1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DMA driver for Nvidia's Tegra20 APB DMA controller. 4 * 5 * Copyright (c) 2012-2013, NVIDIA CORPORATION. All rights reserved. 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/dmaengine.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/err.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/of_dma.h> 21 #include <linux/platform_device.h> 22 #include <linux/pm.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/reset.h> 25 #include <linux/slab.h> 26 #include <linux/wait.h> 27 28 #include "dmaengine.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/tegra_apb_dma.h> 32 33 #define TEGRA_APBDMA_GENERAL 0x0 34 #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31) 35 36 #define TEGRA_APBDMA_CONTROL 0x010 37 #define TEGRA_APBDMA_IRQ_MASK 0x01c 38 #define TEGRA_APBDMA_IRQ_MASK_SET 0x020 39 40 /* CSR register */ 41 #define TEGRA_APBDMA_CHAN_CSR 0x00 42 #define TEGRA_APBDMA_CSR_ENB BIT(31) 43 #define TEGRA_APBDMA_CSR_IE_EOC BIT(30) 44 #define TEGRA_APBDMA_CSR_HOLD BIT(29) 45 #define TEGRA_APBDMA_CSR_DIR BIT(28) 46 #define TEGRA_APBDMA_CSR_ONCE BIT(27) 47 #define TEGRA_APBDMA_CSR_FLOW BIT(21) 48 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16 49 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK 0x1F 50 #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC 51 52 /* STATUS register */ 53 #define TEGRA_APBDMA_CHAN_STATUS 0x004 54 #define TEGRA_APBDMA_STATUS_BUSY BIT(31) 55 #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30) 56 #define TEGRA_APBDMA_STATUS_HALT BIT(29) 57 #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28) 58 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2 59 #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC 60 61 #define TEGRA_APBDMA_CHAN_CSRE 0x00C 62 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE BIT(31) 63 64 /* AHB memory address */ 65 #define TEGRA_APBDMA_CHAN_AHBPTR 0x010 66 67 /* AHB sequence register */ 68 #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14 69 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31) 70 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28) 71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28) 72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28) 73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28) 74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28) 75 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27) 76 #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24) 77 #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24) 78 #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24) 79 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19) 80 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16 81 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0 82 83 /* APB address */ 84 #define TEGRA_APBDMA_CHAN_APBPTR 0x018 85 86 /* APB sequence register */ 87 #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c 88 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28) 89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28) 90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28) 91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28) 92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28) 93 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27) 94 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16) 95 96 /* Tegra148 specific registers */ 97 #define TEGRA_APBDMA_CHAN_WCOUNT 0x20 98 99 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER 0x24 100 101 /* 102 * If any burst is in flight and DMA paused then this is the time to complete 103 * on-flight burst and update DMA status register. 104 */ 105 #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20 106 107 /* Channel base address offset from APBDMA base address */ 108 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000 109 110 #define TEGRA_APBDMA_SLAVE_ID_INVALID (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1) 111 112 struct tegra_dma; 113 114 /* 115 * tegra_dma_chip_data Tegra chip specific DMA data 116 * @nr_channels: Number of channels available in the controller. 117 * @channel_reg_size: Channel register size/stride. 118 * @max_dma_count: Maximum DMA transfer count supported by DMA controller. 119 * @support_channel_pause: Support channel wise pause of dma. 120 * @support_separate_wcount_reg: Support separate word count register. 121 */ 122 struct tegra_dma_chip_data { 123 unsigned int nr_channels; 124 unsigned int channel_reg_size; 125 unsigned int max_dma_count; 126 bool support_channel_pause; 127 bool support_separate_wcount_reg; 128 }; 129 130 /* DMA channel registers */ 131 struct tegra_dma_channel_regs { 132 u32 csr; 133 u32 ahb_ptr; 134 u32 apb_ptr; 135 u32 ahb_seq; 136 u32 apb_seq; 137 u32 wcount; 138 }; 139 140 /* 141 * tegra_dma_sg_req: DMA request details to configure hardware. This 142 * contains the details for one transfer to configure DMA hw. 143 * The client's request for data transfer can be broken into multiple 144 * sub-transfer as per requester details and hw support. 145 * This sub transfer get added in the list of transfer and point to Tegra 146 * DMA descriptor which manages the transfer details. 147 */ 148 struct tegra_dma_sg_req { 149 struct tegra_dma_channel_regs ch_regs; 150 unsigned int req_len; 151 bool configured; 152 bool last_sg; 153 struct list_head node; 154 struct tegra_dma_desc *dma_desc; 155 unsigned int words_xferred; 156 }; 157 158 /* 159 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests. 160 * This descriptor keep track of transfer status, callbacks and request 161 * counts etc. 162 */ 163 struct tegra_dma_desc { 164 struct dma_async_tx_descriptor txd; 165 unsigned int bytes_requested; 166 unsigned int bytes_transferred; 167 enum dma_status dma_status; 168 struct list_head node; 169 struct list_head tx_list; 170 struct list_head cb_node; 171 unsigned int cb_count; 172 }; 173 174 struct tegra_dma_channel; 175 176 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc, 177 bool to_terminate); 178 179 /* tegra_dma_channel: Channel specific information */ 180 struct tegra_dma_channel { 181 struct dma_chan dma_chan; 182 char name[12]; 183 bool config_init; 184 unsigned int id; 185 void __iomem *chan_addr; 186 spinlock_t lock; 187 bool busy; 188 struct tegra_dma *tdma; 189 bool cyclic; 190 191 /* Different lists for managing the requests */ 192 struct list_head free_sg_req; 193 struct list_head pending_sg_req; 194 struct list_head free_dma_desc; 195 struct list_head cb_desc; 196 197 /* ISR handler and tasklet for bottom half of isr handling */ 198 dma_isr_handler isr_handler; 199 struct tasklet_struct tasklet; 200 201 /* Channel-slave specific configuration */ 202 unsigned int slave_id; 203 struct dma_slave_config dma_sconfig; 204 struct tegra_dma_channel_regs channel_reg; 205 206 struct wait_queue_head wq; 207 }; 208 209 /* tegra_dma: Tegra DMA specific information */ 210 struct tegra_dma { 211 struct dma_device dma_dev; 212 struct device *dev; 213 struct clk *dma_clk; 214 struct reset_control *rst; 215 spinlock_t global_lock; 216 void __iomem *base_addr; 217 const struct tegra_dma_chip_data *chip_data; 218 219 /* 220 * Counter for managing global pausing of the DMA controller. 221 * Only applicable for devices that don't support individual 222 * channel pausing. 223 */ 224 u32 global_pause_count; 225 226 /* Last member of the structure */ 227 struct tegra_dma_channel channels[]; 228 }; 229 230 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val) 231 { 232 writel(val, tdma->base_addr + reg); 233 } 234 235 static inline void tdc_write(struct tegra_dma_channel *tdc, 236 u32 reg, u32 val) 237 { 238 writel(val, tdc->chan_addr + reg); 239 } 240 241 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg) 242 { 243 return readl(tdc->chan_addr + reg); 244 } 245 246 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc) 247 { 248 return container_of(dc, struct tegra_dma_channel, dma_chan); 249 } 250 251 static inline struct tegra_dma_desc * 252 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td) 253 { 254 return container_of(td, struct tegra_dma_desc, txd); 255 } 256 257 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc) 258 { 259 return &tdc->dma_chan.dev->device; 260 } 261 262 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx); 263 264 /* Get DMA desc from free list, if not there then allocate it. */ 265 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc) 266 { 267 struct tegra_dma_desc *dma_desc; 268 unsigned long flags; 269 270 spin_lock_irqsave(&tdc->lock, flags); 271 272 /* Do not allocate if desc are waiting for ack */ 273 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) { 274 if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) { 275 list_del(&dma_desc->node); 276 spin_unlock_irqrestore(&tdc->lock, flags); 277 dma_desc->txd.flags = 0; 278 return dma_desc; 279 } 280 } 281 282 spin_unlock_irqrestore(&tdc->lock, flags); 283 284 /* Allocate DMA desc */ 285 dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT); 286 if (!dma_desc) 287 return NULL; 288 289 dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan); 290 dma_desc->txd.tx_submit = tegra_dma_tx_submit; 291 dma_desc->txd.flags = 0; 292 293 return dma_desc; 294 } 295 296 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc, 297 struct tegra_dma_desc *dma_desc) 298 { 299 unsigned long flags; 300 301 spin_lock_irqsave(&tdc->lock, flags); 302 if (!list_empty(&dma_desc->tx_list)) 303 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req); 304 list_add_tail(&dma_desc->node, &tdc->free_dma_desc); 305 spin_unlock_irqrestore(&tdc->lock, flags); 306 } 307 308 static struct tegra_dma_sg_req * 309 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc) 310 { 311 struct tegra_dma_sg_req *sg_req; 312 unsigned long flags; 313 314 spin_lock_irqsave(&tdc->lock, flags); 315 if (!list_empty(&tdc->free_sg_req)) { 316 sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req), 317 node); 318 list_del(&sg_req->node); 319 spin_unlock_irqrestore(&tdc->lock, flags); 320 return sg_req; 321 } 322 spin_unlock_irqrestore(&tdc->lock, flags); 323 324 sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT); 325 326 return sg_req; 327 } 328 329 static int tegra_dma_slave_config(struct dma_chan *dc, 330 struct dma_slave_config *sconfig) 331 { 332 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 333 334 if (!list_empty(&tdc->pending_sg_req)) { 335 dev_err(tdc2dev(tdc), "Configuration not allowed\n"); 336 return -EBUSY; 337 } 338 339 memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig)); 340 tdc->config_init = true; 341 342 return 0; 343 } 344 345 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc, 346 bool wait_for_burst_complete) 347 { 348 struct tegra_dma *tdma = tdc->tdma; 349 350 spin_lock(&tdma->global_lock); 351 352 if (tdc->tdma->global_pause_count == 0) { 353 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0); 354 if (wait_for_burst_complete) 355 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME); 356 } 357 358 tdc->tdma->global_pause_count++; 359 360 spin_unlock(&tdma->global_lock); 361 } 362 363 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc) 364 { 365 struct tegra_dma *tdma = tdc->tdma; 366 367 spin_lock(&tdma->global_lock); 368 369 if (WARN_ON(tdc->tdma->global_pause_count == 0)) 370 goto out; 371 372 if (--tdc->tdma->global_pause_count == 0) 373 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 374 TEGRA_APBDMA_GENERAL_ENABLE); 375 376 out: 377 spin_unlock(&tdma->global_lock); 378 } 379 380 static void tegra_dma_pause(struct tegra_dma_channel *tdc, 381 bool wait_for_burst_complete) 382 { 383 struct tegra_dma *tdma = tdc->tdma; 384 385 if (tdma->chip_data->support_channel_pause) { 386 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 387 TEGRA_APBDMA_CHAN_CSRE_PAUSE); 388 if (wait_for_burst_complete) 389 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME); 390 } else { 391 tegra_dma_global_pause(tdc, wait_for_burst_complete); 392 } 393 } 394 395 static void tegra_dma_resume(struct tegra_dma_channel *tdc) 396 { 397 struct tegra_dma *tdma = tdc->tdma; 398 399 if (tdma->chip_data->support_channel_pause) 400 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0); 401 else 402 tegra_dma_global_resume(tdc); 403 } 404 405 static void tegra_dma_stop(struct tegra_dma_channel *tdc) 406 { 407 u32 csr, status; 408 409 /* Disable interrupts */ 410 csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR); 411 csr &= ~TEGRA_APBDMA_CSR_IE_EOC; 412 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr); 413 414 /* Disable DMA */ 415 csr &= ~TEGRA_APBDMA_CSR_ENB; 416 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr); 417 418 /* Clear interrupt status if it is there */ 419 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); 420 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { 421 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__); 422 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status); 423 } 424 tdc->busy = false; 425 } 426 427 static void tegra_dma_start(struct tegra_dma_channel *tdc, 428 struct tegra_dma_sg_req *sg_req) 429 { 430 struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs; 431 432 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr); 433 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq); 434 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr); 435 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq); 436 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr); 437 if (tdc->tdma->chip_data->support_separate_wcount_reg) 438 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount); 439 440 /* Start DMA */ 441 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, 442 ch_regs->csr | TEGRA_APBDMA_CSR_ENB); 443 } 444 445 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc, 446 struct tegra_dma_sg_req *nsg_req) 447 { 448 unsigned long status; 449 450 /* 451 * The DMA controller reloads the new configuration for next transfer 452 * after last burst of current transfer completes. 453 * If there is no IEC status then this makes sure that last burst 454 * has not be completed. There may be case that last burst is on 455 * flight and so it can complete but because DMA is paused, it 456 * will not generates interrupt as well as not reload the new 457 * configuration. 458 * If there is already IEC status then interrupt handler need to 459 * load new configuration. 460 */ 461 tegra_dma_pause(tdc, false); 462 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); 463 464 /* 465 * If interrupt is pending then do nothing as the ISR will handle 466 * the programming for new request. 467 */ 468 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { 469 dev_err(tdc2dev(tdc), 470 "Skipping new configuration as interrupt is pending\n"); 471 tegra_dma_resume(tdc); 472 return; 473 } 474 475 /* Safe to program new configuration */ 476 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr); 477 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr); 478 if (tdc->tdma->chip_data->support_separate_wcount_reg) 479 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, 480 nsg_req->ch_regs.wcount); 481 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, 482 nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB); 483 nsg_req->configured = true; 484 nsg_req->words_xferred = 0; 485 486 tegra_dma_resume(tdc); 487 } 488 489 static void tdc_start_head_req(struct tegra_dma_channel *tdc) 490 { 491 struct tegra_dma_sg_req *sg_req; 492 493 sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node); 494 tegra_dma_start(tdc, sg_req); 495 sg_req->configured = true; 496 sg_req->words_xferred = 0; 497 tdc->busy = true; 498 } 499 500 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc) 501 { 502 struct tegra_dma_sg_req *hsgreq, *hnsgreq; 503 504 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node); 505 if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) { 506 hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq), 507 node); 508 tegra_dma_configure_for_next(tdc, hnsgreq); 509 } 510 } 511 512 static inline unsigned int 513 get_current_xferred_count(struct tegra_dma_channel *tdc, 514 struct tegra_dma_sg_req *sg_req, 515 unsigned long status) 516 { 517 return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4; 518 } 519 520 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc) 521 { 522 struct tegra_dma_desc *dma_desc; 523 struct tegra_dma_sg_req *sgreq; 524 525 while (!list_empty(&tdc->pending_sg_req)) { 526 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), 527 node); 528 list_move_tail(&sgreq->node, &tdc->free_sg_req); 529 if (sgreq->last_sg) { 530 dma_desc = sgreq->dma_desc; 531 dma_desc->dma_status = DMA_ERROR; 532 list_add_tail(&dma_desc->node, &tdc->free_dma_desc); 533 534 /* Add in cb list if it is not there. */ 535 if (!dma_desc->cb_count) 536 list_add_tail(&dma_desc->cb_node, 537 &tdc->cb_desc); 538 dma_desc->cb_count++; 539 } 540 } 541 tdc->isr_handler = NULL; 542 } 543 544 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc, 545 bool to_terminate) 546 { 547 struct tegra_dma_sg_req *hsgreq; 548 549 /* 550 * Check that head req on list should be in flight. 551 * If it is not in flight then abort transfer as 552 * looping of transfer can not continue. 553 */ 554 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node); 555 if (!hsgreq->configured) { 556 tegra_dma_stop(tdc); 557 pm_runtime_put(tdc->tdma->dev); 558 dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n"); 559 tegra_dma_abort_all(tdc); 560 return false; 561 } 562 563 /* Configure next request */ 564 if (!to_terminate) 565 tdc_configure_next_head_desc(tdc); 566 567 return true; 568 } 569 570 static void handle_once_dma_done(struct tegra_dma_channel *tdc, 571 bool to_terminate) 572 { 573 struct tegra_dma_desc *dma_desc; 574 struct tegra_dma_sg_req *sgreq; 575 576 tdc->busy = false; 577 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node); 578 dma_desc = sgreq->dma_desc; 579 dma_desc->bytes_transferred += sgreq->req_len; 580 581 list_del(&sgreq->node); 582 if (sgreq->last_sg) { 583 dma_desc->dma_status = DMA_COMPLETE; 584 dma_cookie_complete(&dma_desc->txd); 585 if (!dma_desc->cb_count) 586 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc); 587 dma_desc->cb_count++; 588 list_add_tail(&dma_desc->node, &tdc->free_dma_desc); 589 } 590 list_add_tail(&sgreq->node, &tdc->free_sg_req); 591 592 /* Do not start DMA if it is going to be terminate */ 593 if (to_terminate) 594 return; 595 596 if (list_empty(&tdc->pending_sg_req)) { 597 pm_runtime_put(tdc->tdma->dev); 598 return; 599 } 600 601 tdc_start_head_req(tdc); 602 } 603 604 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc, 605 bool to_terminate) 606 { 607 struct tegra_dma_desc *dma_desc; 608 struct tegra_dma_sg_req *sgreq; 609 bool st; 610 611 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node); 612 dma_desc = sgreq->dma_desc; 613 /* if we dma for long enough the transfer count will wrap */ 614 dma_desc->bytes_transferred = 615 (dma_desc->bytes_transferred + sgreq->req_len) % 616 dma_desc->bytes_requested; 617 618 /* Callback need to be call */ 619 if (!dma_desc->cb_count) 620 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc); 621 dma_desc->cb_count++; 622 623 sgreq->words_xferred = 0; 624 625 /* If not last req then put at end of pending list */ 626 if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) { 627 list_move_tail(&sgreq->node, &tdc->pending_sg_req); 628 sgreq->configured = false; 629 st = handle_continuous_head_request(tdc, to_terminate); 630 if (!st) 631 dma_desc->dma_status = DMA_ERROR; 632 } 633 } 634 635 static void tegra_dma_tasklet(struct tasklet_struct *t) 636 { 637 struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet); 638 struct dmaengine_desc_callback cb; 639 struct tegra_dma_desc *dma_desc; 640 unsigned int cb_count; 641 unsigned long flags; 642 643 spin_lock_irqsave(&tdc->lock, flags); 644 while (!list_empty(&tdc->cb_desc)) { 645 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc), 646 cb_node); 647 list_del(&dma_desc->cb_node); 648 dmaengine_desc_get_callback(&dma_desc->txd, &cb); 649 cb_count = dma_desc->cb_count; 650 dma_desc->cb_count = 0; 651 trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count, 652 cb.callback); 653 spin_unlock_irqrestore(&tdc->lock, flags); 654 while (cb_count--) 655 dmaengine_desc_callback_invoke(&cb, NULL); 656 spin_lock_irqsave(&tdc->lock, flags); 657 } 658 spin_unlock_irqrestore(&tdc->lock, flags); 659 } 660 661 static irqreturn_t tegra_dma_isr(int irq, void *dev_id) 662 { 663 struct tegra_dma_channel *tdc = dev_id; 664 u32 status; 665 666 spin_lock(&tdc->lock); 667 668 trace_tegra_dma_isr(&tdc->dma_chan, irq); 669 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); 670 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { 671 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status); 672 tdc->isr_handler(tdc, false); 673 tasklet_schedule(&tdc->tasklet); 674 wake_up_all(&tdc->wq); 675 spin_unlock(&tdc->lock); 676 return IRQ_HANDLED; 677 } 678 679 spin_unlock(&tdc->lock); 680 dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n", 681 status); 682 683 return IRQ_NONE; 684 } 685 686 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd) 687 { 688 struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd); 689 struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan); 690 unsigned long flags; 691 dma_cookie_t cookie; 692 693 spin_lock_irqsave(&tdc->lock, flags); 694 dma_desc->dma_status = DMA_IN_PROGRESS; 695 cookie = dma_cookie_assign(&dma_desc->txd); 696 list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req); 697 spin_unlock_irqrestore(&tdc->lock, flags); 698 699 return cookie; 700 } 701 702 static void tegra_dma_issue_pending(struct dma_chan *dc) 703 { 704 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 705 unsigned long flags; 706 int err; 707 708 spin_lock_irqsave(&tdc->lock, flags); 709 if (list_empty(&tdc->pending_sg_req)) { 710 dev_err(tdc2dev(tdc), "No DMA request\n"); 711 goto end; 712 } 713 if (!tdc->busy) { 714 err = pm_runtime_resume_and_get(tdc->tdma->dev); 715 if (err < 0) { 716 dev_err(tdc2dev(tdc), "Failed to enable DMA\n"); 717 goto end; 718 } 719 720 tdc_start_head_req(tdc); 721 722 /* Continuous single mode: Configure next req */ 723 if (tdc->cyclic) { 724 /* 725 * Wait for 1 burst time for configure DMA for 726 * next transfer. 727 */ 728 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME); 729 tdc_configure_next_head_desc(tdc); 730 } 731 } 732 end: 733 spin_unlock_irqrestore(&tdc->lock, flags); 734 } 735 736 static int tegra_dma_terminate_all(struct dma_chan *dc) 737 { 738 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 739 struct tegra_dma_desc *dma_desc; 740 struct tegra_dma_sg_req *sgreq; 741 unsigned long flags; 742 u32 status, wcount; 743 bool was_busy; 744 745 spin_lock_irqsave(&tdc->lock, flags); 746 747 if (!tdc->busy) 748 goto skip_dma_stop; 749 750 /* Pause DMA before checking the queue status */ 751 tegra_dma_pause(tdc, true); 752 753 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); 754 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { 755 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__); 756 tdc->isr_handler(tdc, true); 757 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); 758 } 759 if (tdc->tdma->chip_data->support_separate_wcount_reg) 760 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER); 761 else 762 wcount = status; 763 764 was_busy = tdc->busy; 765 tegra_dma_stop(tdc); 766 767 if (!list_empty(&tdc->pending_sg_req) && was_busy) { 768 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), 769 node); 770 sgreq->dma_desc->bytes_transferred += 771 get_current_xferred_count(tdc, sgreq, wcount); 772 } 773 tegra_dma_resume(tdc); 774 775 pm_runtime_put(tdc->tdma->dev); 776 wake_up_all(&tdc->wq); 777 778 skip_dma_stop: 779 tegra_dma_abort_all(tdc); 780 781 while (!list_empty(&tdc->cb_desc)) { 782 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc), 783 cb_node); 784 list_del(&dma_desc->cb_node); 785 dma_desc->cb_count = 0; 786 } 787 spin_unlock_irqrestore(&tdc->lock, flags); 788 789 return 0; 790 } 791 792 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc) 793 { 794 unsigned long flags; 795 u32 status; 796 797 spin_lock_irqsave(&tdc->lock, flags); 798 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); 799 spin_unlock_irqrestore(&tdc->lock, flags); 800 801 return !(status & TEGRA_APBDMA_STATUS_ISE_EOC); 802 } 803 804 static void tegra_dma_synchronize(struct dma_chan *dc) 805 { 806 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 807 int err; 808 809 err = pm_runtime_resume_and_get(tdc->tdma->dev); 810 if (err < 0) { 811 dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err); 812 return; 813 } 814 815 /* 816 * CPU, which handles interrupt, could be busy in 817 * uninterruptible state, in this case sibling CPU 818 * should wait until interrupt is handled. 819 */ 820 wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc)); 821 822 tasklet_kill(&tdc->tasklet); 823 824 pm_runtime_put(tdc->tdma->dev); 825 } 826 827 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc, 828 struct tegra_dma_sg_req *sg_req) 829 { 830 u32 status, wcount = 0; 831 832 if (!list_is_first(&sg_req->node, &tdc->pending_sg_req)) 833 return 0; 834 835 if (tdc->tdma->chip_data->support_separate_wcount_reg) 836 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER); 837 838 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); 839 840 if (!tdc->tdma->chip_data->support_separate_wcount_reg) 841 wcount = status; 842 843 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) 844 return sg_req->req_len; 845 846 wcount = get_current_xferred_count(tdc, sg_req, wcount); 847 848 if (!wcount) { 849 /* 850 * If wcount wasn't ever polled for this SG before, then 851 * simply assume that transfer hasn't started yet. 852 * 853 * Otherwise it's the end of the transfer. 854 * 855 * The alternative would be to poll the status register 856 * until EOC bit is set or wcount goes UP. That's so 857 * because EOC bit is getting set only after the last 858 * burst's completion and counter is less than the actual 859 * transfer size by 4 bytes. The counter value wraps around 860 * in a cyclic mode before EOC is set(!), so we can't easily 861 * distinguish start of transfer from its end. 862 */ 863 if (sg_req->words_xferred) 864 wcount = sg_req->req_len - 4; 865 866 } else if (wcount < sg_req->words_xferred) { 867 /* 868 * This case will never happen for a non-cyclic transfer. 869 * 870 * For a cyclic transfer, although it is possible for the 871 * next transfer to have already started (resetting the word 872 * count), this case should still not happen because we should 873 * have detected that the EOC bit is set and hence the transfer 874 * was completed. 875 */ 876 WARN_ON_ONCE(1); 877 878 wcount = sg_req->req_len - 4; 879 } else { 880 sg_req->words_xferred = wcount; 881 } 882 883 return wcount; 884 } 885 886 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc, 887 dma_cookie_t cookie, 888 struct dma_tx_state *txstate) 889 { 890 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 891 struct tegra_dma_desc *dma_desc; 892 struct tegra_dma_sg_req *sg_req; 893 enum dma_status ret; 894 unsigned long flags; 895 unsigned int residual; 896 unsigned int bytes = 0; 897 898 ret = dma_cookie_status(dc, cookie, txstate); 899 if (ret == DMA_COMPLETE) 900 return ret; 901 902 spin_lock_irqsave(&tdc->lock, flags); 903 904 /* Check on wait_ack desc status */ 905 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) { 906 if (dma_desc->txd.cookie == cookie) { 907 ret = dma_desc->dma_status; 908 goto found; 909 } 910 } 911 912 /* Check in pending list */ 913 list_for_each_entry(sg_req, &tdc->pending_sg_req, node) { 914 dma_desc = sg_req->dma_desc; 915 if (dma_desc->txd.cookie == cookie) { 916 bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req); 917 ret = dma_desc->dma_status; 918 goto found; 919 } 920 } 921 922 dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie); 923 dma_desc = NULL; 924 925 found: 926 if (dma_desc && txstate) { 927 residual = dma_desc->bytes_requested - 928 ((dma_desc->bytes_transferred + bytes) % 929 dma_desc->bytes_requested); 930 dma_set_residue(txstate, residual); 931 } 932 933 trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate); 934 spin_unlock_irqrestore(&tdc->lock, flags); 935 936 return ret; 937 } 938 939 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc, 940 enum dma_slave_buswidth slave_bw) 941 { 942 switch (slave_bw) { 943 case DMA_SLAVE_BUSWIDTH_1_BYTE: 944 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8; 945 case DMA_SLAVE_BUSWIDTH_2_BYTES: 946 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16; 947 case DMA_SLAVE_BUSWIDTH_4_BYTES: 948 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32; 949 case DMA_SLAVE_BUSWIDTH_8_BYTES: 950 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64; 951 default: 952 dev_warn(tdc2dev(tdc), 953 "slave bw is not supported, using 32bits\n"); 954 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32; 955 } 956 } 957 958 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc, 959 u32 burst_size, 960 enum dma_slave_buswidth slave_bw, 961 u32 len) 962 { 963 unsigned int burst_byte, burst_ahb_width; 964 965 /* 966 * burst_size from client is in terms of the bus_width. 967 * convert them into AHB memory width which is 4 byte. 968 */ 969 burst_byte = burst_size * slave_bw; 970 burst_ahb_width = burst_byte / 4; 971 972 /* If burst size is 0 then calculate the burst size based on length */ 973 if (!burst_ahb_width) { 974 if (len & 0xF) 975 return TEGRA_APBDMA_AHBSEQ_BURST_1; 976 else if ((len >> 4) & 0x1) 977 return TEGRA_APBDMA_AHBSEQ_BURST_4; 978 else 979 return TEGRA_APBDMA_AHBSEQ_BURST_8; 980 } 981 if (burst_ahb_width < 4) 982 return TEGRA_APBDMA_AHBSEQ_BURST_1; 983 else if (burst_ahb_width < 8) 984 return TEGRA_APBDMA_AHBSEQ_BURST_4; 985 else 986 return TEGRA_APBDMA_AHBSEQ_BURST_8; 987 } 988 989 static int get_transfer_param(struct tegra_dma_channel *tdc, 990 enum dma_transfer_direction direction, 991 u32 *apb_addr, 992 u32 *apb_seq, 993 u32 *csr, 994 unsigned int *burst_size, 995 enum dma_slave_buswidth *slave_bw) 996 { 997 switch (direction) { 998 case DMA_MEM_TO_DEV: 999 *apb_addr = tdc->dma_sconfig.dst_addr; 1000 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width); 1001 *burst_size = tdc->dma_sconfig.dst_maxburst; 1002 *slave_bw = tdc->dma_sconfig.dst_addr_width; 1003 *csr = TEGRA_APBDMA_CSR_DIR; 1004 return 0; 1005 1006 case DMA_DEV_TO_MEM: 1007 *apb_addr = tdc->dma_sconfig.src_addr; 1008 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width); 1009 *burst_size = tdc->dma_sconfig.src_maxburst; 1010 *slave_bw = tdc->dma_sconfig.src_addr_width; 1011 *csr = 0; 1012 return 0; 1013 1014 default: 1015 dev_err(tdc2dev(tdc), "DMA direction is not supported\n"); 1016 break; 1017 } 1018 1019 return -EINVAL; 1020 } 1021 1022 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc, 1023 struct tegra_dma_channel_regs *ch_regs, 1024 u32 len) 1025 { 1026 u32 len_field = (len - 4) & 0xFFFC; 1027 1028 if (tdc->tdma->chip_data->support_separate_wcount_reg) 1029 ch_regs->wcount = len_field; 1030 else 1031 ch_regs->csr |= len_field; 1032 } 1033 1034 static struct dma_async_tx_descriptor * 1035 tegra_dma_prep_slave_sg(struct dma_chan *dc, 1036 struct scatterlist *sgl, 1037 unsigned int sg_len, 1038 enum dma_transfer_direction direction, 1039 unsigned long flags, 1040 void *context) 1041 { 1042 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 1043 struct tegra_dma_sg_req *sg_req = NULL; 1044 u32 csr, ahb_seq, apb_ptr, apb_seq; 1045 enum dma_slave_buswidth slave_bw; 1046 struct tegra_dma_desc *dma_desc; 1047 struct list_head req_list; 1048 struct scatterlist *sg; 1049 unsigned int burst_size; 1050 unsigned int i; 1051 1052 if (!tdc->config_init) { 1053 dev_err(tdc2dev(tdc), "DMA channel is not configured\n"); 1054 return NULL; 1055 } 1056 if (sg_len < 1) { 1057 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len); 1058 return NULL; 1059 } 1060 1061 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr, 1062 &burst_size, &slave_bw) < 0) 1063 return NULL; 1064 1065 INIT_LIST_HEAD(&req_list); 1066 1067 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB; 1068 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE << 1069 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT; 1070 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32; 1071 1072 csr |= TEGRA_APBDMA_CSR_ONCE; 1073 1074 if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) { 1075 csr |= TEGRA_APBDMA_CSR_FLOW; 1076 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT; 1077 } 1078 1079 if (flags & DMA_PREP_INTERRUPT) { 1080 csr |= TEGRA_APBDMA_CSR_IE_EOC; 1081 } else { 1082 WARN_ON_ONCE(1); 1083 return NULL; 1084 } 1085 1086 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1; 1087 1088 dma_desc = tegra_dma_desc_get(tdc); 1089 if (!dma_desc) { 1090 dev_err(tdc2dev(tdc), "DMA descriptors not available\n"); 1091 return NULL; 1092 } 1093 INIT_LIST_HEAD(&dma_desc->tx_list); 1094 INIT_LIST_HEAD(&dma_desc->cb_node); 1095 dma_desc->cb_count = 0; 1096 dma_desc->bytes_requested = 0; 1097 dma_desc->bytes_transferred = 0; 1098 dma_desc->dma_status = DMA_IN_PROGRESS; 1099 1100 /* Make transfer requests */ 1101 for_each_sg(sgl, sg, sg_len, i) { 1102 u32 len, mem; 1103 1104 mem = sg_dma_address(sg); 1105 len = sg_dma_len(sg); 1106 1107 if ((len & 3) || (mem & 3) || 1108 len > tdc->tdma->chip_data->max_dma_count) { 1109 dev_err(tdc2dev(tdc), 1110 "DMA length/memory address is not supported\n"); 1111 tegra_dma_desc_put(tdc, dma_desc); 1112 return NULL; 1113 } 1114 1115 sg_req = tegra_dma_sg_req_get(tdc); 1116 if (!sg_req) { 1117 dev_err(tdc2dev(tdc), "DMA sg-req not available\n"); 1118 tegra_dma_desc_put(tdc, dma_desc); 1119 return NULL; 1120 } 1121 1122 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len); 1123 dma_desc->bytes_requested += len; 1124 1125 sg_req->ch_regs.apb_ptr = apb_ptr; 1126 sg_req->ch_regs.ahb_ptr = mem; 1127 sg_req->ch_regs.csr = csr; 1128 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len); 1129 sg_req->ch_regs.apb_seq = apb_seq; 1130 sg_req->ch_regs.ahb_seq = ahb_seq; 1131 sg_req->configured = false; 1132 sg_req->last_sg = false; 1133 sg_req->dma_desc = dma_desc; 1134 sg_req->req_len = len; 1135 1136 list_add_tail(&sg_req->node, &dma_desc->tx_list); 1137 } 1138 sg_req->last_sg = true; 1139 if (flags & DMA_CTRL_ACK) 1140 dma_desc->txd.flags = DMA_CTRL_ACK; 1141 1142 /* 1143 * Make sure that mode should not be conflicting with currently 1144 * configured mode. 1145 */ 1146 if (!tdc->isr_handler) { 1147 tdc->isr_handler = handle_once_dma_done; 1148 tdc->cyclic = false; 1149 } else { 1150 if (tdc->cyclic) { 1151 dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n"); 1152 tegra_dma_desc_put(tdc, dma_desc); 1153 return NULL; 1154 } 1155 } 1156 1157 return &dma_desc->txd; 1158 } 1159 1160 static struct dma_async_tx_descriptor * 1161 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, 1162 size_t buf_len, 1163 size_t period_len, 1164 enum dma_transfer_direction direction, 1165 unsigned long flags) 1166 { 1167 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 1168 struct tegra_dma_sg_req *sg_req = NULL; 1169 u32 csr, ahb_seq, apb_ptr, apb_seq; 1170 enum dma_slave_buswidth slave_bw; 1171 struct tegra_dma_desc *dma_desc; 1172 dma_addr_t mem = buf_addr; 1173 unsigned int burst_size; 1174 size_t len, remain_len; 1175 1176 if (!buf_len || !period_len) { 1177 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n"); 1178 return NULL; 1179 } 1180 1181 if (!tdc->config_init) { 1182 dev_err(tdc2dev(tdc), "DMA slave is not configured\n"); 1183 return NULL; 1184 } 1185 1186 /* 1187 * We allow to take more number of requests till DMA is 1188 * not started. The driver will loop over all requests. 1189 * Once DMA is started then new requests can be queued only after 1190 * terminating the DMA. 1191 */ 1192 if (tdc->busy) { 1193 dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n"); 1194 return NULL; 1195 } 1196 1197 /* 1198 * We only support cycle transfer when buf_len is multiple of 1199 * period_len. 1200 */ 1201 if (buf_len % period_len) { 1202 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n"); 1203 return NULL; 1204 } 1205 1206 len = period_len; 1207 if ((len & 3) || (buf_addr & 3) || 1208 len > tdc->tdma->chip_data->max_dma_count) { 1209 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n"); 1210 return NULL; 1211 } 1212 1213 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr, 1214 &burst_size, &slave_bw) < 0) 1215 return NULL; 1216 1217 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB; 1218 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE << 1219 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT; 1220 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32; 1221 1222 if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) { 1223 csr |= TEGRA_APBDMA_CSR_FLOW; 1224 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT; 1225 } 1226 1227 if (flags & DMA_PREP_INTERRUPT) { 1228 csr |= TEGRA_APBDMA_CSR_IE_EOC; 1229 } else { 1230 WARN_ON_ONCE(1); 1231 return NULL; 1232 } 1233 1234 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1; 1235 1236 dma_desc = tegra_dma_desc_get(tdc); 1237 if (!dma_desc) { 1238 dev_err(tdc2dev(tdc), "not enough descriptors available\n"); 1239 return NULL; 1240 } 1241 1242 INIT_LIST_HEAD(&dma_desc->tx_list); 1243 INIT_LIST_HEAD(&dma_desc->cb_node); 1244 dma_desc->cb_count = 0; 1245 1246 dma_desc->bytes_transferred = 0; 1247 dma_desc->bytes_requested = buf_len; 1248 remain_len = buf_len; 1249 1250 /* Split transfer equal to period size */ 1251 while (remain_len) { 1252 sg_req = tegra_dma_sg_req_get(tdc); 1253 if (!sg_req) { 1254 dev_err(tdc2dev(tdc), "DMA sg-req not available\n"); 1255 tegra_dma_desc_put(tdc, dma_desc); 1256 return NULL; 1257 } 1258 1259 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len); 1260 sg_req->ch_regs.apb_ptr = apb_ptr; 1261 sg_req->ch_regs.ahb_ptr = mem; 1262 sg_req->ch_regs.csr = csr; 1263 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len); 1264 sg_req->ch_regs.apb_seq = apb_seq; 1265 sg_req->ch_regs.ahb_seq = ahb_seq; 1266 sg_req->configured = false; 1267 sg_req->last_sg = false; 1268 sg_req->dma_desc = dma_desc; 1269 sg_req->req_len = len; 1270 1271 list_add_tail(&sg_req->node, &dma_desc->tx_list); 1272 remain_len -= len; 1273 mem += len; 1274 } 1275 sg_req->last_sg = true; 1276 if (flags & DMA_CTRL_ACK) 1277 dma_desc->txd.flags = DMA_CTRL_ACK; 1278 1279 /* 1280 * Make sure that mode should not be conflicting with currently 1281 * configured mode. 1282 */ 1283 if (!tdc->isr_handler) { 1284 tdc->isr_handler = handle_cont_sngl_cycle_dma_done; 1285 tdc->cyclic = true; 1286 } else { 1287 if (!tdc->cyclic) { 1288 dev_err(tdc2dev(tdc), "DMA configuration conflict\n"); 1289 tegra_dma_desc_put(tdc, dma_desc); 1290 return NULL; 1291 } 1292 } 1293 1294 return &dma_desc->txd; 1295 } 1296 1297 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc) 1298 { 1299 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 1300 1301 dma_cookie_init(&tdc->dma_chan); 1302 1303 return 0; 1304 } 1305 1306 static void tegra_dma_free_chan_resources(struct dma_chan *dc) 1307 { 1308 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); 1309 struct tegra_dma_desc *dma_desc; 1310 struct tegra_dma_sg_req *sg_req; 1311 struct list_head dma_desc_list; 1312 struct list_head sg_req_list; 1313 1314 INIT_LIST_HEAD(&dma_desc_list); 1315 INIT_LIST_HEAD(&sg_req_list); 1316 1317 dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id); 1318 1319 tegra_dma_terminate_all(dc); 1320 tasklet_kill(&tdc->tasklet); 1321 1322 list_splice_init(&tdc->pending_sg_req, &sg_req_list); 1323 list_splice_init(&tdc->free_sg_req, &sg_req_list); 1324 list_splice_init(&tdc->free_dma_desc, &dma_desc_list); 1325 INIT_LIST_HEAD(&tdc->cb_desc); 1326 tdc->config_init = false; 1327 tdc->isr_handler = NULL; 1328 1329 while (!list_empty(&dma_desc_list)) { 1330 dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc), 1331 node); 1332 list_del(&dma_desc->node); 1333 kfree(dma_desc); 1334 } 1335 1336 while (!list_empty(&sg_req_list)) { 1337 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node); 1338 list_del(&sg_req->node); 1339 kfree(sg_req); 1340 } 1341 1342 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID; 1343 } 1344 1345 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec, 1346 struct of_dma *ofdma) 1347 { 1348 struct tegra_dma *tdma = ofdma->of_dma_data; 1349 struct tegra_dma_channel *tdc; 1350 struct dma_chan *chan; 1351 1352 if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) { 1353 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]); 1354 return NULL; 1355 } 1356 1357 chan = dma_get_any_slave_channel(&tdma->dma_dev); 1358 if (!chan) 1359 return NULL; 1360 1361 tdc = to_tegra_dma_chan(chan); 1362 tdc->slave_id = dma_spec->args[0]; 1363 1364 return chan; 1365 } 1366 1367 /* Tegra20 specific DMA controller information */ 1368 static const struct tegra_dma_chip_data tegra20_dma_chip_data = { 1369 .nr_channels = 16, 1370 .channel_reg_size = 0x20, 1371 .max_dma_count = 1024UL * 64, 1372 .support_channel_pause = false, 1373 .support_separate_wcount_reg = false, 1374 }; 1375 1376 /* Tegra30 specific DMA controller information */ 1377 static const struct tegra_dma_chip_data tegra30_dma_chip_data = { 1378 .nr_channels = 32, 1379 .channel_reg_size = 0x20, 1380 .max_dma_count = 1024UL * 64, 1381 .support_channel_pause = false, 1382 .support_separate_wcount_reg = false, 1383 }; 1384 1385 /* Tegra114 specific DMA controller information */ 1386 static const struct tegra_dma_chip_data tegra114_dma_chip_data = { 1387 .nr_channels = 32, 1388 .channel_reg_size = 0x20, 1389 .max_dma_count = 1024UL * 64, 1390 .support_channel_pause = true, 1391 .support_separate_wcount_reg = false, 1392 }; 1393 1394 /* Tegra148 specific DMA controller information */ 1395 static const struct tegra_dma_chip_data tegra148_dma_chip_data = { 1396 .nr_channels = 32, 1397 .channel_reg_size = 0x40, 1398 .max_dma_count = 1024UL * 64, 1399 .support_channel_pause = true, 1400 .support_separate_wcount_reg = true, 1401 }; 1402 1403 static int tegra_dma_init_hw(struct tegra_dma *tdma) 1404 { 1405 int err; 1406 1407 err = reset_control_assert(tdma->rst); 1408 if (err) { 1409 dev_err(tdma->dev, "failed to assert reset: %d\n", err); 1410 return err; 1411 } 1412 1413 err = clk_enable(tdma->dma_clk); 1414 if (err) { 1415 dev_err(tdma->dev, "failed to enable clk: %d\n", err); 1416 return err; 1417 } 1418 1419 /* reset DMA controller */ 1420 udelay(2); 1421 reset_control_deassert(tdma->rst); 1422 1423 /* enable global DMA registers */ 1424 tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE); 1425 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0); 1426 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF); 1427 1428 clk_disable(tdma->dma_clk); 1429 1430 return 0; 1431 } 1432 1433 static int tegra_dma_probe(struct platform_device *pdev) 1434 { 1435 const struct tegra_dma_chip_data *cdata; 1436 struct tegra_dma *tdma; 1437 unsigned int i; 1438 size_t size; 1439 int ret; 1440 1441 cdata = of_device_get_match_data(&pdev->dev); 1442 size = struct_size(tdma, channels, cdata->nr_channels); 1443 1444 tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); 1445 if (!tdma) 1446 return -ENOMEM; 1447 1448 tdma->dev = &pdev->dev; 1449 tdma->chip_data = cdata; 1450 platform_set_drvdata(pdev, tdma); 1451 1452 tdma->base_addr = devm_platform_ioremap_resource(pdev, 0); 1453 if (IS_ERR(tdma->base_addr)) 1454 return PTR_ERR(tdma->base_addr); 1455 1456 tdma->dma_clk = devm_clk_get(&pdev->dev, NULL); 1457 if (IS_ERR(tdma->dma_clk)) { 1458 dev_err(&pdev->dev, "Error: Missing controller clock\n"); 1459 return PTR_ERR(tdma->dma_clk); 1460 } 1461 1462 tdma->rst = devm_reset_control_get(&pdev->dev, "dma"); 1463 if (IS_ERR(tdma->rst)) { 1464 dev_err(&pdev->dev, "Error: Missing reset\n"); 1465 return PTR_ERR(tdma->rst); 1466 } 1467 1468 spin_lock_init(&tdma->global_lock); 1469 1470 ret = clk_prepare(tdma->dma_clk); 1471 if (ret) 1472 return ret; 1473 1474 ret = tegra_dma_init_hw(tdma); 1475 if (ret) 1476 goto err_clk_unprepare; 1477 1478 pm_runtime_irq_safe(&pdev->dev); 1479 pm_runtime_enable(&pdev->dev); 1480 1481 INIT_LIST_HEAD(&tdma->dma_dev.channels); 1482 for (i = 0; i < cdata->nr_channels; i++) { 1483 struct tegra_dma_channel *tdc = &tdma->channels[i]; 1484 int irq; 1485 1486 tdc->chan_addr = tdma->base_addr + 1487 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET + 1488 (i * cdata->channel_reg_size); 1489 1490 irq = platform_get_irq(pdev, i); 1491 if (irq < 0) { 1492 ret = irq; 1493 goto err_pm_disable; 1494 } 1495 1496 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i); 1497 ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0, 1498 tdc->name, tdc); 1499 if (ret) { 1500 dev_err(&pdev->dev, 1501 "request_irq failed with err %d channel %d\n", 1502 ret, i); 1503 goto err_pm_disable; 1504 } 1505 1506 tdc->dma_chan.device = &tdma->dma_dev; 1507 dma_cookie_init(&tdc->dma_chan); 1508 list_add_tail(&tdc->dma_chan.device_node, 1509 &tdma->dma_dev.channels); 1510 tdc->tdma = tdma; 1511 tdc->id = i; 1512 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID; 1513 1514 tasklet_setup(&tdc->tasklet, tegra_dma_tasklet); 1515 spin_lock_init(&tdc->lock); 1516 init_waitqueue_head(&tdc->wq); 1517 1518 INIT_LIST_HEAD(&tdc->pending_sg_req); 1519 INIT_LIST_HEAD(&tdc->free_sg_req); 1520 INIT_LIST_HEAD(&tdc->free_dma_desc); 1521 INIT_LIST_HEAD(&tdc->cb_desc); 1522 } 1523 1524 dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask); 1525 dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask); 1526 dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask); 1527 1528 tdma->global_pause_count = 0; 1529 tdma->dma_dev.dev = &pdev->dev; 1530 tdma->dma_dev.device_alloc_chan_resources = 1531 tegra_dma_alloc_chan_resources; 1532 tdma->dma_dev.device_free_chan_resources = 1533 tegra_dma_free_chan_resources; 1534 tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg; 1535 tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic; 1536 tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1537 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1538 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | 1539 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); 1540 tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | 1541 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | 1542 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | 1543 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); 1544 tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1545 tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1546 tdma->dma_dev.device_config = tegra_dma_slave_config; 1547 tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all; 1548 tdma->dma_dev.device_synchronize = tegra_dma_synchronize; 1549 tdma->dma_dev.device_tx_status = tegra_dma_tx_status; 1550 tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending; 1551 1552 ret = dma_async_device_register(&tdma->dma_dev); 1553 if (ret < 0) { 1554 dev_err(&pdev->dev, 1555 "Tegra20 APB DMA driver registration failed %d\n", ret); 1556 goto err_pm_disable; 1557 } 1558 1559 ret = of_dma_controller_register(pdev->dev.of_node, 1560 tegra_dma_of_xlate, tdma); 1561 if (ret < 0) { 1562 dev_err(&pdev->dev, 1563 "Tegra20 APB DMA OF registration failed %d\n", ret); 1564 goto err_unregister_dma_dev; 1565 } 1566 1567 dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n", 1568 cdata->nr_channels); 1569 1570 return 0; 1571 1572 err_unregister_dma_dev: 1573 dma_async_device_unregister(&tdma->dma_dev); 1574 1575 err_pm_disable: 1576 pm_runtime_disable(&pdev->dev); 1577 1578 err_clk_unprepare: 1579 clk_unprepare(tdma->dma_clk); 1580 1581 return ret; 1582 } 1583 1584 static void tegra_dma_remove(struct platform_device *pdev) 1585 { 1586 struct tegra_dma *tdma = platform_get_drvdata(pdev); 1587 1588 of_dma_controller_free(pdev->dev.of_node); 1589 dma_async_device_unregister(&tdma->dma_dev); 1590 pm_runtime_disable(&pdev->dev); 1591 clk_unprepare(tdma->dma_clk); 1592 } 1593 1594 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev) 1595 { 1596 struct tegra_dma *tdma = dev_get_drvdata(dev); 1597 1598 clk_disable(tdma->dma_clk); 1599 1600 return 0; 1601 } 1602 1603 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev) 1604 { 1605 struct tegra_dma *tdma = dev_get_drvdata(dev); 1606 1607 return clk_enable(tdma->dma_clk); 1608 } 1609 1610 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev) 1611 { 1612 struct tegra_dma *tdma = dev_get_drvdata(dev); 1613 unsigned long flags; 1614 unsigned int i; 1615 bool busy; 1616 1617 for (i = 0; i < tdma->chip_data->nr_channels; i++) { 1618 struct tegra_dma_channel *tdc = &tdma->channels[i]; 1619 1620 tasklet_kill(&tdc->tasklet); 1621 1622 spin_lock_irqsave(&tdc->lock, flags); 1623 busy = tdc->busy; 1624 spin_unlock_irqrestore(&tdc->lock, flags); 1625 1626 if (busy) { 1627 dev_err(tdma->dev, "channel %u busy\n", i); 1628 return -EBUSY; 1629 } 1630 } 1631 1632 return pm_runtime_force_suspend(dev); 1633 } 1634 1635 static int __maybe_unused tegra_dma_dev_resume(struct device *dev) 1636 { 1637 struct tegra_dma *tdma = dev_get_drvdata(dev); 1638 int err; 1639 1640 err = tegra_dma_init_hw(tdma); 1641 if (err) 1642 return err; 1643 1644 return pm_runtime_force_resume(dev); 1645 } 1646 1647 static const struct dev_pm_ops tegra_dma_dev_pm_ops = { 1648 SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume, 1649 NULL) 1650 SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume) 1651 }; 1652 1653 static const struct of_device_id tegra_dma_of_match[] = { 1654 { 1655 .compatible = "nvidia,tegra148-apbdma", 1656 .data = &tegra148_dma_chip_data, 1657 }, { 1658 .compatible = "nvidia,tegra114-apbdma", 1659 .data = &tegra114_dma_chip_data, 1660 }, { 1661 .compatible = "nvidia,tegra30-apbdma", 1662 .data = &tegra30_dma_chip_data, 1663 }, { 1664 .compatible = "nvidia,tegra20-apbdma", 1665 .data = &tegra20_dma_chip_data, 1666 }, { 1667 }, 1668 }; 1669 MODULE_DEVICE_TABLE(of, tegra_dma_of_match); 1670 1671 static struct platform_driver tegra_dmac_driver = { 1672 .driver = { 1673 .name = "tegra-apbdma", 1674 .pm = &tegra_dma_dev_pm_ops, 1675 .of_match_table = tegra_dma_of_match, 1676 }, 1677 .probe = tegra_dma_probe, 1678 .remove_new = tegra_dma_remove, 1679 }; 1680 1681 module_platform_driver(tegra_dmac_driver); 1682 1683 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver"); 1684 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>"); 1685 MODULE_LICENSE("GPL v2"); 1686