xref: /linux/drivers/dma/ti/edma.c (revision 42466b9f29b415c254dc4c2f4618e2a96951a406)
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/bitmap.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <linux/platform_data/edma.h>
35 
36 #include "../dmaengine.h"
37 #include "../virt-dma.h"
38 
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT		0x00
41 #define PARM_SRC		0x04
42 #define PARM_A_B_CNT		0x08
43 #define PARM_DST		0x0c
44 #define PARM_SRC_DST_BIDX	0x10
45 #define PARM_LINK_BCNTRLD	0x14
46 #define PARM_SRC_DST_CIDX	0x18
47 #define PARM_CCNT		0x1c
48 
49 #define PARM_SIZE		0x20
50 
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER			0x00	/* 64 bits */
53 #define SH_ECR			0x08	/* 64 bits */
54 #define SH_ESR			0x10	/* 64 bits */
55 #define SH_CER			0x18	/* 64 bits */
56 #define SH_EER			0x20	/* 64 bits */
57 #define SH_EECR			0x28	/* 64 bits */
58 #define SH_EESR			0x30	/* 64 bits */
59 #define SH_SER			0x38	/* 64 bits */
60 #define SH_SECR			0x40	/* 64 bits */
61 #define SH_IER			0x50	/* 64 bits */
62 #define SH_IECR			0x58	/* 64 bits */
63 #define SH_IESR			0x60	/* 64 bits */
64 #define SH_IPR			0x68	/* 64 bits */
65 #define SH_ICR			0x70	/* 64 bits */
66 #define SH_IEVAL		0x78
67 #define SH_QER			0x80
68 #define SH_QEER			0x84
69 #define SH_QEECR		0x88
70 #define SH_QEESR		0x8c
71 #define SH_QSER			0x90
72 #define SH_QSECR		0x94
73 #define SH_SIZE			0x200
74 
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV		0x0000
77 #define EDMA_CCCFG		0x0004
78 #define EDMA_QCHMAP		0x0200	/* 8 registers */
79 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM		0x0260
81 #define EDMA_QUETCMAP		0x0280
82 #define EDMA_QUEPRI		0x0284
83 #define EDMA_EMR		0x0300	/* 64 bits */
84 #define EDMA_EMCR		0x0308	/* 64 bits */
85 #define EDMA_QEMR		0x0310
86 #define EDMA_QEMCR		0x0314
87 #define EDMA_CCERR		0x0318
88 #define EDMA_CCERRCLR		0x031c
89 #define EDMA_EEVAL		0x0320
90 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
91 #define EDMA_QRAE		0x0380	/* 4 registers */
92 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
93 #define EDMA_QSTAT		0x0600	/* 2 registers */
94 #define EDMA_QWMTHRA		0x0620
95 #define EDMA_QWMTHRB		0x0624
96 #define EDMA_CCSTAT		0x0640
97 
98 #define EDMA_M			0x1000	/* global channel registers */
99 #define EDMA_ECR		0x1008
100 #define EDMA_ECRH		0x100C
101 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
102 #define EDMA_PARM		0x4000	/* PaRAM entries */
103 
104 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
105 
106 #define EDMA_DCHMAP		0x0100  /* 64 registers */
107 
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST		BIT(24)
115 
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV	BIT(4)
118 
119 /*
120  * Max of 20 segments per channel to conserve PaRAM slots
121  * Also note that MAX_NR_SG should be atleast the no.of periods
122  * that are required for ASoC, otherwise DMA prep calls will
123  * fail. Today davinci-pcm is the only user of this driver and
124  * requires atleast 17 slots, so we setup the default to 20.
125  */
126 #define MAX_NR_SG		20
127 #define EDMA_MAX_SLOTS		MAX_NR_SG
128 #define EDMA_DESCRIPTORS	16
129 
130 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY		 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
135 
136 /*
137  * 64bit array registers are split into two 32bit registers:
138  * reg0: channel/event 0-31
139  * reg1: channel/event 32-63
140  *
141  * bit 5 in the channel number tells the array index (0/1)
142  * bit 0-4 (0x1f) is the bit offset within the register
143  */
144 #define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
145 #define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
146 
147 /* PaRAM slots are laid out like this */
148 struct edmacc_param {
149 	u32 opt;
150 	u32 src;
151 	u32 a_b_cnt;
152 	u32 dst;
153 	u32 src_dst_bidx;
154 	u32 link_bcntrld;
155 	u32 src_dst_cidx;
156 	u32 ccnt;
157 } __packed;
158 
159 /* fields in edmacc_param.opt */
160 #define SAM		BIT(0)
161 #define DAM		BIT(1)
162 #define SYNCDIM		BIT(2)
163 #define STATIC		BIT(3)
164 #define EDMA_FWID	(0x07 << 8)
165 #define TCCMODE		BIT(11)
166 #define EDMA_TCC(t)	((t) << 12)
167 #define TCINTEN		BIT(20)
168 #define ITCINTEN	BIT(21)
169 #define TCCHEN		BIT(22)
170 #define ITCCHEN		BIT(23)
171 
172 struct edma_pset {
173 	u32				len;
174 	dma_addr_t			addr;
175 	struct edmacc_param		param;
176 };
177 
178 struct edma_desc {
179 	struct virt_dma_desc		vdesc;
180 	struct list_head		node;
181 	enum dma_transfer_direction	direction;
182 	int				cyclic;
183 	bool				polled;
184 	int				absync;
185 	int				pset_nr;
186 	struct edma_chan		*echan;
187 	int				processed;
188 
189 	/*
190 	 * The following 4 elements are used for residue accounting.
191 	 *
192 	 * - processed_stat: the number of SG elements we have traversed
193 	 * so far to cover accounting. This is updated directly to processed
194 	 * during edma_callback and is always <= processed, because processed
195 	 * refers to the number of pending transfer (programmed to EDMA
196 	 * controller), where as processed_stat tracks number of transfers
197 	 * accounted for so far.
198 	 *
199 	 * - residue: The amount of bytes we have left to transfer for this desc
200 	 *
201 	 * - residue_stat: The residue in bytes of data we have covered
202 	 * so far for accounting. This is updated directly to residue
203 	 * during callbacks to keep it current.
204 	 *
205 	 * - sg_len: Tracks the length of the current intermediate transfer,
206 	 * this is required to update the residue during intermediate transfer
207 	 * completion callback.
208 	 */
209 	int				processed_stat;
210 	u32				sg_len;
211 	u32				residue;
212 	u32				residue_stat;
213 
214 	struct edma_pset		pset[0];
215 };
216 
217 struct edma_cc;
218 
219 struct edma_tc {
220 	struct device_node		*node;
221 	u16				id;
222 };
223 
224 struct edma_chan {
225 	struct virt_dma_chan		vchan;
226 	struct list_head		node;
227 	struct edma_desc		*edesc;
228 	struct edma_cc			*ecc;
229 	struct edma_tc			*tc;
230 	int				ch_num;
231 	bool				alloced;
232 	bool				hw_triggered;
233 	int				slot[EDMA_MAX_SLOTS];
234 	int				missed;
235 	struct dma_slave_config		cfg;
236 };
237 
238 struct edma_cc {
239 	struct device			*dev;
240 	struct edma_soc_info		*info;
241 	void __iomem			*base;
242 	int				id;
243 	bool				legacy_mode;
244 
245 	/* eDMA3 resource information */
246 	unsigned			num_channels;
247 	unsigned			num_qchannels;
248 	unsigned			num_region;
249 	unsigned			num_slots;
250 	unsigned			num_tc;
251 	bool				chmap_exist;
252 	enum dma_event_q		default_queue;
253 
254 	unsigned int			ccint;
255 	unsigned int			ccerrint;
256 
257 	/*
258 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
259 	 * in use by Linux or if it is allocated to be used by DSP.
260 	 */
261 	unsigned long *slot_inuse;
262 
263 	struct dma_device		dma_slave;
264 	struct dma_device		*dma_memcpy;
265 	struct edma_chan		*slave_chans;
266 	struct edma_tc			*tc_list;
267 	int				dummy_slot;
268 };
269 
270 /* dummy param set used to (re)initialize parameter RAM slots */
271 static const struct edmacc_param dummy_paramset = {
272 	.link_bcntrld = 0xffff,
273 	.ccnt = 1,
274 };
275 
276 #define EDMA_BINDING_LEGACY	0
277 #define EDMA_BINDING_TPCC	1
278 static const u32 edma_binding_type[] = {
279 	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
280 	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
281 };
282 
283 static const struct of_device_id edma_of_ids[] = {
284 	{
285 		.compatible = "ti,edma3",
286 		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
287 	},
288 	{
289 		.compatible = "ti,edma3-tpcc",
290 		.data = &edma_binding_type[EDMA_BINDING_TPCC],
291 	},
292 	{}
293 };
294 MODULE_DEVICE_TABLE(of, edma_of_ids);
295 
296 static const struct of_device_id edma_tptc_of_ids[] = {
297 	{ .compatible = "ti,edma3-tptc", },
298 	{}
299 };
300 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
301 
302 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
303 {
304 	return (unsigned int)__raw_readl(ecc->base + offset);
305 }
306 
307 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
308 {
309 	__raw_writel(val, ecc->base + offset);
310 }
311 
312 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
313 			       unsigned or)
314 {
315 	unsigned val = edma_read(ecc, offset);
316 
317 	val &= and;
318 	val |= or;
319 	edma_write(ecc, offset, val);
320 }
321 
322 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
323 {
324 	unsigned val = edma_read(ecc, offset);
325 
326 	val &= and;
327 	edma_write(ecc, offset, val);
328 }
329 
330 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
331 {
332 	unsigned val = edma_read(ecc, offset);
333 
334 	val |= or;
335 	edma_write(ecc, offset, val);
336 }
337 
338 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
339 					   int i)
340 {
341 	return edma_read(ecc, offset + (i << 2));
342 }
343 
344 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
345 				    unsigned val)
346 {
347 	edma_write(ecc, offset + (i << 2), val);
348 }
349 
350 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
351 				     unsigned and, unsigned or)
352 {
353 	edma_modify(ecc, offset + (i << 2), and, or);
354 }
355 
356 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
357 				 unsigned or)
358 {
359 	edma_or(ecc, offset + (i << 2), or);
360 }
361 
362 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
363 				  unsigned or)
364 {
365 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
366 }
367 
368 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
369 				     int j, unsigned val)
370 {
371 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
372 }
373 
374 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
375 {
376 	return edma_read(ecc, EDMA_SHADOW0 + offset);
377 }
378 
379 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
380 						   int offset, int i)
381 {
382 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
383 }
384 
385 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
386 				      unsigned val)
387 {
388 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
389 }
390 
391 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
392 					    int i, unsigned val)
393 {
394 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
395 }
396 
397 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
398 					   int param_no)
399 {
400 	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
401 }
402 
403 static inline void edma_param_write(struct edma_cc *ecc, int offset,
404 				    int param_no, unsigned val)
405 {
406 	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
407 }
408 
409 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
410 				     int param_no, unsigned and, unsigned or)
411 {
412 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
413 }
414 
415 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
416 				  unsigned and)
417 {
418 	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
419 }
420 
421 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
422 				 unsigned or)
423 {
424 	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
425 }
426 
427 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
428 					  int priority)
429 {
430 	int bit = queue_no * 4;
431 
432 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
433 }
434 
435 static void edma_set_chmap(struct edma_chan *echan, int slot)
436 {
437 	struct edma_cc *ecc = echan->ecc;
438 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
439 
440 	if (ecc->chmap_exist) {
441 		slot = EDMA_CHAN_SLOT(slot);
442 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
443 	}
444 }
445 
446 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
447 {
448 	struct edma_cc *ecc = echan->ecc;
449 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
450 	int idx = EDMA_REG_ARRAY_INDEX(channel);
451 	int ch_bit = EDMA_CHANNEL_BIT(channel);
452 
453 	if (enable) {
454 		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
455 		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
456 	} else {
457 		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
458 	}
459 }
460 
461 /*
462  * paRAM slot management functions
463  */
464 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
465 			    const struct edmacc_param *param)
466 {
467 	slot = EDMA_CHAN_SLOT(slot);
468 	if (slot >= ecc->num_slots)
469 		return;
470 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
471 }
472 
473 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
474 			   struct edmacc_param *param)
475 {
476 	slot = EDMA_CHAN_SLOT(slot);
477 	if (slot >= ecc->num_slots)
478 		return -EINVAL;
479 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
480 
481 	return 0;
482 }
483 
484 /**
485  * edma_alloc_slot - allocate DMA parameter RAM
486  * @ecc: pointer to edma_cc struct
487  * @slot: specific slot to allocate; negative for "any unused slot"
488  *
489  * This allocates a parameter RAM slot, initializing it to hold a
490  * dummy transfer.  Slots allocated using this routine have not been
491  * mapped to a hardware DMA channel, and will normally be used by
492  * linking to them from a slot associated with a DMA channel.
493  *
494  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
495  * slots may be allocated on behalf of DSP firmware.
496  *
497  * Returns the number of the slot, else negative errno.
498  */
499 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
500 {
501 	if (slot >= 0) {
502 		slot = EDMA_CHAN_SLOT(slot);
503 		/* Requesting entry paRAM slot for a HW triggered channel. */
504 		if (ecc->chmap_exist && slot < ecc->num_channels)
505 			slot = EDMA_SLOT_ANY;
506 	}
507 
508 	if (slot < 0) {
509 		if (ecc->chmap_exist)
510 			slot = 0;
511 		else
512 			slot = ecc->num_channels;
513 		for (;;) {
514 			slot = find_next_zero_bit(ecc->slot_inuse,
515 						  ecc->num_slots,
516 						  slot);
517 			if (slot == ecc->num_slots)
518 				return -ENOMEM;
519 			if (!test_and_set_bit(slot, ecc->slot_inuse))
520 				break;
521 		}
522 	} else if (slot >= ecc->num_slots) {
523 		return -EINVAL;
524 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
525 		return -EBUSY;
526 	}
527 
528 	edma_write_slot(ecc, slot, &dummy_paramset);
529 
530 	return EDMA_CTLR_CHAN(ecc->id, slot);
531 }
532 
533 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
534 {
535 	slot = EDMA_CHAN_SLOT(slot);
536 	if (slot >= ecc->num_slots)
537 		return;
538 
539 	edma_write_slot(ecc, slot, &dummy_paramset);
540 	clear_bit(slot, ecc->slot_inuse);
541 }
542 
543 /**
544  * edma_link - link one parameter RAM slot to another
545  * @ecc: pointer to edma_cc struct
546  * @from: parameter RAM slot originating the link
547  * @to: parameter RAM slot which is the link target
548  *
549  * The originating slot should not be part of any active DMA transfer.
550  */
551 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
552 {
553 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
554 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
555 
556 	from = EDMA_CHAN_SLOT(from);
557 	to = EDMA_CHAN_SLOT(to);
558 	if (from >= ecc->num_slots || to >= ecc->num_slots)
559 		return;
560 
561 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
562 			  PARM_OFFSET(to));
563 }
564 
565 /**
566  * edma_get_position - returns the current transfer point
567  * @ecc: pointer to edma_cc struct
568  * @slot: parameter RAM slot being examined
569  * @dst:  true selects the dest position, false the source
570  *
571  * Returns the position of the current active slot
572  */
573 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
574 				    bool dst)
575 {
576 	u32 offs;
577 
578 	slot = EDMA_CHAN_SLOT(slot);
579 	offs = PARM_OFFSET(slot);
580 	offs += dst ? PARM_DST : PARM_SRC;
581 
582 	return edma_read(ecc, offs);
583 }
584 
585 /*
586  * Channels with event associations will be triggered by their hardware
587  * events, and channels without such associations will be triggered by
588  * software.  (At this writing there is no interface for using software
589  * triggers except with channels that don't support hardware triggers.)
590  */
591 static void edma_start(struct edma_chan *echan)
592 {
593 	struct edma_cc *ecc = echan->ecc;
594 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
595 	int idx = EDMA_REG_ARRAY_INDEX(channel);
596 	int ch_bit = EDMA_CHANNEL_BIT(channel);
597 
598 	if (!echan->hw_triggered) {
599 		/* EDMA channels without event association */
600 		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
601 			edma_shadow0_read_array(ecc, SH_ESR, idx));
602 		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
603 	} else {
604 		/* EDMA channel with event association */
605 		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
606 			edma_shadow0_read_array(ecc, SH_ER, idx));
607 		/* Clear any pending event or error */
608 		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
609 		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
610 		/* Clear any SER */
611 		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
612 		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
613 		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
614 			edma_shadow0_read_array(ecc, SH_EER, idx));
615 	}
616 }
617 
618 static void edma_stop(struct edma_chan *echan)
619 {
620 	struct edma_cc *ecc = echan->ecc;
621 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
622 	int idx = EDMA_REG_ARRAY_INDEX(channel);
623 	int ch_bit = EDMA_CHANNEL_BIT(channel);
624 
625 	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
626 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
627 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
628 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
629 
630 	/* clear possibly pending completion interrupt */
631 	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
632 
633 	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
634 		edma_shadow0_read_array(ecc, SH_EER, idx));
635 
636 	/* REVISIT:  consider guarding against inappropriate event
637 	 * chaining by overwriting with dummy_paramset.
638 	 */
639 }
640 
641 /*
642  * Temporarily disable EDMA hardware events on the specified channel,
643  * preventing them from triggering new transfers
644  */
645 static void edma_pause(struct edma_chan *echan)
646 {
647 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
648 
649 	edma_shadow0_write_array(echan->ecc, SH_EECR,
650 				 EDMA_REG_ARRAY_INDEX(channel),
651 				 EDMA_CHANNEL_BIT(channel));
652 }
653 
654 /* Re-enable EDMA hardware events on the specified channel.  */
655 static void edma_resume(struct edma_chan *echan)
656 {
657 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
658 
659 	edma_shadow0_write_array(echan->ecc, SH_EESR,
660 				 EDMA_REG_ARRAY_INDEX(channel),
661 				 EDMA_CHANNEL_BIT(channel));
662 }
663 
664 static void edma_trigger_channel(struct edma_chan *echan)
665 {
666 	struct edma_cc *ecc = echan->ecc;
667 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
668 	int idx = EDMA_REG_ARRAY_INDEX(channel);
669 	int ch_bit = EDMA_CHANNEL_BIT(channel);
670 
671 	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
672 
673 	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
674 		edma_shadow0_read_array(ecc, SH_ESR, idx));
675 }
676 
677 static void edma_clean_channel(struct edma_chan *echan)
678 {
679 	struct edma_cc *ecc = echan->ecc;
680 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
681 	int idx = EDMA_REG_ARRAY_INDEX(channel);
682 	int ch_bit = EDMA_CHANNEL_BIT(channel);
683 
684 	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
685 		edma_read_array(ecc, EDMA_EMR, idx));
686 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
687 	/* Clear the corresponding EMR bits */
688 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
689 	/* Clear any SER */
690 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
691 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
692 }
693 
694 /* Move channel to a specific event queue */
695 static void edma_assign_channel_eventq(struct edma_chan *echan,
696 				       enum dma_event_q eventq_no)
697 {
698 	struct edma_cc *ecc = echan->ecc;
699 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
700 	int bit = (channel & 0x7) * 4;
701 
702 	/* default to low priority queue */
703 	if (eventq_no == EVENTQ_DEFAULT)
704 		eventq_no = ecc->default_queue;
705 	if (eventq_no >= ecc->num_tc)
706 		return;
707 
708 	eventq_no &= 7;
709 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
710 			  eventq_no << bit);
711 }
712 
713 static int edma_alloc_channel(struct edma_chan *echan,
714 			      enum dma_event_q eventq_no)
715 {
716 	struct edma_cc *ecc = echan->ecc;
717 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
718 
719 	/* ensure access through shadow region 0 */
720 	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
721 		       EDMA_CHANNEL_BIT(channel));
722 
723 	/* ensure no events are pending */
724 	edma_stop(echan);
725 
726 	edma_setup_interrupt(echan, true);
727 
728 	edma_assign_channel_eventq(echan, eventq_no);
729 
730 	return 0;
731 }
732 
733 static void edma_free_channel(struct edma_chan *echan)
734 {
735 	/* ensure no events are pending */
736 	edma_stop(echan);
737 	/* REVISIT should probably take out of shadow region 0 */
738 	edma_setup_interrupt(echan, false);
739 }
740 
741 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
742 {
743 	return container_of(d, struct edma_cc, dma_slave);
744 }
745 
746 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
747 {
748 	return container_of(c, struct edma_chan, vchan.chan);
749 }
750 
751 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
752 {
753 	return container_of(tx, struct edma_desc, vdesc.tx);
754 }
755 
756 static void edma_desc_free(struct virt_dma_desc *vdesc)
757 {
758 	kfree(container_of(vdesc, struct edma_desc, vdesc));
759 }
760 
761 /* Dispatch a queued descriptor to the controller (caller holds lock) */
762 static void edma_execute(struct edma_chan *echan)
763 {
764 	struct edma_cc *ecc = echan->ecc;
765 	struct virt_dma_desc *vdesc;
766 	struct edma_desc *edesc;
767 	struct device *dev = echan->vchan.chan.device->dev;
768 	int i, j, left, nslots;
769 
770 	if (!echan->edesc) {
771 		/* Setup is needed for the first transfer */
772 		vdesc = vchan_next_desc(&echan->vchan);
773 		if (!vdesc)
774 			return;
775 		list_del(&vdesc->node);
776 		echan->edesc = to_edma_desc(&vdesc->tx);
777 	}
778 
779 	edesc = echan->edesc;
780 
781 	/* Find out how many left */
782 	left = edesc->pset_nr - edesc->processed;
783 	nslots = min(MAX_NR_SG, left);
784 	edesc->sg_len = 0;
785 
786 	/* Write descriptor PaRAM set(s) */
787 	for (i = 0; i < nslots; i++) {
788 		j = i + edesc->processed;
789 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
790 		edesc->sg_len += edesc->pset[j].len;
791 		dev_vdbg(dev,
792 			 "\n pset[%d]:\n"
793 			 "  chnum\t%d\n"
794 			 "  slot\t%d\n"
795 			 "  opt\t%08x\n"
796 			 "  src\t%08x\n"
797 			 "  dst\t%08x\n"
798 			 "  abcnt\t%08x\n"
799 			 "  ccnt\t%08x\n"
800 			 "  bidx\t%08x\n"
801 			 "  cidx\t%08x\n"
802 			 "  lkrld\t%08x\n",
803 			 j, echan->ch_num, echan->slot[i],
804 			 edesc->pset[j].param.opt,
805 			 edesc->pset[j].param.src,
806 			 edesc->pset[j].param.dst,
807 			 edesc->pset[j].param.a_b_cnt,
808 			 edesc->pset[j].param.ccnt,
809 			 edesc->pset[j].param.src_dst_bidx,
810 			 edesc->pset[j].param.src_dst_cidx,
811 			 edesc->pset[j].param.link_bcntrld);
812 		/* Link to the previous slot if not the last set */
813 		if (i != (nslots - 1))
814 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
815 	}
816 
817 	edesc->processed += nslots;
818 
819 	/*
820 	 * If this is either the last set in a set of SG-list transactions
821 	 * then setup a link to the dummy slot, this results in all future
822 	 * events being absorbed and that's OK because we're done
823 	 */
824 	if (edesc->processed == edesc->pset_nr) {
825 		if (edesc->cyclic)
826 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
827 		else
828 			edma_link(ecc, echan->slot[nslots - 1],
829 				  echan->ecc->dummy_slot);
830 	}
831 
832 	if (echan->missed) {
833 		/*
834 		 * This happens due to setup times between intermediate
835 		 * transfers in long SG lists which have to be broken up into
836 		 * transfers of MAX_NR_SG
837 		 */
838 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
839 		edma_clean_channel(echan);
840 		edma_stop(echan);
841 		edma_start(echan);
842 		edma_trigger_channel(echan);
843 		echan->missed = 0;
844 	} else if (edesc->processed <= MAX_NR_SG) {
845 		dev_dbg(dev, "first transfer starting on channel %d\n",
846 			echan->ch_num);
847 		edma_start(echan);
848 	} else {
849 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
850 			echan->ch_num, edesc->processed);
851 		edma_resume(echan);
852 	}
853 }
854 
855 static int edma_terminate_all(struct dma_chan *chan)
856 {
857 	struct edma_chan *echan = to_edma_chan(chan);
858 	unsigned long flags;
859 	LIST_HEAD(head);
860 
861 	spin_lock_irqsave(&echan->vchan.lock, flags);
862 
863 	/*
864 	 * Stop DMA activity: we assume the callback will not be called
865 	 * after edma_dma() returns (even if it does, it will see
866 	 * echan->edesc is NULL and exit.)
867 	 */
868 	if (echan->edesc) {
869 		edma_stop(echan);
870 		/* Move the cyclic channel back to default queue */
871 		if (!echan->tc && echan->edesc->cyclic)
872 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
873 
874 		vchan_terminate_vdesc(&echan->edesc->vdesc);
875 		echan->edesc = NULL;
876 	}
877 
878 	vchan_get_all_descriptors(&echan->vchan, &head);
879 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
880 	vchan_dma_desc_free_list(&echan->vchan, &head);
881 
882 	return 0;
883 }
884 
885 static void edma_synchronize(struct dma_chan *chan)
886 {
887 	struct edma_chan *echan = to_edma_chan(chan);
888 
889 	vchan_synchronize(&echan->vchan);
890 }
891 
892 static int edma_slave_config(struct dma_chan *chan,
893 	struct dma_slave_config *cfg)
894 {
895 	struct edma_chan *echan = to_edma_chan(chan);
896 
897 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
898 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
899 		return -EINVAL;
900 
901 	if (cfg->src_maxburst > chan->device->max_burst ||
902 	    cfg->dst_maxburst > chan->device->max_burst)
903 		return -EINVAL;
904 
905 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
906 
907 	return 0;
908 }
909 
910 static int edma_dma_pause(struct dma_chan *chan)
911 {
912 	struct edma_chan *echan = to_edma_chan(chan);
913 
914 	if (!echan->edesc)
915 		return -EINVAL;
916 
917 	edma_pause(echan);
918 	return 0;
919 }
920 
921 static int edma_dma_resume(struct dma_chan *chan)
922 {
923 	struct edma_chan *echan = to_edma_chan(chan);
924 
925 	edma_resume(echan);
926 	return 0;
927 }
928 
929 /*
930  * A PaRAM set configuration abstraction used by other modes
931  * @chan: Channel who's PaRAM set we're configuring
932  * @pset: PaRAM set to initialize and setup.
933  * @src_addr: Source address of the DMA
934  * @dst_addr: Destination address of the DMA
935  * @burst: In units of dev_width, how much to send
936  * @dev_width: How much is the dev_width
937  * @dma_length: Total length of the DMA transfer
938  * @direction: Direction of the transfer
939  */
940 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
941 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
942 			    unsigned int acnt, unsigned int dma_length,
943 			    enum dma_transfer_direction direction)
944 {
945 	struct edma_chan *echan = to_edma_chan(chan);
946 	struct device *dev = chan->device->dev;
947 	struct edmacc_param *param = &epset->param;
948 	int bcnt, ccnt, cidx;
949 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
950 	int absync;
951 
952 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
953 	if (!burst)
954 		burst = 1;
955 	/*
956 	 * If the maxburst is equal to the fifo width, use
957 	 * A-synced transfers. This allows for large contiguous
958 	 * buffer transfers using only one PaRAM set.
959 	 */
960 	if (burst == 1) {
961 		/*
962 		 * For the A-sync case, bcnt and ccnt are the remainder
963 		 * and quotient respectively of the division of:
964 		 * (dma_length / acnt) by (SZ_64K -1). This is so
965 		 * that in case bcnt over flows, we have ccnt to use.
966 		 * Note: In A-sync tranfer only, bcntrld is used, but it
967 		 * only applies for sg_dma_len(sg) >= SZ_64K.
968 		 * In this case, the best way adopted is- bccnt for the
969 		 * first frame will be the remainder below. Then for
970 		 * every successive frame, bcnt will be SZ_64K-1. This
971 		 * is assured as bcntrld = 0xffff in end of function.
972 		 */
973 		absync = false;
974 		ccnt = dma_length / acnt / (SZ_64K - 1);
975 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
976 		/*
977 		 * If bcnt is non-zero, we have a remainder and hence an
978 		 * extra frame to transfer, so increment ccnt.
979 		 */
980 		if (bcnt)
981 			ccnt++;
982 		else
983 			bcnt = SZ_64K - 1;
984 		cidx = acnt;
985 	} else {
986 		/*
987 		 * If maxburst is greater than the fifo address_width,
988 		 * use AB-synced transfers where A count is the fifo
989 		 * address_width and B count is the maxburst. In this
990 		 * case, we are limited to transfers of C count frames
991 		 * of (address_width * maxburst) where C count is limited
992 		 * to SZ_64K-1. This places an upper bound on the length
993 		 * of an SG segment that can be handled.
994 		 */
995 		absync = true;
996 		bcnt = burst;
997 		ccnt = dma_length / (acnt * bcnt);
998 		if (ccnt > (SZ_64K - 1)) {
999 			dev_err(dev, "Exceeded max SG segment size\n");
1000 			return -EINVAL;
1001 		}
1002 		cidx = acnt * bcnt;
1003 	}
1004 
1005 	epset->len = dma_length;
1006 
1007 	if (direction == DMA_MEM_TO_DEV) {
1008 		src_bidx = acnt;
1009 		src_cidx = cidx;
1010 		dst_bidx = 0;
1011 		dst_cidx = 0;
1012 		epset->addr = src_addr;
1013 	} else if (direction == DMA_DEV_TO_MEM)  {
1014 		src_bidx = 0;
1015 		src_cidx = 0;
1016 		dst_bidx = acnt;
1017 		dst_cidx = cidx;
1018 		epset->addr = dst_addr;
1019 	} else if (direction == DMA_MEM_TO_MEM)  {
1020 		src_bidx = acnt;
1021 		src_cidx = cidx;
1022 		dst_bidx = acnt;
1023 		dst_cidx = cidx;
1024 		epset->addr = src_addr;
1025 	} else {
1026 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
1027 		return -EINVAL;
1028 	}
1029 
1030 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1031 	/* Configure A or AB synchronized transfers */
1032 	if (absync)
1033 		param->opt |= SYNCDIM;
1034 
1035 	param->src = src_addr;
1036 	param->dst = dst_addr;
1037 
1038 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1039 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1040 
1041 	param->a_b_cnt = bcnt << 16 | acnt;
1042 	param->ccnt = ccnt;
1043 	/*
1044 	 * Only time when (bcntrld) auto reload is required is for
1045 	 * A-sync case, and in this case, a requirement of reload value
1046 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1047 	 * and then later will be populated by edma_execute.
1048 	 */
1049 	param->link_bcntrld = 0xffffffff;
1050 	return absync;
1051 }
1052 
1053 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1054 	struct dma_chan *chan, struct scatterlist *sgl,
1055 	unsigned int sg_len, enum dma_transfer_direction direction,
1056 	unsigned long tx_flags, void *context)
1057 {
1058 	struct edma_chan *echan = to_edma_chan(chan);
1059 	struct device *dev = chan->device->dev;
1060 	struct edma_desc *edesc;
1061 	dma_addr_t src_addr = 0, dst_addr = 0;
1062 	enum dma_slave_buswidth dev_width;
1063 	u32 burst;
1064 	struct scatterlist *sg;
1065 	int i, nslots, ret;
1066 
1067 	if (unlikely(!echan || !sgl || !sg_len))
1068 		return NULL;
1069 
1070 	if (direction == DMA_DEV_TO_MEM) {
1071 		src_addr = echan->cfg.src_addr;
1072 		dev_width = echan->cfg.src_addr_width;
1073 		burst = echan->cfg.src_maxburst;
1074 	} else if (direction == DMA_MEM_TO_DEV) {
1075 		dst_addr = echan->cfg.dst_addr;
1076 		dev_width = echan->cfg.dst_addr_width;
1077 		burst = echan->cfg.dst_maxburst;
1078 	} else {
1079 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1080 		return NULL;
1081 	}
1082 
1083 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1084 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1085 		return NULL;
1086 	}
1087 
1088 	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1089 	if (!edesc)
1090 		return NULL;
1091 
1092 	edesc->pset_nr = sg_len;
1093 	edesc->residue = 0;
1094 	edesc->direction = direction;
1095 	edesc->echan = echan;
1096 
1097 	/* Allocate a PaRAM slot, if needed */
1098 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1099 
1100 	for (i = 0; i < nslots; i++) {
1101 		if (echan->slot[i] < 0) {
1102 			echan->slot[i] =
1103 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1104 			if (echan->slot[i] < 0) {
1105 				kfree(edesc);
1106 				dev_err(dev, "%s: Failed to allocate slot\n",
1107 					__func__);
1108 				return NULL;
1109 			}
1110 		}
1111 	}
1112 
1113 	/* Configure PaRAM sets for each SG */
1114 	for_each_sg(sgl, sg, sg_len, i) {
1115 		/* Get address for each SG */
1116 		if (direction == DMA_DEV_TO_MEM)
1117 			dst_addr = sg_dma_address(sg);
1118 		else
1119 			src_addr = sg_dma_address(sg);
1120 
1121 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1122 				       dst_addr, burst, dev_width,
1123 				       sg_dma_len(sg), direction);
1124 		if (ret < 0) {
1125 			kfree(edesc);
1126 			return NULL;
1127 		}
1128 
1129 		edesc->absync = ret;
1130 		edesc->residue += sg_dma_len(sg);
1131 
1132 		if (i == sg_len - 1)
1133 			/* Enable completion interrupt */
1134 			edesc->pset[i].param.opt |= TCINTEN;
1135 		else if (!((i+1) % MAX_NR_SG))
1136 			/*
1137 			 * Enable early completion interrupt for the
1138 			 * intermediateset. In this case the driver will be
1139 			 * notified when the paRAM set is submitted to TC. This
1140 			 * will allow more time to set up the next set of slots.
1141 			 */
1142 			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1143 	}
1144 	edesc->residue_stat = edesc->residue;
1145 
1146 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1147 }
1148 
1149 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1150 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1151 	size_t len, unsigned long tx_flags)
1152 {
1153 	int ret, nslots;
1154 	struct edma_desc *edesc;
1155 	struct device *dev = chan->device->dev;
1156 	struct edma_chan *echan = to_edma_chan(chan);
1157 	unsigned int width, pset_len, array_size;
1158 
1159 	if (unlikely(!echan || !len))
1160 		return NULL;
1161 
1162 	/* Align the array size (acnt block) with the transfer properties */
1163 	switch (__ffs((src | dest | len))) {
1164 	case 0:
1165 		array_size = SZ_32K - 1;
1166 		break;
1167 	case 1:
1168 		array_size = SZ_32K - 2;
1169 		break;
1170 	default:
1171 		array_size = SZ_32K - 4;
1172 		break;
1173 	}
1174 
1175 	if (len < SZ_64K) {
1176 		/*
1177 		 * Transfer size less than 64K can be handled with one paRAM
1178 		 * slot and with one burst.
1179 		 * ACNT = length
1180 		 */
1181 		width = len;
1182 		pset_len = len;
1183 		nslots = 1;
1184 	} else {
1185 		/*
1186 		 * Transfer size bigger than 64K will be handled with maximum of
1187 		 * two paRAM slots.
1188 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1189 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1190 		 * slot2: the remaining amount of data after slot1.
1191 		 *	  ACNT = full_length - length1, length2 = ACNT
1192 		 *
1193 		 * When the full_length is multibple of 32767 one slot can be
1194 		 * used to complete the transfer.
1195 		 */
1196 		width = array_size;
1197 		pset_len = rounddown(len, width);
1198 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1199 		if (unlikely(pset_len == len))
1200 			nslots = 1;
1201 		else
1202 			nslots = 2;
1203 	}
1204 
1205 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1206 	if (!edesc)
1207 		return NULL;
1208 
1209 	edesc->pset_nr = nslots;
1210 	edesc->residue = edesc->residue_stat = len;
1211 	edesc->direction = DMA_MEM_TO_MEM;
1212 	edesc->echan = echan;
1213 
1214 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1215 			       width, pset_len, DMA_MEM_TO_MEM);
1216 	if (ret < 0) {
1217 		kfree(edesc);
1218 		return NULL;
1219 	}
1220 
1221 	edesc->absync = ret;
1222 
1223 	edesc->pset[0].param.opt |= ITCCHEN;
1224 	if (nslots == 1) {
1225 		/* Enable transfer complete interrupt if requested */
1226 		if (tx_flags & DMA_PREP_INTERRUPT)
1227 			edesc->pset[0].param.opt |= TCINTEN;
1228 	} else {
1229 		/* Enable transfer complete chaining for the first slot */
1230 		edesc->pset[0].param.opt |= TCCHEN;
1231 
1232 		if (echan->slot[1] < 0) {
1233 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1234 							 EDMA_SLOT_ANY);
1235 			if (echan->slot[1] < 0) {
1236 				kfree(edesc);
1237 				dev_err(dev, "%s: Failed to allocate slot\n",
1238 					__func__);
1239 				return NULL;
1240 			}
1241 		}
1242 		dest += pset_len;
1243 		src += pset_len;
1244 		pset_len = width = len % array_size;
1245 
1246 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1247 				       width, pset_len, DMA_MEM_TO_MEM);
1248 		if (ret < 0) {
1249 			kfree(edesc);
1250 			return NULL;
1251 		}
1252 
1253 		edesc->pset[1].param.opt |= ITCCHEN;
1254 		/* Enable transfer complete interrupt if requested */
1255 		if (tx_flags & DMA_PREP_INTERRUPT)
1256 			edesc->pset[1].param.opt |= TCINTEN;
1257 	}
1258 
1259 	if (!(tx_flags & DMA_PREP_INTERRUPT))
1260 		edesc->polled = true;
1261 
1262 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1263 }
1264 
1265 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1266 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1267 	size_t period_len, enum dma_transfer_direction direction,
1268 	unsigned long tx_flags)
1269 {
1270 	struct edma_chan *echan = to_edma_chan(chan);
1271 	struct device *dev = chan->device->dev;
1272 	struct edma_desc *edesc;
1273 	dma_addr_t src_addr, dst_addr;
1274 	enum dma_slave_buswidth dev_width;
1275 	bool use_intermediate = false;
1276 	u32 burst;
1277 	int i, ret, nslots;
1278 
1279 	if (unlikely(!echan || !buf_len || !period_len))
1280 		return NULL;
1281 
1282 	if (direction == DMA_DEV_TO_MEM) {
1283 		src_addr = echan->cfg.src_addr;
1284 		dst_addr = buf_addr;
1285 		dev_width = echan->cfg.src_addr_width;
1286 		burst = echan->cfg.src_maxburst;
1287 	} else if (direction == DMA_MEM_TO_DEV) {
1288 		src_addr = buf_addr;
1289 		dst_addr = echan->cfg.dst_addr;
1290 		dev_width = echan->cfg.dst_addr_width;
1291 		burst = echan->cfg.dst_maxburst;
1292 	} else {
1293 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1294 		return NULL;
1295 	}
1296 
1297 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1298 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1299 		return NULL;
1300 	}
1301 
1302 	if (unlikely(buf_len % period_len)) {
1303 		dev_err(dev, "Period should be multiple of Buffer length\n");
1304 		return NULL;
1305 	}
1306 
1307 	nslots = (buf_len / period_len) + 1;
1308 
1309 	/*
1310 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1311 	 * by cases where the number of periods is more than the maximum
1312 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1313 	 * such as Slave SGs, such delays are tolerable and synchronized,
1314 	 * but the synchronization is difficult to achieve with Cyclic and
1315 	 * cannot be guaranteed, so we error out early.
1316 	 */
1317 	if (nslots > MAX_NR_SG) {
1318 		/*
1319 		 * If the burst and period sizes are the same, we can put
1320 		 * the full buffer into a single period and activate
1321 		 * intermediate interrupts. This will produce interrupts
1322 		 * after each burst, which is also after each desired period.
1323 		 */
1324 		if (burst == period_len) {
1325 			period_len = buf_len;
1326 			nslots = 2;
1327 			use_intermediate = true;
1328 		} else {
1329 			return NULL;
1330 		}
1331 	}
1332 
1333 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1334 	if (!edesc)
1335 		return NULL;
1336 
1337 	edesc->cyclic = 1;
1338 	edesc->pset_nr = nslots;
1339 	edesc->residue = edesc->residue_stat = buf_len;
1340 	edesc->direction = direction;
1341 	edesc->echan = echan;
1342 
1343 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1344 		__func__, echan->ch_num, nslots, period_len, buf_len);
1345 
1346 	for (i = 0; i < nslots; i++) {
1347 		/* Allocate a PaRAM slot, if needed */
1348 		if (echan->slot[i] < 0) {
1349 			echan->slot[i] =
1350 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1351 			if (echan->slot[i] < 0) {
1352 				kfree(edesc);
1353 				dev_err(dev, "%s: Failed to allocate slot\n",
1354 					__func__);
1355 				return NULL;
1356 			}
1357 		}
1358 
1359 		if (i == nslots - 1) {
1360 			memcpy(&edesc->pset[i], &edesc->pset[0],
1361 			       sizeof(edesc->pset[0]));
1362 			break;
1363 		}
1364 
1365 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1366 				       dst_addr, burst, dev_width, period_len,
1367 				       direction);
1368 		if (ret < 0) {
1369 			kfree(edesc);
1370 			return NULL;
1371 		}
1372 
1373 		if (direction == DMA_DEV_TO_MEM)
1374 			dst_addr += period_len;
1375 		else
1376 			src_addr += period_len;
1377 
1378 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1379 		dev_vdbg(dev,
1380 			"\n pset[%d]:\n"
1381 			"  chnum\t%d\n"
1382 			"  slot\t%d\n"
1383 			"  opt\t%08x\n"
1384 			"  src\t%08x\n"
1385 			"  dst\t%08x\n"
1386 			"  abcnt\t%08x\n"
1387 			"  ccnt\t%08x\n"
1388 			"  bidx\t%08x\n"
1389 			"  cidx\t%08x\n"
1390 			"  lkrld\t%08x\n",
1391 			i, echan->ch_num, echan->slot[i],
1392 			edesc->pset[i].param.opt,
1393 			edesc->pset[i].param.src,
1394 			edesc->pset[i].param.dst,
1395 			edesc->pset[i].param.a_b_cnt,
1396 			edesc->pset[i].param.ccnt,
1397 			edesc->pset[i].param.src_dst_bidx,
1398 			edesc->pset[i].param.src_dst_cidx,
1399 			edesc->pset[i].param.link_bcntrld);
1400 
1401 		edesc->absync = ret;
1402 
1403 		/*
1404 		 * Enable period interrupt only if it is requested
1405 		 */
1406 		if (tx_flags & DMA_PREP_INTERRUPT) {
1407 			edesc->pset[i].param.opt |= TCINTEN;
1408 
1409 			/* Also enable intermediate interrupts if necessary */
1410 			if (use_intermediate)
1411 				edesc->pset[i].param.opt |= ITCINTEN;
1412 		}
1413 	}
1414 
1415 	/* Place the cyclic channel to highest priority queue */
1416 	if (!echan->tc)
1417 		edma_assign_channel_eventq(echan, EVENTQ_0);
1418 
1419 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1420 }
1421 
1422 static void edma_completion_handler(struct edma_chan *echan)
1423 {
1424 	struct device *dev = echan->vchan.chan.device->dev;
1425 	struct edma_desc *edesc;
1426 
1427 	spin_lock(&echan->vchan.lock);
1428 	edesc = echan->edesc;
1429 	if (edesc) {
1430 		if (edesc->cyclic) {
1431 			vchan_cyclic_callback(&edesc->vdesc);
1432 			spin_unlock(&echan->vchan.lock);
1433 			return;
1434 		} else if (edesc->processed == edesc->pset_nr) {
1435 			edesc->residue = 0;
1436 			edma_stop(echan);
1437 			vchan_cookie_complete(&edesc->vdesc);
1438 			echan->edesc = NULL;
1439 
1440 			dev_dbg(dev, "Transfer completed on channel %d\n",
1441 				echan->ch_num);
1442 		} else {
1443 			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1444 				echan->ch_num);
1445 
1446 			edma_pause(echan);
1447 
1448 			/* Update statistics for tx_status */
1449 			edesc->residue -= edesc->sg_len;
1450 			edesc->residue_stat = edesc->residue;
1451 			edesc->processed_stat = edesc->processed;
1452 		}
1453 		edma_execute(echan);
1454 	}
1455 
1456 	spin_unlock(&echan->vchan.lock);
1457 }
1458 
1459 /* eDMA interrupt handler */
1460 static irqreturn_t dma_irq_handler(int irq, void *data)
1461 {
1462 	struct edma_cc *ecc = data;
1463 	int ctlr;
1464 	u32 sh_ier;
1465 	u32 sh_ipr;
1466 	u32 bank;
1467 
1468 	ctlr = ecc->id;
1469 	if (ctlr < 0)
1470 		return IRQ_NONE;
1471 
1472 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1473 
1474 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1475 	if (!sh_ipr) {
1476 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1477 		if (!sh_ipr)
1478 			return IRQ_NONE;
1479 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1480 		bank = 1;
1481 	} else {
1482 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1483 		bank = 0;
1484 	}
1485 
1486 	do {
1487 		u32 slot;
1488 		u32 channel;
1489 
1490 		slot = __ffs(sh_ipr);
1491 		sh_ipr &= ~(BIT(slot));
1492 
1493 		if (sh_ier & BIT(slot)) {
1494 			channel = (bank << 5) | slot;
1495 			/* Clear the corresponding IPR bits */
1496 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1497 			edma_completion_handler(&ecc->slave_chans[channel]);
1498 		}
1499 	} while (sh_ipr);
1500 
1501 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1502 	return IRQ_HANDLED;
1503 }
1504 
1505 static void edma_error_handler(struct edma_chan *echan)
1506 {
1507 	struct edma_cc *ecc = echan->ecc;
1508 	struct device *dev = echan->vchan.chan.device->dev;
1509 	struct edmacc_param p;
1510 	int err;
1511 
1512 	if (!echan->edesc)
1513 		return;
1514 
1515 	spin_lock(&echan->vchan.lock);
1516 
1517 	err = edma_read_slot(ecc, echan->slot[0], &p);
1518 
1519 	/*
1520 	 * Issue later based on missed flag which will be sure
1521 	 * to happen as:
1522 	 * (1) we finished transmitting an intermediate slot and
1523 	 *     edma_execute is coming up.
1524 	 * (2) or we finished current transfer and issue will
1525 	 *     call edma_execute.
1526 	 *
1527 	 * Important note: issuing can be dangerous here and
1528 	 * lead to some nasty recursion when we are in a NULL
1529 	 * slot. So we avoid doing so and set the missed flag.
1530 	 */
1531 	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1532 		dev_dbg(dev, "Error on null slot, setting miss\n");
1533 		echan->missed = 1;
1534 	} else {
1535 		/*
1536 		 * The slot is already programmed but the event got
1537 		 * missed, so its safe to issue it here.
1538 		 */
1539 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1540 		edma_clean_channel(echan);
1541 		edma_stop(echan);
1542 		edma_start(echan);
1543 		edma_trigger_channel(echan);
1544 	}
1545 	spin_unlock(&echan->vchan.lock);
1546 }
1547 
1548 static inline bool edma_error_pending(struct edma_cc *ecc)
1549 {
1550 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1551 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1552 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1553 		return true;
1554 
1555 	return false;
1556 }
1557 
1558 /* eDMA error interrupt handler */
1559 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1560 {
1561 	struct edma_cc *ecc = data;
1562 	int i, j;
1563 	int ctlr;
1564 	unsigned int cnt = 0;
1565 	unsigned int val;
1566 
1567 	ctlr = ecc->id;
1568 	if (ctlr < 0)
1569 		return IRQ_NONE;
1570 
1571 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1572 
1573 	if (!edma_error_pending(ecc)) {
1574 		/*
1575 		 * The registers indicate no pending error event but the irq
1576 		 * handler has been called.
1577 		 * Ask eDMA to re-evaluate the error registers.
1578 		 */
1579 		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1580 			__func__);
1581 		edma_write(ecc, EDMA_EEVAL, 1);
1582 		return IRQ_NONE;
1583 	}
1584 
1585 	while (1) {
1586 		/* Event missed register(s) */
1587 		for (j = 0; j < 2; j++) {
1588 			unsigned long emr;
1589 
1590 			val = edma_read_array(ecc, EDMA_EMR, j);
1591 			if (!val)
1592 				continue;
1593 
1594 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1595 			emr = val;
1596 			for (i = find_next_bit(&emr, 32, 0); i < 32;
1597 			     i = find_next_bit(&emr, 32, i + 1)) {
1598 				int k = (j << 5) + i;
1599 
1600 				/* Clear the corresponding EMR bits */
1601 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1602 				/* Clear any SER */
1603 				edma_shadow0_write_array(ecc, SH_SECR, j,
1604 							 BIT(i));
1605 				edma_error_handler(&ecc->slave_chans[k]);
1606 			}
1607 		}
1608 
1609 		val = edma_read(ecc, EDMA_QEMR);
1610 		if (val) {
1611 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1612 			/* Not reported, just clear the interrupt reason. */
1613 			edma_write(ecc, EDMA_QEMCR, val);
1614 			edma_shadow0_write(ecc, SH_QSECR, val);
1615 		}
1616 
1617 		val = edma_read(ecc, EDMA_CCERR);
1618 		if (val) {
1619 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1620 			/* Not reported, just clear the interrupt reason. */
1621 			edma_write(ecc, EDMA_CCERRCLR, val);
1622 		}
1623 
1624 		if (!edma_error_pending(ecc))
1625 			break;
1626 		cnt++;
1627 		if (cnt > 10)
1628 			break;
1629 	}
1630 	edma_write(ecc, EDMA_EEVAL, 1);
1631 	return IRQ_HANDLED;
1632 }
1633 
1634 /* Alloc channel resources */
1635 static int edma_alloc_chan_resources(struct dma_chan *chan)
1636 {
1637 	struct edma_chan *echan = to_edma_chan(chan);
1638 	struct edma_cc *ecc = echan->ecc;
1639 	struct device *dev = ecc->dev;
1640 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1641 	int ret;
1642 
1643 	if (echan->tc) {
1644 		eventq_no = echan->tc->id;
1645 	} else if (ecc->tc_list) {
1646 		/* memcpy channel */
1647 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1648 		eventq_no = echan->tc->id;
1649 	}
1650 
1651 	ret = edma_alloc_channel(echan, eventq_no);
1652 	if (ret)
1653 		return ret;
1654 
1655 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1656 	if (echan->slot[0] < 0) {
1657 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1658 			EDMA_CHAN_SLOT(echan->ch_num));
1659 		ret = echan->slot[0];
1660 		goto err_slot;
1661 	}
1662 
1663 	/* Set up channel -> slot mapping for the entry slot */
1664 	edma_set_chmap(echan, echan->slot[0]);
1665 	echan->alloced = true;
1666 
1667 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1668 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1669 		echan->hw_triggered ? "HW" : "SW");
1670 
1671 	return 0;
1672 
1673 err_slot:
1674 	edma_free_channel(echan);
1675 	return ret;
1676 }
1677 
1678 /* Free channel resources */
1679 static void edma_free_chan_resources(struct dma_chan *chan)
1680 {
1681 	struct edma_chan *echan = to_edma_chan(chan);
1682 	struct device *dev = echan->ecc->dev;
1683 	int i;
1684 
1685 	/* Terminate transfers */
1686 	edma_stop(echan);
1687 
1688 	vchan_free_chan_resources(&echan->vchan);
1689 
1690 	/* Free EDMA PaRAM slots */
1691 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1692 		if (echan->slot[i] >= 0) {
1693 			edma_free_slot(echan->ecc, echan->slot[i]);
1694 			echan->slot[i] = -1;
1695 		}
1696 	}
1697 
1698 	/* Set entry slot to the dummy slot */
1699 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1700 
1701 	/* Free EDMA channel */
1702 	if (echan->alloced) {
1703 		edma_free_channel(echan);
1704 		echan->alloced = false;
1705 	}
1706 
1707 	echan->tc = NULL;
1708 	echan->hw_triggered = false;
1709 
1710 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1711 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1712 }
1713 
1714 /* Send pending descriptor to hardware */
1715 static void edma_issue_pending(struct dma_chan *chan)
1716 {
1717 	struct edma_chan *echan = to_edma_chan(chan);
1718 	unsigned long flags;
1719 
1720 	spin_lock_irqsave(&echan->vchan.lock, flags);
1721 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1722 		edma_execute(echan);
1723 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1724 }
1725 
1726 /*
1727  * This limit exists to avoid a possible infinite loop when waiting for proof
1728  * that a particular transfer is completed. This limit can be hit if there
1729  * are large bursts to/from slow devices or the CPU is never able to catch
1730  * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1731  * RX-FIFO, as many as 55 loops have been seen.
1732  */
1733 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1734 
1735 static u32 edma_residue(struct edma_desc *edesc)
1736 {
1737 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1738 	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1739 	struct edma_chan *echan = edesc->echan;
1740 	struct edma_pset *pset = edesc->pset;
1741 	dma_addr_t done, pos, pos_old;
1742 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1743 	int idx = EDMA_REG_ARRAY_INDEX(channel);
1744 	int ch_bit = EDMA_CHANNEL_BIT(channel);
1745 	int event_reg;
1746 	int i;
1747 
1748 	/*
1749 	 * We always read the dst/src position from the first RamPar
1750 	 * pset. That's the one which is active now.
1751 	 */
1752 	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1753 
1754 	/*
1755 	 * "pos" may represent a transfer request that is still being
1756 	 * processed by the EDMACC or EDMATC. We will busy wait until
1757 	 * any one of the situations occurs:
1758 	 *   1. while and event is pending for the channel
1759 	 *   2. a position updated
1760 	 *   3. we hit the loop limit
1761 	 */
1762 	if (is_slave_direction(edesc->direction))
1763 		event_reg = SH_ER;
1764 	else
1765 		event_reg = SH_ESR;
1766 
1767 	pos_old = pos;
1768 	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1769 		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1770 		if (pos != pos_old)
1771 			break;
1772 
1773 		if (!--loop_count) {
1774 			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1775 				"%s: timeout waiting for PaRAM update\n",
1776 				__func__);
1777 			break;
1778 		}
1779 
1780 		cpu_relax();
1781 	}
1782 
1783 	/*
1784 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1785 	 *
1786 	 * We never update edesc->residue in the cyclic case, so we
1787 	 * can tell the remaining room to the end of the circular
1788 	 * buffer.
1789 	 */
1790 	if (edesc->cyclic) {
1791 		done = pos - pset->addr;
1792 		edesc->residue_stat = edesc->residue - done;
1793 		return edesc->residue_stat;
1794 	}
1795 
1796 	/*
1797 	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1798 	 * transfer is completed
1799 	 */
1800 	if (!pos)
1801 		return 0;
1802 	/*
1803 	 * For SG operation we catch up with the last processed
1804 	 * status.
1805 	 */
1806 	pset += edesc->processed_stat;
1807 
1808 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1809 		/*
1810 		 * If we are inside this pset address range, we know
1811 		 * this is the active one. Get the current delta and
1812 		 * stop walking the psets.
1813 		 */
1814 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1815 			return edesc->residue_stat - (pos - pset->addr);
1816 
1817 		/* Otherwise mark it done and update residue_stat. */
1818 		edesc->processed_stat++;
1819 		edesc->residue_stat -= pset->len;
1820 	}
1821 	return edesc->residue_stat;
1822 }
1823 
1824 /* Check request completion status */
1825 static enum dma_status edma_tx_status(struct dma_chan *chan,
1826 				      dma_cookie_t cookie,
1827 				      struct dma_tx_state *txstate)
1828 {
1829 	struct edma_chan *echan = to_edma_chan(chan);
1830 	struct dma_tx_state txstate_tmp;
1831 	enum dma_status ret;
1832 	unsigned long flags;
1833 
1834 	ret = dma_cookie_status(chan, cookie, txstate);
1835 
1836 	if (ret == DMA_COMPLETE)
1837 		return ret;
1838 
1839 	/* Provide a dummy dma_tx_state for completion checking */
1840 	if (!txstate)
1841 		txstate = &txstate_tmp;
1842 
1843 	spin_lock_irqsave(&echan->vchan.lock, flags);
1844 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1845 		txstate->residue = edma_residue(echan->edesc);
1846 	} else {
1847 		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1848 							      cookie);
1849 
1850 		if (vdesc)
1851 			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1852 		else
1853 			txstate->residue = 0;
1854 	}
1855 
1856 	/*
1857 	 * Mark the cookie completed if the residue is 0 for non cyclic
1858 	 * transfers
1859 	 */
1860 	if (ret != DMA_COMPLETE && !txstate->residue &&
1861 	    echan->edesc && echan->edesc->polled &&
1862 	    echan->edesc->vdesc.tx.cookie == cookie) {
1863 		edma_stop(echan);
1864 		vchan_cookie_complete(&echan->edesc->vdesc);
1865 		echan->edesc = NULL;
1866 		edma_execute(echan);
1867 		ret = DMA_COMPLETE;
1868 	}
1869 
1870 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1871 
1872 	return ret;
1873 }
1874 
1875 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1876 {
1877 	if (!memcpy_channels)
1878 		return false;
1879 	while (*memcpy_channels != -1) {
1880 		if (*memcpy_channels == ch_num)
1881 			return true;
1882 		memcpy_channels++;
1883 	}
1884 	return false;
1885 }
1886 
1887 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1888 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1889 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1890 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1891 
1892 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1893 {
1894 	struct dma_device *s_ddev = &ecc->dma_slave;
1895 	struct dma_device *m_ddev = NULL;
1896 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1897 	int i, j;
1898 
1899 	dma_cap_zero(s_ddev->cap_mask);
1900 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1901 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1902 	if (ecc->legacy_mode && !memcpy_channels) {
1903 		dev_warn(ecc->dev,
1904 			 "Legacy memcpy is enabled, things might not work\n");
1905 
1906 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1907 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1908 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1909 	}
1910 
1911 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1912 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1913 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1914 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1915 	s_ddev->device_issue_pending = edma_issue_pending;
1916 	s_ddev->device_tx_status = edma_tx_status;
1917 	s_ddev->device_config = edma_slave_config;
1918 	s_ddev->device_pause = edma_dma_pause;
1919 	s_ddev->device_resume = edma_dma_resume;
1920 	s_ddev->device_terminate_all = edma_terminate_all;
1921 	s_ddev->device_synchronize = edma_synchronize;
1922 
1923 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1924 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1925 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1926 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1927 	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1928 
1929 	s_ddev->dev = ecc->dev;
1930 	INIT_LIST_HEAD(&s_ddev->channels);
1931 
1932 	if (memcpy_channels) {
1933 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1934 		if (!m_ddev) {
1935 			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1936 			memcpy_channels = NULL;
1937 			goto ch_setup;
1938 		}
1939 		ecc->dma_memcpy = m_ddev;
1940 
1941 		dma_cap_zero(m_ddev->cap_mask);
1942 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1943 
1944 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1945 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1946 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1947 		m_ddev->device_issue_pending = edma_issue_pending;
1948 		m_ddev->device_tx_status = edma_tx_status;
1949 		m_ddev->device_config = edma_slave_config;
1950 		m_ddev->device_pause = edma_dma_pause;
1951 		m_ddev->device_resume = edma_dma_resume;
1952 		m_ddev->device_terminate_all = edma_terminate_all;
1953 		m_ddev->device_synchronize = edma_synchronize;
1954 
1955 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1956 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1957 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1958 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1959 
1960 		m_ddev->dev = ecc->dev;
1961 		INIT_LIST_HEAD(&m_ddev->channels);
1962 	} else if (!ecc->legacy_mode) {
1963 		dev_info(ecc->dev, "memcpy is disabled\n");
1964 	}
1965 
1966 ch_setup:
1967 	for (i = 0; i < ecc->num_channels; i++) {
1968 		struct edma_chan *echan = &ecc->slave_chans[i];
1969 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1970 		echan->ecc = ecc;
1971 		echan->vchan.desc_free = edma_desc_free;
1972 
1973 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1974 			vchan_init(&echan->vchan, m_ddev);
1975 		else
1976 			vchan_init(&echan->vchan, s_ddev);
1977 
1978 		INIT_LIST_HEAD(&echan->node);
1979 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
1980 			echan->slot[j] = -1;
1981 	}
1982 }
1983 
1984 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1985 			      struct edma_cc *ecc)
1986 {
1987 	int i;
1988 	u32 value, cccfg;
1989 	s8 (*queue_priority_map)[2];
1990 
1991 	/* Decode the eDMA3 configuration from CCCFG register */
1992 	cccfg = edma_read(ecc, EDMA_CCCFG);
1993 
1994 	value = GET_NUM_REGN(cccfg);
1995 	ecc->num_region = BIT(value);
1996 
1997 	value = GET_NUM_DMACH(cccfg);
1998 	ecc->num_channels = BIT(value + 1);
1999 
2000 	value = GET_NUM_QDMACH(cccfg);
2001 	ecc->num_qchannels = value * 2;
2002 
2003 	value = GET_NUM_PAENTRY(cccfg);
2004 	ecc->num_slots = BIT(value + 4);
2005 
2006 	value = GET_NUM_EVQUE(cccfg);
2007 	ecc->num_tc = value + 1;
2008 
2009 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2010 
2011 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2012 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2013 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2014 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2015 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2016 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2017 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2018 
2019 	/* Nothing need to be done if queue priority is provided */
2020 	if (pdata->queue_priority_mapping)
2021 		return 0;
2022 
2023 	/*
2024 	 * Configure TC/queue priority as follows:
2025 	 * Q0 - priority 0
2026 	 * Q1 - priority 1
2027 	 * Q2 - priority 2
2028 	 * ...
2029 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2030 	 * priority. So Q0 is the highest priority queue and the last queue has
2031 	 * the lowest priority.
2032 	 */
2033 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2034 					  GFP_KERNEL);
2035 	if (!queue_priority_map)
2036 		return -ENOMEM;
2037 
2038 	for (i = 0; i < ecc->num_tc; i++) {
2039 		queue_priority_map[i][0] = i;
2040 		queue_priority_map[i][1] = i;
2041 	}
2042 	queue_priority_map[i][0] = -1;
2043 	queue_priority_map[i][1] = -1;
2044 
2045 	pdata->queue_priority_mapping = queue_priority_map;
2046 	/* Default queue has the lowest priority */
2047 	pdata->default_queue = i - 1;
2048 
2049 	return 0;
2050 }
2051 
2052 #if IS_ENABLED(CONFIG_OF)
2053 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2054 			       size_t sz)
2055 {
2056 	const char pname[] = "ti,edma-xbar-event-map";
2057 	struct resource res;
2058 	void __iomem *xbar;
2059 	s16 (*xbar_chans)[2];
2060 	size_t nelm = sz / sizeof(s16);
2061 	u32 shift, offset, mux;
2062 	int ret, i;
2063 
2064 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2065 	if (!xbar_chans)
2066 		return -ENOMEM;
2067 
2068 	ret = of_address_to_resource(dev->of_node, 1, &res);
2069 	if (ret)
2070 		return -ENOMEM;
2071 
2072 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2073 	if (!xbar)
2074 		return -ENOMEM;
2075 
2076 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2077 					 nelm);
2078 	if (ret)
2079 		return -EIO;
2080 
2081 	/* Invalidate last entry for the other user of this mess */
2082 	nelm >>= 1;
2083 	xbar_chans[nelm][0] = -1;
2084 	xbar_chans[nelm][1] = -1;
2085 
2086 	for (i = 0; i < nelm; i++) {
2087 		shift = (xbar_chans[i][1] & 0x03) << 3;
2088 		offset = xbar_chans[i][1] & 0xfffffffc;
2089 		mux = readl(xbar + offset);
2090 		mux &= ~(0xff << shift);
2091 		mux |= xbar_chans[i][0] << shift;
2092 		writel(mux, (xbar + offset));
2093 	}
2094 
2095 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2096 	return 0;
2097 }
2098 
2099 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2100 						     bool legacy_mode)
2101 {
2102 	struct edma_soc_info *info;
2103 	struct property *prop;
2104 	int sz, ret;
2105 
2106 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2107 	if (!info)
2108 		return ERR_PTR(-ENOMEM);
2109 
2110 	if (legacy_mode) {
2111 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2112 					&sz);
2113 		if (prop) {
2114 			ret = edma_xbar_event_map(dev, info, sz);
2115 			if (ret)
2116 				return ERR_PTR(ret);
2117 		}
2118 		return info;
2119 	}
2120 
2121 	/* Get the list of channels allocated to be used for memcpy */
2122 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2123 	if (prop) {
2124 		const char pname[] = "ti,edma-memcpy-channels";
2125 		size_t nelm = sz / sizeof(s32);
2126 		s32 *memcpy_ch;
2127 
2128 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2129 					 GFP_KERNEL);
2130 		if (!memcpy_ch)
2131 			return ERR_PTR(-ENOMEM);
2132 
2133 		ret = of_property_read_u32_array(dev->of_node, pname,
2134 						 (u32 *)memcpy_ch, nelm);
2135 		if (ret)
2136 			return ERR_PTR(ret);
2137 
2138 		memcpy_ch[nelm] = -1;
2139 		info->memcpy_channels = memcpy_ch;
2140 	}
2141 
2142 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2143 				&sz);
2144 	if (prop) {
2145 		const char pname[] = "ti,edma-reserved-slot-ranges";
2146 		u32 (*tmp)[2];
2147 		s16 (*rsv_slots)[2];
2148 		size_t nelm = sz / sizeof(*tmp);
2149 		struct edma_rsv_info *rsv_info;
2150 		int i;
2151 
2152 		if (!nelm)
2153 			return info;
2154 
2155 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2156 		if (!tmp)
2157 			return ERR_PTR(-ENOMEM);
2158 
2159 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2160 		if (!rsv_info) {
2161 			kfree(tmp);
2162 			return ERR_PTR(-ENOMEM);
2163 		}
2164 
2165 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2166 					 GFP_KERNEL);
2167 		if (!rsv_slots) {
2168 			kfree(tmp);
2169 			return ERR_PTR(-ENOMEM);
2170 		}
2171 
2172 		ret = of_property_read_u32_array(dev->of_node, pname,
2173 						 (u32 *)tmp, nelm * 2);
2174 		if (ret) {
2175 			kfree(tmp);
2176 			return ERR_PTR(ret);
2177 		}
2178 
2179 		for (i = 0; i < nelm; i++) {
2180 			rsv_slots[i][0] = tmp[i][0];
2181 			rsv_slots[i][1] = tmp[i][1];
2182 		}
2183 		rsv_slots[nelm][0] = -1;
2184 		rsv_slots[nelm][1] = -1;
2185 
2186 		info->rsv = rsv_info;
2187 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2188 
2189 		kfree(tmp);
2190 	}
2191 
2192 	return info;
2193 }
2194 
2195 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2196 				      struct of_dma *ofdma)
2197 {
2198 	struct edma_cc *ecc = ofdma->of_dma_data;
2199 	struct dma_chan *chan = NULL;
2200 	struct edma_chan *echan;
2201 	int i;
2202 
2203 	if (!ecc || dma_spec->args_count < 1)
2204 		return NULL;
2205 
2206 	for (i = 0; i < ecc->num_channels; i++) {
2207 		echan = &ecc->slave_chans[i];
2208 		if (echan->ch_num == dma_spec->args[0]) {
2209 			chan = &echan->vchan.chan;
2210 			break;
2211 		}
2212 	}
2213 
2214 	if (!chan)
2215 		return NULL;
2216 
2217 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2218 		goto out;
2219 
2220 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2221 	    dma_spec->args[1] < echan->ecc->num_tc) {
2222 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2223 		goto out;
2224 	}
2225 
2226 	return NULL;
2227 out:
2228 	/* The channel is going to be used as HW synchronized */
2229 	echan->hw_triggered = true;
2230 	return dma_get_slave_channel(chan);
2231 }
2232 #else
2233 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2234 						     bool legacy_mode)
2235 {
2236 	return ERR_PTR(-EINVAL);
2237 }
2238 
2239 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2240 				      struct of_dma *ofdma)
2241 {
2242 	return NULL;
2243 }
2244 #endif
2245 
2246 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2247 
2248 static int edma_probe(struct platform_device *pdev)
2249 {
2250 	struct edma_soc_info	*info = pdev->dev.platform_data;
2251 	s8			(*queue_priority_mapping)[2];
2252 	int			i, off;
2253 	const s16		(*rsv_slots)[2];
2254 	const s16		(*xbar_chans)[2];
2255 	int			irq;
2256 	char			*irq_name;
2257 	struct resource		*mem;
2258 	struct device_node	*node = pdev->dev.of_node;
2259 	struct device		*dev = &pdev->dev;
2260 	struct edma_cc		*ecc;
2261 	bool			legacy_mode = true;
2262 	int ret;
2263 
2264 	if (node) {
2265 		const struct of_device_id *match;
2266 
2267 		match = of_match_node(edma_of_ids, node);
2268 		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2269 			legacy_mode = false;
2270 
2271 		info = edma_setup_info_from_dt(dev, legacy_mode);
2272 		if (IS_ERR(info)) {
2273 			dev_err(dev, "failed to get DT data\n");
2274 			return PTR_ERR(info);
2275 		}
2276 	}
2277 
2278 	if (!info)
2279 		return -ENODEV;
2280 
2281 	pm_runtime_enable(dev);
2282 	ret = pm_runtime_get_sync(dev);
2283 	if (ret < 0) {
2284 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2285 		return ret;
2286 	}
2287 
2288 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2289 	if (ret)
2290 		return ret;
2291 
2292 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2293 	if (!ecc)
2294 		return -ENOMEM;
2295 
2296 	ecc->dev = dev;
2297 	ecc->id = pdev->id;
2298 	ecc->legacy_mode = legacy_mode;
2299 	/* When booting with DT the pdev->id is -1 */
2300 	if (ecc->id < 0)
2301 		ecc->id = 0;
2302 
2303 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2304 	if (!mem) {
2305 		dev_dbg(dev, "mem resource not found, using index 0\n");
2306 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2307 		if (!mem) {
2308 			dev_err(dev, "no mem resource?\n");
2309 			return -ENODEV;
2310 		}
2311 	}
2312 	ecc->base = devm_ioremap_resource(dev, mem);
2313 	if (IS_ERR(ecc->base))
2314 		return PTR_ERR(ecc->base);
2315 
2316 	platform_set_drvdata(pdev, ecc);
2317 
2318 	/* Get eDMA3 configuration from IP */
2319 	ret = edma_setup_from_hw(dev, info, ecc);
2320 	if (ret)
2321 		return ret;
2322 
2323 	/* Allocate memory based on the information we got from the IP */
2324 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2325 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2326 	if (!ecc->slave_chans)
2327 		return -ENOMEM;
2328 
2329 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2330 				       sizeof(unsigned long), GFP_KERNEL);
2331 	if (!ecc->slot_inuse)
2332 		return -ENOMEM;
2333 
2334 	ecc->default_queue = info->default_queue;
2335 
2336 	if (info->rsv) {
2337 		/* Set the reserved slots in inuse list */
2338 		rsv_slots = info->rsv->rsv_slots;
2339 		if (rsv_slots) {
2340 			for (i = 0; rsv_slots[i][0] != -1; i++)
2341 				bitmap_set(ecc->slot_inuse, rsv_slots[i][0],
2342 					   rsv_slots[i][1]);
2343 		}
2344 	}
2345 
2346 	for (i = 0; i < ecc->num_slots; i++) {
2347 		/* Reset only unused - not reserved - paRAM slots */
2348 		if (!test_bit(i, ecc->slot_inuse))
2349 			edma_write_slot(ecc, i, &dummy_paramset);
2350 	}
2351 
2352 	/* Clear the xbar mapped channels in unused list */
2353 	xbar_chans = info->xbar_chans;
2354 	if (xbar_chans) {
2355 		for (i = 0; xbar_chans[i][1] != -1; i++) {
2356 			off = xbar_chans[i][1];
2357 		}
2358 	}
2359 
2360 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2361 	if (irq < 0 && node)
2362 		irq = irq_of_parse_and_map(node, 0);
2363 
2364 	if (irq >= 0) {
2365 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2366 					  dev_name(dev));
2367 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2368 				       ecc);
2369 		if (ret) {
2370 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2371 			return ret;
2372 		}
2373 		ecc->ccint = irq;
2374 	}
2375 
2376 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2377 	if (irq < 0 && node)
2378 		irq = irq_of_parse_and_map(node, 2);
2379 
2380 	if (irq >= 0) {
2381 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2382 					  dev_name(dev));
2383 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2384 				       ecc);
2385 		if (ret) {
2386 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2387 			return ret;
2388 		}
2389 		ecc->ccerrint = irq;
2390 	}
2391 
2392 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2393 	if (ecc->dummy_slot < 0) {
2394 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2395 		return ecc->dummy_slot;
2396 	}
2397 
2398 	queue_priority_mapping = info->queue_priority_mapping;
2399 
2400 	if (!ecc->legacy_mode) {
2401 		int lowest_priority = 0;
2402 		struct of_phandle_args tc_args;
2403 
2404 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2405 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2406 		if (!ecc->tc_list)
2407 			return -ENOMEM;
2408 
2409 		for (i = 0;; i++) {
2410 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2411 							       1, i, &tc_args);
2412 			if (ret || i == ecc->num_tc)
2413 				break;
2414 
2415 			ecc->tc_list[i].node = tc_args.np;
2416 			ecc->tc_list[i].id = i;
2417 			queue_priority_mapping[i][1] = tc_args.args[0];
2418 			if (queue_priority_mapping[i][1] > lowest_priority) {
2419 				lowest_priority = queue_priority_mapping[i][1];
2420 				info->default_queue = i;
2421 			}
2422 		}
2423 	}
2424 
2425 	/* Event queue priority mapping */
2426 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2427 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2428 					      queue_priority_mapping[i][1]);
2429 
2430 	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2431 	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2432 	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2433 
2434 	ecc->info = info;
2435 
2436 	/* Init the dma device and channels */
2437 	edma_dma_init(ecc, legacy_mode);
2438 
2439 	for (i = 0; i < ecc->num_channels; i++) {
2440 		/* Assign all channels to the default queue */
2441 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2442 					   info->default_queue);
2443 		/* Set entry slot to the dummy slot */
2444 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2445 	}
2446 
2447 	ecc->dma_slave.filter.map = info->slave_map;
2448 	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2449 	ecc->dma_slave.filter.fn = edma_filter_fn;
2450 
2451 	ret = dma_async_device_register(&ecc->dma_slave);
2452 	if (ret) {
2453 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2454 		goto err_reg1;
2455 	}
2456 
2457 	if (ecc->dma_memcpy) {
2458 		ret = dma_async_device_register(ecc->dma_memcpy);
2459 		if (ret) {
2460 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2461 				ret);
2462 			dma_async_device_unregister(&ecc->dma_slave);
2463 			goto err_reg1;
2464 		}
2465 	}
2466 
2467 	if (node)
2468 		of_dma_controller_register(node, of_edma_xlate, ecc);
2469 
2470 	dev_info(dev, "TI EDMA DMA engine driver\n");
2471 
2472 	return 0;
2473 
2474 err_reg1:
2475 	edma_free_slot(ecc, ecc->dummy_slot);
2476 	return ret;
2477 }
2478 
2479 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2480 {
2481 	struct edma_chan *echan, *_echan;
2482 
2483 	list_for_each_entry_safe(echan, _echan,
2484 			&dmadev->channels, vchan.chan.device_node) {
2485 		list_del(&echan->vchan.chan.device_node);
2486 		tasklet_kill(&echan->vchan.task);
2487 	}
2488 }
2489 
2490 static int edma_remove(struct platform_device *pdev)
2491 {
2492 	struct device *dev = &pdev->dev;
2493 	struct edma_cc *ecc = dev_get_drvdata(dev);
2494 
2495 	devm_free_irq(dev, ecc->ccint, ecc);
2496 	devm_free_irq(dev, ecc->ccerrint, ecc);
2497 
2498 	edma_cleanupp_vchan(&ecc->dma_slave);
2499 
2500 	if (dev->of_node)
2501 		of_dma_controller_free(dev->of_node);
2502 	dma_async_device_unregister(&ecc->dma_slave);
2503 	if (ecc->dma_memcpy)
2504 		dma_async_device_unregister(ecc->dma_memcpy);
2505 	edma_free_slot(ecc, ecc->dummy_slot);
2506 
2507 	return 0;
2508 }
2509 
2510 #ifdef CONFIG_PM_SLEEP
2511 static int edma_pm_suspend(struct device *dev)
2512 {
2513 	struct edma_cc *ecc = dev_get_drvdata(dev);
2514 	struct edma_chan *echan = ecc->slave_chans;
2515 	int i;
2516 
2517 	for (i = 0; i < ecc->num_channels; i++) {
2518 		if (echan[i].alloced)
2519 			edma_setup_interrupt(&echan[i], false);
2520 	}
2521 
2522 	return 0;
2523 }
2524 
2525 static int edma_pm_resume(struct device *dev)
2526 {
2527 	struct edma_cc *ecc = dev_get_drvdata(dev);
2528 	struct edma_chan *echan = ecc->slave_chans;
2529 	int i;
2530 	s8 (*queue_priority_mapping)[2];
2531 
2532 	/* re initialize dummy slot to dummy param set */
2533 	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2534 
2535 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2536 
2537 	/* Event queue priority mapping */
2538 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2539 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2540 					      queue_priority_mapping[i][1]);
2541 
2542 	for (i = 0; i < ecc->num_channels; i++) {
2543 		if (echan[i].alloced) {
2544 			/* ensure access through shadow region 0 */
2545 			edma_or_array2(ecc, EDMA_DRAE, 0,
2546 				       EDMA_REG_ARRAY_INDEX(i),
2547 				       EDMA_CHANNEL_BIT(i));
2548 
2549 			edma_setup_interrupt(&echan[i], true);
2550 
2551 			/* Set up channel -> slot mapping for the entry slot */
2552 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2553 		}
2554 	}
2555 
2556 	return 0;
2557 }
2558 #endif
2559 
2560 static const struct dev_pm_ops edma_pm_ops = {
2561 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2562 };
2563 
2564 static struct platform_driver edma_driver = {
2565 	.probe		= edma_probe,
2566 	.remove		= edma_remove,
2567 	.driver = {
2568 		.name	= "edma",
2569 		.pm	= &edma_pm_ops,
2570 		.of_match_table = edma_of_ids,
2571 	},
2572 };
2573 
2574 static int edma_tptc_probe(struct platform_device *pdev)
2575 {
2576 	pm_runtime_enable(&pdev->dev);
2577 	return pm_runtime_get_sync(&pdev->dev);
2578 }
2579 
2580 static struct platform_driver edma_tptc_driver = {
2581 	.probe		= edma_tptc_probe,
2582 	.driver = {
2583 		.name	= "edma3-tptc",
2584 		.of_match_table = edma_tptc_of_ids,
2585 	},
2586 };
2587 
2588 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2589 {
2590 	bool match = false;
2591 
2592 	if (chan->device->dev->driver == &edma_driver.driver) {
2593 		struct edma_chan *echan = to_edma_chan(chan);
2594 		unsigned ch_req = *(unsigned *)param;
2595 		if (ch_req == echan->ch_num) {
2596 			/* The channel is going to be used as HW synchronized */
2597 			echan->hw_triggered = true;
2598 			match = true;
2599 		}
2600 	}
2601 	return match;
2602 }
2603 
2604 static int edma_init(void)
2605 {
2606 	int ret;
2607 
2608 	ret = platform_driver_register(&edma_tptc_driver);
2609 	if (ret)
2610 		return ret;
2611 
2612 	return platform_driver_register(&edma_driver);
2613 }
2614 subsys_initcall(edma_init);
2615 
2616 static void __exit edma_exit(void)
2617 {
2618 	platform_driver_unregister(&edma_driver);
2619 	platform_driver_unregister(&edma_tptc_driver);
2620 }
2621 module_exit(edma_exit);
2622 
2623 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2624 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2625 MODULE_LICENSE("GPL v2");
2626