600 val = edma_read(ecc, EDMA_CCERR); 1601 if (val) { 1602 dev_warn(ecc->dev, "CCERR 0x%08x\n", val); 1603 /* Not reported, just clear the interrupt reason. */ 1604 edma_write(ecc, EDMA_CCERRCLR, val); 1605 } 1606 1607 if (!edma_error_pending(ecc)) 1608 break; 1609 cnt++; 1610 if (cnt > 10) 1611 break; 1612 } 1613 edma_write(ecc, EDMA_EEVAL, 1); 1614 return IRQ_HANDLED; 1615 } 1616 1617 /* Alloc channel resources */ 1618 static int edma_alloc_chan_resources(struct dma_chan *chan) 1619 { 1620 struct edma_chan *echan = to_edma_chan(chan); 1621 struct edma_cc *ecc = echan->ecc; 1622 struct device *dev = ecc->dev; 1623 enum dma_event_q eventq_no = EVENTQ_DEFAULT; 1624 int ret; 1625 1626 if (echan->tc) { 1627 eventq_no = echan->tc->id; 1628 } else if (ecc->tc_list) { 1629 /* memcpy channel */ 1630 echan->tc = &ecc->tc_list[ecc->info->default_queue]; 1631 eventq_no = echan->tc->id; 1632 } 1633 1634 ret = edma_alloc_channel(echan, eventq_no); 1635 if (ret) 1636 return ret; 1637 1638 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); 1639 if (echan->slot[0] < 0) { 1640 dev_err(dev, "Entry slot allocation failed for channel %u\n", 1641 EDMA_CHAN_SLOT(echan->ch_num)); 1642 ret = echan->slot[0]; 1643 goto err_slot; 1644 } 1645 1646 /* Set up channel -> slot mapping for the entry slot */ 1647 edma_set_chmap(echan, echan->slot[0]); 1648 echan->alloced = true; 1649 1650 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", 1651 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, 1652 echan->hw_triggered ? "HW" : "SW"); 1653 1654 return 0; 1655 1656 err_slot: 1657 edma_free_channel(echan); 1658 return ret; 1659 } 1660 1661 /* Free channel resources */ 1662 static void edma_free_chan_resources(struct dma_chan *chan) 1663 { 1664 struct edma_chan *echan = to_edma_chan(chan); 1665 struct device *dev = echan->ecc->dev; 1666 int i; 1667 1668 /* Terminate transfers */ 1669 edma_stop(echan); 1670 1671 vchan_free_chan_resources(&echan->vchan); 1672 1673 /* Free EDMA PaRAM slots */ 1674 for (i = 0; i < EDMA_MAX_SLOTS; i++) { 1675 if (echan->slot[i] >= 0) { 1676 edma_free_slot(echan->ecc, echan->slot[i]); 1677 echan->slot[i] = -1; 1678 } 1679 } 1680 1681 /* Set entry slot to the dummy slot */ 1682 edma_set_chmap(echan, echan->ecc->dummy_slot); 1683 1684 /* Free EDMA channel */ 1685 if (echan->alloced) { 1686 edma_free_channel(echan); 1687 echan->alloced = false; 1688 } 1689 1690 echan->tc = NULL; 1691 echan->hw_triggered = false; 1692 1693 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", 1694 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); 1695 } 1696 1697 /* Send pending descriptor to hardware */ 1698 static void edma_issue_pending(struct dma_chan *chan) 1699 { 1700 struct edma_chan *echan = to_edma_chan(chan); 1701 unsigned long flags; 1702 1703 spin_lock_irqsave(&echan->vchan.lock, flags); 1704 if (vchan_issue_pending(&echan->vchan) && !echan->edesc) 1705 edma_execute(echan); 1706 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1707 } 1708 1709 /* 1710 * This limit exists to avoid a possible infinite loop when waiting for proof 1711 * that a particular transfer is completed. This limit can be hit if there 1712 * are large bursts to/from slow devices or the CPU is never able to catch 1713 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART 1714 * RX-FIFO, as many as 55 loops have been seen. 1715 */ 1716 #define EDMA_MAX_TR_WAIT_LOOPS 1000 1717 1718 static u32 edma_residue(struct edma_desc *edesc) 1719 { 1720 bool dst = edesc->direction == DMA_DEV_TO_MEM; 1721 int loop_count = EDMA_MAX_TR_WAIT_LOOPS; 1722 struct edma_chan *echan = edesc->echan; 1723 struct edma_pset *pset = edesc->pset; 1724 dma_addr_t done, pos; 1725 int i; 1726 1727 /* 1728 * We always read the dst/src position from the first RamPar 1729 * pset. That's the one which is active now. 1730 */ 1731 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1732 1733 /* 1734 * "pos" may represent a transfer request that is still being 1735 * processed by the EDMACC or EDMATC. We will busy wait until 1736 * any one of the situations occurs: 1737 * 1. the DMA hardware is idle 1738 * 2. a new transfer request is setup 1739 * 3. we hit the loop limit 1740 */ 1741 while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) { 1742 /* check if a new transfer request is setup */ 1743 if (edma_get_position(echan->ecc, 1744 echan->slot[0], dst) != pos) { 1745 break; 1746 } 1747 1748 if (!--loop_count) { 1749 dev_dbg_ratelimited(echan->vchan.chan.device->dev, 1750 "%s: timeout waiting for PaRAM update\n", 1751 __func__); 1752 break; 1753 } 1754 1755 cpu_relax(); 1756 } 1757 1758 /* 1759 * Cyclic is simple. Just subtract pset[0].addr from pos. 1760 * 1761 * We never update edesc->residue in the cyclic case, so we 1762 * can tell the remaining room to the end of the circular 1763 * buffer. 1764 */ 1765 if (edesc->cyclic) { 1766 done = pos - pset->addr; 1767 edesc->residue_stat = edesc->residue - done; 1768 return edesc->residue_stat; 1769 } 1770 1771 /* 1772 * For SG operation we catch up with the last processed 1773 * status. 1774 */ 1775 pset += edesc->processed_stat; 1776 1777 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { 1778 /* 1779 * If we are inside this pset address range, we know 1780 * this is the active one. Get the current delta and 1781 * stop walking the psets. 1782 */ 1783 if (pos >= pset->addr && pos < pset->addr + pset->len) 1784 return edesc->residue_stat - (pos - pset->addr); 1785 1786 /* Otherwise mark it done and update residue_stat. */ 1787 edesc->processed_stat++; 1788 edesc->residue_stat -= pset->len; 1789 } 1790 return edesc->residue_stat; 1791 } 1792 1793 /* Check request completion status */ 1794 static enum dma_status edma_tx_status(struct dma_chan *chan, 1795 dma_cookie_t cookie, 1796 struct dma_tx_state *txstate) 1797 { 1798 struct edma_chan *echan = to_edma_chan(chan); 1799 struct virt_dma_desc *vdesc; 1800 enum dma_status ret; 1801 unsigned long flags; 1802 1803 ret = dma_cookie_status(chan, cookie, txstate); 1804 if (ret == DMA_COMPLETE || !txstate) 1805 return ret; 1806 1807 spin_lock_irqsave(&echan->vchan.lock, flags); 1808 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) 1809 txstate->residue = edma_residue(echan->edesc); 1810 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) 1811 txstate->residue = to_edma_desc(&vdesc->tx)->residue; 1812 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1813 1814 return ret; 1815 } 1816 1817 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) 1818 { 1819 if (!memcpy_channels) 1820 return false; 1821 while (*memcpy_channels != -1) { 1822 if (*memcpy_channels == ch_num) 1823 return true; 1824 memcpy_channels++; 1825 } 1826 return false; 1827 } 1828 1829 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 1830 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 1831 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 1832 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 1833 1834 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) 1835 { 1836 struct dma_device *s_ddev = &ecc->dma_slave; 1837 struct dma_device *m_ddev = NULL; 1838 s32 *memcpy_channels = ecc->info->memcpy_channels; 1839 int i, j; 1840 1841 dma_cap_zero(s_ddev->cap_mask); 1842 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); 1843 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); 1844 if (ecc->legacy_mode && !memcpy_channels) { 1845 dev_warn(ecc->dev, 1846 "Legacy memcpy is enabled, things might not work\n"); 1847 1848 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); 1849 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1850 s_ddev->directions = BIT(DMA_MEM_TO_MEM); 1851 } 1852 1853 s_ddev->device_prep_slave_sg = edma_prep_slave_sg; 1854 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; 1855 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1856 s_ddev->device_free_chan_resources = edma_free_chan_resources; 1857 s_ddev->device_issue_pending = edma_issue_pending; 1858 s_ddev->device_tx_status = edma_tx_status; 1859 s_ddev->device_config = edma_slave_config; 1860 s_ddev->device_pause = edma_dma_pause; 1861 s_ddev->device_resume = edma_dma_resume; 1862 s_ddev->device_terminate_all = edma_terminate_all; 1863 s_ddev->device_synchronize = edma_synchronize; 1864 1865 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1866 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1867 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); 1868 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1869 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ 1870 1871 s_ddev->dev = ecc->dev; 1872 INIT_LIST_HEAD(&s_ddev->channels); 1873 1874 if (memcpy_channels) { 1875 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); 1876 if (!m_ddev) { 1877 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); 1878 memcpy_channels = NULL; 1879 goto ch_setup; 1880 } 1881 ecc->dma_memcpy = m_ddev; 1882 1883 dma_cap_zero(m_ddev->cap_mask); 1884 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); 1885 1886 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1887 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1888 m_ddev->device_free_chan_resources = edma_free_chan_resources; 1889 m_ddev->device_issue_pending = edma_issue_pending; 1890 m_ddev->device_tx_status = edma_tx_status; 1891 m_ddev->device_config = edma_slave_config; 1892 m_ddev->device_pause = edma_dma_pause; 1893 m_ddev->device_resume = edma_dma_resume; 1894 m_ddev->device_terminate_all = edma_terminate_all; 1895 m_ddev->device_synchronize = edma_synchronize; 1896 1897 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1898 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1899 m_ddev->directions = BIT(DMA_MEM_TO_MEM); 1900 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1901 1902 m_ddev->dev = ecc->dev; 1903 INIT_LIST_HEAD(&m_ddev->channels); 1904 } else if (!ecc->legacy_mode) { 1905 dev_info(ecc->dev, "memcpy is disabled\n"); 1906 } 1907 1908 ch_setup: 1909 for (i = 0; i < ecc->num_channels; i++) { 1910 struct edma_chan *echan = &ecc->slave_chans[i]; 1911 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); 1912 echan->ecc = ecc; 1913 echan->vchan.desc_free = edma_desc_free; 1914 1915 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) 1916 vchan_init(&echan->vchan, m_ddev); 1917 else 1918 vchan_init(&echan->vchan, s_ddev); 1919 1920 INIT_LIST_HEAD(&echan->node); 1921 for (j = 0; j < EDMA_MAX_SLOTS; j++) 1922 echan->slot[j] = -1; 1923 } 1924 } 1925 1926 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, 1927 struct edma_cc *ecc) 1928 { 1929 int i; 1930 u32 value, cccfg; 1931 s8 (*queue_priority_map)[2]; 1932 1933 /* Decode the eDMA3 configuration from CCCFG register */ 1934 cccfg = edma_read(ecc, EDMA_CCCFG); 1935 1936 value = GET_NUM_REGN(cccfg); 1937 ecc->num_region = BIT(value); 1938 1939 value = GET_NUM_DMACH(cccfg); 1940 ecc->num_channels = BIT(value + 1); 1941 1942 value = GET_NUM_QDMACH(cccfg); 1943 ecc->num_qchannels = value * 2; 1944 1945 value = GET_NUM_PAENTRY(cccfg); 1946 ecc->num_slots = BIT(value + 4); 1947 1948 value = GET_NUM_EVQUE(cccfg); 1949 ecc->num_tc = value + 1; 1950 1951 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; 1952 1953 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); 1954 dev_dbg(dev, "num_region: %u\n", ecc->num_region); 1955 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); 1956 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); 1957 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); 1958 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); 1959 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); 1960 1961 /* Nothing need to be done if queue priority is provided */ 1962 if (pdata->queue_priority_mapping) 1963 return 0; 1964 1965 /* 1966 * Configure TC/queue priority as follows: 1967 * Q0 - priority 0 1968 * Q1 - priority 1 1969 * Q2 - priority 2 1970 * ... 1971 * The meaning of priority numbers: 0 highest priority, 7 lowest 1972 * priority. So Q0 is the highest priority queue and the last queue has 1973 * the lowest priority. 1974 */ 1975 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), 1976 GFP_KERNEL); 1977 if (!queue_priority_map) 1978 return -ENOMEM; 1979 1980 for (i = 0; i < ecc->num_tc; i++) { 1981 queue_priority_map[i][0] = i; 1982 queue_priority_map[i][1] = i; 1983 } 1984 queue_priority_map[i][0] = -1; 1985 queue_priority_map[i][1] = -1; 1986 1987 pdata->queue_priority_mapping = queue_priority_map; 1988 /* Default queue has the lowest priority */ 1989 pdata->default_queue = i - 1; 1990 1991 return 0; 1992 } 1993 1994 #if IS_ENABLED(CONFIG_OF) 1995 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, 1996 size_t sz) 1997 { 1998 const char pname[] = "ti,edma-xbar-event-map"; 1999 struct resource res; 2000 void __iomem *xbar; 2001 s16 (*xbar_chans)[2]; 2002 size_t nelm = sz / sizeof(s16); 2003 u32 shift, offset, mux; 2004 int ret, i; 2005 2006 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); 2007 if (!xbar_chans) 2008 return -ENOMEM; 2009 2010 ret = of_address_to_resource(dev->of_node, 1, &res); 2011 if (ret) 2012 return -ENOMEM; 2013 2014 xbar = devm_ioremap(dev, res.start, resource_size(&res)); 2015 if (!xbar) 2016 return -ENOMEM; 2017 2018 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, 2019 nelm); 2020 if (ret) 2021 return -EIO; 2022 2023 /* Invalidate last entry for the other user of this mess */ 2024 nelm >>= 1; 2025 xbar_chans[nelm][0] = -1; 2026 xbar_chans[nelm][1] = -1; 2027 2028 for (i = 0; i < nelm; i++) { 2029 shift = (xbar_chans[i][1] & 0x03) << 3; 2030 offset = xbar_chans[i][1] & 0xfffffffc; 2031 mux = readl(xbar + offset); 2032 mux &= ~(0xff << shift); 2033 mux |= xbar_chans[i][0] << shift; 2034 writel(mux, (xbar + offset)); 2035 } 2036 2037 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; 2038 return 0; 2039 } 2040 2041 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2042 bool legacy_mode) 2043 { 2044 struct edma_soc_info *info; 2045 struct property *prop; 2046 int sz, ret; 2047 2048 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); 2049 if (!info) 2050 return ERR_PTR(-ENOMEM); 2051 2052 if (legacy_mode) { 2053 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", 2054 &sz); 2055 if (prop) { 2056 ret = edma_xbar_event_map(dev, info, sz); 2057 if (ret) 2058 return ERR_PTR(ret); 2059 } 2060 return info; 2061 } 2062 2063 /* Get the list of channels allocated to be used for memcpy */ 2064 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); 2065 if (prop) { 2066 const char pname[] = "ti,edma-memcpy-channels"; 2067 size_t nelm = sz / sizeof(s32); 2068 s32 *memcpy_ch; 2069 2070 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), 2071 GFP_KERNEL); 2072 if (!memcpy_ch) 2073 return ERR_PTR(-ENOMEM); 2074 2075 ret = of_property_read_u32_array(dev->of_node, pname, 2076 (u32 *)memcpy_ch, nelm); 2077 if (ret) 2078 return ERR_PTR(ret); 2079 2080 memcpy_ch[nelm] = -1; 2081 info->memcpy_channels = memcpy_ch; 2082 } 2083 2084 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", 2085 &sz); 2086 if (prop) { 2087 const char pname[] = "ti,edma-reserved-slot-ranges"; 2088 u32 (*tmp)[2]; 2089 s16 (*rsv_slots)[2]; 2090 size_t nelm = sz / sizeof(*tmp); 2091 struct edma_rsv_info *rsv_info; 2092 int i; 2093 2094 if (!nelm) 2095 return info; 2096 2097 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); 2098 if (!tmp) 2099 return ERR_PTR(-ENOMEM); 2100 2101 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); 2102 if (!rsv_info) { 2103 kfree(tmp); 2104 return ERR_PTR(-ENOMEM); 2105 } 2106 2107 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), 2108 GFP_KERNEL); 2109 if (!rsv_slots) { 2110 kfree(tmp); 2111 return ERR_PTR(-ENOMEM); 2112 } 2113 2114 ret = of_property_read_u32_array(dev->of_node, pname, 2115 (u32 *)tmp, nelm * 2); 2116 if (ret) { 2117 kfree(tmp); 2118 return ERR_PTR(ret); 2119 } 2120 2121 for (i = 0; i < nelm; i++) { 2122 rsv_slots[i][0] = tmp[i][0]; 2123 rsv_slots[i][1] = tmp[i][1]; 2124 } 2125 rsv_slots[nelm][0] = -1; 2126 rsv_slots[nelm][1] = -1; 2127 2128 info->rsv = rsv_info; 2129 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; 2130 2131 kfree(tmp); 2132 } 2133 2134 return info; 2135 } 2136 2137 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2138 struct of_dma *ofdma) 2139 { 2140 struct edma_cc *ecc = ofdma->of_dma_data; 2141 struct dma_chan *chan = NULL; 2142 struct edma_chan *echan; 2143 int i; 2144 2145 if (!ecc || dma_spec->args_count < 1) 2146 return NULL; 2147 2148 for (i = 0; i < ecc->num_channels; i++) { 2149 echan = &ecc->slave_chans[i]; 2150 if (echan->ch_num == dma_spec->args[0]) { 2151 chan = &echan->vchan.chan; 2152 break; 2153 } 2154 } 2155 2156 if (!chan) 2157 return NULL; 2158 2159 if (echan->ecc->legacy_mode && dma_spec->args_count == 1) 2160 goto out; 2161 2162 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && 2163 dma_spec->args[1] < echan->ecc->num_tc) { 2164 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; 2165 goto out; 2166 } 2167 2168 return NULL; 2169 out: 2170 /* The channel is going to be used as HW synchronized */ 2171 echan->hw_triggered = true; 2172 return dma_get_slave_channel(chan); 2173 } 2174 #else 2175 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2176 bool legacy_mode) 2177 { 2178 return ERR_PTR(-EINVAL); 2179 } 2180 2181 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2182 struct of_dma *ofdma) 2183 { 2184 return NULL; 2185 } 2186 #endif 2187 2188 static int edma_probe(struct platform_device *pdev) 2189 { 2190 struct edma_soc_info *info = pdev->dev.platform_data; 2191 s8 (*queue_priority_mapping)[2]; 2192 int i, off, ln; 2193 const s16 (*rsv_slots)[2]; 2194 const s16 (*xbar_chans)[2]; 2195 int irq; 2196 char *irq_name; 2197 struct resource *mem; 2198 struct device_node *node = pdev->dev.of_node; 2199 struct device *dev = &pdev->dev; 2200 struct edma_cc *ecc; 2201 bool legacy_mode = true; 2202 int ret; 2203 2204 if (node) { 2205 const struct of_device_id *match; 2206 2207 match = of_match_node(edma_of_ids, node); 2208 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) 2209 legacy_mode = false; 2210 2211 info = edma_setup_info_from_dt(dev, legacy_mode); 2212 if (IS_ERR(info)) { 2213 dev_err(dev, "failed to get DT data\n"); 2214 return PTR_ERR(info); 2215 } 2216 } 2217 2218 if (!info) 2219 return -ENODEV; 2220 2221 pm_runtime_enable(dev); 2222 ret = pm_runtime_get_sync(dev); 2223 if (ret < 0) { 2224 dev_err(dev, "pm_runtime_get_sync() failed\n"); 2225 return ret; 2226 } 2227 2228 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2229 if (ret) 2230 return ret; 2231 2232 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); 2233 if (!ecc) 2234 return -ENOMEM; 2235 2236 ecc->dev = dev; 2237 ecc->id = pdev->id; 2238 ecc->legacy_mode = legacy_mode; 2239 /* When booting with DT the pdev->id is -1 */ 2240 if (ecc->id < 0) 2241 ecc->id = 0; 2242 2243 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); 2244 if (!mem) { 2245 dev_dbg(dev, "mem resource not found, using index 0\n"); 2246 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2247 if (!mem) { 2248 dev_err(dev, "no mem resource?\n"); 2249 return -ENODEV; 2250 } 2251 } 2252 ecc->base = devm_ioremap_resource(dev, mem); 2253 if (IS_ERR(ecc->base)) 2254 return PTR_ERR(ecc->base); 2255 2256 platform_set_drvdata(pdev, ecc); 2257 2258 /* Get eDMA3 configuration from IP */ 2259 ret = edma_setup_from_hw(dev, info, ecc); 2260 if (ret) 2261 return ret; 2262 2263 /* Allocate memory based on the information we got from the IP */ 2264 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, 2265 sizeof(*ecc->slave_chans), GFP_KERNEL); 2266 if (!ecc->slave_chans) 2267 return -ENOMEM; 2268 2269 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), 2270 sizeof(unsigned long), GFP_KERNEL); 2271 if (!ecc->slot_inuse) 2272 return -ENOMEM; 2273 2274 ecc->default_queue = info->default_queue; 2275 2276 for (i = 0; i < ecc->num_slots; i++) 2277 edma_write_slot(ecc, i, &dummy_paramset); 2278 2279 if (info->rsv) { 2280 /* Set the reserved slots in inuse list */ 2281 rsv_slots = info->rsv->rsv_slots; 2282 if (rsv_slots) { 2283 for (i = 0; rsv_slots[i][0] != -1; i++) { 2284 off = rsv_slots[i][0]; 2285 ln = rsv_slots[i][1]; 2286 edma_set_bits(off, ln, ecc->slot_inuse); 2287 } 2288 } 2289 } 2290 2291 /* Clear the xbar mapped channels in unused list */ 2292 xbar_chans = info->xbar_chans; 2293 if (xbar_chans) { 2294 for (i = 0; xbar_chans[i][1] != -1; i++) { 2295 off = xbar_chans[i][1]; 2296 } 2297 } 2298 2299 irq = platform_get_irq_byname(pdev, "edma3_ccint"); 2300 if (irq < 0 && node) 2301 irq = irq_of_parse_and_map(node, 0); 2302 2303 if (irq >= 0) { 2304 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", 2305 dev_name(dev)); 2306 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, 2307 ecc); 2308 if (ret) { 2309 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); 2310 return ret; 2311 } 2312 ecc->ccint = irq; 2313 } 2314 2315 irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); 2316 if (irq < 0 && node) 2317 irq = irq_of_parse_and_map(node, 2); 2318 2319 if (irq >= 0) { 2320 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", 2321 dev_name(dev)); 2322 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, 2323 ecc); 2324 if (ret) { 2325 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); 2326 return ret; 2327 } 2328 ecc->ccerrint = irq; 2329 } 2330 2331 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); 2332 if (ecc->dummy_slot < 0) { 2333 dev_err(dev, "Can't allocate PaRAM dummy slot\n"); 2334 return ecc->dummy_slot; 2335 } 2336 2337 queue_priority_mapping = info->queue_priority_mapping; 2338 2339 if (!ecc->legacy_mode) { 2340 int lowest_priority = 0; 2341 struct of_phandle_args tc_args; 2342 2343 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, 2344 sizeof(*ecc->tc_list), GFP_KERNEL); 2345 if (!ecc->tc_list) 2346 return -ENOMEM; 2347 2348 for (i = 0;; i++) { 2349 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 2350 1, i, &tc_args); 2351 if (ret || i == ecc->num_tc) 2352 break; 2353 2354 ecc->tc_list[i].node = tc_args.np; 2355 ecc->tc_list[i].id = i; 2356 queue_priority_mapping[i][1] = tc_args.args[0]; 2357 if (queue_priority_mapping[i][1] > lowest_priority) { 2358 lowest_priority = queue_priority_mapping[i][1]; 2359 info->default_queue = i; 2360 } 2361 } 2362 } 2363 2364 /* Event queue priority mapping */ 2365 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2366 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2367 queue_priority_mapping[i][1]); 2368 2369 for (i = 0; i < ecc->num_region; i++) { 2370 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0); 2371 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0); 2372 edma_write_array(ecc, EDMA_QRAE, i, 0x0); 2373 } 2374 ecc->info = info; 2375 2376 /* Init the dma device and channels */ 2377 edma_dma_init(ecc, legacy_mode); 2378 2379 for (i = 0; i < ecc->num_channels; i++) { 2380 /* Assign all channels to the default queue */ 2381 edma_assign_channel_eventq(&ecc->slave_chans[i], 2382 info->default_queue); 2383 /* Set entry slot to the dummy slot */ 2384 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); 2385 } 2386 2387 ecc->dma_slave.filter.map = info->slave_map; 2388 ecc->dma_slave.filter.mapcnt = info->slavecnt; 2389 ecc->dma_slave.filter.fn = edma_filter_fn; 2390 2391 ret = dma_async_device_register(&ecc->dma_slave); 2392 if (ret) { 2393 dev_err(dev, "slave ddev registration failed (%d)\n", ret); 2394 goto err_reg1; 2395 } 2396 2397 if (ecc->dma_memcpy) { 2398 ret = dma_async_device_register(ecc->dma_memcpy); 2399 if (ret) { 2400 dev_err(dev, "memcpy ddev registration failed (%d)\n", 2401 ret); 2402 dma_async_device_unregister(&ecc->dma_slave); 2403 goto err_reg1; 2404 } 2405 } 2406 2407 if (node) 2408 of_dma_controller_register(node, of_edma_xlate, ecc); 2409 2410 dev_info(dev, "TI EDMA DMA engine driver\n"); 2411 2412 return 0; 2413 2414 err_reg1: 2415 edma_free_slot(ecc, ecc->dummy_slot); 2416 return ret; 2417 } 2418 2419 static void edma_cleanupp_vchan(struct dma_device *dmadev) 2420 { 2421 struct edma_chan *echan, *_echan; 2422 2423 list_for_each_entry_safe(echan, _echan, 2424 &dmadev->channels, vchan.chan.device_node) { 2425 list_del(&echan->vchan.chan.device_node); 2426 tasklet_kill(&echan->vchan.task); 2427 } 2428 } 2429 2430 static int edma_remove(struct platform_device *pdev) 2431 { 2432 struct device *dev = &pdev->dev; 2433 struct edma_cc *ecc = dev_get_drvdata(dev); 2434 2435 devm_free_irq(dev, ecc->ccint, ecc); 2436 devm_free_irq(dev, ecc->ccerrint, ecc); 2437 2438 edma_cleanupp_vchan(&ecc->dma_slave); 2439 2440 if (dev->of_node) 2441 of_dma_controller_free(dev->of_node); 2442 dma_async_device_unregister(&ecc->dma_slave); 2443 if (ecc->dma_memcpy) 2444 dma_async_device_unregister(ecc->dma_memcpy); 2445 edma_free_slot(ecc, ecc->dummy_slot); 2446 2447 return 0; 2448 } 2449 2450 #ifdef CONFIG_PM_SLEEP 2451 static int edma_pm_suspend(struct device *dev) 2452 { 2453 struct edma_cc *ecc = dev_get_drvdata(dev); 2454 struct edma_chan *echan = ecc->slave_chans; 2455 int i; 2456 2457 for (i = 0; i < ecc->num_channels; i++) { 2458 if (echan[i].alloced) 2459 edma_setup_interrupt(&echan[i], false); 2460 } 2461 2462 return 0; 2463 } 2464 2465 static int edma_pm_resume(struct device *dev) 2466 { 2467 struct edma_cc *ecc = dev_get_drvdata(dev); 2468 struct edma_chan *echan = ecc->slave_chans; 2469 int i; 2470 s8 (*queue_priority_mapping)[2]; 2471 2472 /* re initialize dummy slot to dummy param set */ 2473 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); 2474 2475 queue_priority_mapping = ecc->info->queue_priority_mapping; 2476 2477 /* Event queue priority mapping */ 2478 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2479 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2480 queue_priority_mapping[i][1]); 2481 2482 for (i = 0; i < ecc->num_channels; i++) { 2483 if (echan[i].alloced) { 2484 /* ensure access through shadow region 0 */ 2485 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5, 2486 BIT(i & 0x1f)); 2487 2488 edma_setup_interrupt(&echan[i], true); 2489 2490 /* Set up channel -> slot mapping for the entry slot */ 2491 edma_set_chmap(&echan[i], echan[i].slot[0]); 2492 } 2493 } 2494 2495 return 0; 2496 } 2497 #endif 2498 2499 static const struct dev_pm_ops edma_pm_ops = { 2500 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) 2501 }; 2502 2503 static struct platform_driver edma_driver = { 2504 .probe = edma_probe, 2505 .remove = edma_remove, 2506 .driver = { 2507 .name = "edma", 2508 .pm = &edma_pm_ops, 2509 .of_match_table = edma_of_ids, 2510 }, 2511 }; 2512 2513 static int edma_tptc_probe(struct platform_device *pdev) 2514 { 2515 pm_runtime_enable(&pdev->dev); 2516 return pm_runtime_get_sync(&pdev->dev); 2517 } 2518 2519 static struct platform_driver edma_tptc_driver = { 2520 .probe = edma_tptc_probe, 2521 .driver = { 2522 .name = "edma3-tptc", 2523 .of_match_table = edma_tptc_of_ids, 2524 }, 2525 }; 2526 2527 bool edma_filter_fn(struct dma_chan *chan, void *param) 2528 { 2529 bool match = false; 2530 2531 if (chan->device->dev->driver == &edma_driver.driver) { 2532 struct edma_chan *echan = to_edma_chan(chan); 2533 unsigned ch_req = *(unsigned *)param; 2534 if (ch_req == echan->ch_num) { 2535 /* The channel is going to be used as HW synchronized */ 2536 echan->hw_triggered = true; 2537 match = true; 2538 } 2539 } 2540 return match; 2541 } 2542 EXPORT_SYMBOL(edma_filter_fn); 2543 2544 static int edma_init(void) 2545 { 2546 int ret; 2547 2548 ret = platform_driver_register(&edma_tptc_driver); 2549 if (ret) 2550 return ret; 2551 2552 return platform_driver_register(&edma_driver); 2553 } 2554 subsys_initcall(edma_init); 2555 2556 static void __exit edma_exit(void) 2557 { 2558 platform_driver_unregister(&edma_driver); 2559 platform_driver_unregister(&edma_tptc_driver); 2560 } 2561 module_exit(edma_exit); 2562 2563 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); 2564 MODULE_DESCRIPTION("TI EDMA DMA engine driver"); 2565 MODULE_LICENSE("GPL v2"); 2566