1 /* 2 * TI EDMA DMA engine driver 3 * 4 * Copyright 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/dmaengine.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/bitmap.h> 19 #include <linux/err.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/list.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_address.h> 31 #include <linux/of_device.h> 32 #include <linux/pm_runtime.h> 33 34 #include <linux/platform_data/edma.h> 35 36 #include "../dmaengine.h" 37 #include "../virt-dma.h" 38 39 /* Offsets matching "struct edmacc_param" */ 40 #define PARM_OPT 0x00 41 #define PARM_SRC 0x04 42 #define PARM_A_B_CNT 0x08 43 #define PARM_DST 0x0c 44 #define PARM_SRC_DST_BIDX 0x10 45 #define PARM_LINK_BCNTRLD 0x14 46 #define PARM_SRC_DST_CIDX 0x18 47 #define PARM_CCNT 0x1c 48 49 #define PARM_SIZE 0x20 50 51 /* Offsets for EDMA CC global channel registers and their shadows */ 52 #define SH_ER 0x00 /* 64 bits */ 53 #define SH_ECR 0x08 /* 64 bits */ 54 #define SH_ESR 0x10 /* 64 bits */ 55 #define SH_CER 0x18 /* 64 bits */ 56 #define SH_EER 0x20 /* 64 bits */ 57 #define SH_EECR 0x28 /* 64 bits */ 58 #define SH_EESR 0x30 /* 64 bits */ 59 #define SH_SER 0x38 /* 64 bits */ 60 #define SH_SECR 0x40 /* 64 bits */ 61 #define SH_IER 0x50 /* 64 bits */ 62 #define SH_IECR 0x58 /* 64 bits */ 63 #define SH_IESR 0x60 /* 64 bits */ 64 #define SH_IPR 0x68 /* 64 bits */ 65 #define SH_ICR 0x70 /* 64 bits */ 66 #define SH_IEVAL 0x78 67 #define SH_QER 0x80 68 #define SH_QEER 0x84 69 #define SH_QEECR 0x88 70 #define SH_QEESR 0x8c 71 #define SH_QSER 0x90 72 #define SH_QSECR 0x94 73 #define SH_SIZE 0x200 74 75 /* Offsets for EDMA CC global registers */ 76 #define EDMA_REV 0x0000 77 #define EDMA_CCCFG 0x0004 78 #define EDMA_QCHMAP 0x0200 /* 8 registers */ 79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ 80 #define EDMA_QDMAQNUM 0x0260 81 #define EDMA_QUETCMAP 0x0280 82 #define EDMA_QUEPRI 0x0284 83 #define EDMA_EMR 0x0300 /* 64 bits */ 84 #define EDMA_EMCR 0x0308 /* 64 bits */ 85 #define EDMA_QEMR 0x0310 86 #define EDMA_QEMCR 0x0314 87 #define EDMA_CCERR 0x0318 88 #define EDMA_CCERRCLR 0x031c 89 #define EDMA_EEVAL 0x0320 90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ 91 #define EDMA_QRAE 0x0380 /* 4 registers */ 92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ 93 #define EDMA_QSTAT 0x0600 /* 2 registers */ 94 #define EDMA_QWMTHRA 0x0620 95 #define EDMA_QWMTHRB 0x0624 96 #define EDMA_CCSTAT 0x0640 97 98 #define EDMA_M 0x1000 /* global channel registers */ 99 #define EDMA_ECR 0x1008 100 #define EDMA_ECRH 0x100C 101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ 102 #define EDMA_PARM 0x4000 /* PaRAM entries */ 103 104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) 105 106 #define EDMA_DCHMAP 0x0100 /* 64 registers */ 107 108 /* CCCFG register */ 109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ 110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ 111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ 112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ 113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ 114 #define CHMAP_EXIST BIT(24) 115 116 /* CCSTAT register */ 117 #define EDMA_CCSTAT_ACTV BIT(4) 118 119 /* 120 * Max of 20 segments per channel to conserve PaRAM slots 121 * Also note that MAX_NR_SG should be atleast the no.of periods 122 * that are required for ASoC, otherwise DMA prep calls will 123 * fail. Today davinci-pcm is the only user of this driver and 124 * requires atleast 17 slots, so we setup the default to 20. 125 */ 126 #define MAX_NR_SG 20 127 #define EDMA_MAX_SLOTS MAX_NR_SG 128 #define EDMA_DESCRIPTORS 16 129 130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ 131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ 132 #define EDMA_CONT_PARAMS_ANY 1001 133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 135 136 /* 137 * 64bit array registers are split into two 32bit registers: 138 * reg0: channel/event 0-31 139 * reg1: channel/event 32-63 140 * 141 * bit 5 in the channel number tells the array index (0/1) 142 * bit 0-4 (0x1f) is the bit offset within the register 143 */ 144 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) 145 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) 146 147 /* PaRAM slots are laid out like this */ 148 struct edmacc_param { 149 u32 opt; 150 u32 src; 151 u32 a_b_cnt; 152 u32 dst; 153 u32 src_dst_bidx; 154 u32 link_bcntrld; 155 u32 src_dst_cidx; 156 u32 ccnt; 157 } __packed; 158 159 /* fields in edmacc_param.opt */ 160 #define SAM BIT(0) 161 #define DAM BIT(1) 162 #define SYNCDIM BIT(2) 163 #define STATIC BIT(3) 164 #define EDMA_FWID (0x07 << 8) 165 #define TCCMODE BIT(11) 166 #define EDMA_TCC(t) ((t) << 12) 167 #define TCINTEN BIT(20) 168 #define ITCINTEN BIT(21) 169 #define TCCHEN BIT(22) 170 #define ITCCHEN BIT(23) 171 172 struct edma_pset { 173 u32 len; 174 dma_addr_t addr; 175 struct edmacc_param param; 176 }; 177 178 struct edma_desc { 179 struct virt_dma_desc vdesc; 180 struct list_head node; 181 enum dma_transfer_direction direction; 182 int cyclic; 183 bool polled; 184 int absync; 185 int pset_nr; 186 struct edma_chan *echan; 187 int processed; 188 189 /* 190 * The following 4 elements are used for residue accounting. 191 * 192 * - processed_stat: the number of SG elements we have traversed 193 * so far to cover accounting. This is updated directly to processed 194 * during edma_callback and is always <= processed, because processed 195 * refers to the number of pending transfer (programmed to EDMA 196 * controller), where as processed_stat tracks number of transfers 197 * accounted for so far. 198 * 199 * - residue: The amount of bytes we have left to transfer for this desc 200 * 201 * - residue_stat: The residue in bytes of data we have covered 202 * so far for accounting. This is updated directly to residue 203 * during callbacks to keep it current. 204 * 205 * - sg_len: Tracks the length of the current intermediate transfer, 206 * this is required to update the residue during intermediate transfer 207 * completion callback. 208 */ 209 int processed_stat; 210 u32 sg_len; 211 u32 residue; 212 u32 residue_stat; 213 214 struct edma_pset pset[0]; 215 }; 216 217 struct edma_cc; 218 219 struct edma_tc { 220 struct device_node *node; 221 u16 id; 222 }; 223 224 struct edma_chan { 225 struct virt_dma_chan vchan; 226 struct list_head node; 227 struct edma_desc *edesc; 228 struct edma_cc *ecc; 229 struct edma_tc *tc; 230 int ch_num; 231 bool alloced; 232 bool hw_triggered; 233 int slot[EDMA_MAX_SLOTS]; 234 int missed; 235 struct dma_slave_config cfg; 236 }; 237 238 struct edma_cc { 239 struct device *dev; 240 struct edma_soc_info *info; 241 void __iomem *base; 242 int id; 243 bool legacy_mode; 244 245 /* eDMA3 resource information */ 246 unsigned num_channels; 247 unsigned num_qchannels; 248 unsigned num_region; 249 unsigned num_slots; 250 unsigned num_tc; 251 bool chmap_exist; 252 enum dma_event_q default_queue; 253 254 unsigned int ccint; 255 unsigned int ccerrint; 256 257 /* 258 * The slot_inuse bit for each PaRAM slot is clear unless the slot is 259 * in use by Linux or if it is allocated to be used by DSP. 260 */ 261 unsigned long *slot_inuse; 262 263 /* 264 * For tracking reserved channels used by DSP. 265 * If the bit is cleared, the channel is allocated to be used by DSP 266 * and Linux must not touch it. 267 */ 268 unsigned long *channels_mask; 269 270 struct dma_device dma_slave; 271 struct dma_device *dma_memcpy; 272 struct edma_chan *slave_chans; 273 struct edma_tc *tc_list; 274 int dummy_slot; 275 }; 276 277 /* dummy param set used to (re)initialize parameter RAM slots */ 278 static const struct edmacc_param dummy_paramset = { 279 .link_bcntrld = 0xffff, 280 .ccnt = 1, 281 }; 282 283 #define EDMA_BINDING_LEGACY 0 284 #define EDMA_BINDING_TPCC 1 285 static const u32 edma_binding_type[] = { 286 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, 287 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, 288 }; 289 290 static const struct of_device_id edma_of_ids[] = { 291 { 292 .compatible = "ti,edma3", 293 .data = &edma_binding_type[EDMA_BINDING_LEGACY], 294 }, 295 { 296 .compatible = "ti,edma3-tpcc", 297 .data = &edma_binding_type[EDMA_BINDING_TPCC], 298 }, 299 {} 300 }; 301 MODULE_DEVICE_TABLE(of, edma_of_ids); 302 303 static const struct of_device_id edma_tptc_of_ids[] = { 304 { .compatible = "ti,edma3-tptc", }, 305 {} 306 }; 307 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); 308 309 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) 310 { 311 return (unsigned int)__raw_readl(ecc->base + offset); 312 } 313 314 static inline void edma_write(struct edma_cc *ecc, int offset, int val) 315 { 316 __raw_writel(val, ecc->base + offset); 317 } 318 319 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, 320 unsigned or) 321 { 322 unsigned val = edma_read(ecc, offset); 323 324 val &= and; 325 val |= or; 326 edma_write(ecc, offset, val); 327 } 328 329 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) 330 { 331 unsigned val = edma_read(ecc, offset); 332 333 val &= and; 334 edma_write(ecc, offset, val); 335 } 336 337 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) 338 { 339 unsigned val = edma_read(ecc, offset); 340 341 val |= or; 342 edma_write(ecc, offset, val); 343 } 344 345 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, 346 int i) 347 { 348 return edma_read(ecc, offset + (i << 2)); 349 } 350 351 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, 352 unsigned val) 353 { 354 edma_write(ecc, offset + (i << 2), val); 355 } 356 357 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, 358 unsigned and, unsigned or) 359 { 360 edma_modify(ecc, offset + (i << 2), and, or); 361 } 362 363 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, 364 unsigned or) 365 { 366 edma_or(ecc, offset + (i << 2), or); 367 } 368 369 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, 370 unsigned or) 371 { 372 edma_or(ecc, offset + ((i * 2 + j) << 2), or); 373 } 374 375 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, 376 int j, unsigned val) 377 { 378 edma_write(ecc, offset + ((i * 2 + j) << 2), val); 379 } 380 381 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) 382 { 383 return edma_read(ecc, EDMA_SHADOW0 + offset); 384 } 385 386 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, 387 int offset, int i) 388 { 389 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); 390 } 391 392 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, 393 unsigned val) 394 { 395 edma_write(ecc, EDMA_SHADOW0 + offset, val); 396 } 397 398 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, 399 int i, unsigned val) 400 { 401 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); 402 } 403 404 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, 405 int param_no) 406 { 407 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); 408 } 409 410 static inline void edma_param_write(struct edma_cc *ecc, int offset, 411 int param_no, unsigned val) 412 { 413 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); 414 } 415 416 static inline void edma_param_modify(struct edma_cc *ecc, int offset, 417 int param_no, unsigned and, unsigned or) 418 { 419 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); 420 } 421 422 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, 423 unsigned and) 424 { 425 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); 426 } 427 428 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, 429 unsigned or) 430 { 431 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); 432 } 433 434 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, 435 int priority) 436 { 437 int bit = queue_no * 4; 438 439 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); 440 } 441 442 static void edma_set_chmap(struct edma_chan *echan, int slot) 443 { 444 struct edma_cc *ecc = echan->ecc; 445 int channel = EDMA_CHAN_SLOT(echan->ch_num); 446 447 if (ecc->chmap_exist) { 448 slot = EDMA_CHAN_SLOT(slot); 449 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); 450 } 451 } 452 453 static void edma_setup_interrupt(struct edma_chan *echan, bool enable) 454 { 455 struct edma_cc *ecc = echan->ecc; 456 int channel = EDMA_CHAN_SLOT(echan->ch_num); 457 int idx = EDMA_REG_ARRAY_INDEX(channel); 458 int ch_bit = EDMA_CHANNEL_BIT(channel); 459 460 if (enable) { 461 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 462 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); 463 } else { 464 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); 465 } 466 } 467 468 /* 469 * paRAM slot management functions 470 */ 471 static void edma_write_slot(struct edma_cc *ecc, unsigned slot, 472 const struct edmacc_param *param) 473 { 474 slot = EDMA_CHAN_SLOT(slot); 475 if (slot >= ecc->num_slots) 476 return; 477 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); 478 } 479 480 static int edma_read_slot(struct edma_cc *ecc, unsigned slot, 481 struct edmacc_param *param) 482 { 483 slot = EDMA_CHAN_SLOT(slot); 484 if (slot >= ecc->num_slots) 485 return -EINVAL; 486 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); 487 488 return 0; 489 } 490 491 /** 492 * edma_alloc_slot - allocate DMA parameter RAM 493 * @ecc: pointer to edma_cc struct 494 * @slot: specific slot to allocate; negative for "any unused slot" 495 * 496 * This allocates a parameter RAM slot, initializing it to hold a 497 * dummy transfer. Slots allocated using this routine have not been 498 * mapped to a hardware DMA channel, and will normally be used by 499 * linking to them from a slot associated with a DMA channel. 500 * 501 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific 502 * slots may be allocated on behalf of DSP firmware. 503 * 504 * Returns the number of the slot, else negative errno. 505 */ 506 static int edma_alloc_slot(struct edma_cc *ecc, int slot) 507 { 508 if (slot >= 0) { 509 slot = EDMA_CHAN_SLOT(slot); 510 /* Requesting entry paRAM slot for a HW triggered channel. */ 511 if (ecc->chmap_exist && slot < ecc->num_channels) 512 slot = EDMA_SLOT_ANY; 513 } 514 515 if (slot < 0) { 516 if (ecc->chmap_exist) 517 slot = 0; 518 else 519 slot = ecc->num_channels; 520 for (;;) { 521 slot = find_next_zero_bit(ecc->slot_inuse, 522 ecc->num_slots, 523 slot); 524 if (slot == ecc->num_slots) 525 return -ENOMEM; 526 if (!test_and_set_bit(slot, ecc->slot_inuse)) 527 break; 528 } 529 } else if (slot >= ecc->num_slots) { 530 return -EINVAL; 531 } else if (test_and_set_bit(slot, ecc->slot_inuse)) { 532 return -EBUSY; 533 } 534 535 edma_write_slot(ecc, slot, &dummy_paramset); 536 537 return EDMA_CTLR_CHAN(ecc->id, slot); 538 } 539 540 static void edma_free_slot(struct edma_cc *ecc, unsigned slot) 541 { 542 slot = EDMA_CHAN_SLOT(slot); 543 if (slot >= ecc->num_slots) 544 return; 545 546 edma_write_slot(ecc, slot, &dummy_paramset); 547 clear_bit(slot, ecc->slot_inuse); 548 } 549 550 /** 551 * edma_link - link one parameter RAM slot to another 552 * @ecc: pointer to edma_cc struct 553 * @from: parameter RAM slot originating the link 554 * @to: parameter RAM slot which is the link target 555 * 556 * The originating slot should not be part of any active DMA transfer. 557 */ 558 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) 559 { 560 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) 561 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); 562 563 from = EDMA_CHAN_SLOT(from); 564 to = EDMA_CHAN_SLOT(to); 565 if (from >= ecc->num_slots || to >= ecc->num_slots) 566 return; 567 568 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, 569 PARM_OFFSET(to)); 570 } 571 572 /** 573 * edma_get_position - returns the current transfer point 574 * @ecc: pointer to edma_cc struct 575 * @slot: parameter RAM slot being examined 576 * @dst: true selects the dest position, false the source 577 * 578 * Returns the position of the current active slot 579 */ 580 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, 581 bool dst) 582 { 583 u32 offs; 584 585 slot = EDMA_CHAN_SLOT(slot); 586 offs = PARM_OFFSET(slot); 587 offs += dst ? PARM_DST : PARM_SRC; 588 589 return edma_read(ecc, offs); 590 } 591 592 /* 593 * Channels with event associations will be triggered by their hardware 594 * events, and channels without such associations will be triggered by 595 * software. (At this writing there is no interface for using software 596 * triggers except with channels that don't support hardware triggers.) 597 */ 598 static void edma_start(struct edma_chan *echan) 599 { 600 struct edma_cc *ecc = echan->ecc; 601 int channel = EDMA_CHAN_SLOT(echan->ch_num); 602 int idx = EDMA_REG_ARRAY_INDEX(channel); 603 int ch_bit = EDMA_CHANNEL_BIT(channel); 604 605 if (!echan->hw_triggered) { 606 /* EDMA channels without event association */ 607 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 608 edma_shadow0_read_array(ecc, SH_ESR, idx)); 609 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 610 } else { 611 /* EDMA channel with event association */ 612 dev_dbg(ecc->dev, "ER%d %08x\n", idx, 613 edma_shadow0_read_array(ecc, SH_ER, idx)); 614 /* Clear any pending event or error */ 615 edma_write_array(ecc, EDMA_ECR, idx, ch_bit); 616 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 617 /* Clear any SER */ 618 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 619 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); 620 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 621 edma_shadow0_read_array(ecc, SH_EER, idx)); 622 } 623 } 624 625 static void edma_stop(struct edma_chan *echan) 626 { 627 struct edma_cc *ecc = echan->ecc; 628 int channel = EDMA_CHAN_SLOT(echan->ch_num); 629 int idx = EDMA_REG_ARRAY_INDEX(channel); 630 int ch_bit = EDMA_CHANNEL_BIT(channel); 631 632 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); 633 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 634 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 635 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 636 637 /* clear possibly pending completion interrupt */ 638 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 639 640 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 641 edma_shadow0_read_array(ecc, SH_EER, idx)); 642 643 /* REVISIT: consider guarding against inappropriate event 644 * chaining by overwriting with dummy_paramset. 645 */ 646 } 647 648 /* 649 * Temporarily disable EDMA hardware events on the specified channel, 650 * preventing them from triggering new transfers 651 */ 652 static void edma_pause(struct edma_chan *echan) 653 { 654 int channel = EDMA_CHAN_SLOT(echan->ch_num); 655 656 edma_shadow0_write_array(echan->ecc, SH_EECR, 657 EDMA_REG_ARRAY_INDEX(channel), 658 EDMA_CHANNEL_BIT(channel)); 659 } 660 661 /* Re-enable EDMA hardware events on the specified channel. */ 662 static void edma_resume(struct edma_chan *echan) 663 { 664 int channel = EDMA_CHAN_SLOT(echan->ch_num); 665 666 edma_shadow0_write_array(echan->ecc, SH_EESR, 667 EDMA_REG_ARRAY_INDEX(channel), 668 EDMA_CHANNEL_BIT(channel)); 669 } 670 671 static void edma_trigger_channel(struct edma_chan *echan) 672 { 673 struct edma_cc *ecc = echan->ecc; 674 int channel = EDMA_CHAN_SLOT(echan->ch_num); 675 int idx = EDMA_REG_ARRAY_INDEX(channel); 676 int ch_bit = EDMA_CHANNEL_BIT(channel); 677 678 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 679 680 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 681 edma_shadow0_read_array(ecc, SH_ESR, idx)); 682 } 683 684 static void edma_clean_channel(struct edma_chan *echan) 685 { 686 struct edma_cc *ecc = echan->ecc; 687 int channel = EDMA_CHAN_SLOT(echan->ch_num); 688 int idx = EDMA_REG_ARRAY_INDEX(channel); 689 int ch_bit = EDMA_CHANNEL_BIT(channel); 690 691 dev_dbg(ecc->dev, "EMR%d %08x\n", idx, 692 edma_read_array(ecc, EDMA_EMR, idx)); 693 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 694 /* Clear the corresponding EMR bits */ 695 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 696 /* Clear any SER */ 697 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 698 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); 699 } 700 701 /* Move channel to a specific event queue */ 702 static void edma_assign_channel_eventq(struct edma_chan *echan, 703 enum dma_event_q eventq_no) 704 { 705 struct edma_cc *ecc = echan->ecc; 706 int channel = EDMA_CHAN_SLOT(echan->ch_num); 707 int bit = (channel & 0x7) * 4; 708 709 /* default to low priority queue */ 710 if (eventq_no == EVENTQ_DEFAULT) 711 eventq_no = ecc->default_queue; 712 if (eventq_no >= ecc->num_tc) 713 return; 714 715 eventq_no &= 7; 716 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), 717 eventq_no << bit); 718 } 719 720 static int edma_alloc_channel(struct edma_chan *echan, 721 enum dma_event_q eventq_no) 722 { 723 struct edma_cc *ecc = echan->ecc; 724 int channel = EDMA_CHAN_SLOT(echan->ch_num); 725 726 if (!test_bit(echan->ch_num, ecc->channels_mask)) { 727 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n", 728 echan->ch_num); 729 return -EINVAL; 730 } 731 732 /* ensure access through shadow region 0 */ 733 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), 734 EDMA_CHANNEL_BIT(channel)); 735 736 /* ensure no events are pending */ 737 edma_stop(echan); 738 739 edma_setup_interrupt(echan, true); 740 741 edma_assign_channel_eventq(echan, eventq_no); 742 743 return 0; 744 } 745 746 static void edma_free_channel(struct edma_chan *echan) 747 { 748 /* ensure no events are pending */ 749 edma_stop(echan); 750 /* REVISIT should probably take out of shadow region 0 */ 751 edma_setup_interrupt(echan, false); 752 } 753 754 static inline struct edma_cc *to_edma_cc(struct dma_device *d) 755 { 756 return container_of(d, struct edma_cc, dma_slave); 757 } 758 759 static inline struct edma_chan *to_edma_chan(struct dma_chan *c) 760 { 761 return container_of(c, struct edma_chan, vchan.chan); 762 } 763 764 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) 765 { 766 return container_of(tx, struct edma_desc, vdesc.tx); 767 } 768 769 static void edma_desc_free(struct virt_dma_desc *vdesc) 770 { 771 kfree(container_of(vdesc, struct edma_desc, vdesc)); 772 } 773 774 /* Dispatch a queued descriptor to the controller (caller holds lock) */ 775 static void edma_execute(struct edma_chan *echan) 776 { 777 struct edma_cc *ecc = echan->ecc; 778 struct virt_dma_desc *vdesc; 779 struct edma_desc *edesc; 780 struct device *dev = echan->vchan.chan.device->dev; 781 int i, j, left, nslots; 782 783 if (!echan->edesc) { 784 /* Setup is needed for the first transfer */ 785 vdesc = vchan_next_desc(&echan->vchan); 786 if (!vdesc) 787 return; 788 list_del(&vdesc->node); 789 echan->edesc = to_edma_desc(&vdesc->tx); 790 } 791 792 edesc = echan->edesc; 793 794 /* Find out how many left */ 795 left = edesc->pset_nr - edesc->processed; 796 nslots = min(MAX_NR_SG, left); 797 edesc->sg_len = 0; 798 799 /* Write descriptor PaRAM set(s) */ 800 for (i = 0; i < nslots; i++) { 801 j = i + edesc->processed; 802 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); 803 edesc->sg_len += edesc->pset[j].len; 804 dev_vdbg(dev, 805 "\n pset[%d]:\n" 806 " chnum\t%d\n" 807 " slot\t%d\n" 808 " opt\t%08x\n" 809 " src\t%08x\n" 810 " dst\t%08x\n" 811 " abcnt\t%08x\n" 812 " ccnt\t%08x\n" 813 " bidx\t%08x\n" 814 " cidx\t%08x\n" 815 " lkrld\t%08x\n", 816 j, echan->ch_num, echan->slot[i], 817 edesc->pset[j].param.opt, 818 edesc->pset[j].param.src, 819 edesc->pset[j].param.dst, 820 edesc->pset[j].param.a_b_cnt, 821 edesc->pset[j].param.ccnt, 822 edesc->pset[j].param.src_dst_bidx, 823 edesc->pset[j].param.src_dst_cidx, 824 edesc->pset[j].param.link_bcntrld); 825 /* Link to the previous slot if not the last set */ 826 if (i != (nslots - 1)) 827 edma_link(ecc, echan->slot[i], echan->slot[i + 1]); 828 } 829 830 edesc->processed += nslots; 831 832 /* 833 * If this is either the last set in a set of SG-list transactions 834 * then setup a link to the dummy slot, this results in all future 835 * events being absorbed and that's OK because we're done 836 */ 837 if (edesc->processed == edesc->pset_nr) { 838 if (edesc->cyclic) 839 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); 840 else 841 edma_link(ecc, echan->slot[nslots - 1], 842 echan->ecc->dummy_slot); 843 } 844 845 if (echan->missed) { 846 /* 847 * This happens due to setup times between intermediate 848 * transfers in long SG lists which have to be broken up into 849 * transfers of MAX_NR_SG 850 */ 851 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); 852 edma_clean_channel(echan); 853 edma_stop(echan); 854 edma_start(echan); 855 edma_trigger_channel(echan); 856 echan->missed = 0; 857 } else if (edesc->processed <= MAX_NR_SG) { 858 dev_dbg(dev, "first transfer starting on channel %d\n", 859 echan->ch_num); 860 edma_start(echan); 861 } else { 862 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", 863 echan->ch_num, edesc->processed); 864 edma_resume(echan); 865 } 866 } 867 868 static int edma_terminate_all(struct dma_chan *chan) 869 { 870 struct edma_chan *echan = to_edma_chan(chan); 871 unsigned long flags; 872 LIST_HEAD(head); 873 874 spin_lock_irqsave(&echan->vchan.lock, flags); 875 876 /* 877 * Stop DMA activity: we assume the callback will not be called 878 * after edma_dma() returns (even if it does, it will see 879 * echan->edesc is NULL and exit.) 880 */ 881 if (echan->edesc) { 882 edma_stop(echan); 883 /* Move the cyclic channel back to default queue */ 884 if (!echan->tc && echan->edesc->cyclic) 885 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); 886 887 vchan_terminate_vdesc(&echan->edesc->vdesc); 888 echan->edesc = NULL; 889 } 890 891 vchan_get_all_descriptors(&echan->vchan, &head); 892 spin_unlock_irqrestore(&echan->vchan.lock, flags); 893 vchan_dma_desc_free_list(&echan->vchan, &head); 894 895 return 0; 896 } 897 898 static void edma_synchronize(struct dma_chan *chan) 899 { 900 struct edma_chan *echan = to_edma_chan(chan); 901 902 vchan_synchronize(&echan->vchan); 903 } 904 905 static int edma_slave_config(struct dma_chan *chan, 906 struct dma_slave_config *cfg) 907 { 908 struct edma_chan *echan = to_edma_chan(chan); 909 910 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || 911 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) 912 return -EINVAL; 913 914 if (cfg->src_maxburst > chan->device->max_burst || 915 cfg->dst_maxburst > chan->device->max_burst) 916 return -EINVAL; 917 918 memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); 919 920 return 0; 921 } 922 923 static int edma_dma_pause(struct dma_chan *chan) 924 { 925 struct edma_chan *echan = to_edma_chan(chan); 926 927 if (!echan->edesc) 928 return -EINVAL; 929 930 edma_pause(echan); 931 return 0; 932 } 933 934 static int edma_dma_resume(struct dma_chan *chan) 935 { 936 struct edma_chan *echan = to_edma_chan(chan); 937 938 edma_resume(echan); 939 return 0; 940 } 941 942 /* 943 * A PaRAM set configuration abstraction used by other modes 944 * @chan: Channel who's PaRAM set we're configuring 945 * @pset: PaRAM set to initialize and setup. 946 * @src_addr: Source address of the DMA 947 * @dst_addr: Destination address of the DMA 948 * @burst: In units of dev_width, how much to send 949 * @dev_width: How much is the dev_width 950 * @dma_length: Total length of the DMA transfer 951 * @direction: Direction of the transfer 952 */ 953 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, 954 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, 955 unsigned int acnt, unsigned int dma_length, 956 enum dma_transfer_direction direction) 957 { 958 struct edma_chan *echan = to_edma_chan(chan); 959 struct device *dev = chan->device->dev; 960 struct edmacc_param *param = &epset->param; 961 int bcnt, ccnt, cidx; 962 int src_bidx, dst_bidx, src_cidx, dst_cidx; 963 int absync; 964 965 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ 966 if (!burst) 967 burst = 1; 968 /* 969 * If the maxburst is equal to the fifo width, use 970 * A-synced transfers. This allows for large contiguous 971 * buffer transfers using only one PaRAM set. 972 */ 973 if (burst == 1) { 974 /* 975 * For the A-sync case, bcnt and ccnt are the remainder 976 * and quotient respectively of the division of: 977 * (dma_length / acnt) by (SZ_64K -1). This is so 978 * that in case bcnt over flows, we have ccnt to use. 979 * Note: In A-sync tranfer only, bcntrld is used, but it 980 * only applies for sg_dma_len(sg) >= SZ_64K. 981 * In this case, the best way adopted is- bccnt for the 982 * first frame will be the remainder below. Then for 983 * every successive frame, bcnt will be SZ_64K-1. This 984 * is assured as bcntrld = 0xffff in end of function. 985 */ 986 absync = false; 987 ccnt = dma_length / acnt / (SZ_64K - 1); 988 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); 989 /* 990 * If bcnt is non-zero, we have a remainder and hence an 991 * extra frame to transfer, so increment ccnt. 992 */ 993 if (bcnt) 994 ccnt++; 995 else 996 bcnt = SZ_64K - 1; 997 cidx = acnt; 998 } else { 999 /* 1000 * If maxburst is greater than the fifo address_width, 1001 * use AB-synced transfers where A count is the fifo 1002 * address_width and B count is the maxburst. In this 1003 * case, we are limited to transfers of C count frames 1004 * of (address_width * maxburst) where C count is limited 1005 * to SZ_64K-1. This places an upper bound on the length 1006 * of an SG segment that can be handled. 1007 */ 1008 absync = true; 1009 bcnt = burst; 1010 ccnt = dma_length / (acnt * bcnt); 1011 if (ccnt > (SZ_64K - 1)) { 1012 dev_err(dev, "Exceeded max SG segment size\n"); 1013 return -EINVAL; 1014 } 1015 cidx = acnt * bcnt; 1016 } 1017 1018 epset->len = dma_length; 1019 1020 if (direction == DMA_MEM_TO_DEV) { 1021 src_bidx = acnt; 1022 src_cidx = cidx; 1023 dst_bidx = 0; 1024 dst_cidx = 0; 1025 epset->addr = src_addr; 1026 } else if (direction == DMA_DEV_TO_MEM) { 1027 src_bidx = 0; 1028 src_cidx = 0; 1029 dst_bidx = acnt; 1030 dst_cidx = cidx; 1031 epset->addr = dst_addr; 1032 } else if (direction == DMA_MEM_TO_MEM) { 1033 src_bidx = acnt; 1034 src_cidx = cidx; 1035 dst_bidx = acnt; 1036 dst_cidx = cidx; 1037 epset->addr = src_addr; 1038 } else { 1039 dev_err(dev, "%s: direction not implemented yet\n", __func__); 1040 return -EINVAL; 1041 } 1042 1043 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1044 /* Configure A or AB synchronized transfers */ 1045 if (absync) 1046 param->opt |= SYNCDIM; 1047 1048 param->src = src_addr; 1049 param->dst = dst_addr; 1050 1051 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1052 param->src_dst_cidx = (dst_cidx << 16) | src_cidx; 1053 1054 param->a_b_cnt = bcnt << 16 | acnt; 1055 param->ccnt = ccnt; 1056 /* 1057 * Only time when (bcntrld) auto reload is required is for 1058 * A-sync case, and in this case, a requirement of reload value 1059 * of SZ_64K-1 only is assured. 'link' is initially set to NULL 1060 * and then later will be populated by edma_execute. 1061 */ 1062 param->link_bcntrld = 0xffffffff; 1063 return absync; 1064 } 1065 1066 static struct dma_async_tx_descriptor *edma_prep_slave_sg( 1067 struct dma_chan *chan, struct scatterlist *sgl, 1068 unsigned int sg_len, enum dma_transfer_direction direction, 1069 unsigned long tx_flags, void *context) 1070 { 1071 struct edma_chan *echan = to_edma_chan(chan); 1072 struct device *dev = chan->device->dev; 1073 struct edma_desc *edesc; 1074 dma_addr_t src_addr = 0, dst_addr = 0; 1075 enum dma_slave_buswidth dev_width; 1076 u32 burst; 1077 struct scatterlist *sg; 1078 int i, nslots, ret; 1079 1080 if (unlikely(!echan || !sgl || !sg_len)) 1081 return NULL; 1082 1083 if (direction == DMA_DEV_TO_MEM) { 1084 src_addr = echan->cfg.src_addr; 1085 dev_width = echan->cfg.src_addr_width; 1086 burst = echan->cfg.src_maxburst; 1087 } else if (direction == DMA_MEM_TO_DEV) { 1088 dst_addr = echan->cfg.dst_addr; 1089 dev_width = echan->cfg.dst_addr_width; 1090 burst = echan->cfg.dst_maxburst; 1091 } else { 1092 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1093 return NULL; 1094 } 1095 1096 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1097 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1098 return NULL; 1099 } 1100 1101 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); 1102 if (!edesc) 1103 return NULL; 1104 1105 edesc->pset_nr = sg_len; 1106 edesc->residue = 0; 1107 edesc->direction = direction; 1108 edesc->echan = echan; 1109 1110 /* Allocate a PaRAM slot, if needed */ 1111 nslots = min_t(unsigned, MAX_NR_SG, sg_len); 1112 1113 for (i = 0; i < nslots; i++) { 1114 if (echan->slot[i] < 0) { 1115 echan->slot[i] = 1116 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1117 if (echan->slot[i] < 0) { 1118 kfree(edesc); 1119 dev_err(dev, "%s: Failed to allocate slot\n", 1120 __func__); 1121 return NULL; 1122 } 1123 } 1124 } 1125 1126 /* Configure PaRAM sets for each SG */ 1127 for_each_sg(sgl, sg, sg_len, i) { 1128 /* Get address for each SG */ 1129 if (direction == DMA_DEV_TO_MEM) 1130 dst_addr = sg_dma_address(sg); 1131 else 1132 src_addr = sg_dma_address(sg); 1133 1134 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1135 dst_addr, burst, dev_width, 1136 sg_dma_len(sg), direction); 1137 if (ret < 0) { 1138 kfree(edesc); 1139 return NULL; 1140 } 1141 1142 edesc->absync = ret; 1143 edesc->residue += sg_dma_len(sg); 1144 1145 if (i == sg_len - 1) 1146 /* Enable completion interrupt */ 1147 edesc->pset[i].param.opt |= TCINTEN; 1148 else if (!((i+1) % MAX_NR_SG)) 1149 /* 1150 * Enable early completion interrupt for the 1151 * intermediateset. In this case the driver will be 1152 * notified when the paRAM set is submitted to TC. This 1153 * will allow more time to set up the next set of slots. 1154 */ 1155 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); 1156 } 1157 edesc->residue_stat = edesc->residue; 1158 1159 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1160 } 1161 1162 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( 1163 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1164 size_t len, unsigned long tx_flags) 1165 { 1166 int ret, nslots; 1167 struct edma_desc *edesc; 1168 struct device *dev = chan->device->dev; 1169 struct edma_chan *echan = to_edma_chan(chan); 1170 unsigned int width, pset_len, array_size; 1171 1172 if (unlikely(!echan || !len)) 1173 return NULL; 1174 1175 /* Align the array size (acnt block) with the transfer properties */ 1176 switch (__ffs((src | dest | len))) { 1177 case 0: 1178 array_size = SZ_32K - 1; 1179 break; 1180 case 1: 1181 array_size = SZ_32K - 2; 1182 break; 1183 default: 1184 array_size = SZ_32K - 4; 1185 break; 1186 } 1187 1188 if (len < SZ_64K) { 1189 /* 1190 * Transfer size less than 64K can be handled with one paRAM 1191 * slot and with one burst. 1192 * ACNT = length 1193 */ 1194 width = len; 1195 pset_len = len; 1196 nslots = 1; 1197 } else { 1198 /* 1199 * Transfer size bigger than 64K will be handled with maximum of 1200 * two paRAM slots. 1201 * slot1: (full_length / 32767) times 32767 bytes bursts. 1202 * ACNT = 32767, length1: (full_length / 32767) * 32767 1203 * slot2: the remaining amount of data after slot1. 1204 * ACNT = full_length - length1, length2 = ACNT 1205 * 1206 * When the full_length is multibple of 32767 one slot can be 1207 * used to complete the transfer. 1208 */ 1209 width = array_size; 1210 pset_len = rounddown(len, width); 1211 /* One slot is enough for lengths multiple of (SZ_32K -1) */ 1212 if (unlikely(pset_len == len)) 1213 nslots = 1; 1214 else 1215 nslots = 2; 1216 } 1217 1218 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1219 if (!edesc) 1220 return NULL; 1221 1222 edesc->pset_nr = nslots; 1223 edesc->residue = edesc->residue_stat = len; 1224 edesc->direction = DMA_MEM_TO_MEM; 1225 edesc->echan = echan; 1226 1227 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, 1228 width, pset_len, DMA_MEM_TO_MEM); 1229 if (ret < 0) { 1230 kfree(edesc); 1231 return NULL; 1232 } 1233 1234 edesc->absync = ret; 1235 1236 edesc->pset[0].param.opt |= ITCCHEN; 1237 if (nslots == 1) { 1238 /* Enable transfer complete interrupt if requested */ 1239 if (tx_flags & DMA_PREP_INTERRUPT) 1240 edesc->pset[0].param.opt |= TCINTEN; 1241 } else { 1242 /* Enable transfer complete chaining for the first slot */ 1243 edesc->pset[0].param.opt |= TCCHEN; 1244 1245 if (echan->slot[1] < 0) { 1246 echan->slot[1] = edma_alloc_slot(echan->ecc, 1247 EDMA_SLOT_ANY); 1248 if (echan->slot[1] < 0) { 1249 kfree(edesc); 1250 dev_err(dev, "%s: Failed to allocate slot\n", 1251 __func__); 1252 return NULL; 1253 } 1254 } 1255 dest += pset_len; 1256 src += pset_len; 1257 pset_len = width = len % array_size; 1258 1259 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, 1260 width, pset_len, DMA_MEM_TO_MEM); 1261 if (ret < 0) { 1262 kfree(edesc); 1263 return NULL; 1264 } 1265 1266 edesc->pset[1].param.opt |= ITCCHEN; 1267 /* Enable transfer complete interrupt if requested */ 1268 if (tx_flags & DMA_PREP_INTERRUPT) 1269 edesc->pset[1].param.opt |= TCINTEN; 1270 } 1271 1272 if (!(tx_flags & DMA_PREP_INTERRUPT)) 1273 edesc->polled = true; 1274 1275 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1276 } 1277 1278 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( 1279 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1280 size_t period_len, enum dma_transfer_direction direction, 1281 unsigned long tx_flags) 1282 { 1283 struct edma_chan *echan = to_edma_chan(chan); 1284 struct device *dev = chan->device->dev; 1285 struct edma_desc *edesc; 1286 dma_addr_t src_addr, dst_addr; 1287 enum dma_slave_buswidth dev_width; 1288 bool use_intermediate = false; 1289 u32 burst; 1290 int i, ret, nslots; 1291 1292 if (unlikely(!echan || !buf_len || !period_len)) 1293 return NULL; 1294 1295 if (direction == DMA_DEV_TO_MEM) { 1296 src_addr = echan->cfg.src_addr; 1297 dst_addr = buf_addr; 1298 dev_width = echan->cfg.src_addr_width; 1299 burst = echan->cfg.src_maxburst; 1300 } else if (direction == DMA_MEM_TO_DEV) { 1301 src_addr = buf_addr; 1302 dst_addr = echan->cfg.dst_addr; 1303 dev_width = echan->cfg.dst_addr_width; 1304 burst = echan->cfg.dst_maxburst; 1305 } else { 1306 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1307 return NULL; 1308 } 1309 1310 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1311 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1312 return NULL; 1313 } 1314 1315 if (unlikely(buf_len % period_len)) { 1316 dev_err(dev, "Period should be multiple of Buffer length\n"); 1317 return NULL; 1318 } 1319 1320 nslots = (buf_len / period_len) + 1; 1321 1322 /* 1323 * Cyclic DMA users such as audio cannot tolerate delays introduced 1324 * by cases where the number of periods is more than the maximum 1325 * number of SGs the EDMA driver can handle at a time. For DMA types 1326 * such as Slave SGs, such delays are tolerable and synchronized, 1327 * but the synchronization is difficult to achieve with Cyclic and 1328 * cannot be guaranteed, so we error out early. 1329 */ 1330 if (nslots > MAX_NR_SG) { 1331 /* 1332 * If the burst and period sizes are the same, we can put 1333 * the full buffer into a single period and activate 1334 * intermediate interrupts. This will produce interrupts 1335 * after each burst, which is also after each desired period. 1336 */ 1337 if (burst == period_len) { 1338 period_len = buf_len; 1339 nslots = 2; 1340 use_intermediate = true; 1341 } else { 1342 return NULL; 1343 } 1344 } 1345 1346 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1347 if (!edesc) 1348 return NULL; 1349 1350 edesc->cyclic = 1; 1351 edesc->pset_nr = nslots; 1352 edesc->residue = edesc->residue_stat = buf_len; 1353 edesc->direction = direction; 1354 edesc->echan = echan; 1355 1356 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", 1357 __func__, echan->ch_num, nslots, period_len, buf_len); 1358 1359 for (i = 0; i < nslots; i++) { 1360 /* Allocate a PaRAM slot, if needed */ 1361 if (echan->slot[i] < 0) { 1362 echan->slot[i] = 1363 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1364 if (echan->slot[i] < 0) { 1365 kfree(edesc); 1366 dev_err(dev, "%s: Failed to allocate slot\n", 1367 __func__); 1368 return NULL; 1369 } 1370 } 1371 1372 if (i == nslots - 1) { 1373 memcpy(&edesc->pset[i], &edesc->pset[0], 1374 sizeof(edesc->pset[0])); 1375 break; 1376 } 1377 1378 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1379 dst_addr, burst, dev_width, period_len, 1380 direction); 1381 if (ret < 0) { 1382 kfree(edesc); 1383 return NULL; 1384 } 1385 1386 if (direction == DMA_DEV_TO_MEM) 1387 dst_addr += period_len; 1388 else 1389 src_addr += period_len; 1390 1391 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); 1392 dev_vdbg(dev, 1393 "\n pset[%d]:\n" 1394 " chnum\t%d\n" 1395 " slot\t%d\n" 1396 " opt\t%08x\n" 1397 " src\t%08x\n" 1398 " dst\t%08x\n" 1399 " abcnt\t%08x\n" 1400 " ccnt\t%08x\n" 1401 " bidx\t%08x\n" 1402 " cidx\t%08x\n" 1403 " lkrld\t%08x\n", 1404 i, echan->ch_num, echan->slot[i], 1405 edesc->pset[i].param.opt, 1406 edesc->pset[i].param.src, 1407 edesc->pset[i].param.dst, 1408 edesc->pset[i].param.a_b_cnt, 1409 edesc->pset[i].param.ccnt, 1410 edesc->pset[i].param.src_dst_bidx, 1411 edesc->pset[i].param.src_dst_cidx, 1412 edesc->pset[i].param.link_bcntrld); 1413 1414 edesc->absync = ret; 1415 1416 /* 1417 * Enable period interrupt only if it is requested 1418 */ 1419 if (tx_flags & DMA_PREP_INTERRUPT) { 1420 edesc->pset[i].param.opt |= TCINTEN; 1421 1422 /* Also enable intermediate interrupts if necessary */ 1423 if (use_intermediate) 1424 edesc->pset[i].param.opt |= ITCINTEN; 1425 } 1426 } 1427 1428 /* Place the cyclic channel to highest priority queue */ 1429 if (!echan->tc) 1430 edma_assign_channel_eventq(echan, EVENTQ_0); 1431 1432 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1433 } 1434 1435 static void edma_completion_handler(struct edma_chan *echan) 1436 { 1437 struct device *dev = echan->vchan.chan.device->dev; 1438 struct edma_desc *edesc; 1439 1440 spin_lock(&echan->vchan.lock); 1441 edesc = echan->edesc; 1442 if (edesc) { 1443 if (edesc->cyclic) { 1444 vchan_cyclic_callback(&edesc->vdesc); 1445 spin_unlock(&echan->vchan.lock); 1446 return; 1447 } else if (edesc->processed == edesc->pset_nr) { 1448 edesc->residue = 0; 1449 edma_stop(echan); 1450 vchan_cookie_complete(&edesc->vdesc); 1451 echan->edesc = NULL; 1452 1453 dev_dbg(dev, "Transfer completed on channel %d\n", 1454 echan->ch_num); 1455 } else { 1456 dev_dbg(dev, "Sub transfer completed on channel %d\n", 1457 echan->ch_num); 1458 1459 edma_pause(echan); 1460 1461 /* Update statistics for tx_status */ 1462 edesc->residue -= edesc->sg_len; 1463 edesc->residue_stat = edesc->residue; 1464 edesc->processed_stat = edesc->processed; 1465 } 1466 edma_execute(echan); 1467 } 1468 1469 spin_unlock(&echan->vchan.lock); 1470 } 1471 1472 /* eDMA interrupt handler */ 1473 static irqreturn_t dma_irq_handler(int irq, void *data) 1474 { 1475 struct edma_cc *ecc = data; 1476 int ctlr; 1477 u32 sh_ier; 1478 u32 sh_ipr; 1479 u32 bank; 1480 1481 ctlr = ecc->id; 1482 if (ctlr < 0) 1483 return IRQ_NONE; 1484 1485 dev_vdbg(ecc->dev, "dma_irq_handler\n"); 1486 1487 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); 1488 if (!sh_ipr) { 1489 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); 1490 if (!sh_ipr) 1491 return IRQ_NONE; 1492 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); 1493 bank = 1; 1494 } else { 1495 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); 1496 bank = 0; 1497 } 1498 1499 do { 1500 u32 slot; 1501 u32 channel; 1502 1503 slot = __ffs(sh_ipr); 1504 sh_ipr &= ~(BIT(slot)); 1505 1506 if (sh_ier & BIT(slot)) { 1507 channel = (bank << 5) | slot; 1508 /* Clear the corresponding IPR bits */ 1509 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); 1510 edma_completion_handler(&ecc->slave_chans[channel]); 1511 } 1512 } while (sh_ipr); 1513 1514 edma_shadow0_write(ecc, SH_IEVAL, 1); 1515 return IRQ_HANDLED; 1516 } 1517 1518 static void edma_error_handler(struct edma_chan *echan) 1519 { 1520 struct edma_cc *ecc = echan->ecc; 1521 struct device *dev = echan->vchan.chan.device->dev; 1522 struct edmacc_param p; 1523 int err; 1524 1525 if (!echan->edesc) 1526 return; 1527 1528 spin_lock(&echan->vchan.lock); 1529 1530 err = edma_read_slot(ecc, echan->slot[0], &p); 1531 1532 /* 1533 * Issue later based on missed flag which will be sure 1534 * to happen as: 1535 * (1) we finished transmitting an intermediate slot and 1536 * edma_execute is coming up. 1537 * (2) or we finished current transfer and issue will 1538 * call edma_execute. 1539 * 1540 * Important note: issuing can be dangerous here and 1541 * lead to some nasty recursion when we are in a NULL 1542 * slot. So we avoid doing so and set the missed flag. 1543 */ 1544 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { 1545 dev_dbg(dev, "Error on null slot, setting miss\n"); 1546 echan->missed = 1; 1547 } else { 1548 /* 1549 * The slot is already programmed but the event got 1550 * missed, so its safe to issue it here. 1551 */ 1552 dev_dbg(dev, "Missed event, TRIGGERING\n"); 1553 edma_clean_channel(echan); 1554 edma_stop(echan); 1555 edma_start(echan); 1556 edma_trigger_channel(echan); 1557 } 1558 spin_unlock(&echan->vchan.lock); 1559 } 1560 1561 static inline bool edma_error_pending(struct edma_cc *ecc) 1562 { 1563 if (edma_read_array(ecc, EDMA_EMR, 0) || 1564 edma_read_array(ecc, EDMA_EMR, 1) || 1565 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) 1566 return true; 1567 1568 return false; 1569 } 1570 1571 /* eDMA error interrupt handler */ 1572 static irqreturn_t dma_ccerr_handler(int irq, void *data) 1573 { 1574 struct edma_cc *ecc = data; 1575 int i, j; 1576 int ctlr; 1577 unsigned int cnt = 0; 1578 unsigned int val; 1579 1580 ctlr = ecc->id; 1581 if (ctlr < 0) 1582 return IRQ_NONE; 1583 1584 dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); 1585 1586 if (!edma_error_pending(ecc)) { 1587 /* 1588 * The registers indicate no pending error event but the irq 1589 * handler has been called. 1590 * Ask eDMA to re-evaluate the error registers. 1591 */ 1592 dev_err(ecc->dev, "%s: Error interrupt without error event!\n", 1593 __func__); 1594 edma_write(ecc, EDMA_EEVAL, 1); 1595 return IRQ_NONE; 1596 } 1597 1598 while (1) { 1599 /* Event missed register(s) */ 1600 for (j = 0; j < 2; j++) { 1601 unsigned long emr; 1602 1603 val = edma_read_array(ecc, EDMA_EMR, j); 1604 if (!val) 1605 continue; 1606 1607 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); 1608 emr = val; 1609 for (i = find_next_bit(&emr, 32, 0); i < 32; 1610 i = find_next_bit(&emr, 32, i + 1)) { 1611 int k = (j << 5) + i; 1612 1613 /* Clear the corresponding EMR bits */ 1614 edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); 1615 /* Clear any SER */ 1616 edma_shadow0_write_array(ecc, SH_SECR, j, 1617 BIT(i)); 1618 edma_error_handler(&ecc->slave_chans[k]); 1619 } 1620 } 1621 1622 val = edma_read(ecc, EDMA_QEMR); 1623 if (val) { 1624 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); 1625 /* Not reported, just clear the interrupt reason. */ 1626 edma_write(ecc, EDMA_QEMCR, val); 1627 edma_shadow0_write(ecc, SH_QSECR, val); 1628 } 1629 1630 val = edma_read(ecc, EDMA_CCERR); 1631 if (val) { 1632 dev_warn(ecc->dev, "CCERR 0x%08x\n", val); 1633 /* Not reported, just clear the interrupt reason. */ 1634 edma_write(ecc, EDMA_CCERRCLR, val); 1635 } 1636 1637 if (!edma_error_pending(ecc)) 1638 break; 1639 cnt++; 1640 if (cnt > 10) 1641 break; 1642 } 1643 edma_write(ecc, EDMA_EEVAL, 1); 1644 return IRQ_HANDLED; 1645 } 1646 1647 /* Alloc channel resources */ 1648 static int edma_alloc_chan_resources(struct dma_chan *chan) 1649 { 1650 struct edma_chan *echan = to_edma_chan(chan); 1651 struct edma_cc *ecc = echan->ecc; 1652 struct device *dev = ecc->dev; 1653 enum dma_event_q eventq_no = EVENTQ_DEFAULT; 1654 int ret; 1655 1656 if (echan->tc) { 1657 eventq_no = echan->tc->id; 1658 } else if (ecc->tc_list) { 1659 /* memcpy channel */ 1660 echan->tc = &ecc->tc_list[ecc->info->default_queue]; 1661 eventq_no = echan->tc->id; 1662 } 1663 1664 ret = edma_alloc_channel(echan, eventq_no); 1665 if (ret) 1666 return ret; 1667 1668 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); 1669 if (echan->slot[0] < 0) { 1670 dev_err(dev, "Entry slot allocation failed for channel %u\n", 1671 EDMA_CHAN_SLOT(echan->ch_num)); 1672 ret = echan->slot[0]; 1673 goto err_slot; 1674 } 1675 1676 /* Set up channel -> slot mapping for the entry slot */ 1677 edma_set_chmap(echan, echan->slot[0]); 1678 echan->alloced = true; 1679 1680 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", 1681 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, 1682 echan->hw_triggered ? "HW" : "SW"); 1683 1684 return 0; 1685 1686 err_slot: 1687 edma_free_channel(echan); 1688 return ret; 1689 } 1690 1691 /* Free channel resources */ 1692 static void edma_free_chan_resources(struct dma_chan *chan) 1693 { 1694 struct edma_chan *echan = to_edma_chan(chan); 1695 struct device *dev = echan->ecc->dev; 1696 int i; 1697 1698 /* Terminate transfers */ 1699 edma_stop(echan); 1700 1701 vchan_free_chan_resources(&echan->vchan); 1702 1703 /* Free EDMA PaRAM slots */ 1704 for (i = 0; i < EDMA_MAX_SLOTS; i++) { 1705 if (echan->slot[i] >= 0) { 1706 edma_free_slot(echan->ecc, echan->slot[i]); 1707 echan->slot[i] = -1; 1708 } 1709 } 1710 1711 /* Set entry slot to the dummy slot */ 1712 edma_set_chmap(echan, echan->ecc->dummy_slot); 1713 1714 /* Free EDMA channel */ 1715 if (echan->alloced) { 1716 edma_free_channel(echan); 1717 echan->alloced = false; 1718 } 1719 1720 echan->tc = NULL; 1721 echan->hw_triggered = false; 1722 1723 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", 1724 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); 1725 } 1726 1727 /* Send pending descriptor to hardware */ 1728 static void edma_issue_pending(struct dma_chan *chan) 1729 { 1730 struct edma_chan *echan = to_edma_chan(chan); 1731 unsigned long flags; 1732 1733 spin_lock_irqsave(&echan->vchan.lock, flags); 1734 if (vchan_issue_pending(&echan->vchan) && !echan->edesc) 1735 edma_execute(echan); 1736 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1737 } 1738 1739 /* 1740 * This limit exists to avoid a possible infinite loop when waiting for proof 1741 * that a particular transfer is completed. This limit can be hit if there 1742 * are large bursts to/from slow devices or the CPU is never able to catch 1743 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART 1744 * RX-FIFO, as many as 55 loops have been seen. 1745 */ 1746 #define EDMA_MAX_TR_WAIT_LOOPS 1000 1747 1748 static u32 edma_residue(struct edma_desc *edesc) 1749 { 1750 bool dst = edesc->direction == DMA_DEV_TO_MEM; 1751 int loop_count = EDMA_MAX_TR_WAIT_LOOPS; 1752 struct edma_chan *echan = edesc->echan; 1753 struct edma_pset *pset = edesc->pset; 1754 dma_addr_t done, pos, pos_old; 1755 int channel = EDMA_CHAN_SLOT(echan->ch_num); 1756 int idx = EDMA_REG_ARRAY_INDEX(channel); 1757 int ch_bit = EDMA_CHANNEL_BIT(channel); 1758 int event_reg; 1759 int i; 1760 1761 /* 1762 * We always read the dst/src position from the first RamPar 1763 * pset. That's the one which is active now. 1764 */ 1765 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1766 1767 /* 1768 * "pos" may represent a transfer request that is still being 1769 * processed by the EDMACC or EDMATC. We will busy wait until 1770 * any one of the situations occurs: 1771 * 1. while and event is pending for the channel 1772 * 2. a position updated 1773 * 3. we hit the loop limit 1774 */ 1775 if (is_slave_direction(edesc->direction)) 1776 event_reg = SH_ER; 1777 else 1778 event_reg = SH_ESR; 1779 1780 pos_old = pos; 1781 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { 1782 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1783 if (pos != pos_old) 1784 break; 1785 1786 if (!--loop_count) { 1787 dev_dbg_ratelimited(echan->vchan.chan.device->dev, 1788 "%s: timeout waiting for PaRAM update\n", 1789 __func__); 1790 break; 1791 } 1792 1793 cpu_relax(); 1794 } 1795 1796 /* 1797 * Cyclic is simple. Just subtract pset[0].addr from pos. 1798 * 1799 * We never update edesc->residue in the cyclic case, so we 1800 * can tell the remaining room to the end of the circular 1801 * buffer. 1802 */ 1803 if (edesc->cyclic) { 1804 done = pos - pset->addr; 1805 edesc->residue_stat = edesc->residue - done; 1806 return edesc->residue_stat; 1807 } 1808 1809 /* 1810 * If the position is 0, then EDMA loaded the closing dummy slot, the 1811 * transfer is completed 1812 */ 1813 if (!pos) 1814 return 0; 1815 /* 1816 * For SG operation we catch up with the last processed 1817 * status. 1818 */ 1819 pset += edesc->processed_stat; 1820 1821 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { 1822 /* 1823 * If we are inside this pset address range, we know 1824 * this is the active one. Get the current delta and 1825 * stop walking the psets. 1826 */ 1827 if (pos >= pset->addr && pos < pset->addr + pset->len) 1828 return edesc->residue_stat - (pos - pset->addr); 1829 1830 /* Otherwise mark it done and update residue_stat. */ 1831 edesc->processed_stat++; 1832 edesc->residue_stat -= pset->len; 1833 } 1834 return edesc->residue_stat; 1835 } 1836 1837 /* Check request completion status */ 1838 static enum dma_status edma_tx_status(struct dma_chan *chan, 1839 dma_cookie_t cookie, 1840 struct dma_tx_state *txstate) 1841 { 1842 struct edma_chan *echan = to_edma_chan(chan); 1843 struct dma_tx_state txstate_tmp; 1844 enum dma_status ret; 1845 unsigned long flags; 1846 1847 ret = dma_cookie_status(chan, cookie, txstate); 1848 1849 if (ret == DMA_COMPLETE) 1850 return ret; 1851 1852 /* Provide a dummy dma_tx_state for completion checking */ 1853 if (!txstate) 1854 txstate = &txstate_tmp; 1855 1856 spin_lock_irqsave(&echan->vchan.lock, flags); 1857 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { 1858 txstate->residue = edma_residue(echan->edesc); 1859 } else { 1860 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, 1861 cookie); 1862 1863 if (vdesc) 1864 txstate->residue = to_edma_desc(&vdesc->tx)->residue; 1865 else 1866 txstate->residue = 0; 1867 } 1868 1869 /* 1870 * Mark the cookie completed if the residue is 0 for non cyclic 1871 * transfers 1872 */ 1873 if (ret != DMA_COMPLETE && !txstate->residue && 1874 echan->edesc && echan->edesc->polled && 1875 echan->edesc->vdesc.tx.cookie == cookie) { 1876 edma_stop(echan); 1877 vchan_cookie_complete(&echan->edesc->vdesc); 1878 echan->edesc = NULL; 1879 edma_execute(echan); 1880 ret = DMA_COMPLETE; 1881 } 1882 1883 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1884 1885 return ret; 1886 } 1887 1888 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) 1889 { 1890 if (!memcpy_channels) 1891 return false; 1892 while (*memcpy_channels != -1) { 1893 if (*memcpy_channels == ch_num) 1894 return true; 1895 memcpy_channels++; 1896 } 1897 return false; 1898 } 1899 1900 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 1901 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 1902 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 1903 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 1904 1905 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) 1906 { 1907 struct dma_device *s_ddev = &ecc->dma_slave; 1908 struct dma_device *m_ddev = NULL; 1909 s32 *memcpy_channels = ecc->info->memcpy_channels; 1910 int i, j; 1911 1912 dma_cap_zero(s_ddev->cap_mask); 1913 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); 1914 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); 1915 if (ecc->legacy_mode && !memcpy_channels) { 1916 dev_warn(ecc->dev, 1917 "Legacy memcpy is enabled, things might not work\n"); 1918 1919 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); 1920 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1921 s_ddev->directions = BIT(DMA_MEM_TO_MEM); 1922 } 1923 1924 s_ddev->device_prep_slave_sg = edma_prep_slave_sg; 1925 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; 1926 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1927 s_ddev->device_free_chan_resources = edma_free_chan_resources; 1928 s_ddev->device_issue_pending = edma_issue_pending; 1929 s_ddev->device_tx_status = edma_tx_status; 1930 s_ddev->device_config = edma_slave_config; 1931 s_ddev->device_pause = edma_dma_pause; 1932 s_ddev->device_resume = edma_dma_resume; 1933 s_ddev->device_terminate_all = edma_terminate_all; 1934 s_ddev->device_synchronize = edma_synchronize; 1935 1936 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1937 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1938 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); 1939 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1940 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ 1941 1942 s_ddev->dev = ecc->dev; 1943 INIT_LIST_HEAD(&s_ddev->channels); 1944 1945 if (memcpy_channels) { 1946 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); 1947 if (!m_ddev) { 1948 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); 1949 memcpy_channels = NULL; 1950 goto ch_setup; 1951 } 1952 ecc->dma_memcpy = m_ddev; 1953 1954 dma_cap_zero(m_ddev->cap_mask); 1955 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); 1956 1957 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1958 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1959 m_ddev->device_free_chan_resources = edma_free_chan_resources; 1960 m_ddev->device_issue_pending = edma_issue_pending; 1961 m_ddev->device_tx_status = edma_tx_status; 1962 m_ddev->device_config = edma_slave_config; 1963 m_ddev->device_pause = edma_dma_pause; 1964 m_ddev->device_resume = edma_dma_resume; 1965 m_ddev->device_terminate_all = edma_terminate_all; 1966 m_ddev->device_synchronize = edma_synchronize; 1967 1968 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1969 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1970 m_ddev->directions = BIT(DMA_MEM_TO_MEM); 1971 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1972 1973 m_ddev->dev = ecc->dev; 1974 INIT_LIST_HEAD(&m_ddev->channels); 1975 } else if (!ecc->legacy_mode) { 1976 dev_info(ecc->dev, "memcpy is disabled\n"); 1977 } 1978 1979 ch_setup: 1980 for (i = 0; i < ecc->num_channels; i++) { 1981 struct edma_chan *echan = &ecc->slave_chans[i]; 1982 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); 1983 echan->ecc = ecc; 1984 echan->vchan.desc_free = edma_desc_free; 1985 1986 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) 1987 vchan_init(&echan->vchan, m_ddev); 1988 else 1989 vchan_init(&echan->vchan, s_ddev); 1990 1991 INIT_LIST_HEAD(&echan->node); 1992 for (j = 0; j < EDMA_MAX_SLOTS; j++) 1993 echan->slot[j] = -1; 1994 } 1995 } 1996 1997 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, 1998 struct edma_cc *ecc) 1999 { 2000 int i; 2001 u32 value, cccfg; 2002 s8 (*queue_priority_map)[2]; 2003 2004 /* Decode the eDMA3 configuration from CCCFG register */ 2005 cccfg = edma_read(ecc, EDMA_CCCFG); 2006 2007 value = GET_NUM_REGN(cccfg); 2008 ecc->num_region = BIT(value); 2009 2010 value = GET_NUM_DMACH(cccfg); 2011 ecc->num_channels = BIT(value + 1); 2012 2013 value = GET_NUM_QDMACH(cccfg); 2014 ecc->num_qchannels = value * 2; 2015 2016 value = GET_NUM_PAENTRY(cccfg); 2017 ecc->num_slots = BIT(value + 4); 2018 2019 value = GET_NUM_EVQUE(cccfg); 2020 ecc->num_tc = value + 1; 2021 2022 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; 2023 2024 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); 2025 dev_dbg(dev, "num_region: %u\n", ecc->num_region); 2026 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); 2027 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); 2028 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); 2029 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); 2030 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); 2031 2032 /* Nothing need to be done if queue priority is provided */ 2033 if (pdata->queue_priority_mapping) 2034 return 0; 2035 2036 /* 2037 * Configure TC/queue priority as follows: 2038 * Q0 - priority 0 2039 * Q1 - priority 1 2040 * Q2 - priority 2 2041 * ... 2042 * The meaning of priority numbers: 0 highest priority, 7 lowest 2043 * priority. So Q0 is the highest priority queue and the last queue has 2044 * the lowest priority. 2045 */ 2046 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), 2047 GFP_KERNEL); 2048 if (!queue_priority_map) 2049 return -ENOMEM; 2050 2051 for (i = 0; i < ecc->num_tc; i++) { 2052 queue_priority_map[i][0] = i; 2053 queue_priority_map[i][1] = i; 2054 } 2055 queue_priority_map[i][0] = -1; 2056 queue_priority_map[i][1] = -1; 2057 2058 pdata->queue_priority_mapping = queue_priority_map; 2059 /* Default queue has the lowest priority */ 2060 pdata->default_queue = i - 1; 2061 2062 return 0; 2063 } 2064 2065 #if IS_ENABLED(CONFIG_OF) 2066 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, 2067 size_t sz) 2068 { 2069 const char pname[] = "ti,edma-xbar-event-map"; 2070 struct resource res; 2071 void __iomem *xbar; 2072 s16 (*xbar_chans)[2]; 2073 size_t nelm = sz / sizeof(s16); 2074 u32 shift, offset, mux; 2075 int ret, i; 2076 2077 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); 2078 if (!xbar_chans) 2079 return -ENOMEM; 2080 2081 ret = of_address_to_resource(dev->of_node, 1, &res); 2082 if (ret) 2083 return -ENOMEM; 2084 2085 xbar = devm_ioremap(dev, res.start, resource_size(&res)); 2086 if (!xbar) 2087 return -ENOMEM; 2088 2089 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, 2090 nelm); 2091 if (ret) 2092 return -EIO; 2093 2094 /* Invalidate last entry for the other user of this mess */ 2095 nelm >>= 1; 2096 xbar_chans[nelm][0] = -1; 2097 xbar_chans[nelm][1] = -1; 2098 2099 for (i = 0; i < nelm; i++) { 2100 shift = (xbar_chans[i][1] & 0x03) << 3; 2101 offset = xbar_chans[i][1] & 0xfffffffc; 2102 mux = readl(xbar + offset); 2103 mux &= ~(0xff << shift); 2104 mux |= xbar_chans[i][0] << shift; 2105 writel(mux, (xbar + offset)); 2106 } 2107 2108 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; 2109 return 0; 2110 } 2111 2112 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2113 bool legacy_mode) 2114 { 2115 struct edma_soc_info *info; 2116 struct property *prop; 2117 int sz, ret; 2118 2119 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); 2120 if (!info) 2121 return ERR_PTR(-ENOMEM); 2122 2123 if (legacy_mode) { 2124 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", 2125 &sz); 2126 if (prop) { 2127 ret = edma_xbar_event_map(dev, info, sz); 2128 if (ret) 2129 return ERR_PTR(ret); 2130 } 2131 return info; 2132 } 2133 2134 /* Get the list of channels allocated to be used for memcpy */ 2135 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); 2136 if (prop) { 2137 const char pname[] = "ti,edma-memcpy-channels"; 2138 size_t nelm = sz / sizeof(s32); 2139 s32 *memcpy_ch; 2140 2141 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), 2142 GFP_KERNEL); 2143 if (!memcpy_ch) 2144 return ERR_PTR(-ENOMEM); 2145 2146 ret = of_property_read_u32_array(dev->of_node, pname, 2147 (u32 *)memcpy_ch, nelm); 2148 if (ret) 2149 return ERR_PTR(ret); 2150 2151 memcpy_ch[nelm] = -1; 2152 info->memcpy_channels = memcpy_ch; 2153 } 2154 2155 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", 2156 &sz); 2157 if (prop) { 2158 const char pname[] = "ti,edma-reserved-slot-ranges"; 2159 u32 (*tmp)[2]; 2160 s16 (*rsv_slots)[2]; 2161 size_t nelm = sz / sizeof(*tmp); 2162 struct edma_rsv_info *rsv_info; 2163 int i; 2164 2165 if (!nelm) 2166 return info; 2167 2168 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); 2169 if (!tmp) 2170 return ERR_PTR(-ENOMEM); 2171 2172 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); 2173 if (!rsv_info) { 2174 kfree(tmp); 2175 return ERR_PTR(-ENOMEM); 2176 } 2177 2178 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), 2179 GFP_KERNEL); 2180 if (!rsv_slots) { 2181 kfree(tmp); 2182 return ERR_PTR(-ENOMEM); 2183 } 2184 2185 ret = of_property_read_u32_array(dev->of_node, pname, 2186 (u32 *)tmp, nelm * 2); 2187 if (ret) { 2188 kfree(tmp); 2189 return ERR_PTR(ret); 2190 } 2191 2192 for (i = 0; i < nelm; i++) { 2193 rsv_slots[i][0] = tmp[i][0]; 2194 rsv_slots[i][1] = tmp[i][1]; 2195 } 2196 rsv_slots[nelm][0] = -1; 2197 rsv_slots[nelm][1] = -1; 2198 2199 info->rsv = rsv_info; 2200 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; 2201 2202 kfree(tmp); 2203 } 2204 2205 return info; 2206 } 2207 2208 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2209 struct of_dma *ofdma) 2210 { 2211 struct edma_cc *ecc = ofdma->of_dma_data; 2212 struct dma_chan *chan = NULL; 2213 struct edma_chan *echan; 2214 int i; 2215 2216 if (!ecc || dma_spec->args_count < 1) 2217 return NULL; 2218 2219 for (i = 0; i < ecc->num_channels; i++) { 2220 echan = &ecc->slave_chans[i]; 2221 if (echan->ch_num == dma_spec->args[0]) { 2222 chan = &echan->vchan.chan; 2223 break; 2224 } 2225 } 2226 2227 if (!chan) 2228 return NULL; 2229 2230 if (echan->ecc->legacy_mode && dma_spec->args_count == 1) 2231 goto out; 2232 2233 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && 2234 dma_spec->args[1] < echan->ecc->num_tc) { 2235 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; 2236 goto out; 2237 } 2238 2239 return NULL; 2240 out: 2241 /* The channel is going to be used as HW synchronized */ 2242 echan->hw_triggered = true; 2243 return dma_get_slave_channel(chan); 2244 } 2245 #else 2246 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2247 bool legacy_mode) 2248 { 2249 return ERR_PTR(-EINVAL); 2250 } 2251 2252 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2253 struct of_dma *ofdma) 2254 { 2255 return NULL; 2256 } 2257 #endif 2258 2259 static bool edma_filter_fn(struct dma_chan *chan, void *param); 2260 2261 static int edma_probe(struct platform_device *pdev) 2262 { 2263 struct edma_soc_info *info = pdev->dev.platform_data; 2264 s8 (*queue_priority_mapping)[2]; 2265 const s16 (*reserved)[2]; 2266 int i, irq; 2267 char *irq_name; 2268 struct resource *mem; 2269 struct device_node *node = pdev->dev.of_node; 2270 struct device *dev = &pdev->dev; 2271 struct edma_cc *ecc; 2272 bool legacy_mode = true; 2273 int ret; 2274 2275 if (node) { 2276 const struct of_device_id *match; 2277 2278 match = of_match_node(edma_of_ids, node); 2279 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) 2280 legacy_mode = false; 2281 2282 info = edma_setup_info_from_dt(dev, legacy_mode); 2283 if (IS_ERR(info)) { 2284 dev_err(dev, "failed to get DT data\n"); 2285 return PTR_ERR(info); 2286 } 2287 } 2288 2289 if (!info) 2290 return -ENODEV; 2291 2292 pm_runtime_enable(dev); 2293 ret = pm_runtime_get_sync(dev); 2294 if (ret < 0) { 2295 dev_err(dev, "pm_runtime_get_sync() failed\n"); 2296 return ret; 2297 } 2298 2299 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2300 if (ret) 2301 return ret; 2302 2303 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); 2304 if (!ecc) 2305 return -ENOMEM; 2306 2307 ecc->dev = dev; 2308 ecc->id = pdev->id; 2309 ecc->legacy_mode = legacy_mode; 2310 /* When booting with DT the pdev->id is -1 */ 2311 if (ecc->id < 0) 2312 ecc->id = 0; 2313 2314 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); 2315 if (!mem) { 2316 dev_dbg(dev, "mem resource not found, using index 0\n"); 2317 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2318 if (!mem) { 2319 dev_err(dev, "no mem resource?\n"); 2320 return -ENODEV; 2321 } 2322 } 2323 ecc->base = devm_ioremap_resource(dev, mem); 2324 if (IS_ERR(ecc->base)) 2325 return PTR_ERR(ecc->base); 2326 2327 platform_set_drvdata(pdev, ecc); 2328 2329 /* Get eDMA3 configuration from IP */ 2330 ret = edma_setup_from_hw(dev, info, ecc); 2331 if (ret) 2332 return ret; 2333 2334 /* Allocate memory based on the information we got from the IP */ 2335 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, 2336 sizeof(*ecc->slave_chans), GFP_KERNEL); 2337 if (!ecc->slave_chans) 2338 return -ENOMEM; 2339 2340 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), 2341 sizeof(unsigned long), GFP_KERNEL); 2342 if (!ecc->slot_inuse) 2343 return -ENOMEM; 2344 2345 ecc->channels_mask = devm_kcalloc(dev, 2346 BITS_TO_LONGS(ecc->num_channels), 2347 sizeof(unsigned long), GFP_KERNEL); 2348 if (!ecc->channels_mask) 2349 return -ENOMEM; 2350 2351 /* Mark all channels available initially */ 2352 bitmap_fill(ecc->channels_mask, ecc->num_channels); 2353 2354 ecc->default_queue = info->default_queue; 2355 2356 if (info->rsv) { 2357 /* Set the reserved slots in inuse list */ 2358 reserved = info->rsv->rsv_slots; 2359 if (reserved) { 2360 for (i = 0; reserved[i][0] != -1; i++) 2361 bitmap_set(ecc->slot_inuse, reserved[i][0], 2362 reserved[i][1]); 2363 } 2364 2365 /* Clear channels not usable for Linux */ 2366 reserved = info->rsv->rsv_chans; 2367 if (reserved) { 2368 for (i = 0; reserved[i][0] != -1; i++) 2369 bitmap_clear(ecc->channels_mask, reserved[i][0], 2370 reserved[i][1]); 2371 } 2372 } 2373 2374 for (i = 0; i < ecc->num_slots; i++) { 2375 /* Reset only unused - not reserved - paRAM slots */ 2376 if (!test_bit(i, ecc->slot_inuse)) 2377 edma_write_slot(ecc, i, &dummy_paramset); 2378 } 2379 2380 irq = platform_get_irq_byname(pdev, "edma3_ccint"); 2381 if (irq < 0 && node) 2382 irq = irq_of_parse_and_map(node, 0); 2383 2384 if (irq >= 0) { 2385 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", 2386 dev_name(dev)); 2387 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, 2388 ecc); 2389 if (ret) { 2390 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); 2391 return ret; 2392 } 2393 ecc->ccint = irq; 2394 } 2395 2396 irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); 2397 if (irq < 0 && node) 2398 irq = irq_of_parse_and_map(node, 2); 2399 2400 if (irq >= 0) { 2401 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", 2402 dev_name(dev)); 2403 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, 2404 ecc); 2405 if (ret) { 2406 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); 2407 return ret; 2408 } 2409 ecc->ccerrint = irq; 2410 } 2411 2412 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); 2413 if (ecc->dummy_slot < 0) { 2414 dev_err(dev, "Can't allocate PaRAM dummy slot\n"); 2415 return ecc->dummy_slot; 2416 } 2417 2418 queue_priority_mapping = info->queue_priority_mapping; 2419 2420 if (!ecc->legacy_mode) { 2421 int lowest_priority = 0; 2422 unsigned int array_max; 2423 struct of_phandle_args tc_args; 2424 2425 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, 2426 sizeof(*ecc->tc_list), GFP_KERNEL); 2427 if (!ecc->tc_list) { 2428 ret = -ENOMEM; 2429 goto err_reg1; 2430 } 2431 2432 for (i = 0;; i++) { 2433 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 2434 1, i, &tc_args); 2435 if (ret || i == ecc->num_tc) 2436 break; 2437 2438 ecc->tc_list[i].node = tc_args.np; 2439 ecc->tc_list[i].id = i; 2440 queue_priority_mapping[i][1] = tc_args.args[0]; 2441 if (queue_priority_mapping[i][1] > lowest_priority) { 2442 lowest_priority = queue_priority_mapping[i][1]; 2443 info->default_queue = i; 2444 } 2445 } 2446 2447 /* See if we have optional dma-channel-mask array */ 2448 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32)); 2449 ret = of_property_read_variable_u32_array(node, 2450 "dma-channel-mask", 2451 (u32 *)ecc->channels_mask, 2452 1, array_max); 2453 if (ret > 0 && ret != array_max) 2454 dev_warn(dev, "dma-channel-mask is not complete.\n"); 2455 else if (ret == -EOVERFLOW || ret == -ENODATA) 2456 dev_warn(dev, 2457 "dma-channel-mask is out of range or empty\n"); 2458 } 2459 2460 /* Event queue priority mapping */ 2461 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2462 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2463 queue_priority_mapping[i][1]); 2464 2465 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); 2466 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); 2467 edma_write_array(ecc, EDMA_QRAE, 0, 0x0); 2468 2469 ecc->info = info; 2470 2471 /* Init the dma device and channels */ 2472 edma_dma_init(ecc, legacy_mode); 2473 2474 for (i = 0; i < ecc->num_channels; i++) { 2475 /* Do not touch reserved channels */ 2476 if (!test_bit(i, ecc->channels_mask)) 2477 continue; 2478 2479 /* Assign all channels to the default queue */ 2480 edma_assign_channel_eventq(&ecc->slave_chans[i], 2481 info->default_queue); 2482 /* Set entry slot to the dummy slot */ 2483 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); 2484 } 2485 2486 ecc->dma_slave.filter.map = info->slave_map; 2487 ecc->dma_slave.filter.mapcnt = info->slavecnt; 2488 ecc->dma_slave.filter.fn = edma_filter_fn; 2489 2490 ret = dma_async_device_register(&ecc->dma_slave); 2491 if (ret) { 2492 dev_err(dev, "slave ddev registration failed (%d)\n", ret); 2493 goto err_reg1; 2494 } 2495 2496 if (ecc->dma_memcpy) { 2497 ret = dma_async_device_register(ecc->dma_memcpy); 2498 if (ret) { 2499 dev_err(dev, "memcpy ddev registration failed (%d)\n", 2500 ret); 2501 dma_async_device_unregister(&ecc->dma_slave); 2502 goto err_reg1; 2503 } 2504 } 2505 2506 if (node) 2507 of_dma_controller_register(node, of_edma_xlate, ecc); 2508 2509 dev_info(dev, "TI EDMA DMA engine driver\n"); 2510 2511 return 0; 2512 2513 err_reg1: 2514 edma_free_slot(ecc, ecc->dummy_slot); 2515 return ret; 2516 } 2517 2518 static void edma_cleanupp_vchan(struct dma_device *dmadev) 2519 { 2520 struct edma_chan *echan, *_echan; 2521 2522 list_for_each_entry_safe(echan, _echan, 2523 &dmadev->channels, vchan.chan.device_node) { 2524 list_del(&echan->vchan.chan.device_node); 2525 tasklet_kill(&echan->vchan.task); 2526 } 2527 } 2528 2529 static int edma_remove(struct platform_device *pdev) 2530 { 2531 struct device *dev = &pdev->dev; 2532 struct edma_cc *ecc = dev_get_drvdata(dev); 2533 2534 devm_free_irq(dev, ecc->ccint, ecc); 2535 devm_free_irq(dev, ecc->ccerrint, ecc); 2536 2537 edma_cleanupp_vchan(&ecc->dma_slave); 2538 2539 if (dev->of_node) 2540 of_dma_controller_free(dev->of_node); 2541 dma_async_device_unregister(&ecc->dma_slave); 2542 if (ecc->dma_memcpy) 2543 dma_async_device_unregister(ecc->dma_memcpy); 2544 edma_free_slot(ecc, ecc->dummy_slot); 2545 2546 return 0; 2547 } 2548 2549 #ifdef CONFIG_PM_SLEEP 2550 static int edma_pm_suspend(struct device *dev) 2551 { 2552 struct edma_cc *ecc = dev_get_drvdata(dev); 2553 struct edma_chan *echan = ecc->slave_chans; 2554 int i; 2555 2556 for (i = 0; i < ecc->num_channels; i++) { 2557 if (echan[i].alloced) 2558 edma_setup_interrupt(&echan[i], false); 2559 } 2560 2561 return 0; 2562 } 2563 2564 static int edma_pm_resume(struct device *dev) 2565 { 2566 struct edma_cc *ecc = dev_get_drvdata(dev); 2567 struct edma_chan *echan = ecc->slave_chans; 2568 int i; 2569 s8 (*queue_priority_mapping)[2]; 2570 2571 /* re initialize dummy slot to dummy param set */ 2572 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); 2573 2574 queue_priority_mapping = ecc->info->queue_priority_mapping; 2575 2576 /* Event queue priority mapping */ 2577 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2578 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2579 queue_priority_mapping[i][1]); 2580 2581 for (i = 0; i < ecc->num_channels; i++) { 2582 if (echan[i].alloced) { 2583 /* ensure access through shadow region 0 */ 2584 edma_or_array2(ecc, EDMA_DRAE, 0, 2585 EDMA_REG_ARRAY_INDEX(i), 2586 EDMA_CHANNEL_BIT(i)); 2587 2588 edma_setup_interrupt(&echan[i], true); 2589 2590 /* Set up channel -> slot mapping for the entry slot */ 2591 edma_set_chmap(&echan[i], echan[i].slot[0]); 2592 } 2593 } 2594 2595 return 0; 2596 } 2597 #endif 2598 2599 static const struct dev_pm_ops edma_pm_ops = { 2600 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) 2601 }; 2602 2603 static struct platform_driver edma_driver = { 2604 .probe = edma_probe, 2605 .remove = edma_remove, 2606 .driver = { 2607 .name = "edma", 2608 .pm = &edma_pm_ops, 2609 .of_match_table = edma_of_ids, 2610 }, 2611 }; 2612 2613 static int edma_tptc_probe(struct platform_device *pdev) 2614 { 2615 pm_runtime_enable(&pdev->dev); 2616 return pm_runtime_get_sync(&pdev->dev); 2617 } 2618 2619 static struct platform_driver edma_tptc_driver = { 2620 .probe = edma_tptc_probe, 2621 .driver = { 2622 .name = "edma3-tptc", 2623 .of_match_table = edma_tptc_of_ids, 2624 }, 2625 }; 2626 2627 static bool edma_filter_fn(struct dma_chan *chan, void *param) 2628 { 2629 bool match = false; 2630 2631 if (chan->device->dev->driver == &edma_driver.driver) { 2632 struct edma_chan *echan = to_edma_chan(chan); 2633 unsigned ch_req = *(unsigned *)param; 2634 if (ch_req == echan->ch_num) { 2635 /* The channel is going to be used as HW synchronized */ 2636 echan->hw_triggered = true; 2637 match = true; 2638 } 2639 } 2640 return match; 2641 } 2642 2643 static int edma_init(void) 2644 { 2645 int ret; 2646 2647 ret = platform_driver_register(&edma_tptc_driver); 2648 if (ret) 2649 return ret; 2650 2651 return platform_driver_register(&edma_driver); 2652 } 2653 subsys_initcall(edma_init); 2654 2655 static void __exit edma_exit(void) 2656 { 2657 platform_driver_unregister(&edma_driver); 2658 platform_driver_unregister(&edma_tptc_driver); 2659 } 2660 module_exit(edma_exit); 2661 2662 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); 2663 MODULE_DESCRIPTION("TI EDMA DMA engine driver"); 2664 MODULE_LICENSE("GPL v2"); 2665