1 /* 2 * TI EDMA DMA engine driver 3 * 4 * Copyright 2012 Texas Instruments 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation version 2. 9 * 10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * kind, whether express or implied; without even the implied warranty 12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/dmaengine.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/bitmap.h> 19 #include <linux/err.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/list.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/of.h> 28 #include <linux/of_dma.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_address.h> 31 #include <linux/of_device.h> 32 #include <linux/pm_runtime.h> 33 34 #include <linux/platform_data/edma.h> 35 36 #include "../dmaengine.h" 37 #include "../virt-dma.h" 38 39 /* Offsets matching "struct edmacc_param" */ 40 #define PARM_OPT 0x00 41 #define PARM_SRC 0x04 42 #define PARM_A_B_CNT 0x08 43 #define PARM_DST 0x0c 44 #define PARM_SRC_DST_BIDX 0x10 45 #define PARM_LINK_BCNTRLD 0x14 46 #define PARM_SRC_DST_CIDX 0x18 47 #define PARM_CCNT 0x1c 48 49 #define PARM_SIZE 0x20 50 51 /* Offsets for EDMA CC global channel registers and their shadows */ 52 #define SH_ER 0x00 /* 64 bits */ 53 #define SH_ECR 0x08 /* 64 bits */ 54 #define SH_ESR 0x10 /* 64 bits */ 55 #define SH_CER 0x18 /* 64 bits */ 56 #define SH_EER 0x20 /* 64 bits */ 57 #define SH_EECR 0x28 /* 64 bits */ 58 #define SH_EESR 0x30 /* 64 bits */ 59 #define SH_SER 0x38 /* 64 bits */ 60 #define SH_SECR 0x40 /* 64 bits */ 61 #define SH_IER 0x50 /* 64 bits */ 62 #define SH_IECR 0x58 /* 64 bits */ 63 #define SH_IESR 0x60 /* 64 bits */ 64 #define SH_IPR 0x68 /* 64 bits */ 65 #define SH_ICR 0x70 /* 64 bits */ 66 #define SH_IEVAL 0x78 67 #define SH_QER 0x80 68 #define SH_QEER 0x84 69 #define SH_QEECR 0x88 70 #define SH_QEESR 0x8c 71 #define SH_QSER 0x90 72 #define SH_QSECR 0x94 73 #define SH_SIZE 0x200 74 75 /* Offsets for EDMA CC global registers */ 76 #define EDMA_REV 0x0000 77 #define EDMA_CCCFG 0x0004 78 #define EDMA_QCHMAP 0x0200 /* 8 registers */ 79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ 80 #define EDMA_QDMAQNUM 0x0260 81 #define EDMA_QUETCMAP 0x0280 82 #define EDMA_QUEPRI 0x0284 83 #define EDMA_EMR 0x0300 /* 64 bits */ 84 #define EDMA_EMCR 0x0308 /* 64 bits */ 85 #define EDMA_QEMR 0x0310 86 #define EDMA_QEMCR 0x0314 87 #define EDMA_CCERR 0x0318 88 #define EDMA_CCERRCLR 0x031c 89 #define EDMA_EEVAL 0x0320 90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ 91 #define EDMA_QRAE 0x0380 /* 4 registers */ 92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ 93 #define EDMA_QSTAT 0x0600 /* 2 registers */ 94 #define EDMA_QWMTHRA 0x0620 95 #define EDMA_QWMTHRB 0x0624 96 #define EDMA_CCSTAT 0x0640 97 98 #define EDMA_M 0x1000 /* global channel registers */ 99 #define EDMA_ECR 0x1008 100 #define EDMA_ECRH 0x100C 101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ 102 #define EDMA_PARM 0x4000 /* PaRAM entries */ 103 104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) 105 106 #define EDMA_DCHMAP 0x0100 /* 64 registers */ 107 108 /* CCCFG register */ 109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ 110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ 111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ 112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ 113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ 114 #define CHMAP_EXIST BIT(24) 115 116 /* CCSTAT register */ 117 #define EDMA_CCSTAT_ACTV BIT(4) 118 119 /* 120 * Max of 20 segments per channel to conserve PaRAM slots 121 * Also note that MAX_NR_SG should be atleast the no.of periods 122 * that are required for ASoC, otherwise DMA prep calls will 123 * fail. Today davinci-pcm is the only user of this driver and 124 * requires atleast 17 slots, so we setup the default to 20. 125 */ 126 #define MAX_NR_SG 20 127 #define EDMA_MAX_SLOTS MAX_NR_SG 128 #define EDMA_DESCRIPTORS 16 129 130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ 131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ 132 #define EDMA_CONT_PARAMS_ANY 1001 133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 135 136 /* 137 * 64bit array registers are split into two 32bit registers: 138 * reg0: channel/event 0-31 139 * reg1: channel/event 32-63 140 * 141 * bit 5 in the channel number tells the array index (0/1) 142 * bit 0-4 (0x1f) is the bit offset within the register 143 */ 144 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5) 145 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f)) 146 147 /* PaRAM slots are laid out like this */ 148 struct edmacc_param { 149 u32 opt; 150 u32 src; 151 u32 a_b_cnt; 152 u32 dst; 153 u32 src_dst_bidx; 154 u32 link_bcntrld; 155 u32 src_dst_cidx; 156 u32 ccnt; 157 } __packed; 158 159 /* fields in edmacc_param.opt */ 160 #define SAM BIT(0) 161 #define DAM BIT(1) 162 #define SYNCDIM BIT(2) 163 #define STATIC BIT(3) 164 #define EDMA_FWID (0x07 << 8) 165 #define TCCMODE BIT(11) 166 #define EDMA_TCC(t) ((t) << 12) 167 #define TCINTEN BIT(20) 168 #define ITCINTEN BIT(21) 169 #define TCCHEN BIT(22) 170 #define ITCCHEN BIT(23) 171 172 struct edma_pset { 173 u32 len; 174 dma_addr_t addr; 175 struct edmacc_param param; 176 }; 177 178 struct edma_desc { 179 struct virt_dma_desc vdesc; 180 struct list_head node; 181 enum dma_transfer_direction direction; 182 int cyclic; 183 bool polled; 184 int absync; 185 int pset_nr; 186 struct edma_chan *echan; 187 int processed; 188 189 /* 190 * The following 4 elements are used for residue accounting. 191 * 192 * - processed_stat: the number of SG elements we have traversed 193 * so far to cover accounting. This is updated directly to processed 194 * during edma_callback and is always <= processed, because processed 195 * refers to the number of pending transfer (programmed to EDMA 196 * controller), where as processed_stat tracks number of transfers 197 * accounted for so far. 198 * 199 * - residue: The amount of bytes we have left to transfer for this desc 200 * 201 * - residue_stat: The residue in bytes of data we have covered 202 * so far for accounting. This is updated directly to residue 203 * during callbacks to keep it current. 204 * 205 * - sg_len: Tracks the length of the current intermediate transfer, 206 * this is required to update the residue during intermediate transfer 207 * completion callback. 208 */ 209 int processed_stat; 210 u32 sg_len; 211 u32 residue; 212 u32 residue_stat; 213 214 struct edma_pset pset[0]; 215 }; 216 217 struct edma_cc; 218 219 struct edma_tc { 220 struct device_node *node; 221 u16 id; 222 }; 223 224 struct edma_chan { 225 struct virt_dma_chan vchan; 226 struct list_head node; 227 struct edma_desc *edesc; 228 struct edma_cc *ecc; 229 struct edma_tc *tc; 230 int ch_num; 231 bool alloced; 232 bool hw_triggered; 233 int slot[EDMA_MAX_SLOTS]; 234 int missed; 235 struct dma_slave_config cfg; 236 }; 237 238 struct edma_cc { 239 struct device *dev; 240 struct edma_soc_info *info; 241 void __iomem *base; 242 int id; 243 bool legacy_mode; 244 245 /* eDMA3 resource information */ 246 unsigned num_channels; 247 unsigned num_qchannels; 248 unsigned num_region; 249 unsigned num_slots; 250 unsigned num_tc; 251 bool chmap_exist; 252 enum dma_event_q default_queue; 253 254 unsigned int ccint; 255 unsigned int ccerrint; 256 257 /* 258 * The slot_inuse bit for each PaRAM slot is clear unless the slot is 259 * in use by Linux or if it is allocated to be used by DSP. 260 */ 261 unsigned long *slot_inuse; 262 263 struct dma_device dma_slave; 264 struct dma_device *dma_memcpy; 265 struct edma_chan *slave_chans; 266 struct edma_tc *tc_list; 267 int dummy_slot; 268 }; 269 270 /* dummy param set used to (re)initialize parameter RAM slots */ 271 static const struct edmacc_param dummy_paramset = { 272 .link_bcntrld = 0xffff, 273 .ccnt = 1, 274 }; 275 276 #define EDMA_BINDING_LEGACY 0 277 #define EDMA_BINDING_TPCC 1 278 static const u32 edma_binding_type[] = { 279 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, 280 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, 281 }; 282 283 static const struct of_device_id edma_of_ids[] = { 284 { 285 .compatible = "ti,edma3", 286 .data = &edma_binding_type[EDMA_BINDING_LEGACY], 287 }, 288 { 289 .compatible = "ti,edma3-tpcc", 290 .data = &edma_binding_type[EDMA_BINDING_TPCC], 291 }, 292 {} 293 }; 294 MODULE_DEVICE_TABLE(of, edma_of_ids); 295 296 static const struct of_device_id edma_tptc_of_ids[] = { 297 { .compatible = "ti,edma3-tptc", }, 298 {} 299 }; 300 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); 301 302 static inline unsigned int edma_read(struct edma_cc *ecc, int offset) 303 { 304 return (unsigned int)__raw_readl(ecc->base + offset); 305 } 306 307 static inline void edma_write(struct edma_cc *ecc, int offset, int val) 308 { 309 __raw_writel(val, ecc->base + offset); 310 } 311 312 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, 313 unsigned or) 314 { 315 unsigned val = edma_read(ecc, offset); 316 317 val &= and; 318 val |= or; 319 edma_write(ecc, offset, val); 320 } 321 322 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) 323 { 324 unsigned val = edma_read(ecc, offset); 325 326 val &= and; 327 edma_write(ecc, offset, val); 328 } 329 330 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) 331 { 332 unsigned val = edma_read(ecc, offset); 333 334 val |= or; 335 edma_write(ecc, offset, val); 336 } 337 338 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, 339 int i) 340 { 341 return edma_read(ecc, offset + (i << 2)); 342 } 343 344 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, 345 unsigned val) 346 { 347 edma_write(ecc, offset + (i << 2), val); 348 } 349 350 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, 351 unsigned and, unsigned or) 352 { 353 edma_modify(ecc, offset + (i << 2), and, or); 354 } 355 356 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, 357 unsigned or) 358 { 359 edma_or(ecc, offset + (i << 2), or); 360 } 361 362 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, 363 unsigned or) 364 { 365 edma_or(ecc, offset + ((i * 2 + j) << 2), or); 366 } 367 368 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, 369 int j, unsigned val) 370 { 371 edma_write(ecc, offset + ((i * 2 + j) << 2), val); 372 } 373 374 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) 375 { 376 return edma_read(ecc, EDMA_SHADOW0 + offset); 377 } 378 379 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, 380 int offset, int i) 381 { 382 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); 383 } 384 385 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, 386 unsigned val) 387 { 388 edma_write(ecc, EDMA_SHADOW0 + offset, val); 389 } 390 391 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, 392 int i, unsigned val) 393 { 394 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); 395 } 396 397 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, 398 int param_no) 399 { 400 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); 401 } 402 403 static inline void edma_param_write(struct edma_cc *ecc, int offset, 404 int param_no, unsigned val) 405 { 406 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); 407 } 408 409 static inline void edma_param_modify(struct edma_cc *ecc, int offset, 410 int param_no, unsigned and, unsigned or) 411 { 412 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); 413 } 414 415 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, 416 unsigned and) 417 { 418 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); 419 } 420 421 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, 422 unsigned or) 423 { 424 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); 425 } 426 427 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, 428 int priority) 429 { 430 int bit = queue_no * 4; 431 432 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); 433 } 434 435 static void edma_set_chmap(struct edma_chan *echan, int slot) 436 { 437 struct edma_cc *ecc = echan->ecc; 438 int channel = EDMA_CHAN_SLOT(echan->ch_num); 439 440 if (ecc->chmap_exist) { 441 slot = EDMA_CHAN_SLOT(slot); 442 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); 443 } 444 } 445 446 static void edma_setup_interrupt(struct edma_chan *echan, bool enable) 447 { 448 struct edma_cc *ecc = echan->ecc; 449 int channel = EDMA_CHAN_SLOT(echan->ch_num); 450 int idx = EDMA_REG_ARRAY_INDEX(channel); 451 int ch_bit = EDMA_CHANNEL_BIT(channel); 452 453 if (enable) { 454 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 455 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit); 456 } else { 457 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit); 458 } 459 } 460 461 /* 462 * paRAM slot management functions 463 */ 464 static void edma_write_slot(struct edma_cc *ecc, unsigned slot, 465 const struct edmacc_param *param) 466 { 467 slot = EDMA_CHAN_SLOT(slot); 468 if (slot >= ecc->num_slots) 469 return; 470 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); 471 } 472 473 static int edma_read_slot(struct edma_cc *ecc, unsigned slot, 474 struct edmacc_param *param) 475 { 476 slot = EDMA_CHAN_SLOT(slot); 477 if (slot >= ecc->num_slots) 478 return -EINVAL; 479 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); 480 481 return 0; 482 } 483 484 /** 485 * edma_alloc_slot - allocate DMA parameter RAM 486 * @ecc: pointer to edma_cc struct 487 * @slot: specific slot to allocate; negative for "any unused slot" 488 * 489 * This allocates a parameter RAM slot, initializing it to hold a 490 * dummy transfer. Slots allocated using this routine have not been 491 * mapped to a hardware DMA channel, and will normally be used by 492 * linking to them from a slot associated with a DMA channel. 493 * 494 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific 495 * slots may be allocated on behalf of DSP firmware. 496 * 497 * Returns the number of the slot, else negative errno. 498 */ 499 static int edma_alloc_slot(struct edma_cc *ecc, int slot) 500 { 501 if (slot >= 0) { 502 slot = EDMA_CHAN_SLOT(slot); 503 /* Requesting entry paRAM slot for a HW triggered channel. */ 504 if (ecc->chmap_exist && slot < ecc->num_channels) 505 slot = EDMA_SLOT_ANY; 506 } 507 508 if (slot < 0) { 509 if (ecc->chmap_exist) 510 slot = 0; 511 else 512 slot = ecc->num_channels; 513 for (;;) { 514 slot = find_next_zero_bit(ecc->slot_inuse, 515 ecc->num_slots, 516 slot); 517 if (slot == ecc->num_slots) 518 return -ENOMEM; 519 if (!test_and_set_bit(slot, ecc->slot_inuse)) 520 break; 521 } 522 } else if (slot >= ecc->num_slots) { 523 return -EINVAL; 524 } else if (test_and_set_bit(slot, ecc->slot_inuse)) { 525 return -EBUSY; 526 } 527 528 edma_write_slot(ecc, slot, &dummy_paramset); 529 530 return EDMA_CTLR_CHAN(ecc->id, slot); 531 } 532 533 static void edma_free_slot(struct edma_cc *ecc, unsigned slot) 534 { 535 slot = EDMA_CHAN_SLOT(slot); 536 if (slot >= ecc->num_slots) 537 return; 538 539 edma_write_slot(ecc, slot, &dummy_paramset); 540 clear_bit(slot, ecc->slot_inuse); 541 } 542 543 /** 544 * edma_link - link one parameter RAM slot to another 545 * @ecc: pointer to edma_cc struct 546 * @from: parameter RAM slot originating the link 547 * @to: parameter RAM slot which is the link target 548 * 549 * The originating slot should not be part of any active DMA transfer. 550 */ 551 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) 552 { 553 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) 554 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); 555 556 from = EDMA_CHAN_SLOT(from); 557 to = EDMA_CHAN_SLOT(to); 558 if (from >= ecc->num_slots || to >= ecc->num_slots) 559 return; 560 561 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, 562 PARM_OFFSET(to)); 563 } 564 565 /** 566 * edma_get_position - returns the current transfer point 567 * @ecc: pointer to edma_cc struct 568 * @slot: parameter RAM slot being examined 569 * @dst: true selects the dest position, false the source 570 * 571 * Returns the position of the current active slot 572 */ 573 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, 574 bool dst) 575 { 576 u32 offs; 577 578 slot = EDMA_CHAN_SLOT(slot); 579 offs = PARM_OFFSET(slot); 580 offs += dst ? PARM_DST : PARM_SRC; 581 582 return edma_read(ecc, offs); 583 } 584 585 /* 586 * Channels with event associations will be triggered by their hardware 587 * events, and channels without such associations will be triggered by 588 * software. (At this writing there is no interface for using software 589 * triggers except with channels that don't support hardware triggers.) 590 */ 591 static void edma_start(struct edma_chan *echan) 592 { 593 struct edma_cc *ecc = echan->ecc; 594 int channel = EDMA_CHAN_SLOT(echan->ch_num); 595 int idx = EDMA_REG_ARRAY_INDEX(channel); 596 int ch_bit = EDMA_CHANNEL_BIT(channel); 597 598 if (!echan->hw_triggered) { 599 /* EDMA channels without event association */ 600 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 601 edma_shadow0_read_array(ecc, SH_ESR, idx)); 602 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 603 } else { 604 /* EDMA channel with event association */ 605 dev_dbg(ecc->dev, "ER%d %08x\n", idx, 606 edma_shadow0_read_array(ecc, SH_ER, idx)); 607 /* Clear any pending event or error */ 608 edma_write_array(ecc, EDMA_ECR, idx, ch_bit); 609 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 610 /* Clear any SER */ 611 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 612 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit); 613 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 614 edma_shadow0_read_array(ecc, SH_EER, idx)); 615 } 616 } 617 618 static void edma_stop(struct edma_chan *echan) 619 { 620 struct edma_cc *ecc = echan->ecc; 621 int channel = EDMA_CHAN_SLOT(echan->ch_num); 622 int idx = EDMA_REG_ARRAY_INDEX(channel); 623 int ch_bit = EDMA_CHANNEL_BIT(channel); 624 625 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit); 626 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 627 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 628 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 629 630 /* clear possibly pending completion interrupt */ 631 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit); 632 633 dev_dbg(ecc->dev, "EER%d %08x\n", idx, 634 edma_shadow0_read_array(ecc, SH_EER, idx)); 635 636 /* REVISIT: consider guarding against inappropriate event 637 * chaining by overwriting with dummy_paramset. 638 */ 639 } 640 641 /* 642 * Temporarily disable EDMA hardware events on the specified channel, 643 * preventing them from triggering new transfers 644 */ 645 static void edma_pause(struct edma_chan *echan) 646 { 647 int channel = EDMA_CHAN_SLOT(echan->ch_num); 648 649 edma_shadow0_write_array(echan->ecc, SH_EECR, 650 EDMA_REG_ARRAY_INDEX(channel), 651 EDMA_CHANNEL_BIT(channel)); 652 } 653 654 /* Re-enable EDMA hardware events on the specified channel. */ 655 static void edma_resume(struct edma_chan *echan) 656 { 657 int channel = EDMA_CHAN_SLOT(echan->ch_num); 658 659 edma_shadow0_write_array(echan->ecc, SH_EESR, 660 EDMA_REG_ARRAY_INDEX(channel), 661 EDMA_CHANNEL_BIT(channel)); 662 } 663 664 static void edma_trigger_channel(struct edma_chan *echan) 665 { 666 struct edma_cc *ecc = echan->ecc; 667 int channel = EDMA_CHAN_SLOT(echan->ch_num); 668 int idx = EDMA_REG_ARRAY_INDEX(channel); 669 int ch_bit = EDMA_CHANNEL_BIT(channel); 670 671 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit); 672 673 dev_dbg(ecc->dev, "ESR%d %08x\n", idx, 674 edma_shadow0_read_array(ecc, SH_ESR, idx)); 675 } 676 677 static void edma_clean_channel(struct edma_chan *echan) 678 { 679 struct edma_cc *ecc = echan->ecc; 680 int channel = EDMA_CHAN_SLOT(echan->ch_num); 681 int idx = EDMA_REG_ARRAY_INDEX(channel); 682 int ch_bit = EDMA_CHANNEL_BIT(channel); 683 684 dev_dbg(ecc->dev, "EMR%d %08x\n", idx, 685 edma_read_array(ecc, EDMA_EMR, idx)); 686 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit); 687 /* Clear the corresponding EMR bits */ 688 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit); 689 /* Clear any SER */ 690 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit); 691 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); 692 } 693 694 /* Move channel to a specific event queue */ 695 static void edma_assign_channel_eventq(struct edma_chan *echan, 696 enum dma_event_q eventq_no) 697 { 698 struct edma_cc *ecc = echan->ecc; 699 int channel = EDMA_CHAN_SLOT(echan->ch_num); 700 int bit = (channel & 0x7) * 4; 701 702 /* default to low priority queue */ 703 if (eventq_no == EVENTQ_DEFAULT) 704 eventq_no = ecc->default_queue; 705 if (eventq_no >= ecc->num_tc) 706 return; 707 708 eventq_no &= 7; 709 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), 710 eventq_no << bit); 711 } 712 713 static int edma_alloc_channel(struct edma_chan *echan, 714 enum dma_event_q eventq_no) 715 { 716 struct edma_cc *ecc = echan->ecc; 717 int channel = EDMA_CHAN_SLOT(echan->ch_num); 718 719 /* ensure access through shadow region 0 */ 720 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel), 721 EDMA_CHANNEL_BIT(channel)); 722 723 /* ensure no events are pending */ 724 edma_stop(echan); 725 726 edma_setup_interrupt(echan, true); 727 728 edma_assign_channel_eventq(echan, eventq_no); 729 730 return 0; 731 } 732 733 static void edma_free_channel(struct edma_chan *echan) 734 { 735 /* ensure no events are pending */ 736 edma_stop(echan); 737 /* REVISIT should probably take out of shadow region 0 */ 738 edma_setup_interrupt(echan, false); 739 } 740 741 static inline struct edma_cc *to_edma_cc(struct dma_device *d) 742 { 743 return container_of(d, struct edma_cc, dma_slave); 744 } 745 746 static inline struct edma_chan *to_edma_chan(struct dma_chan *c) 747 { 748 return container_of(c, struct edma_chan, vchan.chan); 749 } 750 751 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) 752 { 753 return container_of(tx, struct edma_desc, vdesc.tx); 754 } 755 756 static void edma_desc_free(struct virt_dma_desc *vdesc) 757 { 758 kfree(container_of(vdesc, struct edma_desc, vdesc)); 759 } 760 761 /* Dispatch a queued descriptor to the controller (caller holds lock) */ 762 static void edma_execute(struct edma_chan *echan) 763 { 764 struct edma_cc *ecc = echan->ecc; 765 struct virt_dma_desc *vdesc; 766 struct edma_desc *edesc; 767 struct device *dev = echan->vchan.chan.device->dev; 768 int i, j, left, nslots; 769 770 if (!echan->edesc) { 771 /* Setup is needed for the first transfer */ 772 vdesc = vchan_next_desc(&echan->vchan); 773 if (!vdesc) 774 return; 775 list_del(&vdesc->node); 776 echan->edesc = to_edma_desc(&vdesc->tx); 777 } 778 779 edesc = echan->edesc; 780 781 /* Find out how many left */ 782 left = edesc->pset_nr - edesc->processed; 783 nslots = min(MAX_NR_SG, left); 784 edesc->sg_len = 0; 785 786 /* Write descriptor PaRAM set(s) */ 787 for (i = 0; i < nslots; i++) { 788 j = i + edesc->processed; 789 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); 790 edesc->sg_len += edesc->pset[j].len; 791 dev_vdbg(dev, 792 "\n pset[%d]:\n" 793 " chnum\t%d\n" 794 " slot\t%d\n" 795 " opt\t%08x\n" 796 " src\t%08x\n" 797 " dst\t%08x\n" 798 " abcnt\t%08x\n" 799 " ccnt\t%08x\n" 800 " bidx\t%08x\n" 801 " cidx\t%08x\n" 802 " lkrld\t%08x\n", 803 j, echan->ch_num, echan->slot[i], 804 edesc->pset[j].param.opt, 805 edesc->pset[j].param.src, 806 edesc->pset[j].param.dst, 807 edesc->pset[j].param.a_b_cnt, 808 edesc->pset[j].param.ccnt, 809 edesc->pset[j].param.src_dst_bidx, 810 edesc->pset[j].param.src_dst_cidx, 811 edesc->pset[j].param.link_bcntrld); 812 /* Link to the previous slot if not the last set */ 813 if (i != (nslots - 1)) 814 edma_link(ecc, echan->slot[i], echan->slot[i + 1]); 815 } 816 817 edesc->processed += nslots; 818 819 /* 820 * If this is either the last set in a set of SG-list transactions 821 * then setup a link to the dummy slot, this results in all future 822 * events being absorbed and that's OK because we're done 823 */ 824 if (edesc->processed == edesc->pset_nr) { 825 if (edesc->cyclic) 826 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); 827 else 828 edma_link(ecc, echan->slot[nslots - 1], 829 echan->ecc->dummy_slot); 830 } 831 832 if (echan->missed) { 833 /* 834 * This happens due to setup times between intermediate 835 * transfers in long SG lists which have to be broken up into 836 * transfers of MAX_NR_SG 837 */ 838 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); 839 edma_clean_channel(echan); 840 edma_stop(echan); 841 edma_start(echan); 842 edma_trigger_channel(echan); 843 echan->missed = 0; 844 } else if (edesc->processed <= MAX_NR_SG) { 845 dev_dbg(dev, "first transfer starting on channel %d\n", 846 echan->ch_num); 847 edma_start(echan); 848 } else { 849 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", 850 echan->ch_num, edesc->processed); 851 edma_resume(echan); 852 } 853 } 854 855 static int edma_terminate_all(struct dma_chan *chan) 856 { 857 struct edma_chan *echan = to_edma_chan(chan); 858 unsigned long flags; 859 LIST_HEAD(head); 860 861 spin_lock_irqsave(&echan->vchan.lock, flags); 862 863 /* 864 * Stop DMA activity: we assume the callback will not be called 865 * after edma_dma() returns (even if it does, it will see 866 * echan->edesc is NULL and exit.) 867 */ 868 if (echan->edesc) { 869 edma_stop(echan); 870 /* Move the cyclic channel back to default queue */ 871 if (!echan->tc && echan->edesc->cyclic) 872 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); 873 874 vchan_terminate_vdesc(&echan->edesc->vdesc); 875 echan->edesc = NULL; 876 } 877 878 vchan_get_all_descriptors(&echan->vchan, &head); 879 spin_unlock_irqrestore(&echan->vchan.lock, flags); 880 vchan_dma_desc_free_list(&echan->vchan, &head); 881 882 return 0; 883 } 884 885 static void edma_synchronize(struct dma_chan *chan) 886 { 887 struct edma_chan *echan = to_edma_chan(chan); 888 889 vchan_synchronize(&echan->vchan); 890 } 891 892 static int edma_slave_config(struct dma_chan *chan, 893 struct dma_slave_config *cfg) 894 { 895 struct edma_chan *echan = to_edma_chan(chan); 896 897 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || 898 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) 899 return -EINVAL; 900 901 if (cfg->src_maxburst > chan->device->max_burst || 902 cfg->dst_maxburst > chan->device->max_burst) 903 return -EINVAL; 904 905 memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); 906 907 return 0; 908 } 909 910 static int edma_dma_pause(struct dma_chan *chan) 911 { 912 struct edma_chan *echan = to_edma_chan(chan); 913 914 if (!echan->edesc) 915 return -EINVAL; 916 917 edma_pause(echan); 918 return 0; 919 } 920 921 static int edma_dma_resume(struct dma_chan *chan) 922 { 923 struct edma_chan *echan = to_edma_chan(chan); 924 925 edma_resume(echan); 926 return 0; 927 } 928 929 /* 930 * A PaRAM set configuration abstraction used by other modes 931 * @chan: Channel who's PaRAM set we're configuring 932 * @pset: PaRAM set to initialize and setup. 933 * @src_addr: Source address of the DMA 934 * @dst_addr: Destination address of the DMA 935 * @burst: In units of dev_width, how much to send 936 * @dev_width: How much is the dev_width 937 * @dma_length: Total length of the DMA transfer 938 * @direction: Direction of the transfer 939 */ 940 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, 941 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, 942 unsigned int acnt, unsigned int dma_length, 943 enum dma_transfer_direction direction) 944 { 945 struct edma_chan *echan = to_edma_chan(chan); 946 struct device *dev = chan->device->dev; 947 struct edmacc_param *param = &epset->param; 948 int bcnt, ccnt, cidx; 949 int src_bidx, dst_bidx, src_cidx, dst_cidx; 950 int absync; 951 952 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ 953 if (!burst) 954 burst = 1; 955 /* 956 * If the maxburst is equal to the fifo width, use 957 * A-synced transfers. This allows for large contiguous 958 * buffer transfers using only one PaRAM set. 959 */ 960 if (burst == 1) { 961 /* 962 * For the A-sync case, bcnt and ccnt are the remainder 963 * and quotient respectively of the division of: 964 * (dma_length / acnt) by (SZ_64K -1). This is so 965 * that in case bcnt over flows, we have ccnt to use. 966 * Note: In A-sync tranfer only, bcntrld is used, but it 967 * only applies for sg_dma_len(sg) >= SZ_64K. 968 * In this case, the best way adopted is- bccnt for the 969 * first frame will be the remainder below. Then for 970 * every successive frame, bcnt will be SZ_64K-1. This 971 * is assured as bcntrld = 0xffff in end of function. 972 */ 973 absync = false; 974 ccnt = dma_length / acnt / (SZ_64K - 1); 975 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); 976 /* 977 * If bcnt is non-zero, we have a remainder and hence an 978 * extra frame to transfer, so increment ccnt. 979 */ 980 if (bcnt) 981 ccnt++; 982 else 983 bcnt = SZ_64K - 1; 984 cidx = acnt; 985 } else { 986 /* 987 * If maxburst is greater than the fifo address_width, 988 * use AB-synced transfers where A count is the fifo 989 * address_width and B count is the maxburst. In this 990 * case, we are limited to transfers of C count frames 991 * of (address_width * maxburst) where C count is limited 992 * to SZ_64K-1. This places an upper bound on the length 993 * of an SG segment that can be handled. 994 */ 995 absync = true; 996 bcnt = burst; 997 ccnt = dma_length / (acnt * bcnt); 998 if (ccnt > (SZ_64K - 1)) { 999 dev_err(dev, "Exceeded max SG segment size\n"); 1000 return -EINVAL; 1001 } 1002 cidx = acnt * bcnt; 1003 } 1004 1005 epset->len = dma_length; 1006 1007 if (direction == DMA_MEM_TO_DEV) { 1008 src_bidx = acnt; 1009 src_cidx = cidx; 1010 dst_bidx = 0; 1011 dst_cidx = 0; 1012 epset->addr = src_addr; 1013 } else if (direction == DMA_DEV_TO_MEM) { 1014 src_bidx = 0; 1015 src_cidx = 0; 1016 dst_bidx = acnt; 1017 dst_cidx = cidx; 1018 epset->addr = dst_addr; 1019 } else if (direction == DMA_MEM_TO_MEM) { 1020 src_bidx = acnt; 1021 src_cidx = cidx; 1022 dst_bidx = acnt; 1023 dst_cidx = cidx; 1024 epset->addr = src_addr; 1025 } else { 1026 dev_err(dev, "%s: direction not implemented yet\n", __func__); 1027 return -EINVAL; 1028 } 1029 1030 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); 1031 /* Configure A or AB synchronized transfers */ 1032 if (absync) 1033 param->opt |= SYNCDIM; 1034 1035 param->src = src_addr; 1036 param->dst = dst_addr; 1037 1038 param->src_dst_bidx = (dst_bidx << 16) | src_bidx; 1039 param->src_dst_cidx = (dst_cidx << 16) | src_cidx; 1040 1041 param->a_b_cnt = bcnt << 16 | acnt; 1042 param->ccnt = ccnt; 1043 /* 1044 * Only time when (bcntrld) auto reload is required is for 1045 * A-sync case, and in this case, a requirement of reload value 1046 * of SZ_64K-1 only is assured. 'link' is initially set to NULL 1047 * and then later will be populated by edma_execute. 1048 */ 1049 param->link_bcntrld = 0xffffffff; 1050 return absync; 1051 } 1052 1053 static struct dma_async_tx_descriptor *edma_prep_slave_sg( 1054 struct dma_chan *chan, struct scatterlist *sgl, 1055 unsigned int sg_len, enum dma_transfer_direction direction, 1056 unsigned long tx_flags, void *context) 1057 { 1058 struct edma_chan *echan = to_edma_chan(chan); 1059 struct device *dev = chan->device->dev; 1060 struct edma_desc *edesc; 1061 dma_addr_t src_addr = 0, dst_addr = 0; 1062 enum dma_slave_buswidth dev_width; 1063 u32 burst; 1064 struct scatterlist *sg; 1065 int i, nslots, ret; 1066 1067 if (unlikely(!echan || !sgl || !sg_len)) 1068 return NULL; 1069 1070 if (direction == DMA_DEV_TO_MEM) { 1071 src_addr = echan->cfg.src_addr; 1072 dev_width = echan->cfg.src_addr_width; 1073 burst = echan->cfg.src_maxburst; 1074 } else if (direction == DMA_MEM_TO_DEV) { 1075 dst_addr = echan->cfg.dst_addr; 1076 dev_width = echan->cfg.dst_addr_width; 1077 burst = echan->cfg.dst_maxburst; 1078 } else { 1079 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1080 return NULL; 1081 } 1082 1083 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1084 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1085 return NULL; 1086 } 1087 1088 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC); 1089 if (!edesc) 1090 return NULL; 1091 1092 edesc->pset_nr = sg_len; 1093 edesc->residue = 0; 1094 edesc->direction = direction; 1095 edesc->echan = echan; 1096 1097 /* Allocate a PaRAM slot, if needed */ 1098 nslots = min_t(unsigned, MAX_NR_SG, sg_len); 1099 1100 for (i = 0; i < nslots; i++) { 1101 if (echan->slot[i] < 0) { 1102 echan->slot[i] = 1103 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1104 if (echan->slot[i] < 0) { 1105 kfree(edesc); 1106 dev_err(dev, "%s: Failed to allocate slot\n", 1107 __func__); 1108 return NULL; 1109 } 1110 } 1111 } 1112 1113 /* Configure PaRAM sets for each SG */ 1114 for_each_sg(sgl, sg, sg_len, i) { 1115 /* Get address for each SG */ 1116 if (direction == DMA_DEV_TO_MEM) 1117 dst_addr = sg_dma_address(sg); 1118 else 1119 src_addr = sg_dma_address(sg); 1120 1121 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1122 dst_addr, burst, dev_width, 1123 sg_dma_len(sg), direction); 1124 if (ret < 0) { 1125 kfree(edesc); 1126 return NULL; 1127 } 1128 1129 edesc->absync = ret; 1130 edesc->residue += sg_dma_len(sg); 1131 1132 if (i == sg_len - 1) 1133 /* Enable completion interrupt */ 1134 edesc->pset[i].param.opt |= TCINTEN; 1135 else if (!((i+1) % MAX_NR_SG)) 1136 /* 1137 * Enable early completion interrupt for the 1138 * intermediateset. In this case the driver will be 1139 * notified when the paRAM set is submitted to TC. This 1140 * will allow more time to set up the next set of slots. 1141 */ 1142 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); 1143 } 1144 edesc->residue_stat = edesc->residue; 1145 1146 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1147 } 1148 1149 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( 1150 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1151 size_t len, unsigned long tx_flags) 1152 { 1153 int ret, nslots; 1154 struct edma_desc *edesc; 1155 struct device *dev = chan->device->dev; 1156 struct edma_chan *echan = to_edma_chan(chan); 1157 unsigned int width, pset_len, array_size; 1158 1159 if (unlikely(!echan || !len)) 1160 return NULL; 1161 1162 /* Align the array size (acnt block) with the transfer properties */ 1163 switch (__ffs((src | dest | len))) { 1164 case 0: 1165 array_size = SZ_32K - 1; 1166 break; 1167 case 1: 1168 array_size = SZ_32K - 2; 1169 break; 1170 default: 1171 array_size = SZ_32K - 4; 1172 break; 1173 } 1174 1175 if (len < SZ_64K) { 1176 /* 1177 * Transfer size less than 64K can be handled with one paRAM 1178 * slot and with one burst. 1179 * ACNT = length 1180 */ 1181 width = len; 1182 pset_len = len; 1183 nslots = 1; 1184 } else { 1185 /* 1186 * Transfer size bigger than 64K will be handled with maximum of 1187 * two paRAM slots. 1188 * slot1: (full_length / 32767) times 32767 bytes bursts. 1189 * ACNT = 32767, length1: (full_length / 32767) * 32767 1190 * slot2: the remaining amount of data after slot1. 1191 * ACNT = full_length - length1, length2 = ACNT 1192 * 1193 * When the full_length is multibple of 32767 one slot can be 1194 * used to complete the transfer. 1195 */ 1196 width = array_size; 1197 pset_len = rounddown(len, width); 1198 /* One slot is enough for lengths multiple of (SZ_32K -1) */ 1199 if (unlikely(pset_len == len)) 1200 nslots = 1; 1201 else 1202 nslots = 2; 1203 } 1204 1205 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1206 if (!edesc) 1207 return NULL; 1208 1209 edesc->pset_nr = nslots; 1210 edesc->residue = edesc->residue_stat = len; 1211 edesc->direction = DMA_MEM_TO_MEM; 1212 edesc->echan = echan; 1213 1214 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, 1215 width, pset_len, DMA_MEM_TO_MEM); 1216 if (ret < 0) { 1217 kfree(edesc); 1218 return NULL; 1219 } 1220 1221 edesc->absync = ret; 1222 1223 edesc->pset[0].param.opt |= ITCCHEN; 1224 if (nslots == 1) { 1225 /* Enable transfer complete interrupt if requested */ 1226 if (tx_flags & DMA_PREP_INTERRUPT) 1227 edesc->pset[0].param.opt |= TCINTEN; 1228 } else { 1229 /* Enable transfer complete chaining for the first slot */ 1230 edesc->pset[0].param.opt |= TCCHEN; 1231 1232 if (echan->slot[1] < 0) { 1233 echan->slot[1] = edma_alloc_slot(echan->ecc, 1234 EDMA_SLOT_ANY); 1235 if (echan->slot[1] < 0) { 1236 kfree(edesc); 1237 dev_err(dev, "%s: Failed to allocate slot\n", 1238 __func__); 1239 return NULL; 1240 } 1241 } 1242 dest += pset_len; 1243 src += pset_len; 1244 pset_len = width = len % array_size; 1245 1246 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, 1247 width, pset_len, DMA_MEM_TO_MEM); 1248 if (ret < 0) { 1249 kfree(edesc); 1250 return NULL; 1251 } 1252 1253 edesc->pset[1].param.opt |= ITCCHEN; 1254 /* Enable transfer complete interrupt if requested */ 1255 if (tx_flags & DMA_PREP_INTERRUPT) 1256 edesc->pset[1].param.opt |= TCINTEN; 1257 } 1258 1259 if (!(tx_flags & DMA_PREP_INTERRUPT)) 1260 edesc->polled = true; 1261 1262 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1263 } 1264 1265 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( 1266 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1267 size_t period_len, enum dma_transfer_direction direction, 1268 unsigned long tx_flags) 1269 { 1270 struct edma_chan *echan = to_edma_chan(chan); 1271 struct device *dev = chan->device->dev; 1272 struct edma_desc *edesc; 1273 dma_addr_t src_addr, dst_addr; 1274 enum dma_slave_buswidth dev_width; 1275 bool use_intermediate = false; 1276 u32 burst; 1277 int i, ret, nslots; 1278 1279 if (unlikely(!echan || !buf_len || !period_len)) 1280 return NULL; 1281 1282 if (direction == DMA_DEV_TO_MEM) { 1283 src_addr = echan->cfg.src_addr; 1284 dst_addr = buf_addr; 1285 dev_width = echan->cfg.src_addr_width; 1286 burst = echan->cfg.src_maxburst; 1287 } else if (direction == DMA_MEM_TO_DEV) { 1288 src_addr = buf_addr; 1289 dst_addr = echan->cfg.dst_addr; 1290 dev_width = echan->cfg.dst_addr_width; 1291 burst = echan->cfg.dst_maxburst; 1292 } else { 1293 dev_err(dev, "%s: bad direction: %d\n", __func__, direction); 1294 return NULL; 1295 } 1296 1297 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { 1298 dev_err(dev, "%s: Undefined slave buswidth\n", __func__); 1299 return NULL; 1300 } 1301 1302 if (unlikely(buf_len % period_len)) { 1303 dev_err(dev, "Period should be multiple of Buffer length\n"); 1304 return NULL; 1305 } 1306 1307 nslots = (buf_len / period_len) + 1; 1308 1309 /* 1310 * Cyclic DMA users such as audio cannot tolerate delays introduced 1311 * by cases where the number of periods is more than the maximum 1312 * number of SGs the EDMA driver can handle at a time. For DMA types 1313 * such as Slave SGs, such delays are tolerable and synchronized, 1314 * but the synchronization is difficult to achieve with Cyclic and 1315 * cannot be guaranteed, so we error out early. 1316 */ 1317 if (nslots > MAX_NR_SG) { 1318 /* 1319 * If the burst and period sizes are the same, we can put 1320 * the full buffer into a single period and activate 1321 * intermediate interrupts. This will produce interrupts 1322 * after each burst, which is also after each desired period. 1323 */ 1324 if (burst == period_len) { 1325 period_len = buf_len; 1326 nslots = 2; 1327 use_intermediate = true; 1328 } else { 1329 return NULL; 1330 } 1331 } 1332 1333 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC); 1334 if (!edesc) 1335 return NULL; 1336 1337 edesc->cyclic = 1; 1338 edesc->pset_nr = nslots; 1339 edesc->residue = edesc->residue_stat = buf_len; 1340 edesc->direction = direction; 1341 edesc->echan = echan; 1342 1343 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", 1344 __func__, echan->ch_num, nslots, period_len, buf_len); 1345 1346 for (i = 0; i < nslots; i++) { 1347 /* Allocate a PaRAM slot, if needed */ 1348 if (echan->slot[i] < 0) { 1349 echan->slot[i] = 1350 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); 1351 if (echan->slot[i] < 0) { 1352 kfree(edesc); 1353 dev_err(dev, "%s: Failed to allocate slot\n", 1354 __func__); 1355 return NULL; 1356 } 1357 } 1358 1359 if (i == nslots - 1) { 1360 memcpy(&edesc->pset[i], &edesc->pset[0], 1361 sizeof(edesc->pset[0])); 1362 break; 1363 } 1364 1365 ret = edma_config_pset(chan, &edesc->pset[i], src_addr, 1366 dst_addr, burst, dev_width, period_len, 1367 direction); 1368 if (ret < 0) { 1369 kfree(edesc); 1370 return NULL; 1371 } 1372 1373 if (direction == DMA_DEV_TO_MEM) 1374 dst_addr += period_len; 1375 else 1376 src_addr += period_len; 1377 1378 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); 1379 dev_vdbg(dev, 1380 "\n pset[%d]:\n" 1381 " chnum\t%d\n" 1382 " slot\t%d\n" 1383 " opt\t%08x\n" 1384 " src\t%08x\n" 1385 " dst\t%08x\n" 1386 " abcnt\t%08x\n" 1387 " ccnt\t%08x\n" 1388 " bidx\t%08x\n" 1389 " cidx\t%08x\n" 1390 " lkrld\t%08x\n", 1391 i, echan->ch_num, echan->slot[i], 1392 edesc->pset[i].param.opt, 1393 edesc->pset[i].param.src, 1394 edesc->pset[i].param.dst, 1395 edesc->pset[i].param.a_b_cnt, 1396 edesc->pset[i].param.ccnt, 1397 edesc->pset[i].param.src_dst_bidx, 1398 edesc->pset[i].param.src_dst_cidx, 1399 edesc->pset[i].param.link_bcntrld); 1400 1401 edesc->absync = ret; 1402 1403 /* 1404 * Enable period interrupt only if it is requested 1405 */ 1406 if (tx_flags & DMA_PREP_INTERRUPT) { 1407 edesc->pset[i].param.opt |= TCINTEN; 1408 1409 /* Also enable intermediate interrupts if necessary */ 1410 if (use_intermediate) 1411 edesc->pset[i].param.opt |= ITCINTEN; 1412 } 1413 } 1414 1415 /* Place the cyclic channel to highest priority queue */ 1416 if (!echan->tc) 1417 edma_assign_channel_eventq(echan, EVENTQ_0); 1418 1419 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); 1420 } 1421 1422 static void edma_completion_handler(struct edma_chan *echan) 1423 { 1424 struct device *dev = echan->vchan.chan.device->dev; 1425 struct edma_desc *edesc; 1426 1427 spin_lock(&echan->vchan.lock); 1428 edesc = echan->edesc; 1429 if (edesc) { 1430 if (edesc->cyclic) { 1431 vchan_cyclic_callback(&edesc->vdesc); 1432 spin_unlock(&echan->vchan.lock); 1433 return; 1434 } else if (edesc->processed == edesc->pset_nr) { 1435 edesc->residue = 0; 1436 edma_stop(echan); 1437 vchan_cookie_complete(&edesc->vdesc); 1438 echan->edesc = NULL; 1439 1440 dev_dbg(dev, "Transfer completed on channel %d\n", 1441 echan->ch_num); 1442 } else { 1443 dev_dbg(dev, "Sub transfer completed on channel %d\n", 1444 echan->ch_num); 1445 1446 edma_pause(echan); 1447 1448 /* Update statistics for tx_status */ 1449 edesc->residue -= edesc->sg_len; 1450 edesc->residue_stat = edesc->residue; 1451 edesc->processed_stat = edesc->processed; 1452 } 1453 edma_execute(echan); 1454 } 1455 1456 spin_unlock(&echan->vchan.lock); 1457 } 1458 1459 /* eDMA interrupt handler */ 1460 static irqreturn_t dma_irq_handler(int irq, void *data) 1461 { 1462 struct edma_cc *ecc = data; 1463 int ctlr; 1464 u32 sh_ier; 1465 u32 sh_ipr; 1466 u32 bank; 1467 1468 ctlr = ecc->id; 1469 if (ctlr < 0) 1470 return IRQ_NONE; 1471 1472 dev_vdbg(ecc->dev, "dma_irq_handler\n"); 1473 1474 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); 1475 if (!sh_ipr) { 1476 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); 1477 if (!sh_ipr) 1478 return IRQ_NONE; 1479 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); 1480 bank = 1; 1481 } else { 1482 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); 1483 bank = 0; 1484 } 1485 1486 do { 1487 u32 slot; 1488 u32 channel; 1489 1490 slot = __ffs(sh_ipr); 1491 sh_ipr &= ~(BIT(slot)); 1492 1493 if (sh_ier & BIT(slot)) { 1494 channel = (bank << 5) | slot; 1495 /* Clear the corresponding IPR bits */ 1496 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); 1497 edma_completion_handler(&ecc->slave_chans[channel]); 1498 } 1499 } while (sh_ipr); 1500 1501 edma_shadow0_write(ecc, SH_IEVAL, 1); 1502 return IRQ_HANDLED; 1503 } 1504 1505 static void edma_error_handler(struct edma_chan *echan) 1506 { 1507 struct edma_cc *ecc = echan->ecc; 1508 struct device *dev = echan->vchan.chan.device->dev; 1509 struct edmacc_param p; 1510 int err; 1511 1512 if (!echan->edesc) 1513 return; 1514 1515 spin_lock(&echan->vchan.lock); 1516 1517 err = edma_read_slot(ecc, echan->slot[0], &p); 1518 1519 /* 1520 * Issue later based on missed flag which will be sure 1521 * to happen as: 1522 * (1) we finished transmitting an intermediate slot and 1523 * edma_execute is coming up. 1524 * (2) or we finished current transfer and issue will 1525 * call edma_execute. 1526 * 1527 * Important note: issuing can be dangerous here and 1528 * lead to some nasty recursion when we are in a NULL 1529 * slot. So we avoid doing so and set the missed flag. 1530 */ 1531 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { 1532 dev_dbg(dev, "Error on null slot, setting miss\n"); 1533 echan->missed = 1; 1534 } else { 1535 /* 1536 * The slot is already programmed but the event got 1537 * missed, so its safe to issue it here. 1538 */ 1539 dev_dbg(dev, "Missed event, TRIGGERING\n"); 1540 edma_clean_channel(echan); 1541 edma_stop(echan); 1542 edma_start(echan); 1543 edma_trigger_channel(echan); 1544 } 1545 spin_unlock(&echan->vchan.lock); 1546 } 1547 1548 static inline bool edma_error_pending(struct edma_cc *ecc) 1549 { 1550 if (edma_read_array(ecc, EDMA_EMR, 0) || 1551 edma_read_array(ecc, EDMA_EMR, 1) || 1552 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) 1553 return true; 1554 1555 return false; 1556 } 1557 1558 /* eDMA error interrupt handler */ 1559 static irqreturn_t dma_ccerr_handler(int irq, void *data) 1560 { 1561 struct edma_cc *ecc = data; 1562 int i, j; 1563 int ctlr; 1564 unsigned int cnt = 0; 1565 unsigned int val; 1566 1567 ctlr = ecc->id; 1568 if (ctlr < 0) 1569 return IRQ_NONE; 1570 1571 dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); 1572 1573 if (!edma_error_pending(ecc)) { 1574 /* 1575 * The registers indicate no pending error event but the irq 1576 * handler has been called. 1577 * Ask eDMA to re-evaluate the error registers. 1578 */ 1579 dev_err(ecc->dev, "%s: Error interrupt without error event!\n", 1580 __func__); 1581 edma_write(ecc, EDMA_EEVAL, 1); 1582 return IRQ_NONE; 1583 } 1584 1585 while (1) { 1586 /* Event missed register(s) */ 1587 for (j = 0; j < 2; j++) { 1588 unsigned long emr; 1589 1590 val = edma_read_array(ecc, EDMA_EMR, j); 1591 if (!val) 1592 continue; 1593 1594 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); 1595 emr = val; 1596 for (i = find_next_bit(&emr, 32, 0); i < 32; 1597 i = find_next_bit(&emr, 32, i + 1)) { 1598 int k = (j << 5) + i; 1599 1600 /* Clear the corresponding EMR bits */ 1601 edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); 1602 /* Clear any SER */ 1603 edma_shadow0_write_array(ecc, SH_SECR, j, 1604 BIT(i)); 1605 edma_error_handler(&ecc->slave_chans[k]); 1606 } 1607 } 1608 1609 val = edma_read(ecc, EDMA_QEMR); 1610 if (val) { 1611 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); 1612 /* Not reported, just clear the interrupt reason. */ 1613 edma_write(ecc, EDMA_QEMCR, val); 1614 edma_shadow0_write(ecc, SH_QSECR, val); 1615 } 1616 1617 val = edma_read(ecc, EDMA_CCERR); 1618 if (val) { 1619 dev_warn(ecc->dev, "CCERR 0x%08x\n", val); 1620 /* Not reported, just clear the interrupt reason. */ 1621 edma_write(ecc, EDMA_CCERRCLR, val); 1622 } 1623 1624 if (!edma_error_pending(ecc)) 1625 break; 1626 cnt++; 1627 if (cnt > 10) 1628 break; 1629 } 1630 edma_write(ecc, EDMA_EEVAL, 1); 1631 return IRQ_HANDLED; 1632 } 1633 1634 /* Alloc channel resources */ 1635 static int edma_alloc_chan_resources(struct dma_chan *chan) 1636 { 1637 struct edma_chan *echan = to_edma_chan(chan); 1638 struct edma_cc *ecc = echan->ecc; 1639 struct device *dev = ecc->dev; 1640 enum dma_event_q eventq_no = EVENTQ_DEFAULT; 1641 int ret; 1642 1643 if (echan->tc) { 1644 eventq_no = echan->tc->id; 1645 } else if (ecc->tc_list) { 1646 /* memcpy channel */ 1647 echan->tc = &ecc->tc_list[ecc->info->default_queue]; 1648 eventq_no = echan->tc->id; 1649 } 1650 1651 ret = edma_alloc_channel(echan, eventq_no); 1652 if (ret) 1653 return ret; 1654 1655 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); 1656 if (echan->slot[0] < 0) { 1657 dev_err(dev, "Entry slot allocation failed for channel %u\n", 1658 EDMA_CHAN_SLOT(echan->ch_num)); 1659 ret = echan->slot[0]; 1660 goto err_slot; 1661 } 1662 1663 /* Set up channel -> slot mapping for the entry slot */ 1664 edma_set_chmap(echan, echan->slot[0]); 1665 echan->alloced = true; 1666 1667 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", 1668 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, 1669 echan->hw_triggered ? "HW" : "SW"); 1670 1671 return 0; 1672 1673 err_slot: 1674 edma_free_channel(echan); 1675 return ret; 1676 } 1677 1678 /* Free channel resources */ 1679 static void edma_free_chan_resources(struct dma_chan *chan) 1680 { 1681 struct edma_chan *echan = to_edma_chan(chan); 1682 struct device *dev = echan->ecc->dev; 1683 int i; 1684 1685 /* Terminate transfers */ 1686 edma_stop(echan); 1687 1688 vchan_free_chan_resources(&echan->vchan); 1689 1690 /* Free EDMA PaRAM slots */ 1691 for (i = 0; i < EDMA_MAX_SLOTS; i++) { 1692 if (echan->slot[i] >= 0) { 1693 edma_free_slot(echan->ecc, echan->slot[i]); 1694 echan->slot[i] = -1; 1695 } 1696 } 1697 1698 /* Set entry slot to the dummy slot */ 1699 edma_set_chmap(echan, echan->ecc->dummy_slot); 1700 1701 /* Free EDMA channel */ 1702 if (echan->alloced) { 1703 edma_free_channel(echan); 1704 echan->alloced = false; 1705 } 1706 1707 echan->tc = NULL; 1708 echan->hw_triggered = false; 1709 1710 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", 1711 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); 1712 } 1713 1714 /* Send pending descriptor to hardware */ 1715 static void edma_issue_pending(struct dma_chan *chan) 1716 { 1717 struct edma_chan *echan = to_edma_chan(chan); 1718 unsigned long flags; 1719 1720 spin_lock_irqsave(&echan->vchan.lock, flags); 1721 if (vchan_issue_pending(&echan->vchan) && !echan->edesc) 1722 edma_execute(echan); 1723 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1724 } 1725 1726 /* 1727 * This limit exists to avoid a possible infinite loop when waiting for proof 1728 * that a particular transfer is completed. This limit can be hit if there 1729 * are large bursts to/from slow devices or the CPU is never able to catch 1730 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART 1731 * RX-FIFO, as many as 55 loops have been seen. 1732 */ 1733 #define EDMA_MAX_TR_WAIT_LOOPS 1000 1734 1735 static u32 edma_residue(struct edma_desc *edesc) 1736 { 1737 bool dst = edesc->direction == DMA_DEV_TO_MEM; 1738 int loop_count = EDMA_MAX_TR_WAIT_LOOPS; 1739 struct edma_chan *echan = edesc->echan; 1740 struct edma_pset *pset = edesc->pset; 1741 dma_addr_t done, pos, pos_old; 1742 int channel = EDMA_CHAN_SLOT(echan->ch_num); 1743 int idx = EDMA_REG_ARRAY_INDEX(channel); 1744 int ch_bit = EDMA_CHANNEL_BIT(channel); 1745 int event_reg; 1746 int i; 1747 1748 /* 1749 * We always read the dst/src position from the first RamPar 1750 * pset. That's the one which is active now. 1751 */ 1752 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1753 1754 /* 1755 * "pos" may represent a transfer request that is still being 1756 * processed by the EDMACC or EDMATC. We will busy wait until 1757 * any one of the situations occurs: 1758 * 1. while and event is pending for the channel 1759 * 2. a position updated 1760 * 3. we hit the loop limit 1761 */ 1762 if (is_slave_direction(edesc->direction)) 1763 event_reg = SH_ER; 1764 else 1765 event_reg = SH_ESR; 1766 1767 pos_old = pos; 1768 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) { 1769 pos = edma_get_position(echan->ecc, echan->slot[0], dst); 1770 if (pos != pos_old) 1771 break; 1772 1773 if (!--loop_count) { 1774 dev_dbg_ratelimited(echan->vchan.chan.device->dev, 1775 "%s: timeout waiting for PaRAM update\n", 1776 __func__); 1777 break; 1778 } 1779 1780 cpu_relax(); 1781 } 1782 1783 /* 1784 * Cyclic is simple. Just subtract pset[0].addr from pos. 1785 * 1786 * We never update edesc->residue in the cyclic case, so we 1787 * can tell the remaining room to the end of the circular 1788 * buffer. 1789 */ 1790 if (edesc->cyclic) { 1791 done = pos - pset->addr; 1792 edesc->residue_stat = edesc->residue - done; 1793 return edesc->residue_stat; 1794 } 1795 1796 /* 1797 * If the position is 0, then EDMA loaded the closing dummy slot, the 1798 * transfer is completed 1799 */ 1800 if (!pos) 1801 return 0; 1802 /* 1803 * For SG operation we catch up with the last processed 1804 * status. 1805 */ 1806 pset += edesc->processed_stat; 1807 1808 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { 1809 /* 1810 * If we are inside this pset address range, we know 1811 * this is the active one. Get the current delta and 1812 * stop walking the psets. 1813 */ 1814 if (pos >= pset->addr && pos < pset->addr + pset->len) 1815 return edesc->residue_stat - (pos - pset->addr); 1816 1817 /* Otherwise mark it done and update residue_stat. */ 1818 edesc->processed_stat++; 1819 edesc->residue_stat -= pset->len; 1820 } 1821 return edesc->residue_stat; 1822 } 1823 1824 /* Check request completion status */ 1825 static enum dma_status edma_tx_status(struct dma_chan *chan, 1826 dma_cookie_t cookie, 1827 struct dma_tx_state *txstate) 1828 { 1829 struct edma_chan *echan = to_edma_chan(chan); 1830 struct dma_tx_state txstate_tmp; 1831 enum dma_status ret; 1832 unsigned long flags; 1833 1834 ret = dma_cookie_status(chan, cookie, txstate); 1835 1836 if (ret == DMA_COMPLETE) 1837 return ret; 1838 1839 /* Provide a dummy dma_tx_state for completion checking */ 1840 if (!txstate) 1841 txstate = &txstate_tmp; 1842 1843 spin_lock_irqsave(&echan->vchan.lock, flags); 1844 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { 1845 txstate->residue = edma_residue(echan->edesc); 1846 } else { 1847 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan, 1848 cookie); 1849 1850 if (vdesc) 1851 txstate->residue = to_edma_desc(&vdesc->tx)->residue; 1852 else 1853 txstate->residue = 0; 1854 } 1855 1856 /* 1857 * Mark the cookie completed if the residue is 0 for non cyclic 1858 * transfers 1859 */ 1860 if (ret != DMA_COMPLETE && !txstate->residue && 1861 echan->edesc && echan->edesc->polled && 1862 echan->edesc->vdesc.tx.cookie == cookie) { 1863 edma_stop(echan); 1864 vchan_cookie_complete(&echan->edesc->vdesc); 1865 echan->edesc = NULL; 1866 edma_execute(echan); 1867 ret = DMA_COMPLETE; 1868 } 1869 1870 spin_unlock_irqrestore(&echan->vchan.lock, flags); 1871 1872 return ret; 1873 } 1874 1875 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) 1876 { 1877 if (!memcpy_channels) 1878 return false; 1879 while (*memcpy_channels != -1) { 1880 if (*memcpy_channels == ch_num) 1881 return true; 1882 memcpy_channels++; 1883 } 1884 return false; 1885 } 1886 1887 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ 1888 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ 1889 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ 1890 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 1891 1892 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) 1893 { 1894 struct dma_device *s_ddev = &ecc->dma_slave; 1895 struct dma_device *m_ddev = NULL; 1896 s32 *memcpy_channels = ecc->info->memcpy_channels; 1897 int i, j; 1898 1899 dma_cap_zero(s_ddev->cap_mask); 1900 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); 1901 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); 1902 if (ecc->legacy_mode && !memcpy_channels) { 1903 dev_warn(ecc->dev, 1904 "Legacy memcpy is enabled, things might not work\n"); 1905 1906 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); 1907 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1908 s_ddev->directions = BIT(DMA_MEM_TO_MEM); 1909 } 1910 1911 s_ddev->device_prep_slave_sg = edma_prep_slave_sg; 1912 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; 1913 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1914 s_ddev->device_free_chan_resources = edma_free_chan_resources; 1915 s_ddev->device_issue_pending = edma_issue_pending; 1916 s_ddev->device_tx_status = edma_tx_status; 1917 s_ddev->device_config = edma_slave_config; 1918 s_ddev->device_pause = edma_dma_pause; 1919 s_ddev->device_resume = edma_dma_resume; 1920 s_ddev->device_terminate_all = edma_terminate_all; 1921 s_ddev->device_synchronize = edma_synchronize; 1922 1923 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1924 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1925 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); 1926 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1927 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ 1928 1929 s_ddev->dev = ecc->dev; 1930 INIT_LIST_HEAD(&s_ddev->channels); 1931 1932 if (memcpy_channels) { 1933 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); 1934 if (!m_ddev) { 1935 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); 1936 memcpy_channels = NULL; 1937 goto ch_setup; 1938 } 1939 ecc->dma_memcpy = m_ddev; 1940 1941 dma_cap_zero(m_ddev->cap_mask); 1942 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); 1943 1944 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; 1945 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; 1946 m_ddev->device_free_chan_resources = edma_free_chan_resources; 1947 m_ddev->device_issue_pending = edma_issue_pending; 1948 m_ddev->device_tx_status = edma_tx_status; 1949 m_ddev->device_config = edma_slave_config; 1950 m_ddev->device_pause = edma_dma_pause; 1951 m_ddev->device_resume = edma_dma_resume; 1952 m_ddev->device_terminate_all = edma_terminate_all; 1953 m_ddev->device_synchronize = edma_synchronize; 1954 1955 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; 1956 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; 1957 m_ddev->directions = BIT(DMA_MEM_TO_MEM); 1958 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1959 1960 m_ddev->dev = ecc->dev; 1961 INIT_LIST_HEAD(&m_ddev->channels); 1962 } else if (!ecc->legacy_mode) { 1963 dev_info(ecc->dev, "memcpy is disabled\n"); 1964 } 1965 1966 ch_setup: 1967 for (i = 0; i < ecc->num_channels; i++) { 1968 struct edma_chan *echan = &ecc->slave_chans[i]; 1969 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); 1970 echan->ecc = ecc; 1971 echan->vchan.desc_free = edma_desc_free; 1972 1973 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) 1974 vchan_init(&echan->vchan, m_ddev); 1975 else 1976 vchan_init(&echan->vchan, s_ddev); 1977 1978 INIT_LIST_HEAD(&echan->node); 1979 for (j = 0; j < EDMA_MAX_SLOTS; j++) 1980 echan->slot[j] = -1; 1981 } 1982 } 1983 1984 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, 1985 struct edma_cc *ecc) 1986 { 1987 int i; 1988 u32 value, cccfg; 1989 s8 (*queue_priority_map)[2]; 1990 1991 /* Decode the eDMA3 configuration from CCCFG register */ 1992 cccfg = edma_read(ecc, EDMA_CCCFG); 1993 1994 value = GET_NUM_REGN(cccfg); 1995 ecc->num_region = BIT(value); 1996 1997 value = GET_NUM_DMACH(cccfg); 1998 ecc->num_channels = BIT(value + 1); 1999 2000 value = GET_NUM_QDMACH(cccfg); 2001 ecc->num_qchannels = value * 2; 2002 2003 value = GET_NUM_PAENTRY(cccfg); 2004 ecc->num_slots = BIT(value + 4); 2005 2006 value = GET_NUM_EVQUE(cccfg); 2007 ecc->num_tc = value + 1; 2008 2009 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; 2010 2011 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); 2012 dev_dbg(dev, "num_region: %u\n", ecc->num_region); 2013 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); 2014 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); 2015 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); 2016 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); 2017 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); 2018 2019 /* Nothing need to be done if queue priority is provided */ 2020 if (pdata->queue_priority_mapping) 2021 return 0; 2022 2023 /* 2024 * Configure TC/queue priority as follows: 2025 * Q0 - priority 0 2026 * Q1 - priority 1 2027 * Q2 - priority 2 2028 * ... 2029 * The meaning of priority numbers: 0 highest priority, 7 lowest 2030 * priority. So Q0 is the highest priority queue and the last queue has 2031 * the lowest priority. 2032 */ 2033 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), 2034 GFP_KERNEL); 2035 if (!queue_priority_map) 2036 return -ENOMEM; 2037 2038 for (i = 0; i < ecc->num_tc; i++) { 2039 queue_priority_map[i][0] = i; 2040 queue_priority_map[i][1] = i; 2041 } 2042 queue_priority_map[i][0] = -1; 2043 queue_priority_map[i][1] = -1; 2044 2045 pdata->queue_priority_mapping = queue_priority_map; 2046 /* Default queue has the lowest priority */ 2047 pdata->default_queue = i - 1; 2048 2049 return 0; 2050 } 2051 2052 #if IS_ENABLED(CONFIG_OF) 2053 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, 2054 size_t sz) 2055 { 2056 const char pname[] = "ti,edma-xbar-event-map"; 2057 struct resource res; 2058 void __iomem *xbar; 2059 s16 (*xbar_chans)[2]; 2060 size_t nelm = sz / sizeof(s16); 2061 u32 shift, offset, mux; 2062 int ret, i; 2063 2064 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); 2065 if (!xbar_chans) 2066 return -ENOMEM; 2067 2068 ret = of_address_to_resource(dev->of_node, 1, &res); 2069 if (ret) 2070 return -ENOMEM; 2071 2072 xbar = devm_ioremap(dev, res.start, resource_size(&res)); 2073 if (!xbar) 2074 return -ENOMEM; 2075 2076 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, 2077 nelm); 2078 if (ret) 2079 return -EIO; 2080 2081 /* Invalidate last entry for the other user of this mess */ 2082 nelm >>= 1; 2083 xbar_chans[nelm][0] = -1; 2084 xbar_chans[nelm][1] = -1; 2085 2086 for (i = 0; i < nelm; i++) { 2087 shift = (xbar_chans[i][1] & 0x03) << 3; 2088 offset = xbar_chans[i][1] & 0xfffffffc; 2089 mux = readl(xbar + offset); 2090 mux &= ~(0xff << shift); 2091 mux |= xbar_chans[i][0] << shift; 2092 writel(mux, (xbar + offset)); 2093 } 2094 2095 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; 2096 return 0; 2097 } 2098 2099 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2100 bool legacy_mode) 2101 { 2102 struct edma_soc_info *info; 2103 struct property *prop; 2104 int sz, ret; 2105 2106 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); 2107 if (!info) 2108 return ERR_PTR(-ENOMEM); 2109 2110 if (legacy_mode) { 2111 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", 2112 &sz); 2113 if (prop) { 2114 ret = edma_xbar_event_map(dev, info, sz); 2115 if (ret) 2116 return ERR_PTR(ret); 2117 } 2118 return info; 2119 } 2120 2121 /* Get the list of channels allocated to be used for memcpy */ 2122 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); 2123 if (prop) { 2124 const char pname[] = "ti,edma-memcpy-channels"; 2125 size_t nelm = sz / sizeof(s32); 2126 s32 *memcpy_ch; 2127 2128 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), 2129 GFP_KERNEL); 2130 if (!memcpy_ch) 2131 return ERR_PTR(-ENOMEM); 2132 2133 ret = of_property_read_u32_array(dev->of_node, pname, 2134 (u32 *)memcpy_ch, nelm); 2135 if (ret) 2136 return ERR_PTR(ret); 2137 2138 memcpy_ch[nelm] = -1; 2139 info->memcpy_channels = memcpy_ch; 2140 } 2141 2142 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", 2143 &sz); 2144 if (prop) { 2145 const char pname[] = "ti,edma-reserved-slot-ranges"; 2146 u32 (*tmp)[2]; 2147 s16 (*rsv_slots)[2]; 2148 size_t nelm = sz / sizeof(*tmp); 2149 struct edma_rsv_info *rsv_info; 2150 int i; 2151 2152 if (!nelm) 2153 return info; 2154 2155 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); 2156 if (!tmp) 2157 return ERR_PTR(-ENOMEM); 2158 2159 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); 2160 if (!rsv_info) { 2161 kfree(tmp); 2162 return ERR_PTR(-ENOMEM); 2163 } 2164 2165 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), 2166 GFP_KERNEL); 2167 if (!rsv_slots) { 2168 kfree(tmp); 2169 return ERR_PTR(-ENOMEM); 2170 } 2171 2172 ret = of_property_read_u32_array(dev->of_node, pname, 2173 (u32 *)tmp, nelm * 2); 2174 if (ret) { 2175 kfree(tmp); 2176 return ERR_PTR(ret); 2177 } 2178 2179 for (i = 0; i < nelm; i++) { 2180 rsv_slots[i][0] = tmp[i][0]; 2181 rsv_slots[i][1] = tmp[i][1]; 2182 } 2183 rsv_slots[nelm][0] = -1; 2184 rsv_slots[nelm][1] = -1; 2185 2186 info->rsv = rsv_info; 2187 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; 2188 2189 kfree(tmp); 2190 } 2191 2192 return info; 2193 } 2194 2195 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2196 struct of_dma *ofdma) 2197 { 2198 struct edma_cc *ecc = ofdma->of_dma_data; 2199 struct dma_chan *chan = NULL; 2200 struct edma_chan *echan; 2201 int i; 2202 2203 if (!ecc || dma_spec->args_count < 1) 2204 return NULL; 2205 2206 for (i = 0; i < ecc->num_channels; i++) { 2207 echan = &ecc->slave_chans[i]; 2208 if (echan->ch_num == dma_spec->args[0]) { 2209 chan = &echan->vchan.chan; 2210 break; 2211 } 2212 } 2213 2214 if (!chan) 2215 return NULL; 2216 2217 if (echan->ecc->legacy_mode && dma_spec->args_count == 1) 2218 goto out; 2219 2220 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && 2221 dma_spec->args[1] < echan->ecc->num_tc) { 2222 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; 2223 goto out; 2224 } 2225 2226 return NULL; 2227 out: 2228 /* The channel is going to be used as HW synchronized */ 2229 echan->hw_triggered = true; 2230 return dma_get_slave_channel(chan); 2231 } 2232 #else 2233 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, 2234 bool legacy_mode) 2235 { 2236 return ERR_PTR(-EINVAL); 2237 } 2238 2239 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, 2240 struct of_dma *ofdma) 2241 { 2242 return NULL; 2243 } 2244 #endif 2245 2246 static bool edma_filter_fn(struct dma_chan *chan, void *param); 2247 2248 static int edma_probe(struct platform_device *pdev) 2249 { 2250 struct edma_soc_info *info = pdev->dev.platform_data; 2251 s8 (*queue_priority_mapping)[2]; 2252 int i, off; 2253 const s16 (*rsv_slots)[2]; 2254 const s16 (*xbar_chans)[2]; 2255 int irq; 2256 char *irq_name; 2257 struct resource *mem; 2258 struct device_node *node = pdev->dev.of_node; 2259 struct device *dev = &pdev->dev; 2260 struct edma_cc *ecc; 2261 bool legacy_mode = true; 2262 int ret; 2263 2264 if (node) { 2265 const struct of_device_id *match; 2266 2267 match = of_match_node(edma_of_ids, node); 2268 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) 2269 legacy_mode = false; 2270 2271 info = edma_setup_info_from_dt(dev, legacy_mode); 2272 if (IS_ERR(info)) { 2273 dev_err(dev, "failed to get DT data\n"); 2274 return PTR_ERR(info); 2275 } 2276 } 2277 2278 if (!info) 2279 return -ENODEV; 2280 2281 pm_runtime_enable(dev); 2282 ret = pm_runtime_get_sync(dev); 2283 if (ret < 0) { 2284 dev_err(dev, "pm_runtime_get_sync() failed\n"); 2285 return ret; 2286 } 2287 2288 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 2289 if (ret) 2290 return ret; 2291 2292 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); 2293 if (!ecc) 2294 return -ENOMEM; 2295 2296 ecc->dev = dev; 2297 ecc->id = pdev->id; 2298 ecc->legacy_mode = legacy_mode; 2299 /* When booting with DT the pdev->id is -1 */ 2300 if (ecc->id < 0) 2301 ecc->id = 0; 2302 2303 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); 2304 if (!mem) { 2305 dev_dbg(dev, "mem resource not found, using index 0\n"); 2306 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2307 if (!mem) { 2308 dev_err(dev, "no mem resource?\n"); 2309 return -ENODEV; 2310 } 2311 } 2312 ecc->base = devm_ioremap_resource(dev, mem); 2313 if (IS_ERR(ecc->base)) 2314 return PTR_ERR(ecc->base); 2315 2316 platform_set_drvdata(pdev, ecc); 2317 2318 /* Get eDMA3 configuration from IP */ 2319 ret = edma_setup_from_hw(dev, info, ecc); 2320 if (ret) 2321 return ret; 2322 2323 /* Allocate memory based on the information we got from the IP */ 2324 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, 2325 sizeof(*ecc->slave_chans), GFP_KERNEL); 2326 if (!ecc->slave_chans) 2327 return -ENOMEM; 2328 2329 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), 2330 sizeof(unsigned long), GFP_KERNEL); 2331 if (!ecc->slot_inuse) 2332 return -ENOMEM; 2333 2334 ecc->default_queue = info->default_queue; 2335 2336 if (info->rsv) { 2337 /* Set the reserved slots in inuse list */ 2338 rsv_slots = info->rsv->rsv_slots; 2339 if (rsv_slots) { 2340 for (i = 0; rsv_slots[i][0] != -1; i++) 2341 bitmap_set(ecc->slot_inuse, rsv_slots[i][0], 2342 rsv_slots[i][1]); 2343 } 2344 } 2345 2346 for (i = 0; i < ecc->num_slots; i++) { 2347 /* Reset only unused - not reserved - paRAM slots */ 2348 if (!test_bit(i, ecc->slot_inuse)) 2349 edma_write_slot(ecc, i, &dummy_paramset); 2350 } 2351 2352 /* Clear the xbar mapped channels in unused list */ 2353 xbar_chans = info->xbar_chans; 2354 if (xbar_chans) { 2355 for (i = 0; xbar_chans[i][1] != -1; i++) { 2356 off = xbar_chans[i][1]; 2357 } 2358 } 2359 2360 irq = platform_get_irq_byname(pdev, "edma3_ccint"); 2361 if (irq < 0 && node) 2362 irq = irq_of_parse_and_map(node, 0); 2363 2364 if (irq >= 0) { 2365 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", 2366 dev_name(dev)); 2367 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, 2368 ecc); 2369 if (ret) { 2370 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); 2371 return ret; 2372 } 2373 ecc->ccint = irq; 2374 } 2375 2376 irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); 2377 if (irq < 0 && node) 2378 irq = irq_of_parse_and_map(node, 2); 2379 2380 if (irq >= 0) { 2381 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", 2382 dev_name(dev)); 2383 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, 2384 ecc); 2385 if (ret) { 2386 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); 2387 return ret; 2388 } 2389 ecc->ccerrint = irq; 2390 } 2391 2392 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); 2393 if (ecc->dummy_slot < 0) { 2394 dev_err(dev, "Can't allocate PaRAM dummy slot\n"); 2395 return ecc->dummy_slot; 2396 } 2397 2398 queue_priority_mapping = info->queue_priority_mapping; 2399 2400 if (!ecc->legacy_mode) { 2401 int lowest_priority = 0; 2402 struct of_phandle_args tc_args; 2403 2404 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, 2405 sizeof(*ecc->tc_list), GFP_KERNEL); 2406 if (!ecc->tc_list) 2407 return -ENOMEM; 2408 2409 for (i = 0;; i++) { 2410 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", 2411 1, i, &tc_args); 2412 if (ret || i == ecc->num_tc) 2413 break; 2414 2415 ecc->tc_list[i].node = tc_args.np; 2416 ecc->tc_list[i].id = i; 2417 queue_priority_mapping[i][1] = tc_args.args[0]; 2418 if (queue_priority_mapping[i][1] > lowest_priority) { 2419 lowest_priority = queue_priority_mapping[i][1]; 2420 info->default_queue = i; 2421 } 2422 } 2423 } 2424 2425 /* Event queue priority mapping */ 2426 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2427 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2428 queue_priority_mapping[i][1]); 2429 2430 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0); 2431 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0); 2432 edma_write_array(ecc, EDMA_QRAE, 0, 0x0); 2433 2434 ecc->info = info; 2435 2436 /* Init the dma device and channels */ 2437 edma_dma_init(ecc, legacy_mode); 2438 2439 for (i = 0; i < ecc->num_channels; i++) { 2440 /* Assign all channels to the default queue */ 2441 edma_assign_channel_eventq(&ecc->slave_chans[i], 2442 info->default_queue); 2443 /* Set entry slot to the dummy slot */ 2444 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); 2445 } 2446 2447 ecc->dma_slave.filter.map = info->slave_map; 2448 ecc->dma_slave.filter.mapcnt = info->slavecnt; 2449 ecc->dma_slave.filter.fn = edma_filter_fn; 2450 2451 ret = dma_async_device_register(&ecc->dma_slave); 2452 if (ret) { 2453 dev_err(dev, "slave ddev registration failed (%d)\n", ret); 2454 goto err_reg1; 2455 } 2456 2457 if (ecc->dma_memcpy) { 2458 ret = dma_async_device_register(ecc->dma_memcpy); 2459 if (ret) { 2460 dev_err(dev, "memcpy ddev registration failed (%d)\n", 2461 ret); 2462 dma_async_device_unregister(&ecc->dma_slave); 2463 goto err_reg1; 2464 } 2465 } 2466 2467 if (node) 2468 of_dma_controller_register(node, of_edma_xlate, ecc); 2469 2470 dev_info(dev, "TI EDMA DMA engine driver\n"); 2471 2472 return 0; 2473 2474 err_reg1: 2475 edma_free_slot(ecc, ecc->dummy_slot); 2476 return ret; 2477 } 2478 2479 static void edma_cleanupp_vchan(struct dma_device *dmadev) 2480 { 2481 struct edma_chan *echan, *_echan; 2482 2483 list_for_each_entry_safe(echan, _echan, 2484 &dmadev->channels, vchan.chan.device_node) { 2485 list_del(&echan->vchan.chan.device_node); 2486 tasklet_kill(&echan->vchan.task); 2487 } 2488 } 2489 2490 static int edma_remove(struct platform_device *pdev) 2491 { 2492 struct device *dev = &pdev->dev; 2493 struct edma_cc *ecc = dev_get_drvdata(dev); 2494 2495 devm_free_irq(dev, ecc->ccint, ecc); 2496 devm_free_irq(dev, ecc->ccerrint, ecc); 2497 2498 edma_cleanupp_vchan(&ecc->dma_slave); 2499 2500 if (dev->of_node) 2501 of_dma_controller_free(dev->of_node); 2502 dma_async_device_unregister(&ecc->dma_slave); 2503 if (ecc->dma_memcpy) 2504 dma_async_device_unregister(ecc->dma_memcpy); 2505 edma_free_slot(ecc, ecc->dummy_slot); 2506 2507 return 0; 2508 } 2509 2510 #ifdef CONFIG_PM_SLEEP 2511 static int edma_pm_suspend(struct device *dev) 2512 { 2513 struct edma_cc *ecc = dev_get_drvdata(dev); 2514 struct edma_chan *echan = ecc->slave_chans; 2515 int i; 2516 2517 for (i = 0; i < ecc->num_channels; i++) { 2518 if (echan[i].alloced) 2519 edma_setup_interrupt(&echan[i], false); 2520 } 2521 2522 return 0; 2523 } 2524 2525 static int edma_pm_resume(struct device *dev) 2526 { 2527 struct edma_cc *ecc = dev_get_drvdata(dev); 2528 struct edma_chan *echan = ecc->slave_chans; 2529 int i; 2530 s8 (*queue_priority_mapping)[2]; 2531 2532 /* re initialize dummy slot to dummy param set */ 2533 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); 2534 2535 queue_priority_mapping = ecc->info->queue_priority_mapping; 2536 2537 /* Event queue priority mapping */ 2538 for (i = 0; queue_priority_mapping[i][0] != -1; i++) 2539 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], 2540 queue_priority_mapping[i][1]); 2541 2542 for (i = 0; i < ecc->num_channels; i++) { 2543 if (echan[i].alloced) { 2544 /* ensure access through shadow region 0 */ 2545 edma_or_array2(ecc, EDMA_DRAE, 0, 2546 EDMA_REG_ARRAY_INDEX(i), 2547 EDMA_CHANNEL_BIT(i)); 2548 2549 edma_setup_interrupt(&echan[i], true); 2550 2551 /* Set up channel -> slot mapping for the entry slot */ 2552 edma_set_chmap(&echan[i], echan[i].slot[0]); 2553 } 2554 } 2555 2556 return 0; 2557 } 2558 #endif 2559 2560 static const struct dev_pm_ops edma_pm_ops = { 2561 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) 2562 }; 2563 2564 static struct platform_driver edma_driver = { 2565 .probe = edma_probe, 2566 .remove = edma_remove, 2567 .driver = { 2568 .name = "edma", 2569 .pm = &edma_pm_ops, 2570 .of_match_table = edma_of_ids, 2571 }, 2572 }; 2573 2574 static int edma_tptc_probe(struct platform_device *pdev) 2575 { 2576 pm_runtime_enable(&pdev->dev); 2577 return pm_runtime_get_sync(&pdev->dev); 2578 } 2579 2580 static struct platform_driver edma_tptc_driver = { 2581 .probe = edma_tptc_probe, 2582 .driver = { 2583 .name = "edma3-tptc", 2584 .of_match_table = edma_tptc_of_ids, 2585 }, 2586 }; 2587 2588 static bool edma_filter_fn(struct dma_chan *chan, void *param) 2589 { 2590 bool match = false; 2591 2592 if (chan->device->dev->driver == &edma_driver.driver) { 2593 struct edma_chan *echan = to_edma_chan(chan); 2594 unsigned ch_req = *(unsigned *)param; 2595 if (ch_req == echan->ch_num) { 2596 /* The channel is going to be used as HW synchronized */ 2597 echan->hw_triggered = true; 2598 match = true; 2599 } 2600 } 2601 return match; 2602 } 2603 2604 static int edma_init(void) 2605 { 2606 int ret; 2607 2608 ret = platform_driver_register(&edma_tptc_driver); 2609 if (ret) 2610 return ret; 2611 2612 return platform_driver_register(&edma_driver); 2613 } 2614 subsys_initcall(edma_init); 2615 2616 static void __exit edma_exit(void) 2617 { 2618 platform_driver_unregister(&edma_driver); 2619 platform_driver_unregister(&edma_tptc_driver); 2620 } 2621 module_exit(edma_exit); 2622 2623 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>"); 2624 MODULE_DESCRIPTION("TI EDMA DMA engine driver"); 2625 MODULE_LICENSE("GPL v2"); 2626