xref: /linux/drivers/dma/tegra20-apb-dma.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /*
2  * DMA driver for Nvidia's Tegra20 APB DMA controller.
3  *
4  * Copyright (c) 2012-2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/reset.h>
37 #include <linux/slab.h>
38 
39 #include "dmaengine.h"
40 
41 #define TEGRA_APBDMA_GENERAL			0x0
42 #define TEGRA_APBDMA_GENERAL_ENABLE		BIT(31)
43 
44 #define TEGRA_APBDMA_CONTROL			0x010
45 #define TEGRA_APBDMA_IRQ_MASK			0x01c
46 #define TEGRA_APBDMA_IRQ_MASK_SET		0x020
47 
48 /* CSR register */
49 #define TEGRA_APBDMA_CHAN_CSR			0x00
50 #define TEGRA_APBDMA_CSR_ENB			BIT(31)
51 #define TEGRA_APBDMA_CSR_IE_EOC			BIT(30)
52 #define TEGRA_APBDMA_CSR_HOLD			BIT(29)
53 #define TEGRA_APBDMA_CSR_DIR			BIT(28)
54 #define TEGRA_APBDMA_CSR_ONCE			BIT(27)
55 #define TEGRA_APBDMA_CSR_FLOW			BIT(21)
56 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT		16
57 #define TEGRA_APBDMA_CSR_WCOUNT_MASK		0xFFFC
58 
59 /* STATUS register */
60 #define TEGRA_APBDMA_CHAN_STATUS		0x004
61 #define TEGRA_APBDMA_STATUS_BUSY		BIT(31)
62 #define TEGRA_APBDMA_STATUS_ISE_EOC		BIT(30)
63 #define TEGRA_APBDMA_STATUS_HALT		BIT(29)
64 #define TEGRA_APBDMA_STATUS_PING_PONG		BIT(28)
65 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT		2
66 #define TEGRA_APBDMA_STATUS_COUNT_MASK		0xFFFC
67 
68 #define TEGRA_APBDMA_CHAN_CSRE			0x00C
69 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE		(1 << 31)
70 
71 /* AHB memory address */
72 #define TEGRA_APBDMA_CHAN_AHBPTR		0x010
73 
74 /* AHB sequence register */
75 #define TEGRA_APBDMA_CHAN_AHBSEQ		0x14
76 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB		BIT(31)
77 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8		(0 << 28)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16	(1 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32	(2 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64	(3 << 28)
81 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128	(4 << 28)
82 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP		BIT(27)
83 #define TEGRA_APBDMA_AHBSEQ_BURST_1		(4 << 24)
84 #define TEGRA_APBDMA_AHBSEQ_BURST_4		(5 << 24)
85 #define TEGRA_APBDMA_AHBSEQ_BURST_8		(6 << 24)
86 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF		BIT(19)
87 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT		16
88 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE		0
89 
90 /* APB address */
91 #define TEGRA_APBDMA_CHAN_APBPTR		0x018
92 
93 /* APB sequence register */
94 #define TEGRA_APBDMA_CHAN_APBSEQ		0x01c
95 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8		(0 << 28)
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16	(1 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32	(2 << 28)
98 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64	(3 << 28)
99 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128	(4 << 28)
100 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP		BIT(27)
101 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1		(1 << 16)
102 
103 /* Tegra148 specific registers */
104 #define TEGRA_APBDMA_CHAN_WCOUNT		0x20
105 
106 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER		0x24
107 
108 /*
109  * If any burst is in flight and DMA paused then this is the time to complete
110  * on-flight burst and update DMA status register.
111  */
112 #define TEGRA_APBDMA_BURST_COMPLETE_TIME	20
113 
114 /* Channel base address offset from APBDMA base address */
115 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET	0x1000
116 
117 struct tegra_dma;
118 
119 /*
120  * tegra_dma_chip_data Tegra chip specific DMA data
121  * @nr_channels: Number of channels available in the controller.
122  * @channel_reg_size: Channel register size/stride.
123  * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
124  * @support_channel_pause: Support channel wise pause of dma.
125  * @support_separate_wcount_reg: Support separate word count register.
126  */
127 struct tegra_dma_chip_data {
128 	int nr_channels;
129 	int channel_reg_size;
130 	int max_dma_count;
131 	bool support_channel_pause;
132 	bool support_separate_wcount_reg;
133 };
134 
135 /* DMA channel registers */
136 struct tegra_dma_channel_regs {
137 	unsigned long	csr;
138 	unsigned long	ahb_ptr;
139 	unsigned long	apb_ptr;
140 	unsigned long	ahb_seq;
141 	unsigned long	apb_seq;
142 	unsigned long	wcount;
143 };
144 
145 /*
146  * tegra_dma_sg_req: Dma request details to configure hardware. This
147  * contains the details for one transfer to configure DMA hw.
148  * The client's request for data transfer can be broken into multiple
149  * sub-transfer as per requester details and hw support.
150  * This sub transfer get added in the list of transfer and point to Tegra
151  * DMA descriptor which manages the transfer details.
152  */
153 struct tegra_dma_sg_req {
154 	struct tegra_dma_channel_regs	ch_regs;
155 	int				req_len;
156 	bool				configured;
157 	bool				last_sg;
158 	bool				half_done;
159 	struct list_head		node;
160 	struct tegra_dma_desc		*dma_desc;
161 };
162 
163 /*
164  * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
165  * This descriptor keep track of transfer status, callbacks and request
166  * counts etc.
167  */
168 struct tegra_dma_desc {
169 	struct dma_async_tx_descriptor	txd;
170 	int				bytes_requested;
171 	int				bytes_transferred;
172 	enum dma_status			dma_status;
173 	struct list_head		node;
174 	struct list_head		tx_list;
175 	struct list_head		cb_node;
176 	int				cb_count;
177 };
178 
179 struct tegra_dma_channel;
180 
181 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
182 				bool to_terminate);
183 
184 /* tegra_dma_channel: Channel specific information */
185 struct tegra_dma_channel {
186 	struct dma_chan		dma_chan;
187 	char			name[30];
188 	bool			config_init;
189 	int			id;
190 	int			irq;
191 	unsigned long		chan_base_offset;
192 	spinlock_t		lock;
193 	bool			busy;
194 	struct tegra_dma	*tdma;
195 	bool			cyclic;
196 
197 	/* Different lists for managing the requests */
198 	struct list_head	free_sg_req;
199 	struct list_head	pending_sg_req;
200 	struct list_head	free_dma_desc;
201 	struct list_head	cb_desc;
202 
203 	/* ISR handler and tasklet for bottom half of isr handling */
204 	dma_isr_handler		isr_handler;
205 	struct tasklet_struct	tasklet;
206 	dma_async_tx_callback	callback;
207 	void			*callback_param;
208 
209 	/* Channel-slave specific configuration */
210 	unsigned int slave_id;
211 	struct dma_slave_config dma_sconfig;
212 	struct tegra_dma_channel_regs	channel_reg;
213 };
214 
215 /* tegra_dma: Tegra DMA specific information */
216 struct tegra_dma {
217 	struct dma_device		dma_dev;
218 	struct device			*dev;
219 	struct clk			*dma_clk;
220 	struct reset_control		*rst;
221 	spinlock_t			global_lock;
222 	void __iomem			*base_addr;
223 	const struct tegra_dma_chip_data *chip_data;
224 
225 	/* Some register need to be cache before suspend */
226 	u32				reg_gen;
227 
228 	/* Last member of the structure */
229 	struct tegra_dma_channel channels[0];
230 };
231 
232 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
233 {
234 	writel(val, tdma->base_addr + reg);
235 }
236 
237 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
238 {
239 	return readl(tdma->base_addr + reg);
240 }
241 
242 static inline void tdc_write(struct tegra_dma_channel *tdc,
243 		u32 reg, u32 val)
244 {
245 	writel(val, tdc->tdma->base_addr + tdc->chan_base_offset + reg);
246 }
247 
248 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
249 {
250 	return readl(tdc->tdma->base_addr + tdc->chan_base_offset + reg);
251 }
252 
253 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
254 {
255 	return container_of(dc, struct tegra_dma_channel, dma_chan);
256 }
257 
258 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
259 		struct dma_async_tx_descriptor *td)
260 {
261 	return container_of(td, struct tegra_dma_desc, txd);
262 }
263 
264 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
265 {
266 	return &tdc->dma_chan.dev->device;
267 }
268 
269 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
270 static int tegra_dma_runtime_suspend(struct device *dev);
271 static int tegra_dma_runtime_resume(struct device *dev);
272 
273 /* Get DMA desc from free list, if not there then allocate it.  */
274 static struct tegra_dma_desc *tegra_dma_desc_get(
275 		struct tegra_dma_channel *tdc)
276 {
277 	struct tegra_dma_desc *dma_desc;
278 	unsigned long flags;
279 
280 	spin_lock_irqsave(&tdc->lock, flags);
281 
282 	/* Do not allocate if desc are waiting for ack */
283 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
284 		if (async_tx_test_ack(&dma_desc->txd)) {
285 			list_del(&dma_desc->node);
286 			spin_unlock_irqrestore(&tdc->lock, flags);
287 			dma_desc->txd.flags = 0;
288 			return dma_desc;
289 		}
290 	}
291 
292 	spin_unlock_irqrestore(&tdc->lock, flags);
293 
294 	/* Allocate DMA desc */
295 	dma_desc = kzalloc(sizeof(*dma_desc), GFP_ATOMIC);
296 	if (!dma_desc) {
297 		dev_err(tdc2dev(tdc), "dma_desc alloc failed\n");
298 		return NULL;
299 	}
300 
301 	dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
302 	dma_desc->txd.tx_submit = tegra_dma_tx_submit;
303 	dma_desc->txd.flags = 0;
304 	return dma_desc;
305 }
306 
307 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
308 		struct tegra_dma_desc *dma_desc)
309 {
310 	unsigned long flags;
311 
312 	spin_lock_irqsave(&tdc->lock, flags);
313 	if (!list_empty(&dma_desc->tx_list))
314 		list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
315 	list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
316 	spin_unlock_irqrestore(&tdc->lock, flags);
317 }
318 
319 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
320 		struct tegra_dma_channel *tdc)
321 {
322 	struct tegra_dma_sg_req *sg_req = NULL;
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&tdc->lock, flags);
326 	if (!list_empty(&tdc->free_sg_req)) {
327 		sg_req = list_first_entry(&tdc->free_sg_req,
328 					typeof(*sg_req), node);
329 		list_del(&sg_req->node);
330 		spin_unlock_irqrestore(&tdc->lock, flags);
331 		return sg_req;
332 	}
333 	spin_unlock_irqrestore(&tdc->lock, flags);
334 
335 	sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_ATOMIC);
336 	if (!sg_req)
337 		dev_err(tdc2dev(tdc), "sg_req alloc failed\n");
338 	return sg_req;
339 }
340 
341 static int tegra_dma_slave_config(struct dma_chan *dc,
342 		struct dma_slave_config *sconfig)
343 {
344 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
345 
346 	if (!list_empty(&tdc->pending_sg_req)) {
347 		dev_err(tdc2dev(tdc), "Configuration not allowed\n");
348 		return -EBUSY;
349 	}
350 
351 	memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
352 	if (!tdc->slave_id)
353 		tdc->slave_id = sconfig->slave_id;
354 	tdc->config_init = true;
355 	return 0;
356 }
357 
358 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
359 	bool wait_for_burst_complete)
360 {
361 	struct tegra_dma *tdma = tdc->tdma;
362 
363 	spin_lock(&tdma->global_lock);
364 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
365 	if (wait_for_burst_complete)
366 		udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
367 }
368 
369 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
370 {
371 	struct tegra_dma *tdma = tdc->tdma;
372 
373 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
374 	spin_unlock(&tdma->global_lock);
375 }
376 
377 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
378 	bool wait_for_burst_complete)
379 {
380 	struct tegra_dma *tdma = tdc->tdma;
381 
382 	if (tdma->chip_data->support_channel_pause) {
383 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
384 				TEGRA_APBDMA_CHAN_CSRE_PAUSE);
385 		if (wait_for_burst_complete)
386 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
387 	} else {
388 		tegra_dma_global_pause(tdc, wait_for_burst_complete);
389 	}
390 }
391 
392 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
393 {
394 	struct tegra_dma *tdma = tdc->tdma;
395 
396 	if (tdma->chip_data->support_channel_pause) {
397 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
398 	} else {
399 		tegra_dma_global_resume(tdc);
400 	}
401 }
402 
403 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
404 {
405 	u32 csr;
406 	u32 status;
407 
408 	/* Disable interrupts */
409 	csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
410 	csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
411 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
412 
413 	/* Disable DMA */
414 	csr &= ~TEGRA_APBDMA_CSR_ENB;
415 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
416 
417 	/* Clear interrupt status if it is there */
418 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
419 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
420 		dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
421 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
422 	}
423 	tdc->busy = false;
424 }
425 
426 static void tegra_dma_start(struct tegra_dma_channel *tdc,
427 		struct tegra_dma_sg_req *sg_req)
428 {
429 	struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
430 
431 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
432 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
433 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
434 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
435 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
436 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
437 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
438 
439 	/* Start DMA */
440 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
441 				ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
442 }
443 
444 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
445 		struct tegra_dma_sg_req *nsg_req)
446 {
447 	unsigned long status;
448 
449 	/*
450 	 * The DMA controller reloads the new configuration for next transfer
451 	 * after last burst of current transfer completes.
452 	 * If there is no IEC status then this makes sure that last burst
453 	 * has not be completed. There may be case that last burst is on
454 	 * flight and so it can complete but because DMA is paused, it
455 	 * will not generates interrupt as well as not reload the new
456 	 * configuration.
457 	 * If there is already IEC status then interrupt handler need to
458 	 * load new configuration.
459 	 */
460 	tegra_dma_pause(tdc, false);
461 	status  = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
462 
463 	/*
464 	 * If interrupt is pending then do nothing as the ISR will handle
465 	 * the programing for new request.
466 	 */
467 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
468 		dev_err(tdc2dev(tdc),
469 			"Skipping new configuration as interrupt is pending\n");
470 		tegra_dma_resume(tdc);
471 		return;
472 	}
473 
474 	/* Safe to program new configuration */
475 	tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
476 	tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
477 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
478 		tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
479 						nsg_req->ch_regs.wcount);
480 	tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
481 				nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
482 	nsg_req->configured = true;
483 
484 	tegra_dma_resume(tdc);
485 }
486 
487 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
488 {
489 	struct tegra_dma_sg_req *sg_req;
490 
491 	if (list_empty(&tdc->pending_sg_req))
492 		return;
493 
494 	sg_req = list_first_entry(&tdc->pending_sg_req,
495 					typeof(*sg_req), node);
496 	tegra_dma_start(tdc, sg_req);
497 	sg_req->configured = true;
498 	tdc->busy = true;
499 }
500 
501 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
502 {
503 	struct tegra_dma_sg_req *hsgreq;
504 	struct tegra_dma_sg_req *hnsgreq;
505 
506 	if (list_empty(&tdc->pending_sg_req))
507 		return;
508 
509 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
510 	if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
511 		hnsgreq = list_first_entry(&hsgreq->node,
512 					typeof(*hnsgreq), node);
513 		tegra_dma_configure_for_next(tdc, hnsgreq);
514 	}
515 }
516 
517 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
518 	struct tegra_dma_sg_req *sg_req, unsigned long status)
519 {
520 	return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
521 }
522 
523 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
524 {
525 	struct tegra_dma_sg_req *sgreq;
526 	struct tegra_dma_desc *dma_desc;
527 
528 	while (!list_empty(&tdc->pending_sg_req)) {
529 		sgreq = list_first_entry(&tdc->pending_sg_req,
530 						typeof(*sgreq), node);
531 		list_move_tail(&sgreq->node, &tdc->free_sg_req);
532 		if (sgreq->last_sg) {
533 			dma_desc = sgreq->dma_desc;
534 			dma_desc->dma_status = DMA_ERROR;
535 			list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
536 
537 			/* Add in cb list if it is not there. */
538 			if (!dma_desc->cb_count)
539 				list_add_tail(&dma_desc->cb_node,
540 							&tdc->cb_desc);
541 			dma_desc->cb_count++;
542 		}
543 	}
544 	tdc->isr_handler = NULL;
545 }
546 
547 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
548 		struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
549 {
550 	struct tegra_dma_sg_req *hsgreq = NULL;
551 
552 	if (list_empty(&tdc->pending_sg_req)) {
553 		dev_err(tdc2dev(tdc), "Dma is running without req\n");
554 		tegra_dma_stop(tdc);
555 		return false;
556 	}
557 
558 	/*
559 	 * Check that head req on list should be in flight.
560 	 * If it is not in flight then abort transfer as
561 	 * looping of transfer can not continue.
562 	 */
563 	hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
564 	if (!hsgreq->configured) {
565 		tegra_dma_stop(tdc);
566 		dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
567 		tegra_dma_abort_all(tdc);
568 		return false;
569 	}
570 
571 	/* Configure next request */
572 	if (!to_terminate)
573 		tdc_configure_next_head_desc(tdc);
574 	return true;
575 }
576 
577 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
578 	bool to_terminate)
579 {
580 	struct tegra_dma_sg_req *sgreq;
581 	struct tegra_dma_desc *dma_desc;
582 
583 	tdc->busy = false;
584 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
585 	dma_desc = sgreq->dma_desc;
586 	dma_desc->bytes_transferred += sgreq->req_len;
587 
588 	list_del(&sgreq->node);
589 	if (sgreq->last_sg) {
590 		dma_desc->dma_status = DMA_COMPLETE;
591 		dma_cookie_complete(&dma_desc->txd);
592 		if (!dma_desc->cb_count)
593 			list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
594 		dma_desc->cb_count++;
595 		list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
596 	}
597 	list_add_tail(&sgreq->node, &tdc->free_sg_req);
598 
599 	/* Do not start DMA if it is going to be terminate */
600 	if (to_terminate || list_empty(&tdc->pending_sg_req))
601 		return;
602 
603 	tdc_start_head_req(tdc);
604 	return;
605 }
606 
607 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
608 		bool to_terminate)
609 {
610 	struct tegra_dma_sg_req *sgreq;
611 	struct tegra_dma_desc *dma_desc;
612 	bool st;
613 
614 	sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
615 	dma_desc = sgreq->dma_desc;
616 	dma_desc->bytes_transferred += sgreq->req_len;
617 
618 	/* Callback need to be call */
619 	if (!dma_desc->cb_count)
620 		list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
621 	dma_desc->cb_count++;
622 
623 	/* If not last req then put at end of pending list */
624 	if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
625 		list_move_tail(&sgreq->node, &tdc->pending_sg_req);
626 		sgreq->configured = false;
627 		st = handle_continuous_head_request(tdc, sgreq, to_terminate);
628 		if (!st)
629 			dma_desc->dma_status = DMA_ERROR;
630 	}
631 	return;
632 }
633 
634 static void tegra_dma_tasklet(unsigned long data)
635 {
636 	struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
637 	dma_async_tx_callback callback = NULL;
638 	void *callback_param = NULL;
639 	struct tegra_dma_desc *dma_desc;
640 	unsigned long flags;
641 	int cb_count;
642 
643 	spin_lock_irqsave(&tdc->lock, flags);
644 	while (!list_empty(&tdc->cb_desc)) {
645 		dma_desc  = list_first_entry(&tdc->cb_desc,
646 					typeof(*dma_desc), cb_node);
647 		list_del(&dma_desc->cb_node);
648 		callback = dma_desc->txd.callback;
649 		callback_param = dma_desc->txd.callback_param;
650 		cb_count = dma_desc->cb_count;
651 		dma_desc->cb_count = 0;
652 		spin_unlock_irqrestore(&tdc->lock, flags);
653 		while (cb_count-- && callback)
654 			callback(callback_param);
655 		spin_lock_irqsave(&tdc->lock, flags);
656 	}
657 	spin_unlock_irqrestore(&tdc->lock, flags);
658 }
659 
660 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
661 {
662 	struct tegra_dma_channel *tdc = dev_id;
663 	unsigned long status;
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&tdc->lock, flags);
667 
668 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
669 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
670 		tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
671 		tdc->isr_handler(tdc, false);
672 		tasklet_schedule(&tdc->tasklet);
673 		spin_unlock_irqrestore(&tdc->lock, flags);
674 		return IRQ_HANDLED;
675 	}
676 
677 	spin_unlock_irqrestore(&tdc->lock, flags);
678 	dev_info(tdc2dev(tdc),
679 		"Interrupt already served status 0x%08lx\n", status);
680 	return IRQ_NONE;
681 }
682 
683 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
684 {
685 	struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
686 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
687 	unsigned long flags;
688 	dma_cookie_t cookie;
689 
690 	spin_lock_irqsave(&tdc->lock, flags);
691 	dma_desc->dma_status = DMA_IN_PROGRESS;
692 	cookie = dma_cookie_assign(&dma_desc->txd);
693 	list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
694 	spin_unlock_irqrestore(&tdc->lock, flags);
695 	return cookie;
696 }
697 
698 static void tegra_dma_issue_pending(struct dma_chan *dc)
699 {
700 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
701 	unsigned long flags;
702 
703 	spin_lock_irqsave(&tdc->lock, flags);
704 	if (list_empty(&tdc->pending_sg_req)) {
705 		dev_err(tdc2dev(tdc), "No DMA request\n");
706 		goto end;
707 	}
708 	if (!tdc->busy) {
709 		tdc_start_head_req(tdc);
710 
711 		/* Continuous single mode: Configure next req */
712 		if (tdc->cyclic) {
713 			/*
714 			 * Wait for 1 burst time for configure DMA for
715 			 * next transfer.
716 			 */
717 			udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
718 			tdc_configure_next_head_desc(tdc);
719 		}
720 	}
721 end:
722 	spin_unlock_irqrestore(&tdc->lock, flags);
723 	return;
724 }
725 
726 static int tegra_dma_terminate_all(struct dma_chan *dc)
727 {
728 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
729 	struct tegra_dma_sg_req *sgreq;
730 	struct tegra_dma_desc *dma_desc;
731 	unsigned long flags;
732 	unsigned long status;
733 	unsigned long wcount;
734 	bool was_busy;
735 
736 	spin_lock_irqsave(&tdc->lock, flags);
737 	if (list_empty(&tdc->pending_sg_req)) {
738 		spin_unlock_irqrestore(&tdc->lock, flags);
739 		return 0;
740 	}
741 
742 	if (!tdc->busy)
743 		goto skip_dma_stop;
744 
745 	/* Pause DMA before checking the queue status */
746 	tegra_dma_pause(tdc, true);
747 
748 	status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
749 	if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
750 		dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
751 		tdc->isr_handler(tdc, true);
752 		status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
753 	}
754 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
755 		wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
756 	else
757 		wcount = status;
758 
759 	was_busy = tdc->busy;
760 	tegra_dma_stop(tdc);
761 
762 	if (!list_empty(&tdc->pending_sg_req) && was_busy) {
763 		sgreq = list_first_entry(&tdc->pending_sg_req,
764 					typeof(*sgreq), node);
765 		sgreq->dma_desc->bytes_transferred +=
766 				get_current_xferred_count(tdc, sgreq, wcount);
767 	}
768 	tegra_dma_resume(tdc);
769 
770 skip_dma_stop:
771 	tegra_dma_abort_all(tdc);
772 
773 	while (!list_empty(&tdc->cb_desc)) {
774 		dma_desc  = list_first_entry(&tdc->cb_desc,
775 					typeof(*dma_desc), cb_node);
776 		list_del(&dma_desc->cb_node);
777 		dma_desc->cb_count = 0;
778 	}
779 	spin_unlock_irqrestore(&tdc->lock, flags);
780 	return 0;
781 }
782 
783 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
784 	dma_cookie_t cookie, struct dma_tx_state *txstate)
785 {
786 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
787 	struct tegra_dma_desc *dma_desc;
788 	struct tegra_dma_sg_req *sg_req;
789 	enum dma_status ret;
790 	unsigned long flags;
791 	unsigned int residual;
792 
793 	ret = dma_cookie_status(dc, cookie, txstate);
794 	if (ret == DMA_COMPLETE)
795 		return ret;
796 
797 	spin_lock_irqsave(&tdc->lock, flags);
798 
799 	/* Check on wait_ack desc status */
800 	list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
801 		if (dma_desc->txd.cookie == cookie) {
802 			residual =  dma_desc->bytes_requested -
803 					(dma_desc->bytes_transferred %
804 						dma_desc->bytes_requested);
805 			dma_set_residue(txstate, residual);
806 			ret = dma_desc->dma_status;
807 			spin_unlock_irqrestore(&tdc->lock, flags);
808 			return ret;
809 		}
810 	}
811 
812 	/* Check in pending list */
813 	list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
814 		dma_desc = sg_req->dma_desc;
815 		if (dma_desc->txd.cookie == cookie) {
816 			residual =  dma_desc->bytes_requested -
817 					(dma_desc->bytes_transferred %
818 						dma_desc->bytes_requested);
819 			dma_set_residue(txstate, residual);
820 			ret = dma_desc->dma_status;
821 			spin_unlock_irqrestore(&tdc->lock, flags);
822 			return ret;
823 		}
824 	}
825 
826 	dev_dbg(tdc2dev(tdc), "cookie %d does not found\n", cookie);
827 	spin_unlock_irqrestore(&tdc->lock, flags);
828 	return ret;
829 }
830 
831 static inline int get_bus_width(struct tegra_dma_channel *tdc,
832 		enum dma_slave_buswidth slave_bw)
833 {
834 	switch (slave_bw) {
835 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
836 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
837 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
838 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
839 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
840 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
841 	case DMA_SLAVE_BUSWIDTH_8_BYTES:
842 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
843 	default:
844 		dev_warn(tdc2dev(tdc),
845 			"slave bw is not supported, using 32bits\n");
846 		return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
847 	}
848 }
849 
850 static inline int get_burst_size(struct tegra_dma_channel *tdc,
851 	u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
852 {
853 	int burst_byte;
854 	int burst_ahb_width;
855 
856 	/*
857 	 * burst_size from client is in terms of the bus_width.
858 	 * convert them into AHB memory width which is 4 byte.
859 	 */
860 	burst_byte = burst_size * slave_bw;
861 	burst_ahb_width = burst_byte / 4;
862 
863 	/* If burst size is 0 then calculate the burst size based on length */
864 	if (!burst_ahb_width) {
865 		if (len & 0xF)
866 			return TEGRA_APBDMA_AHBSEQ_BURST_1;
867 		else if ((len >> 4) & 0x1)
868 			return TEGRA_APBDMA_AHBSEQ_BURST_4;
869 		else
870 			return TEGRA_APBDMA_AHBSEQ_BURST_8;
871 	}
872 	if (burst_ahb_width < 4)
873 		return TEGRA_APBDMA_AHBSEQ_BURST_1;
874 	else if (burst_ahb_width < 8)
875 		return TEGRA_APBDMA_AHBSEQ_BURST_4;
876 	else
877 		return TEGRA_APBDMA_AHBSEQ_BURST_8;
878 }
879 
880 static int get_transfer_param(struct tegra_dma_channel *tdc,
881 	enum dma_transfer_direction direction, unsigned long *apb_addr,
882 	unsigned long *apb_seq,	unsigned long *csr, unsigned int *burst_size,
883 	enum dma_slave_buswidth *slave_bw)
884 {
885 
886 	switch (direction) {
887 	case DMA_MEM_TO_DEV:
888 		*apb_addr = tdc->dma_sconfig.dst_addr;
889 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
890 		*burst_size = tdc->dma_sconfig.dst_maxburst;
891 		*slave_bw = tdc->dma_sconfig.dst_addr_width;
892 		*csr = TEGRA_APBDMA_CSR_DIR;
893 		return 0;
894 
895 	case DMA_DEV_TO_MEM:
896 		*apb_addr = tdc->dma_sconfig.src_addr;
897 		*apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
898 		*burst_size = tdc->dma_sconfig.src_maxburst;
899 		*slave_bw = tdc->dma_sconfig.src_addr_width;
900 		*csr = 0;
901 		return 0;
902 
903 	default:
904 		dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
905 		return -EINVAL;
906 	}
907 	return -EINVAL;
908 }
909 
910 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
911 	struct tegra_dma_channel_regs *ch_regs, u32 len)
912 {
913 	u32 len_field = (len - 4) & 0xFFFC;
914 
915 	if (tdc->tdma->chip_data->support_separate_wcount_reg)
916 		ch_regs->wcount = len_field;
917 	else
918 		ch_regs->csr |= len_field;
919 }
920 
921 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
922 	struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
923 	enum dma_transfer_direction direction, unsigned long flags,
924 	void *context)
925 {
926 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
927 	struct tegra_dma_desc *dma_desc;
928 	unsigned int	    i;
929 	struct scatterlist      *sg;
930 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
931 	struct list_head req_list;
932 	struct tegra_dma_sg_req  *sg_req = NULL;
933 	u32 burst_size;
934 	enum dma_slave_buswidth slave_bw;
935 	int ret;
936 
937 	if (!tdc->config_init) {
938 		dev_err(tdc2dev(tdc), "dma channel is not configured\n");
939 		return NULL;
940 	}
941 	if (sg_len < 1) {
942 		dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
943 		return NULL;
944 	}
945 
946 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
947 				&burst_size, &slave_bw);
948 	if (ret < 0)
949 		return NULL;
950 
951 	INIT_LIST_HEAD(&req_list);
952 
953 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
954 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
955 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
956 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
957 
958 	csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
959 	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
960 	if (flags & DMA_PREP_INTERRUPT)
961 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
962 
963 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
964 
965 	dma_desc = tegra_dma_desc_get(tdc);
966 	if (!dma_desc) {
967 		dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
968 		return NULL;
969 	}
970 	INIT_LIST_HEAD(&dma_desc->tx_list);
971 	INIT_LIST_HEAD(&dma_desc->cb_node);
972 	dma_desc->cb_count = 0;
973 	dma_desc->bytes_requested = 0;
974 	dma_desc->bytes_transferred = 0;
975 	dma_desc->dma_status = DMA_IN_PROGRESS;
976 
977 	/* Make transfer requests */
978 	for_each_sg(sgl, sg, sg_len, i) {
979 		u32 len, mem;
980 
981 		mem = sg_dma_address(sg);
982 		len = sg_dma_len(sg);
983 
984 		if ((len & 3) || (mem & 3) ||
985 				(len > tdc->tdma->chip_data->max_dma_count)) {
986 			dev_err(tdc2dev(tdc),
987 				"Dma length/memory address is not supported\n");
988 			tegra_dma_desc_put(tdc, dma_desc);
989 			return NULL;
990 		}
991 
992 		sg_req = tegra_dma_sg_req_get(tdc);
993 		if (!sg_req) {
994 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
995 			tegra_dma_desc_put(tdc, dma_desc);
996 			return NULL;
997 		}
998 
999 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1000 		dma_desc->bytes_requested += len;
1001 
1002 		sg_req->ch_regs.apb_ptr = apb_ptr;
1003 		sg_req->ch_regs.ahb_ptr = mem;
1004 		sg_req->ch_regs.csr = csr;
1005 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1006 		sg_req->ch_regs.apb_seq = apb_seq;
1007 		sg_req->ch_regs.ahb_seq = ahb_seq;
1008 		sg_req->configured = false;
1009 		sg_req->last_sg = false;
1010 		sg_req->dma_desc = dma_desc;
1011 		sg_req->req_len = len;
1012 
1013 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1014 	}
1015 	sg_req->last_sg = true;
1016 	if (flags & DMA_CTRL_ACK)
1017 		dma_desc->txd.flags = DMA_CTRL_ACK;
1018 
1019 	/*
1020 	 * Make sure that mode should not be conflicting with currently
1021 	 * configured mode.
1022 	 */
1023 	if (!tdc->isr_handler) {
1024 		tdc->isr_handler = handle_once_dma_done;
1025 		tdc->cyclic = false;
1026 	} else {
1027 		if (tdc->cyclic) {
1028 			dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1029 			tegra_dma_desc_put(tdc, dma_desc);
1030 			return NULL;
1031 		}
1032 	}
1033 
1034 	return &dma_desc->txd;
1035 }
1036 
1037 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1038 	struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1039 	size_t period_len, enum dma_transfer_direction direction,
1040 	unsigned long flags)
1041 {
1042 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1043 	struct tegra_dma_desc *dma_desc = NULL;
1044 	struct tegra_dma_sg_req  *sg_req = NULL;
1045 	unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1046 	int len;
1047 	size_t remain_len;
1048 	dma_addr_t mem = buf_addr;
1049 	u32 burst_size;
1050 	enum dma_slave_buswidth slave_bw;
1051 	int ret;
1052 
1053 	if (!buf_len || !period_len) {
1054 		dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1055 		return NULL;
1056 	}
1057 
1058 	if (!tdc->config_init) {
1059 		dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1060 		return NULL;
1061 	}
1062 
1063 	/*
1064 	 * We allow to take more number of requests till DMA is
1065 	 * not started. The driver will loop over all requests.
1066 	 * Once DMA is started then new requests can be queued only after
1067 	 * terminating the DMA.
1068 	 */
1069 	if (tdc->busy) {
1070 		dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1071 		return NULL;
1072 	}
1073 
1074 	/*
1075 	 * We only support cycle transfer when buf_len is multiple of
1076 	 * period_len.
1077 	 */
1078 	if (buf_len % period_len) {
1079 		dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1080 		return NULL;
1081 	}
1082 
1083 	len = period_len;
1084 	if ((len & 3) || (buf_addr & 3) ||
1085 			(len > tdc->tdma->chip_data->max_dma_count)) {
1086 		dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1087 		return NULL;
1088 	}
1089 
1090 	ret = get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1091 				&burst_size, &slave_bw);
1092 	if (ret < 0)
1093 		return NULL;
1094 
1095 
1096 	ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1097 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1098 					TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1099 	ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1100 
1101 	csr |= TEGRA_APBDMA_CSR_FLOW;
1102 	if (flags & DMA_PREP_INTERRUPT)
1103 		csr |= TEGRA_APBDMA_CSR_IE_EOC;
1104 	csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1105 
1106 	apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1107 
1108 	dma_desc = tegra_dma_desc_get(tdc);
1109 	if (!dma_desc) {
1110 		dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1111 		return NULL;
1112 	}
1113 
1114 	INIT_LIST_HEAD(&dma_desc->tx_list);
1115 	INIT_LIST_HEAD(&dma_desc->cb_node);
1116 	dma_desc->cb_count = 0;
1117 
1118 	dma_desc->bytes_transferred = 0;
1119 	dma_desc->bytes_requested = buf_len;
1120 	remain_len = buf_len;
1121 
1122 	/* Split transfer equal to period size */
1123 	while (remain_len) {
1124 		sg_req = tegra_dma_sg_req_get(tdc);
1125 		if (!sg_req) {
1126 			dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1127 			tegra_dma_desc_put(tdc, dma_desc);
1128 			return NULL;
1129 		}
1130 
1131 		ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1132 		sg_req->ch_regs.apb_ptr = apb_ptr;
1133 		sg_req->ch_regs.ahb_ptr = mem;
1134 		sg_req->ch_regs.csr = csr;
1135 		tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1136 		sg_req->ch_regs.apb_seq = apb_seq;
1137 		sg_req->ch_regs.ahb_seq = ahb_seq;
1138 		sg_req->configured = false;
1139 		sg_req->half_done = false;
1140 		sg_req->last_sg = false;
1141 		sg_req->dma_desc = dma_desc;
1142 		sg_req->req_len = len;
1143 
1144 		list_add_tail(&sg_req->node, &dma_desc->tx_list);
1145 		remain_len -= len;
1146 		mem += len;
1147 	}
1148 	sg_req->last_sg = true;
1149 	if (flags & DMA_CTRL_ACK)
1150 		dma_desc->txd.flags = DMA_CTRL_ACK;
1151 
1152 	/*
1153 	 * Make sure that mode should not be conflicting with currently
1154 	 * configured mode.
1155 	 */
1156 	if (!tdc->isr_handler) {
1157 		tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1158 		tdc->cyclic = true;
1159 	} else {
1160 		if (!tdc->cyclic) {
1161 			dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1162 			tegra_dma_desc_put(tdc, dma_desc);
1163 			return NULL;
1164 		}
1165 	}
1166 
1167 	return &dma_desc->txd;
1168 }
1169 
1170 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1171 {
1172 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1173 	struct tegra_dma *tdma = tdc->tdma;
1174 	int ret;
1175 
1176 	dma_cookie_init(&tdc->dma_chan);
1177 	tdc->config_init = false;
1178 	ret = clk_prepare_enable(tdma->dma_clk);
1179 	if (ret < 0)
1180 		dev_err(tdc2dev(tdc), "clk_prepare_enable failed: %d\n", ret);
1181 	return ret;
1182 }
1183 
1184 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1185 {
1186 	struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1187 	struct tegra_dma *tdma = tdc->tdma;
1188 
1189 	struct tegra_dma_desc *dma_desc;
1190 	struct tegra_dma_sg_req *sg_req;
1191 	struct list_head dma_desc_list;
1192 	struct list_head sg_req_list;
1193 	unsigned long flags;
1194 
1195 	INIT_LIST_HEAD(&dma_desc_list);
1196 	INIT_LIST_HEAD(&sg_req_list);
1197 
1198 	dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1199 
1200 	if (tdc->busy)
1201 		tegra_dma_terminate_all(dc);
1202 
1203 	spin_lock_irqsave(&tdc->lock, flags);
1204 	list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1205 	list_splice_init(&tdc->free_sg_req, &sg_req_list);
1206 	list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1207 	INIT_LIST_HEAD(&tdc->cb_desc);
1208 	tdc->config_init = false;
1209 	tdc->isr_handler = NULL;
1210 	spin_unlock_irqrestore(&tdc->lock, flags);
1211 
1212 	while (!list_empty(&dma_desc_list)) {
1213 		dma_desc = list_first_entry(&dma_desc_list,
1214 					typeof(*dma_desc), node);
1215 		list_del(&dma_desc->node);
1216 		kfree(dma_desc);
1217 	}
1218 
1219 	while (!list_empty(&sg_req_list)) {
1220 		sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1221 		list_del(&sg_req->node);
1222 		kfree(sg_req);
1223 	}
1224 	clk_disable_unprepare(tdma->dma_clk);
1225 
1226 	tdc->slave_id = 0;
1227 }
1228 
1229 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1230 					   struct of_dma *ofdma)
1231 {
1232 	struct tegra_dma *tdma = ofdma->of_dma_data;
1233 	struct dma_chan *chan;
1234 	struct tegra_dma_channel *tdc;
1235 
1236 	chan = dma_get_any_slave_channel(&tdma->dma_dev);
1237 	if (!chan)
1238 		return NULL;
1239 
1240 	tdc = to_tegra_dma_chan(chan);
1241 	tdc->slave_id = dma_spec->args[0];
1242 
1243 	return chan;
1244 }
1245 
1246 /* Tegra20 specific DMA controller information */
1247 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1248 	.nr_channels		= 16,
1249 	.channel_reg_size	= 0x20,
1250 	.max_dma_count		= 1024UL * 64,
1251 	.support_channel_pause	= false,
1252 	.support_separate_wcount_reg = false,
1253 };
1254 
1255 /* Tegra30 specific DMA controller information */
1256 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1257 	.nr_channels		= 32,
1258 	.channel_reg_size	= 0x20,
1259 	.max_dma_count		= 1024UL * 64,
1260 	.support_channel_pause	= false,
1261 	.support_separate_wcount_reg = false,
1262 };
1263 
1264 /* Tegra114 specific DMA controller information */
1265 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1266 	.nr_channels		= 32,
1267 	.channel_reg_size	= 0x20,
1268 	.max_dma_count		= 1024UL * 64,
1269 	.support_channel_pause	= true,
1270 	.support_separate_wcount_reg = false,
1271 };
1272 
1273 /* Tegra148 specific DMA controller information */
1274 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1275 	.nr_channels		= 32,
1276 	.channel_reg_size	= 0x40,
1277 	.max_dma_count		= 1024UL * 64,
1278 	.support_channel_pause	= true,
1279 	.support_separate_wcount_reg = true,
1280 };
1281 
1282 
1283 static const struct of_device_id tegra_dma_of_match[] = {
1284 	{
1285 		.compatible = "nvidia,tegra148-apbdma",
1286 		.data = &tegra148_dma_chip_data,
1287 	}, {
1288 		.compatible = "nvidia,tegra114-apbdma",
1289 		.data = &tegra114_dma_chip_data,
1290 	}, {
1291 		.compatible = "nvidia,tegra30-apbdma",
1292 		.data = &tegra30_dma_chip_data,
1293 	}, {
1294 		.compatible = "nvidia,tegra20-apbdma",
1295 		.data = &tegra20_dma_chip_data,
1296 	}, {
1297 	},
1298 };
1299 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1300 
1301 static int tegra_dma_probe(struct platform_device *pdev)
1302 {
1303 	struct resource	*res;
1304 	struct tegra_dma *tdma;
1305 	int ret;
1306 	int i;
1307 	const struct tegra_dma_chip_data *cdata = NULL;
1308 	const struct of_device_id *match;
1309 
1310 	match = of_match_device(tegra_dma_of_match, &pdev->dev);
1311 	if (!match) {
1312 		dev_err(&pdev->dev, "Error: No device match found\n");
1313 		return -ENODEV;
1314 	}
1315 	cdata = match->data;
1316 
1317 	tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1318 			sizeof(struct tegra_dma_channel), GFP_KERNEL);
1319 	if (!tdma) {
1320 		dev_err(&pdev->dev, "Error: memory allocation failed\n");
1321 		return -ENOMEM;
1322 	}
1323 
1324 	tdma->dev = &pdev->dev;
1325 	tdma->chip_data = cdata;
1326 	platform_set_drvdata(pdev, tdma);
1327 
1328 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1329 	tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1330 	if (IS_ERR(tdma->base_addr))
1331 		return PTR_ERR(tdma->base_addr);
1332 
1333 	tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1334 	if (IS_ERR(tdma->dma_clk)) {
1335 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
1336 		return PTR_ERR(tdma->dma_clk);
1337 	}
1338 
1339 	tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1340 	if (IS_ERR(tdma->rst)) {
1341 		dev_err(&pdev->dev, "Error: Missing reset\n");
1342 		return PTR_ERR(tdma->rst);
1343 	}
1344 
1345 	spin_lock_init(&tdma->global_lock);
1346 
1347 	pm_runtime_enable(&pdev->dev);
1348 	if (!pm_runtime_enabled(&pdev->dev)) {
1349 		ret = tegra_dma_runtime_resume(&pdev->dev);
1350 		if (ret) {
1351 			dev_err(&pdev->dev, "dma_runtime_resume failed %d\n",
1352 				ret);
1353 			goto err_pm_disable;
1354 		}
1355 	}
1356 
1357 	/* Enable clock before accessing registers */
1358 	ret = clk_prepare_enable(tdma->dma_clk);
1359 	if (ret < 0) {
1360 		dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1361 		goto err_pm_disable;
1362 	}
1363 
1364 	/* Reset DMA controller */
1365 	reset_control_assert(tdma->rst);
1366 	udelay(2);
1367 	reset_control_deassert(tdma->rst);
1368 
1369 	/* Enable global DMA registers */
1370 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1371 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1372 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1373 
1374 	clk_disable_unprepare(tdma->dma_clk);
1375 
1376 	INIT_LIST_HEAD(&tdma->dma_dev.channels);
1377 	for (i = 0; i < cdata->nr_channels; i++) {
1378 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1379 
1380 		tdc->chan_base_offset = TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1381 					i * cdata->channel_reg_size;
1382 
1383 		res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1384 		if (!res) {
1385 			ret = -EINVAL;
1386 			dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1387 			goto err_irq;
1388 		}
1389 		tdc->irq = res->start;
1390 		snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1391 		ret = devm_request_irq(&pdev->dev, tdc->irq,
1392 				tegra_dma_isr, 0, tdc->name, tdc);
1393 		if (ret) {
1394 			dev_err(&pdev->dev,
1395 				"request_irq failed with err %d channel %d\n",
1396 				ret, i);
1397 			goto err_irq;
1398 		}
1399 
1400 		tdc->dma_chan.device = &tdma->dma_dev;
1401 		dma_cookie_init(&tdc->dma_chan);
1402 		list_add_tail(&tdc->dma_chan.device_node,
1403 				&tdma->dma_dev.channels);
1404 		tdc->tdma = tdma;
1405 		tdc->id = i;
1406 
1407 		tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1408 				(unsigned long)tdc);
1409 		spin_lock_init(&tdc->lock);
1410 
1411 		INIT_LIST_HEAD(&tdc->pending_sg_req);
1412 		INIT_LIST_HEAD(&tdc->free_sg_req);
1413 		INIT_LIST_HEAD(&tdc->free_dma_desc);
1414 		INIT_LIST_HEAD(&tdc->cb_desc);
1415 	}
1416 
1417 	dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1418 	dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1419 	dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1420 
1421 	tdma->dma_dev.dev = &pdev->dev;
1422 	tdma->dma_dev.device_alloc_chan_resources =
1423 					tegra_dma_alloc_chan_resources;
1424 	tdma->dma_dev.device_free_chan_resources =
1425 					tegra_dma_free_chan_resources;
1426 	tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1427 	tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1428 	tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1429 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1430 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1431 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1432 	tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1433 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1434 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1435 		BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1436 	tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1437 	/*
1438 	 * XXX The hardware appears to support
1439 	 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1440 	 * only used by this driver during tegra_dma_terminate_all()
1441 	 */
1442 	tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1443 	tdma->dma_dev.device_config = tegra_dma_slave_config;
1444 	tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1445 	tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1446 	tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1447 
1448 	ret = dma_async_device_register(&tdma->dma_dev);
1449 	if (ret < 0) {
1450 		dev_err(&pdev->dev,
1451 			"Tegra20 APB DMA driver registration failed %d\n", ret);
1452 		goto err_irq;
1453 	}
1454 
1455 	ret = of_dma_controller_register(pdev->dev.of_node,
1456 					 tegra_dma_of_xlate, tdma);
1457 	if (ret < 0) {
1458 		dev_err(&pdev->dev,
1459 			"Tegra20 APB DMA OF registration failed %d\n", ret);
1460 		goto err_unregister_dma_dev;
1461 	}
1462 
1463 	dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1464 			cdata->nr_channels);
1465 	return 0;
1466 
1467 err_unregister_dma_dev:
1468 	dma_async_device_unregister(&tdma->dma_dev);
1469 err_irq:
1470 	while (--i >= 0) {
1471 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1472 		tasklet_kill(&tdc->tasklet);
1473 	}
1474 
1475 err_pm_disable:
1476 	pm_runtime_disable(&pdev->dev);
1477 	if (!pm_runtime_status_suspended(&pdev->dev))
1478 		tegra_dma_runtime_suspend(&pdev->dev);
1479 	return ret;
1480 }
1481 
1482 static int tegra_dma_remove(struct platform_device *pdev)
1483 {
1484 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1485 	int i;
1486 	struct tegra_dma_channel *tdc;
1487 
1488 	dma_async_device_unregister(&tdma->dma_dev);
1489 
1490 	for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1491 		tdc = &tdma->channels[i];
1492 		tasklet_kill(&tdc->tasklet);
1493 	}
1494 
1495 	pm_runtime_disable(&pdev->dev);
1496 	if (!pm_runtime_status_suspended(&pdev->dev))
1497 		tegra_dma_runtime_suspend(&pdev->dev);
1498 
1499 	return 0;
1500 }
1501 
1502 static int tegra_dma_runtime_suspend(struct device *dev)
1503 {
1504 	struct platform_device *pdev = to_platform_device(dev);
1505 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1506 
1507 	clk_disable_unprepare(tdma->dma_clk);
1508 	return 0;
1509 }
1510 
1511 static int tegra_dma_runtime_resume(struct device *dev)
1512 {
1513 	struct platform_device *pdev = to_platform_device(dev);
1514 	struct tegra_dma *tdma = platform_get_drvdata(pdev);
1515 	int ret;
1516 
1517 	ret = clk_prepare_enable(tdma->dma_clk);
1518 	if (ret < 0) {
1519 		dev_err(dev, "clk_enable failed: %d\n", ret);
1520 		return ret;
1521 	}
1522 	return 0;
1523 }
1524 
1525 #ifdef CONFIG_PM_SLEEP
1526 static int tegra_dma_pm_suspend(struct device *dev)
1527 {
1528 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1529 	int i;
1530 	int ret;
1531 
1532 	/* Enable clock before accessing register */
1533 	ret = tegra_dma_runtime_resume(dev);
1534 	if (ret < 0)
1535 		return ret;
1536 
1537 	tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1538 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1539 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1540 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1541 
1542 		ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1543 		ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1544 		ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1545 		ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1546 		ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1547 	}
1548 
1549 	/* Disable clock */
1550 	tegra_dma_runtime_suspend(dev);
1551 	return 0;
1552 }
1553 
1554 static int tegra_dma_pm_resume(struct device *dev)
1555 {
1556 	struct tegra_dma *tdma = dev_get_drvdata(dev);
1557 	int i;
1558 	int ret;
1559 
1560 	/* Enable clock before accessing register */
1561 	ret = tegra_dma_runtime_resume(dev);
1562 	if (ret < 0)
1563 		return ret;
1564 
1565 	tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1566 	tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1567 	tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1568 
1569 	for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1570 		struct tegra_dma_channel *tdc = &tdma->channels[i];
1571 		struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1572 
1573 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1574 		tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1575 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1576 		tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1577 		tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1578 			(ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1579 	}
1580 
1581 	/* Disable clock */
1582 	tegra_dma_runtime_suspend(dev);
1583 	return 0;
1584 }
1585 #endif
1586 
1587 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1588 #ifdef CONFIG_PM
1589 	.runtime_suspend = tegra_dma_runtime_suspend,
1590 	.runtime_resume = tegra_dma_runtime_resume,
1591 #endif
1592 	SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_pm_suspend, tegra_dma_pm_resume)
1593 };
1594 
1595 static struct platform_driver tegra_dmac_driver = {
1596 	.driver = {
1597 		.name	= "tegra-apbdma",
1598 		.pm	= &tegra_dma_dev_pm_ops,
1599 		.of_match_table = tegra_dma_of_match,
1600 	},
1601 	.probe		= tegra_dma_probe,
1602 	.remove		= tegra_dma_remove,
1603 };
1604 
1605 module_platform_driver(tegra_dmac_driver);
1606 
1607 MODULE_ALIAS("platform:tegra20-apbdma");
1608 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1609 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1610 MODULE_LICENSE("GPL v2");
1611